
Integrated Perception and Control at High Speed

by

Peter R. Florence

A.B., Princeton University (2012)
M.Phil, Cambridge University (2013)

Submitted to the Department of Electrical Engineering and Computer ARCHIVES
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Author
Signature redacted

Department of Electrical Engineering and Computer Science
January 31, 2017

Certified by..
Signature redacted

Russ Tedrake
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by Signature redacted
/ cU Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Theses

MASSACHUSETTS1 INSTITUTE

MAR 13 2017

LIBRARIES

2

Integrated Perception and Control at High Speed

by

Peter R. Florence

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

We present a method for robust high-speed quadrotor flight through unknown clut-
tered environments using integrated perception and control. Motivated by experi-
ments in which the difficulty of accurate state estimation was a primary limitation
on speed, our method forgoes maintaining a map in favor of using only instantaneous
depth information in the local frame. This provides robustness in the presence of
significant state estimate uncertainty. We compare the method against a benchmark
approach using a simulated quadrotor race through a forest at high speeds in the
presence of increasing state estimate noise. We then present hardware validation
experiments in both indoor and outdoor environments, performing robust obstacle
avoidance at speeds of up to 10 m/s, including sustained flight through a forest at
6 m/s. Finally, we add to the memoryless method, and develop a robust obstacle
avoidance approach that uses memory without resorting to a maximum-likelihood
mapping framework.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

There are many people to thank for helping me put together this work at MIT over

the past couple of years.

First and foremost I would like to thank my advisor, Russ Tedrake. The list of

things that I have picked up from Russ is countless and I thank him for his continued

inspiring leadership of the group. In particular I consistently benefit from his drive

to focus in on foundational, technical challenges, and his positive example he sets in

the lab and in the research community.

I would also like to thank the members of the Robot Locomotion Group, for

sharing their wisdom, talents, insights, critiques, laughs, and friendship. In particular,

I'd like to thank Andy Barry for helping me settle in at MIT and in the lab, for his

knack to do very much with very little, and for teaching me an insane amount of

things. John Carter, too, has been tremendously generous with his deep programming

talents and growing skills with a banjo. Lucas Manuelli has been a great partner in

starting out the robotics quest, and I thank him for constantly teaching me a lot of

math. Pat Marion has been magically helpful with his programming skills. Benoit

Landry was also a great partner in the quest into the quadrotor world, and Ani

Majumdar has also taught me a lot of math and robotics. Vincent Tjeng has also

been a uniquely astute undergraduate to have in the lab. Everyone in the group is

amazingly talented and it has been great to be in research conversations with all of

them, including Aykut Satici, Hongkai Dai, Michael Posa, Robin Deits, Twan Koolen,

Frank Permenter, Shen Shen, Geronimo Mirano, and Tao Pang.

It has also been a very valuable experience being a member of the DARPA FLA

research team, partnering with the labs of Nick Roy, Jon How, and Emilio Frazzoli

at MIT, and with Draper Laboratory. In particular I'd like to thank Brett Lopez,

Nick Greene, Jake Ware, and Kris Frey for enlightening research discussions, and to

the whole team for being supportive of my research, including Katherine Liu, Steve

Paschall, Julius Rose, Rob Truax, Ted Steiner, Scott Rasmussen, Chris Wardman.

Of course I would like to thank my family! Mom and Dad thank you for putting

5

up with me being out on the East Coast again. TJ it has been great going through

PhD world with you. Susanne thank you for everything. Huxley and Murphy, thanks

for the licks.

Funding Acknowledgement

This work was supported by the DARPA Fast Lightweight Autonomy (FLA) pro-

gram, HROO11-15-C-0110. Disclaimer: the views expressed in this proposal are not

endorsed by the sponsor.

6

Contents

Preface

1 Introduction

1.1 C ontributions .

1.2 M otivation .

1.2.1 Separation or Integration of Perception and Control

1.2.2 The Conventional Routes to Autonomous UAV Navigation: Map-

Plan-Track and Reactive Approaches

1.2.3 Motivations from the Realities of Hardware

1.3 R elated W ork .

1.3.1 Empirical State of the Art: UAVs Navigating Unknown Envi-

ronm ents .

1.3.2 Map-Plan-Track Approaches

1.3.3 Reactive Approaches .

1.3.4 Planning Under Uncertainty

1.3.5 Local Frame and Depth Image Space Planning

1.3.6 Motion Primitive Libraries .

1.3.7 Depth Sensor Hardware .

1.3.8 Obstacle Avoidance and Navigation Without Depth Sensors

2 Evaluating Collision Avoidance Maneuvers Without Maps

2.1 Introduction .

2.2 R elated W ork .

7

11

13

15

15

15

17

18

20

21

23

25

26

28

28

28

29

31

31

32

2.3 Generalized Formulation for Collision Avoidance 34

2.3.1 Evaluating Collision Probabilities from Instantaneous Depth

Inform ation . 35

2.3.2 Fast Approximation of Maneuver Collision Probabilities 36

2.3.3 Integrating Reactive and Navigation Objectives 39

2.4 Implementation for High Speed Quadrotor Flight 40

2.4.1 High-Rate Replanning with a Motion Primitive Library 40

2.4.2 Dynamical Model and Propagating Uncertainty 40

2.4.3 Maneuver Library and Attitude-Thrust Setpoint Control . . . 43

2.4.4 Evaluation of Collision Probability and Global Navigation . . 44

2.5 Simulation Experimental Setup . 45

2.5.1 Simulator Description . 45

2.5.2 Experimental Setup . 46

2.5.3 Dijkstra's Algorithm with Pure Pursuit Description 47

2.6 Simulation Results and Discussion . 47

2.7 Future W ork . 50

3 Hardware Validation 51

3.1 Indoor Warehouse Flight . 53

3.1.1 Experimental Setup for Indoor Flight 53

3.1.2 Results from Indoor Flight . 54

3.2 Outdoor Forest and Near-Building Flight 60

3.2.1 Adaptations for Outdoor Flight 60

3.2.2 Experimental Setup for Outdoor Flight 64

3.2.3 Results for Outdoor Flight . 65

3.3 D iscussion . 76

4 Robust Obstacle Avoidance Beyond Maximum-Likelihood Maps: Depth-

Pose-Graph Planning 77

4.1 Introduction . 77

4.2 Background and Related Work . 80

8

4.3 Problem Formulation . 81

4.4 Depth-Pose-Graph Planning . 83

4.4.1 The Depth-Pose-Graph . 83

4.4.2 Greedy Search on a Depth-Pose-Graph 84

4.4.3 Evaluating Motions With A Depth-Pose-Graph 86

4.4.4 Determining Frame-Specific Uncertainty 87

4.4.5 Evaluation Within Each Frame, With Inverse-Depth Gaussian

N oise . 88

4.4.6 Marginalization and Pruning of the Pose Graph 89

4.4.7 Quadrotor Obstacle Avoidance with a Triple Integrator Model 90

4.4.8 Collision-Probability-Constrained Motion Library 90

4.5 Comparison with Memoryless and

Maximum-likelihood Mapping Approaches 91

4.6 Simulation Experiments . 94

4.7 D iscussion . 95

5 Discussion and Future Work 97

9

10

Preface

This work is organized in five chapters. Chapter 1 introduces the work, states the

contributions, discusses the motivation of the robust, high speed navigation, and

reviews related work. Chapter 2 describes the formulation of the novel approach in

detail, and Chapter 3 presents hardware validation experiments. Chapter 4 extends

the method to include memory, with Depth-Pose-Graph Planning. Chapter 5 briefly

discusses future work.

Chapter 2 was originally published as

Peter R. Florence, John Carter, and Russ Tedrake. Integrated percep-

tion and control at high speed: Evaluating collision avoidance maneuvers

without maps. In Workshop on the Algorithmic Foundations of Robotics,

2016.

The intent is to submit a journal version of this content together with the hardware

experiments of Chapter 3.

Chapter 4 is also a candidate for publication soon, with some more experimental

work.

11

12

Chapter 1

Introduction

The past few years have seen rapid progress in artificial intelligence and robotics. As

of the year 2016, an artificial intelligence (Al) agent can beat the world's best human

player in the game of Go [1], and autonomous cars are becoming increasingly accepted

to be safer than human drivers [2]. Yet despite the advances we've made, robots still

can't match humans in common skills of movement - our best robots cannot walk as

well as a toddler, cannot manipulate objects with the dexterity of human hands, and

cannot interact with the world in the rich ways humans do every day.

Agile and robust flight in an unknown environment is a prime example of where

our best Al agents cannot match nature. Birds are often pointed to as a remarkable

example of nature's dominance of this task. An even more direct comparison is offered

by the recently emerged sport of quadcopter FPV (first person view) racing. Quad-

copter FPV pilots use essentially the same hardware as autonomous quadcopters,

but are given less data (only a monocular video stream) than a typical autonomous

system. There is no doubt that the skills of the world's best pilots are spectacularly

above the skills of any autonomous drone.

What in particular is hard about autonomous flight in cluttered environments?

Uncertainty and lack of information are primary difficulties - the game of Go has

perfect information, whereas an autonomous drone gets only a limited, noisy view of

its world. There are other foundational robotics problems embedded as well: there is

a mix of discrete problems (should I turn left or right?) as well as continuous prob-

13

lems (how wide should I turn around this corner?). The difficulty of collecting data

without crashing and the immense variability of data in navigating unknown environ-

ments make machine-learning-based methods difficult to apply. All of these problems

are exacerbated by the small payloads available on lightweight UAVs (unmanned au-

tonomous vehicles). with typically under 1 kg of payload available for sensing and

computation.

(a) (C)

(b) (d)

Figure 1-1: Masters of agile flight in unknown environments: hawks and humans. (a)

Red-tailed hawk, and (b) goshawk flying through forests. (c) Renowned quadcopter

FPV pilot, Charpu, and (d) quadcopter FPV race through forest.

As has been a motivational theme of our research group for the past several years,

agile and robust flight is a robotics problem that is "hard for the right reasons" [3].

Due to the inherent subproblems that are foundational to robotics, making advances

on this overall problem can translate into broad applicability across robotics - from

making autonomous cars increasingly safer, to increasing the dexterity of robotic

manipulation, to making helpful robots in the home.

Chapter Organization

In this introductory chapter, the goal is to complement, rather than restate, the

motivations and backgrounds as discussed in the later chapters. Section 1.1 presents

14

contributions, Section 1.2 discusses the motivation from a broad perspective, and

Section 1.3 reviews some of the most relevant research in the field.

1.1 Contributions

This thesis develops novel methods combining typically separate perception, control,

and state estimation considerations, and applies them to the high speed collision

avoidance problem.

In particular, in Chapter 2, to address the limitations on performance that are

observed due to state estimation difficulties, a planning-based obstacle avoidance

method is developed that avoids a dependence on global position. Simulation exper-

iments are presented in which a benchmark approach cannot provide robust collision

avoidance at high speeds, while the presented method enables the quadrotor to navi-

gate a simulated forest environment at 12 m/s even in the presence of significant state

estimate noise. This is also the first work known to the author to describe stochastic

receding horizon control with depth sensor data for a UAV. In Chapter 3, hardware

validations of this method in both indoor warehouse and outdoor forest environments

are also presented and analyzed, at speeds up to 10 m/s. These hardware results

are among the fastest and most robust performance results achieved by a comparable

vehicle. Chapter 4 extends the integrated perception and control approach to incor-

porate memory. The approach developed is the first known to evaluate a distribution

of the robot's obstacle memory in obstacle avoidance decisions.

1.2 Motivation

1.2.1 Separation or Integration of Perception and Control

A hallmark of control theory is the separation principle. In many applied control

tasks, from controlling chemical plants to stabilizing a quadcopter at a fixed point,

following the separation principle has had broadly useful empirical applications. The

principle states that a maximum likelihood estimator and feedback controller can be

15

computed separately, or as worded by Kalman in his 1960 paper, "Contributions to

the theory of optimal control" [4]:

One may separate the problem of physical realization into two stages: (A)

computation of the "best approximation" i(t1) of the state from knowledge

of y(t) for t < t1 and (B) computation of u(t1) given i(t1).

While the proof of the separation principle is straightforward for the simple case of

linear time-invariant systems [5], it also applies to more general, including nonlin-

ear, systems with certain technical conditions [6]. The principle, however, does not

generally apply to uncertain systems with general cost functions - perhaps the sim-

plest way to see this is with a small POMDP (Partially Observable Markov Decision

Process) toy example, as shown in the figure below.

Wall Goal Lava
Pit

1 12 13 14

Figure 1-2: Toy example, inspired by Kaelbling et al. [71, of how a separation prin-
ciple does not generally apply to POMDPs. In this example, the actions available
are WEST and EAST. Entering the lava pit is irrecoverable, whereas attempting to
enter the wall causes the robot to remain in state 1. If the initial probability distribu-
tion between states 1, 2, 3, 4 is [0.3, 0.4, 0.0, 0.3], then the maximum likelihood state
is state 2, and the desired action should be EAST. Clearly the preferred strategy,
however, is to execute WEST until the robot knows it must be in state 1, and then
go to the goal.

The general problem of obstacle avoidance in an unknown world, with imperfect

sensing subject to field of view (FOV) constraints and occlusions, exemplifies a sys-

tem that does not fit the sufficient conditions of Kalman's principle. In practice,

however, there has been a de facto trend of employing the separation principle in

work in this area. For a number of reasons of convenience, including that they have

somewhat separate research communities, planning and control are often separated

from mapping and estimation.

On the opposite end of the spectrum, the close integration of perception and con-

trol has been explored in a variety of forms in robotics research and applications. In

16

visual servoing, for example, image coordinates rather than full state estimates are

used to accomplish tasks [8]. Other work in manipulation with "end-to-end visuomo-

tor" reinforcement learning control has suggested the advantages of allowing all raw

vision data in the control loop, rather than derived estimates of object poses [9].

1.2.2 The Conventional Routes to Autonomous UAV Naviga-

tion: Map-Plan-Track and Reactive Approaches

Much of the work towards the goal of autonomous UAV flight in unknown environ-

ments can be categorized as using a "map-plan-track" type approach, in which map-

ping, planning, and trajectory-tracking control are run as separate processes. (This

area of work is reviewed further in Section 1.3.2.) A primary barrier, however, to the

success of these techniques in unknown environments is the difficulty of high-precision

GPS-denied state estimation, particularly in regimes of fast, aggressive flight. When

these methods are exposed to significant state estimate uncertainty, both mapping

and tracking fail. Planning-heavy approaches also tend towards high latency, although

offline- [3, 10j or online-computed [11, 12] libraries can enable low-latency response.

Given this status quo, one option to make progress is to focus on improving GPS-

denied state estimation [13,14], but in this thesis an alternate route is investigated.

Our approach takes motivation from reactive control techniques, which have blazed

their own trail separately from motion planning theory, and for a while now have pro-

vided impressive UAV obstacle avoidance capabilities. For example, work by Beyeler

et al. [15J in 2009 achieved obstacle avoidance moving at approximately 14 m/s, and

they touted their lack of explicit position dependence as a primary advantage of their

approach. That said, there are a variety of limitations with reactive control tech-

niques, including that they don't provide rigorous frameworks for reasoning about

uncertainty.

The aim of our work was to provide a route to fast, robust flight that combines

the best of both these worlds. In particular, from the world of reactive control, we

want the property that we don't necessarily need to perform full state feedback - we

17

do not want to rely on high-precision state estimation. From motion planning theory,

we employ state-space tools and reason about uncertainty.

High precision
GPS-denied

state estimation

This work "...

..............

No Uncertainty
Reactive Control Quantification

Route

Figure 1-3: Depiction of the possible routes and limits towards our goal. Our work

investigates combining inspiration from both traditional approaches.

1.2.3 Motivations from the Realities of Hardware

Our approach was closely motivated by experience with hardware. Our DARPA FLA'

research team had previously implemented a map-plan-track type approach, and a

primary barrier to higher vehicle speed and performance was the difficulty of state

estimation in unknown environments, which could cause both mapping and tracking

to fail. A realization upon inspecting raw flight data was that even though odometry

errors made precise mapping difficult, raw depth images could be clean. An additional

realization was provided by an examination of position and velocity estimation from a

GPS-denied visual inertial odometry (VIO) state estimator. Empirically, we observe

that the variance of position is higher than velocity. This makes sense, since variance

increases for each integration of a noisy IMU.

1The DARPA Fast Lightweight Autonomy (FLA) program is a multi-research-organization effort

with a particular emphasis on speed for UAVs in unknown, GPS-denied environments.

18

Goal:
agile, robust flight
in unknown environments

J5

(a) (b)

Figure 1-4: Comparison of (a) skewed map data and (b) raw depth image data (ASUS
Xtion structured-light sensor) from a flight at 5.5 m/s down a corridor.

Figure 1-5: Raw data out of a visual inertial state estimator for position and velocity.

Additionally, an important property is that depth sensors measure obstacles in

relative coordinates. Raw depth images are commonly available at a high rate (30-

60 Hz) - a sufficient rate for making obstacle avoidance decisions. Other works have

previously investigated planning-based methods in depth image space [16,17], but use

trajectory-tracking controllers. A novel combination of both (i) using only current

depth image information, and (ii) using model-predictive-control (MPC) rather than

a nominal-plan tracking controller, offered the opportunity to eliminate an explicit

dependence on global position. Velocity estimation is still required, but it is lower

variance than position with VIO estimators, and our method is designed to handle a

Gaussian belief space for velocity. Using only the instantaneous local frame, there is

also no explicit dependence on yaw, which is well-known to be hard to estimate for

quadrotors without GPS. In contrast to our method, there is a 1:1 correspondence

between the hardest-to-estimate parts of state for a quadrotor, and the differentially-

flat outputs that are commonly used for trajectory planning and tracking [18].

19

Additional motivation for this approach came from how an expert quadcopter

FPV pilot flies. Expert pilots are able to navigate around obstacles with incredible

agility, without ever being able to estimate their global position to within centimeters.

Arguably the central components of successful FPV pilot flight are (i) an approximate

sense of velocity, (ii) an approximate sense of how control actions affect dynamics, and

(iii) fast reactions to sensory inputs. Our method shares these three characteristics.

although it uses depth images rather than RGB images.

(a) (c)

(b) (d)

Figure 1-6: FPV quadcopter pilot Charpu flying through trees. With only monocular
video available, expert pilots can navigate complex environments like these at re-
markable speed. The inset in each image shows the hands of the pilot sending control
inputs to an onboard attitude controller.

1.3 Related Work

First, we review the empirical state of the art for the specific problem of UAVs navi-

gating unknown environments at high speeds. Beginning with the empirical state of

the art forces recognition of what actually works? We then review the formulations

and varieties of the two dominant categories of approaches, (i) map-plan-track, and

(ii) reactive. Additionally, we review related areas of theory and practice.

20

1.3.1 Empirical State of the Art: UAVs Navigating Unknown

Environments

Related works in UAV navigation in unknown environments

This work,
Matthies (2014) Chapter 3

Bircher Chen (2016)
(2016)

o Ros (2013) Oleynikova (2015)

Dey Daftry(2016)
(2015)

Scherer (2008)

Liu (2016)

Droeschel Merz
(2015) (2013)

DJI Phantom 4, DJI Mav

1Hrabar (2009) Lopez (2017) (2016).

Hyslop (20,0) Ui4 (2016) Yu (2013)

Be

DJ

Johnion (2014)
ic

This work,
Chapter 2

yeler 2009)

Barry (2016)

I Phantom 4 Pro
(2016)*

0

Planning
* Reactive
Q Unknown

(Commercial product)

Size of cirde represents
size (mass of vehicle)

0 < 5kg

O -12kg

Q > 60 kg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max. Demonstrated Obstacle Avoidance Speed (m/s)

Figure 1-7: Comprehensive comparison of works in UAVs navigating unknown en-
vironments that meet the requirements stated below. Asterisk * denotes that the
numbers are reported for manual-pilot obstacle assistance, and may be different for
fully autonomous navigation.

A vast amount of work has been devoted towards this goal, but the list of works

that have been empirically evaluated in unknown environments is a manageable list to

evaluate in full. The figure above, Figure 1-7, presents a chart that to the best of the

author's knowledge is a comprehensive compilation of works [3,10-12, 15, 17,19-321

that meet the following requirements: (i) must be demonstrated either in hardware

with real perception or in simulation with real perception simulation, for a UAV

platform navigating among obstacles in an unknown environment. An additional

practical requirement (ii) is that the vehicle velocity must have been stated - there is

a small list of works that meet the first requirement but do not provide any velocity

numbers [33-38]. There is a much longer list of works that address subproblems but

are demonstrated either in simulation or hardware with full obstacle knowledge, use

a similar platform such as a ground vehicle instead of a UAV, or in some other way

do not meet the requirements stated above. Some of these will be referred to in the

21

Increasing
complexity

GPS-denied,
global navigation

GPS-denied,
local avoidance only

GPS/motion-capture,
global navigation

GPS/motion-capture,
local avoidance only

Simulation

following sections.

A variety of careful considerations are present in Figure 1-7. All works have

been categorized as either planning or reactive approaches. The definition of "plan-

ning" used was that the method must consider specific paths in configuration space,

wheres "reactive" encompasses all approaches that do not. Some works [11, 19,20,281,

including our own, employ a layered approach, in which a higher-level planner pro-

vides global guidance, but were categorized according to the local obstacle avoidance

method. The y-axis is ordered in terms of increasing complexity: GPS-denied makes

obstacle avoidance significantly harder, in part due to the variance of position esti-

mation. For the x-axis, although speed is not a perfect measure of capabilities, it is

clearly quantifiable, and often reported. To be fair to the respective authors, max-

imum obstacle avoidance speed was not necessarily the goal of each of these works.

Perhaps better metrics for quadrotor "agility" are maximum roll angles and roll rates

while navigating an unknown environment - the highest demonstrated among these

works is probably Lopez et al. [12], with respectively 75.4deg and 695.79-2. The most

important concept that is not represented in the chart, and is perhaps our method's

primary motivation, is robustness - unfortunately, data is not available to compare

across separate studies.

Some conclusions are apparent from examining the works of the chart. Of all the

planning methods included, ours is the only one that does not have an explicit depen-

dence on position - every single other planning approach performs position-tracking

control. Multiple works achieved obstacle avoidance results with reactive approaches

at 10 m/s or above several years ago [15,19J, whereas only recently, Barry et al. was

the first to achieve this result with a planning method, using stereo vision and a

trajectory-library approach [3]. Additionally, as is highly relevant to the arguments

regarding memory presented in Chapter 4, of the eight fastest hardware-proven plan-

ning methods, five of them use no memory of depth measurements [10-12,17,321, one

uses only a two-second history of depth measurements [31, and one uses an exponen-

tially decaying history of depth measurements [29]. Another observation is the rapid

entrance of industry onto the scene - 2016 saw the first widely available consumer

22

- -1

products with these capabilities.

1.3.2 Map-Plan-Track Approaches

In the map-plan-track paradigm, each process is run separately: (i) producing a map

as close as possible to full obstacle knowledge, (ii) receding-horizon planning, and

(iii) trajectory-tracking feedback control along the nominal plan. Map-plan-track

approaches are very sensible in that they build on a large body of motion planning

theory [39]. There has been large amounts of impressive work using map-plan-track

methods for UAVs navigating amongst obstacles with a prior map, specific obstacle

locations, or other prior knowledge [13, 18, 40-45]. In regimes of good information,

such as in motion capture rooms, these methods have work well.

Mapping

Mapping has been intensely studied for decades, and has many applications even

with no controller in the loop - for example in virtual reality (VR) applications, or

in surveying. The mapping problem is often simultaneously solved with the state

estimation problem, known as SLAM (Simultaneous Localization and Mapping). For

UAV navigation [3,29,31, 32, 44], an overwhelmingly common option is to use occu-

pancy grids [46] as the map representation. A more detailed discussion of related

work in mapping is provided in Chapter 4.

Planning

10
y (mJ

(a) (b) (C)

Figure 1-8: Examples of planning approaches used for UAVs, (a) A*, (b) RRT, (c)
convex segmentation and mixed-integer optimization. Images from [30,47,48].

23

A few categories of planning approaches have been most prominently used for

UAVs. First, (i) discrete graph search approaches such as Dijkstra's algorithm, A*,

or D* operate on a graph of discretized space, and have been abundantly used for UAV

platforms in at least part of an overall planning pipeline [11, 19,20, 28,31,32,35,47].

Discrete search offers many convenient properties, but are limited by discretization

effects, the difficulty of incorporating dynamic vehicle constraints, and the curse of

dimensionality which makes sizable 3D environments difficult. Second, (ii) sampling-

based planners, such as the classic PRM [49] or RRT [50], or preferably variants

that offer asymptotic optimality guarantees such as RRT* [51] or FMT* [52] offer

another route to planning through complex configuration spaces, scale better than

discrete planning to higher dimensions, and have been commonly used for UAV navi-

gation [17,24,42]. Methods based on using a library of motion primitives [3,10,29] are

a form of sampling-based planning. Third, (iii) there are mixed-integer optimization

planning variants [43, 48, 53, 54]. The idea of using convex free-space segmentation,

rather than half-space constraints, was proposed by Deits. et al. [48] and has inspired

methods that although do not use mixed-integer programming, use convex segmenta-

tion around an initial plan to provide constraints for trajectory optimizations through

free space [31, 32].

Particularly for quadrotors, an abundantly popular tool has been optimizing poly-

nomial trajectories x(t), y(t), z(t), 0(t) for the differentially-flat outputs (position and

yaw) of a quadrotor. Optimization tools can easily minimize higher-order time-

derivatives. This method was first developed for quadrotors by Mellinger et al. [18] in

2011, and produced amazingly acrobatic quadrotor flight in motion capture environ-

ments. To navigate among obstacles, polynomial optimization needs good constraints,

which are often provided by some previous planning step - for which each of the three

methods mentioned above have been used [37,42,47,48,54].

Tracking

Theory has studied for decades the problem of stabilizing a dynamical system to a

time-invariant fixed point, or a trajectory through time [55]. Theory has transitioned

24

well to practice for UAVs, particularly for quadrotors, which since the influential

work of Mellinger et al. [18] have been able to perform aggressive maneuvers using

position and velocity feedback control. We do not review specific tracking methods

in detail, but note that with a good position estimate (i.e., in motion capture) and

a dynamically feasible trajectory, position-tracking for UAVs is a solved and proven

technology. One option for quadrotors that is a nice application of optimal control

theory is to time-varying LQR to directly come up with motor commands [43], but in

practice inner-loop attitude controllers are often run on separate hardware closing a

feedback loop at high rate (200+ Hz) with an IMU. For fixed-wings, time-varying LQR

can supply good tracking performance [3,56]. Recent work has developed impressive

tracking controllers for tail-sitters [57]. The open problems in tracking control are

in rigorously dealing with estimation uncertainty, particularly with nonlinear UAV

models. Exciting recent work has gone into verifying controllers of such models, given

bounds on state estimation and disturbances [56,58].

1.3.3 Reactive Approaches
Nominal Optic Flow Pattern

120 - - - --. -
0120 --- --

390

-180 -90 0 90 180 %
azimath (deg)

(a) (b) (C)

Figure 1-9: Examples of reactive obstacle avoidance approaches, (a) optic flow, (b)
apf, (c) imitation learning. Images taken from Hyslop et al. [22], Scherer et al. [19],
and Ross et al. [23].

Most reactive control techniques can be divided into four categories that have

been used on UAVs: (i) optic flow [15,20-22], (ii) artificial potential fields [19,28] and

closely-related approaches like the vector field histogram [36], (iii) imitation-learning

approaches [23], and (iv) approaches that use hand-designed geometric relations but

do not specifically perform state-space planning [25-27,34]. It has been a common ap-

proach to use reactive approaches in layered formulations, with a higher-level planning

25

- I

system [19, 20,28]. A notable point is that optic flow methods have been performed

at -4 kHz, orders of magnitude faster than common depth or RGB sensors [15]. It

has been common to point to low-latency as an advantage of reactive approaches, but

we believe an under-appreciated component of reactive approaches is that many of

them have no explicit dependence on the full state estimate of the vehicle.

1.3.4 Planning Under Uncertainty

We briefly discuss the vast topic of planning under uncertainty. For a more compre-

hensive review of planning under uncertainty, we refer the reader to the pair of 2006

books by LaValle [391 and Thrun, Burgard, and Fox [59], which should be coupled

with more up-to-date reviews of continuous motion planning under uncertainty 156]

and POMDP solvers [60]. A general model of planning under uncertainty, POMDPs

(Partially Observable Markov Decision Processes), is discussed more in Chapter 4,

and Kaelbling et al. [7] provides a good introduction. POMDP solvers have been

used for models of aircraft collision avoidance [61,62]. A large variety of other works

have made investigated continuous belief space planning. Common ideas have been to

complement RRTs with notions of belief space [63-661, or use other forms of sampling-

based algorithms with a notion of belief space [67,68]. Others have used trajectory

optimization tools such as direct transcription [69]. Quadrotors can be approximated

with linear models, and so Linear-Gaussian models of uncertainty are useful - which

have been widely used [66]. Two options for considering uncertainty are to consider an

unbounded probability distribution of state, or consider worst-case bounds. Bounded

uncertainty with nonlinear models has produced elegant formulations of verifiable

planning [56,70], where sequentially composed offline-computed funnels enables low-

latency control decisions [56].

Path Collision Probability and Probabilistic Collision Detection

A component of planning under uncertainty may be approximating the collision prob-

ability of a path through configuration space. A good review of this topic is provided

26

by Janson et al. [71], who propose smart sampling strategies for making Monte Carlo

calculations more efficient, but also review time-sampling methods. In particular,

Patil et al. provide a conditional multiplicative method that is empirically the best

among time-sampling methods [721. Path collision probability approximations have

been coupled with RRT planners [731. Instead of entire paths, the concept of proba-

bilistic collision detection between point clouds or meshes [74] has been studied and

used in planning systems [75].

Chance Constrained Optimization

One approach to planning under uncertainty is chance constrained optimization,

which has roots in the 1950s in operations research [76], and has been well devel-

oped in the context of robotic motion planning by a series of theoretical works by

Blackmore et al. using mixed-integer optimization [77-79]. Related to these mixed-

integer optimization methods, the concept of chance-constraining an RRT planner

has been explored in a variety of works [80-82].

Planning with Limited Field of View (FOV) and Occlusions

The concept of planning in unknown environments where the assumption is made

that unknown space is occupied is a common assumption. The concept of Inevitable

Collision States (ICS) by Fraichard et al. well encompasses this idea [83]. Lesperance

et al. provides a nice framework for thinking about a hierarchy of safety in motion

planning, generalizing previous ideas about the assumptions of static or dynamic

environments [84]. That said, the full implications of efficiently planning with limited

field of views and occlusions of available hardware sensor data like depth images, is

probably an underappreciated concept, although has been addressed in some works

[11, 17].

27

1.3.5 Local Frame and Depth Image Space Planning

The benefits of performing obstacle avoidance in a local frame, rather than a global

frame, have been well appreciated by many others besides us, and are often pointed

to in studies of autonomous navigation [16, 17, 24, 851. Moore et al. offers a formal

evaluation of the benefits of maintaining separate state estimates for local frame and

global frame planning [86]. A particular form of planning in the local frame is planning

directly in depth image space, which has been explored in a number of works [16,17].

1.3.6 Motion Primitive Libraries

The concept of a library of motion primitives is a widely used tactic for robotics,

including UAVs navigating among obstacles [3,10,29,45,56,871. In practice, there are

a variety of practical benefits of motion primitive libraries. For one, primitives can

be verified ahead of time to be sensical. Additionally, motion primitives offer a way

to avoid non-convex continuous optimization, by simply choosing the best among a

discrete set. A nice theoretical framework is provided by Frazzoli et al. with their

Maneuver Automaton [88]. Often libraries are computed offline [3,10,29,561, for which

the advantage is allowing rigorous offline verification [56], or can be computed online

for simple models [11, 12J, which allows each primitive to have an initial condition

that is exactly the current estimate. Without this latter property, offline libraries

require careful thought about transitioning between motions [56]. Often, the choice

of motion primitives is done by hand and not subjected to rigorous analysis, although

some work has looked into optimization of motion primitive libraries [89].

1.3.7 Depth Sensor Hardware

The capabilities of available depth sensors has rapidly increased in recent years, and

merits discussion. As of 2015, Intel's release of the RealSense R200 provided a global

shutter stereo pair that can provide 480 x 360 resolution depth images at 60 Hz,

weighs only 34 grams, costs only ~ $100, and can provide a range of 15-25 meters in

high-texture, well-lit scenarios such as a forest. These specifications were simply not

28

commercially available only a couple of years ago. With its IR CCDs, however, in our

hardware testing the RealSense is highly sensitive to material texture, and is blind to

low-texture surfaces, like the sides of buildings. For inside applications, the Microsoft

Kinect and ASUS Xtion sensors provide depth sensors with better robustness to a

variety of surface textures. Outside of vision sensors, the year 2016 saw the first

3D lidar weighing under 600 grams with the Velodyne VLP Puck Lite, although the

~ $10, 000 cost is difficult to swallow for robots deliberately flying towards trees. The

year 2016 also saw the emergence of radar sensors weighing approximately 1 kg, with

range on the order of a kilometer. It is certainly an exciting time for the development

of hardware, which are critical for geometric planning algorithms.

1.3.8 Obstacle Avoidance and Navigation Without Depth Sen-

sors

In parallel to the growing capabilities of depth sensors, there is also growing interest

in the use of non-geometric data for obstacle avoidance, including for mobile robots

navigating unknown environments. Ross et al. was probably the first to demonstrate

this capability for UAVs, with their imitation-learning approach [23]. Supervised

learning of classifying paths in forests has enabled UAVs to follow paths in forests

using only RGB data [90]. The idea of training to navigate using vision data in

simulation is a commonly talked about idea in the research community, although

has not been notably demonstrated on UAV hardware. Modern autonomous vehicles

perform a variety of vision-based classifications in order to navigate their world.

29

30

Chapter 2

Evaluating Collision Avoidance

Maneuvers Without Maps

2.1 Introduction

A primary challenge in improving robot performance is to increase robustness in

regimes of fast motion, proximity to obstacles, and significant difficulty of estimating

state. A robotics platform that is at the center of all of these challenges is a UAV

navigating quickly through unknown, cluttered environments. Although compelling

progress has been made [3,10,32,91], the goal of autonomous, robust, agile flight into

unknown environments remains an open problem.

In this paper, we present an integrated approach for perception and control, which

we apply to the high-speed collision avoidance problem. Our approach departs from

the paradigm of building maps, optimizing trajectories, and tracking trajectories.

Central to the approach is considering routes to achieve control objectives (fly fast,

and don't crash into obstacles) and taking advantage of model-based state-space

without relying on full-state feedback.

Our approach is directly motivated by the success of reactive control that is

"straight from sensors to control input" but uses tools from more rigorous state space

control. We show that in order to get the performance of a motion planning system,

the robot doesn't need to build a map, doesn't need precise estimates of its full state,

31

and doesn't need to heavily optimize trajectories.

A key insight we explore in this paper is that we can both estimate the probability

of collision for any action without building a locally consistent map, and execute that

action without the use of position-control feedback. The basics steps of our method

are: evaluate maneuvers probabilistically for collision and impose field of view con-

straints, choose a maneuver based on an unconstrained objective combining collision

avoidance and navigation, and execute this at high rate with a model-predictive con-

trol type approach. This method offers a mapless collision avoidance approach that

does not depend on position, rigorously considers robustness, is amenable to low-

latency implementations, and integrates seamlessly with arbitrary navigation objec-

tives. We note, however, that the mapless method cannot escape dead-ends by itself

without a layered global planner.

Our primary contribution is the novel synthesis of our approach combining typi-

cally separate perception, control, and state estimation considerations. This synthesis

is implemented for robustness at speed by a combination of: local frame estimation

of path collision probabilities that considers field of view (FOV) constraints, motion

primitives defined in the local frame, acceleration by spatial partitioning, and high-

rate robust model-predictive control that doesn't depend on trajectory-tracking. This

is also the first paper known to the authors to describe stochastic receding horizon

control with depth sensor data for a UAV. Additionally, we present simulation exper-

iments in which a benchmark approach cannot provide robust collision avoidance at

high speeds, while our method enables the quadrotor to navigate a simulated forest

environment at 12 m/s even in the presence of significant state estimate noise.

2.2 Related Work

The close integration of perception and control, where the realities of perceptual

information inform the control approach, is a concept of active interest in robotics.

Visual servoing methods for robotic manipulation 181, for example, are an application

where control is designed to work with partial information (relative positions in image

32

space) rather than full-state feedback.

In the application area of UAV navigation in unknown environments, the predom-

inant approach is to instead impose the separation principle between perception and

control, and separately build a map, plan an optimal trajectory in that map, and

execute trajectory-tracking feedback control along the nominal plan. In this map-

plan-track paradigm, the goal is to produce a map as close as possible to full obstacle

knowledge and produce highly accurate estimates of full state. These methods work

well in regimes of good information, such as motion capture rooms with pre-prescribed

obstacle locations. They are particularly fragile, however, when exposed to significant

state estimate uncertainty, causing mapping and tracking to fail. Planning-heavy ap-

proaches also tend towards high latency, although offline-computed libraries enable

low-latency response [3,10].

A different approach to UAV navigation is offered by reactive control, which has

achieved some of the most impressive obstacle avoidance results demonstrated to

date [15,19,23]. Three primary types of reactive approaches have shown success: optic

flow methods [15, 21,22], artificial potential fields [19,28], and imitation learning [23].

Reactive methods by definition do not fit into the map-plan-track paradigm since

they do not plan a time-sequence of states into the future, but are also generally

characterized by not performing full-state feedback.

In that our method neither builds a map nor executes trajectory-tracking control,

it departs from the map-plan-track paradigm. In that it does not perform position-

control feedback, it is more similar to the mentioned reactive methods, yet it does

plan states in the local frame into the future and reason about state-space uncertainty,

which does not fit the definition of a reactive method.

The theory of motion planning under uncertainty has been well studied, at least

in the domain of full obstacle knowledge. One approach is that of chance-constrained

optimization [79,80,92,93], in which the probability of collision at any time is upper-

bounded as a constraint in an optimization. In the planning portion of our approach

we use a variant where collision avoidance is included in the objective, not as a

constraint, and we estimate collision probabilities for entire paths, then choose among

33

a finite library. An important component of this approach requires path collision

probability estimation, which has been well studied [71].

Several other works are notably related to various components of our integrated

approach. One related method for online stochastic receding-horizon control is that

of "funnel" computation and sequential composition [56, 94, 95], which notably can

handle nonlinear models. The focus of those works, however, is not on integrated

perception and control considerations, as ours is here. A somewhat related work

is by Matthies et al. [17] since it presents field-of-view-limited planning with depth

image information for collision avoidance, but their approach is a map-plan-track

approach, and doesn't consider uncertainty. Probabilistic collision detection in point

clouds has been studied [741 and integrated with sampling-based motion-planners [75],

but not to our knowledge has been applied to the collision avoidance problem with

field-of-view constraints. Another complementary approach aims to learn, through

supervised training in simulation, collision probabilities outside of conservative field

of view approximations [96].

2.3 Generalized Formulation for Collision Avoidance

First, we consider the problem of estimating the probability of collision for a time-

varying distribution of configurations using only instantaneous depth information.

We then present approximation methods that enable fast computation for collision

avoidance at high speeds. Additionally, we discuss the use of spatial partitioning

data structures and the incorporation of global navigation objectives. This section

is generalized to allow for application to an arbitrary robot. In the next section, a

particular implementation for a quadrotor is presented.

34

2.3.1 Evaluating Collision Probabilities from Instantaneous Depth

Information

We wish to evaluate the probability of collision for:

P(Collision during t E [0, tf] I D, pt(q)) (2.1)

where pt(q) is the time-varying distribution of configuration, tf is the final time, and

D is a vector of depth sensor returns [do, ... , d,]. This probability cannot be calculated

with certainty, due to the large amount of unknown space U C R' caused by occlusions

and the finite FOV (field of view) of the depth sensor. Each depth return corresponds

to an occupied frustum Fd, C R' whose volume is defined by the image resolution,

depth return distance, and sensor discretization. Together these occupied frustums

comprise the known occupied subset of space, 9 known = U3 YFd, (Oknown C R3. Each

depth return also creates a portion of unknown space T(occluded by dj) C U which is a

frustum that joins the unknown space at the sensor horizon. For handling the FOV

constraints, the conservative route is to make the assumption that all unknown space

U is occupied (U U Oknown = 0), which provides a mapping from D -+ (that is

strictly conservative.

Y(occluded by dj) pt(q)

Td1

(a) (b)

Figure 2-1: Depictions of (a) depth measurements (black) and conservative assump-
tion of unknown space as occupied (blue), and (b) time-varying distribution of con-
figuration (purple).

At any given point in time and given the distribution pt() over robot configuration

q, the probability of collision is obtained by the probability that the robot is in

35

collision with any of the sensor returns or occupies any unknown space:

P(Collision, pt,(q)l OknownU) = P(q(t) E {Oknown or U} (2.2)

Note that the probabilities are not disjoint, since for any non-zero-volume robot,

a given configuration can be in collision with multiple frustums, occupied or un-

known. To evaluate this probability, an integral over all possible configurations must

be integrated. Even given a solution to this integral, however, this only provides an

evaluation of one possible distribution of configuration at some future time, and hence

the probability of collision for the time-varying distribution of configuration is still

difficult to evaluate, given that all future positions in time are dependent on previous

positions in time. One route to estimating this probability is through Monte Carlo

simulation, but approximations offer computationally efficient routes. Although the

literature does not typically account for FOV constraints, a good review of avail-

able options for estimating path collision probabilities with full obstacle knowledge is

included in a recent paper by Janson et al. [71].

Additionally, even with the conservative assumption, the form of U (large subsets

of space) is of a different form than 0 known (small frustums). Our current formulation

addresses this by converting 0 known into a point cloud and evaluating the probability

distribution pt(q) at these points, whereas for U we perform a binary evaluation of

the mean of pt(q) entering U. Future work could evaluate both of these probabilities

more rigorously by integrating the probability distribution pt(q) over the volumes of

both Oknown and U, at additional computational cost.

2.3.2 Fast Approximation of Maneuver Collision Probabilities

Given the goal to evaluate collision probabilities in real time for the purpose of

collision avoidance, some approximations are in order. Although these are signifi-

cantly simplifying assumptions, the simulation results presented in this paper sug-

gest that even these approximations offer a significant improvement over determin-

istically collision-checking trajectories. We consider maneuvers of the form: M =

36

.

{u(t),pt(q)}, i.e. control inputs as a function of time u(t) that produce a time-

varying distribution of configurations pt (q). Our choice of open-loop maneuvers is a

choice that represents our control decision to not depend on position-control feedback.

For estimating the probability of collision for the entire maneuver we use an inde-

pendence approximation. Future positions are sampled in time, and the maneuver's

probability of collision is approximated as the subtraction from unity of the product

of the no-collision probabilities at each sampled time ti:

P (Collision, pt (q)) ~ 1 - [1 - P(Collision, pt, (q))] (2.3)

For the evaluation of the no-collision probabilites at each time ti, we assign a no-

collision probability of 0 (definite collision) if the mean of pt, (q) is in U, and otherwise

evaluate the probability of collision with the point cloud. Evaluating only the mean

in U is a large oversimplification, but avoids integrating over many small occluded

frustums:

[1 - P(Collision,pt,(q))] =if P(Pt2) CLI

11H= 1 [1 - P(Collision, pt,(q), dj)], otherwise

(2.4)

Checking if p(pt) E U can be done by a projective transform into depth image space,

and checking if the projection is either out of bounds of the depth image (outside

FOV), or a depth return at that pixel has less depth (occluded). If not in U, the

probability of collision with Oknown is approximated by an additional independence

approximation: each collision with all nd depth returns is assumed an independent

probability event. To evaluate each event P(Collision,pt,(q), dj) above, we must

choose a dynamic model with uncertainty. Thus far, the discussion has been gener-

alizable to any model. In Section 2.4 we describe how we evaluate this term for a

simplified model with Gaussian noise.

Naively, the complexity of the computation above is 0(nM x nt x nd). Even for

a "low-resolution" depth image, the number of depth points can be high, for example

a 160 x 120 image is nd,Total = 19, 200 points. Only the closest depth returns to

37

the mean of the robot's distribution, however, will have the highest probability of

impact, and this additionally offers a route to lower computational complexity. Thus,

rather than evaluate Equation 4.9 for all depth returns, we query only the closest

nd < nd,Total points with a k-d-tree.

In contrast to deterministic collision checking, collision probability approxima-

tion significantly benefits from three-dimensional spatial partitioning as opposed to

operating directly on the depth image. This is because with the probabilistic col-

lision checking, we care about "long-tails" of the robot position distribution, rather

than just deterministically collision-checking the mean. To deterministically collision

check, there is no faster way than using the raw depth image [17], but in order to

consider long-tail positions in the direct depth image method, a large block of pixels

needs to be checked. The depth image structure provides information about prox-

imity in two dimensions (neighboring pixels), but not the third (depth). We also

note, however, that since the direct depth image method requires no building of a

new data structure, highly parallelized implementations may tip computational time

in its favor (as opposed to sequentially building a k-d-tree, then searching it).

Briefly, we analyze the limitations of the approximation accuracy. In the context

of full obstacle knowledge, the independence approximation over time has been shown

to provide overly conservative estimates of collision probability [711. Additionally, the

independence approximation between depth returns contributes to more overestima-

tion, and picking only one point from each cluster has been recommended to reduce

this overestimation [74]. In our method, the FOV constraints contribute even more

to over-conservatism, but there is not available information to improve this approx-

imation without adding risk going into the unknown. Learned priors, however, can

intelligently minimize this risk [96]. We note that with our unconstrained formula-

tion, it is the relative differences between maneuver collision probabilities (see Figure

2-4b), not their absolute scale, that impacts control decisions.

At additional computational cost, additional accuracy could be achieved through

Monte Carlo (MC) evaluation, whereby randomly sampled trajectories are determinis-

tically collision-checked and the proportion of collision-free trajectories is the collision

38

probability. In the limit of infinite samples the probability is exact, but the compu-

tational cost is approximately nmc x TD, where TD is the time to deterministically

collision-check, and nMC is the number of samples. As we show in Table 1 (Section 6),

deterministic collision-checking takes approximately the same amount of time as our

independence approximation evaluation. Hence, naive MC evaluation is slower than

our method by approximately the factor nMc. Smart MC sampling strategies have

been demonstrated to enable path collision probability approximations on the order

of seconds for reasonable models [71], but our requirement is a few orders of magni-

tude faster (milliseconds) to replan at the rate of depth image information (30-150

hz).

2.3.3 Integrating Reactive and Navigation Objectives

A benefit of the probabilistic maneuver evaluation approach is that it naturally offers

a mathematical formulation that integrates reactive-type obstacle avoidance with

arbitrary navigation objectives. Whereas other "layered" formulations might involve

designed weightings of reactive and planning objectives, the probabilistic formulation

composes the expectation of the reward, E [R]. Given some global navigation function

that is capable of evaluating a reward Rav(Mi) for a given maneuver, the expected

reward is:

E[R(Mi)] = P(No Collision, Mi)Rnavr(Mi) + P(Collision, Mi)Rcoilsion (2.5)

As we show in the simulation experiments, Rnav(Mi) may not even need to consider

obstacles, and collision avoidance can still be achieved. The global navigation function

can be, for example, just Euclidean progress to the global goal for environments with

only convex obstacles, or for environments with dead-ends could for example be a

cost-to-go using Dijkstra's algorithm (Figure 2-3a). A key point is that with the

instantaneous mapless approach handling collision avoidance, Rnav (Mi) can be naive,

and/or slow, although a good Rnav(Mi) is only a benefit. One parameter that must

be chosen, and can be tuned up/down for less/more aggressive movement around

39

obstacles, is the cost (negative reward) of collision, ,

Given a library of maneuvers, the optimal maneuver M* is then chosen as:

*= argmax E [R(Mi)] (2.6)
i

2.4 Implementation for High Speed Quadrotor Flight

The formulation presented above is generalizable for different robot models and for

evaluating different types of discrete action libraries. In this section we present a

specific implementation for high-speed quadrotor control.

2.4.1 High-Rate Replanning with a Motion Primitive Library

We use an approach similar to a traditional trajectory library, except our library is

generated online based on a simplified dynamical model. In the sense that a model is

used for real-time control, and we use no trajectory-tracking controller, this is MPC

(Model Predictive Control), but since we perform no continuous optimization but

rather just select from a discrete library, this is a motion primitive library approach.

This high-rate replanning with no trajectory-tracking controller offers a route to con-

trolling collision avoidance without a position estimate. Since the uncertainty of the

maneuvers is considered open-loop, this can be categorized as OLRHC (open-loop

receding horizon control). Another control approach is to "shrink" the future un-

certainty with a feedback controller [56, 66, 94], but this assumes that a reasonable

position estimate will be available. It is crucial to our method that we do not shrink

the uncertainty in this way, since this enables sensible avoidance decisions and control

without ever needing a position estimate.

2.4.2 Dynamical Model and Propagating Uncertainty

To build intuition of our simple quadrotor model, we first describe the basic ver-

sion of a constant-input double-integrator (constant-acceleration point-mass) mod-

eled around the attitude controller. This version approximates the quadrotor as a

40

point-mass capable of instantaneously producing an acceleration vector of magnitude

|1all < am, in any direction. Together with gravitational acceleration, this defines

the achievable linear accelerations. This model is applied with the inner-loop attitude

and thrust controller in feedback, as depicted in Figure 2-2. Given a desired accel-

eration ai, geometry defines the mapping to {roll, pitch thrust} required to produce

such an acceleration, given any yaw.

Small-Horizon Approximation as Double Integrator

...................................
a. U

1
: , V,

ay U
2
, , V

a, r- * * * * *i U ****** PZ p ,

Iatinnerthrust U4 12-state Quadrotor

(30 Hz) controller

IMU attitude estimate
(200+ Hz)

Figure 2-2: Dynamics approximation considered: the quadrotor is modeled in feed-

back with the inner loop attitude and thrust controller.

A motivating factor for this model is that the overwhelmingly ubiquitous implemen-

tation for quadrotor control involves a high-rate (~200+ Hz) inner-loop attitude and

thrust controller. The desirability of quickly closing a PID or similar loop around the

IMU makes this an attractive control design choice.

The only source of uncertainty we consider is the state estimate. In particular,

since the quadrotor's initial position is by definition the origin in the local frame, we

only consider uncertainty in the velocity estimate. We use Gaussian noise for the

initial linear velocity estimate vo ~ .A(vo,,, E,.) which gets propagated through the

linear model. We use the notation p E R3 to refer to the configuration since it is just

position (point-mass is rotation-invariant). Accordingly we have:

pi(t) A (ait2 + vo,/t, t2EZ) (2.7)

for maneuver Mi= {ai, pi(t)}, t E [0, tf]

where pi(t) is a random variable defining the distribution referred to as pt(q) in

Section 2.3. The chosen acceleration ai defines the maneuver Mi.

41

Extension to Piecewise Triple-Double Integrator Model

The limitations of the constant-acceleration model are clear, however: it does not

consider attitude dynamics, even though they are fast (-100-200 ms to switch between

extremes of roll/pitch) compared to linear dynamics. It is preferable to have a model

that does include attitude dynamics: for example, the initial roll of the vehicle should

affect "turn-left-or-right" obstacle-dodging decisions.

Accordingly, we use a triple integrator for the first segment, and a double inte-

grator for the remaining ("triple-double" integrator for short). Each maneuver Mi

is still defined uniquely by ai, but during t E [0, tjf], we use a jerk ji that linearly

interpolates from the initial acceleration ao to the desired acceleration:

j i = ao (2.8)
tjf

During the initial constant-jerk t E [0, tjf] period, this gives

Pi(t) ~ I It3+I aot2 + vo,,t, t 2V) Vt C [0, tjf] (2.9)

and for t E [tjf, tf] the double integrator model (Equation 4.7) is used with the

appropriate forward-propagation of position and velocity. Note that for the constant-

jerk portion, an initial acceleration estimate, ao is required. We assume this to be a

deterministic estimate. Since roll, pitch, and thrust are more easily estimated than

linear velocities, this is a reasonable assumption.

The maneuvers produced by this piecewise triple-double integrator retain the prop-

erties of being closed-form for any future t E [0, tf], of being linear with Gaussian

noise, and cheap to evaluate. Although the actual attitude dynamics are nonlinear, a

linear approximation of the acceleration dynamics during the constant-jerk period is

an improved model over the constant-acceleration-only model. We approximate tjf

as 200 ms for our quadrotor.

42

2.4.3 Maneuver Library and Attitude-Thrust Setpoint Con-

trol

We use a finite maneuver library (Figure 2-3b), where the maneuvers are determined

by a set of desired accelerations ai for the piecewise triple-double integrator. Our

method is compatible for a 3D library, but for the purposes of the simulation com-

parison against a global-planning 2D method in the next section, we use a library

constrained to a single altitude plane. To build a suitable discrete set of maneu-

vers, we approximate the maximum horizontal acceleration and sample over possible

horizontal accelerations around a circle in the horizontal plane. The max horizontal

acceleration is approximated as the maximum thrust vector (Tmax) angled just enough
QT2~ +(mg)2

to compensate for gravity: amax - m . By sampling both over horizontal

accelerations with just a few discretizations (for example, lamax, 0. 6 amax, 0.3 * amax])

and just 8 evenly spaced 6 over [0, 27r], this yields a useful set in the horizontal plane.

We also add a [0, 0, 0] acceleration option, for 25 maneuvers total in the plane, and

use tf = 1.0 seconds.

Executing the chosen maneuver is achieved by commanding a desired roll and

pitch to the attitude controller. For this 2D-plane implementation, a PID loop on

z-position maintains desired altitude by regulating thrust. We allow for slow yawing

at 90 degrees per second towards the direction p(tf) - po, which in practice has little

effect on the linear model and allows for slow yawing around trees.

Integration with Dijkstra global guidance Triple-Double Integrator Model

(a) (b)

43

Figure 2-3: (a) Visualization of integrating Dijkstra global guidance, where 'Unav is
the cost-to-go (blue is lower, purple is higher) of the final maneuver position. (b)
Visualization of the piecewise triple-double integrator maneuver library. The library
of maneuvers is shown with a positive x, positive y initial velocity v,O, and the 1-o
of the Gaussian distribution is shown for one of the maneuvers. The tjf = 200 ms
constant-jerk period shown in orange. Note that due to the initial roll-left of the
vehicle, it can more easily turn left than right.

2.4.4 Evaluation of Collision Probability and Global Naviga-

tion

Each maneuver is sampled at nt positions (we use nt = 20), for a total of 500 positions

to be evaluated in our nm = 25 library. To allow for speeds past 10 m/s, given tf

= 1.0 s, we do not consider positions beyond our simulated depth image horizon of

10 meters to be in collision. All mean robot positions are evaluated for nd nearest

neighbors in the k-d-tree. In practice we have found success with nd = 1, although

larger nd is still fast enough for online computation, as shown in Table 1 in Section

6.

For each robot position mean pi,1, evaluated, we use a small-volume approximation

of the probability that a depth return point dj and the robot are in collision, by

multiplying the point Gaussian probability density by the volume V, of the robot's

sphere:

11
P(Collision, pi(t)) ~ V, x exp - (pi,1 - dj)TE-I(pip - dj)] (2.10)

det(27rE) 2

where E is the covariance of the robot position as described by the model. This

small-volume spherical approximation has been used in the chance-constrained pro-

gramming literature [92]. If the above equation evaluates to > 1 (possible with the

approximation), we saturate it to 1. A key implementation note is that using a

diagonal covariance approximation enables the evaluation of Equation 2.10 approxi-

mately an order of magnitude faster than a dense 3 x 3 covariance. Rather than use

online-estimated covariances of velocity, we choose linear velocity standard deviations

OVJXYz} that scale with linear velocity.

44

For our quadrotor race through the forest, since the obstacles are all convex and

so navigating out of dead-ends is not a concern, we use a simple Euclidean progress

metric as our navigation function Rna, plus a cost on terminal speed Vf =1 IVi(tf) 12

if it is above the target max speed, vtar get:

Rnav (.i) = I Po - Pgoal I - Ipi(tf) - Pgoal + Rv(vf) (2.11)

Rv (vf) = {0 if vf < Vtarget, kvf if Vf V Vtarget} (2.12)

Where we used k = 10, and Rcolision = -10, 000.

2.5 Simulation Experimental Setup

2.5.1 Simulator Description

To facilitate the comparison study, simulation software was developed to closely mimic

the capabilities of our hardware platform for the Draper-MIT DARPA FLA (Fast

Lightweight Autonomy) research team. The sensor configuration includes a depth

sensor that provides dense depth information at 160x120 resolution out to a range of

10 meters, with a FOV (field of view) limited to 58 degrees horizontally, 45 degrees

vertically. A simulated 2D scanning lidar provides range measurements to 30 meters.

Both sensors are simulated at 30 Hz.

Drake [97] was used to simulate vehicle dynamics using a common 12-state nonlin-

ear quadrotor model [981 while the Unity game engine provides high fidelity simulated

perceptual data that includes GPU-based depth images and raycasted 2D laser scans.

The flight controller uses a version of the Pixhawk [99] firmware running in the loop

(SITL) that utilizes an EKF over noisy simulated inertial measurements to estimate

attitude and attitude rates of the vehicle.

45

(a) (b)

Figure 2-4: (a) Screenshot from our race-through-forest simulation environment in
Unity. (b) Screenshot from Rviz which shows the evaluation of the 25-maneuver real-
time-generated motion library. The chosen maneuver and the 1-- of the Gaussian
distribution over time are visualized. The small sphere at the end of each maneuver
indicates approximated collision probabilities from low to high (green to red).

2.5.2 Experimental Setup

The experiments were carried out in a virtual environment that consists of an artificial

forest valley that is 50 meters wide and 160 meters long. The corridor is filled with

53 randomly placed trees whose trunks are roughly 1 meter in diameter. A timer

is started when the vehicle crosses the 5 meter mark and stopped either when a

collision occurs or when the 155 meter mark is reached. If the vehicle is able to

navigate the forest without colliding with any of the trees or terrain in under a

predetermined amount of time, the trial is considered a success. Collisions and time-

outs are considered failures.

The experiments were repeated for each algorithm at various target velocities

Vtarget = { 3, 5, 8, 12} meters per second and with increasing levels of state estimate

noise for x, i, y, y. We do not simulate noise in the altitude or in the orientations since

these are more easily measurable quantities. To simulate noise that causes position

to drift over time, we take the true difference in x, y over a timestep, APxy, and

add zero-mean Gaussian noise which is scaled linearly with the velocity vector. The

three noise levels we use are o- = {0, 0.1, 1} which is scaled by 11-vtrue. This linearly

increases noise with higher speed. We also add true-mean Gaussian noise to i and

y, with standard deviations that are the same as for position noise. Accordingly we

46

have:

Pnoisy[i + 11 ~. (Ptrue[i + 1] - ptrue [Z] 0 Vtrue) (2.13)
10

Vnoisy [21 ~ V(Vtrue [fl, -r re) (2.14)
10

The total time taken and the trial outcome was recorded for 10 trials at each noise

and speed setting, for a total of 360 simulation trials.

2.5.3 Dijkstra's Algorithm with Pure Pursuit Description

We compare our method to a typical map-based robotics navigation solution that

consists of a global path planner that is paired with a path following algorithm. The

particular implementation we chose functions by maintaining a global probabilistic

occupancy grid (Octomap [46]) with a 0.2 meter voxel size. At a specified rate, a

horizontal slice of the map is extracted and a globally optimal path is computed

using Dijkstra's algorithm. The path planning includes a soft cost on proximity to

obstacles. We then use a pure pursuit algorithm to command a vehicle velocity along

the resulting path to the goal. This approach has been heavily tested on our hardware,

and shown considerable success in complex environments in the range of 2.0 to 5.5

m/s with little state estimate noise.

2.6 Simulation Results and Discussion

The key metric for our comparison of the three methods is the no-collison success

rate of reaching the finish line, and is presented in Figure 2-5. Additional data is

presented in Figure 2-6: average time to goal for successful trials, and example paths

at various noise levels.

47

Global Path Planning Mapless Deterministic Mapless Probabilistic
and Following Motion Library Mntion brrv

3 4 5 0 110

Speed 6 4 4

12 ME Na 2 E i

0 0.1 1 0 0.1 1 0 0.1

Noise (St dev) Noise (st. dev) Noise (St. dev)

Figure 2-5: Comparison summary of number of successful collision-free trials for the
different approaches tested in in our simulated quadrotor race through the forest. Ten
trials were run for each of the three approaches, for four different speeds {3, 5, 8, 12}
meters per seconds, and for three different levels of 2-dimensional state estimate noise
as described in Section 2.5.2.

The results for the global path planning and following approach show both the

limitations on handling higher speed, and on handling higher state estimate noise.

The approach was not able to handle any of the severe noise (U = 1) for any of the

speeds and was only able to reliably reach the goal at 5 m/s and below, with zero or

little state estimate noise. These limits on speed and state estimate noise match well

our experimental results in hardware. Primary inhibiting factors for this approach's

success are (i) dependence on a global position estimate, (ii) latency incurred by

processing sensor data into a global map (up to ~50 ms), (iii) latency incurred by

path planning on the local map (up to -200 ms), and (iv) neglect of vehicle dynamics,

which are increasingly important for obstacle avoidance at higher speeds.

For comparison, we also compare with the approach of deterministically collision-

checking our motion primitive library. For this deterministic method, the average

time to goal on a successful run was faster than the probabilistic method by approx-

imately 14%. The deterministic nature of the collision checking, however, causes the

method to leave little margin for error while navigating around obstacles. Thus, small

inaccuracies in the linear planning model (which approximates the nonlinear model

used for simulation) or in the state estimate can lead to fatal collisions.

The results for the probabilistic method demonstrate a marked increase in robust-

ness at higher speeds and with noise levels an order of magnitude higher than was

48

manageable by the path following approach. The sacrifice in average time to goal

compared to the deterministic method is outweighed by the gains in robustness.

Average time to goal for successful trials (s) Noi (s. doe) = 0 os doe) 01 onoim doo - 10

Global Path Mapless Mapls
Planning and Doearinistic Probabilistic Motion

Following Motion Library Library /

3 60+/-6 51 +/-1 59+/-2

Speed 5 36+/-2 29.7 +/- 0.3 34 +/- 1

8 24 18.1 +/-0.1 21 +/-2

U . *.-.

* 4 * . . *

12 15 12.1 +/-0.2 14.1 +/-l

-10 - I -bi -0 0 W X) -10 W Z

(a) (b)

Figure 2-6: (a) Comparison summary of the average time to goal for successful trials
for o = 0, which all methods were at least able to get 1 trial across the finish line. (b)
Visualization of the different noise levels o = {0, 0.1, 1.0} and representative paths
for the probabilistic motion library navigating successfully through the forest at 12
m/s. The path of the noisy x, y state estimates (red) are plotted together with the
ground truth path (blue). The brown circles represent the tree obstacles at the flying
altitude of 1.8 m.

Additionally, an important practical consideration is that, given our fast collision

probability approximations, the total computation times of the probabilistic and de-

terministic methods are nearly identical (~3-4 ms total), as is displayed in Table 1.

This is a strong argument for replacing deterministic collision checking with fast col-

lision probability approximation in a wide number of scenarios. We also emphasize

that these approximate computation times are achievable on our actual flight vehicle

hardware, which uses an Intel i7 NUC.

49

Probabilistic, N=10

Average Percentage Average Percentage Average Percentage

Subprocess time (ps) time (c) time (ps) time (%) time (ps) time (%)

Building kd-tree

Evaluating future positions from real-tine

generated 25-maneuver motion library

Evaluating collision probabilities with N-nearest

neighbor search on kd-tree

Evaluating expected reward. given R,.

Calculating attitude setpoint for attitude controller

1910 /- 700

40 - 10

1800 +1 800

2 +/- 1

17 +/- 5

50.5 2000 /- 500

1.0 40 - 10

47.9 1400 -/- 600

0.1 2 -/- 1

0.5 17 +/-5

57.8 1900 400

1.1 40 - 10

40.5 2500 1000

0.1

0.5

2 /- 1

17 +/- 5

Table 2.1: Measured averages and standard deviations of subprocess latencies, from
one representative run each. Implementation on single-thread Intel i7.

2.7 Future Work

There are several components to this line of work that we would like to extend.

For one, we plan to present validation experiments of the method in hardware. Ad-

ditionally, the highly parallel nature of the fast collision probability approximation

algorithm is amenable to data-parallel implementations on a GPU. We also plan to

expand on the motion primitive library, including true 3D flight, increased variety of

maneuvers, and analysis of the accuracy of the model. We also plan to characterize

the performance of the collision probability approximation with more elaborate global

navigation functions.

50

42.6

0.9

56.1

0.0

0.4

Deterministic, N Probabilistic, N=1

Chapter 3

Hardware Validation

In this chapter, we analyze hardware validation experiments of the approach discussed

in the previous chapter.

Most notably, results are presented for the fastest known sustained UAV flight

through a dense forest. Previous top speeds demonstrated for sustained flight through

a forest were 1.5 m/s [10, 231, whereas we present flights 4x faster, at up to 6 m/s,

and dodge up to 39 obstacles in one continuous flight. We also present fast obstacle

avoidance in an indoor warehouse up to 10 m/s, and other near-building flight up to 7

m/s. These results are among the fastest and most robust results ever demonstrated

for autonomous UAVs navigating unknown environments. In particular, the outdoor

results are presented using a GPS-denied visual inertial odometry (VIO) estimator,

for which robust obstacle avoidance is especially difficult at speed. For the outdoor

flights, the obstacle avoidance system is demonstrated with a global planner that

enables the vehicle to get itself out of maze-like dead ends.

Chapter Acknowledgements

The hardware experiments presented in this chapter were the result of a team effort,

representing many individual contributions towards the overall goals of our Draper-

MIT FLA team. Among these contributions, the author would particularly like to

acknowledge John Carter and Jake Ware for their extensive development of the over-

all autonomous system, and the many hours spent dedicated to testing the particular

51

contributions discussed in this chapter. Brett Lopez contributed to overall planning

and control components. Jake Ware and John Carter integrated the global planner

into the system. Nick Greene contributed to autonomous mission system intelligence.

The visual inertial odometry (VIO) state estimation system was developed by Ted

Steiner and Rob Traux. The Gaussian Particle Filter (GPF) with a prior map esti-

mation system was integrated by John Carter and Jake Ware. Scott Rasmussen led

the hardware design and building. Kris Frey handled the RealSense sensor integra-

tion and filtering. Steve Paschall and Julius Rose contributed to overall program and

testing management. This chapter will focus on evaluating the specific performance

of the system contributed by the author, which handles local planning and obstacle

avoidance, and its integration with the rest of the system.

Chapter Organization

The first set of results, Section 3.1, tests the approach in hardware in an indoor ware-

house environment, with no software changes of note from the integrated perception

and control approach that was evaluated in the simulation experiments of the pre-

vious chapter. This system has no prior obstacle information given, but the state

estimation system does, and is performed with a Gaussian Particle Filter (GPF) by

matching laser scans against a prior map [41,42]. No global planning is used, and

obstacles are dodged at up to 10 m/s.

The second set of results, Section 3.2, extends the work to outdoor environments

with a VIO state estimator, and tests the approach in a variety of outdoor forest and

near-building environments. In order to transition to outdoor, robust flight, a variety

of supplementary components are added to the approach, which are presented. A

layered global planner is used, and sustained flight through a forest is achieved at 6

m/s. Obstacle avoidance in near-building and outdoor/indoor transition flight is also

demonstrated, at up to 7 m/s.

52

3.1 Indoor Warehouse Flight

3.1.1 Experimental Setup for Indoor Flight

Hardware

The quadrotor hardware used in this work is shown in Figure 3-1. The frame is

the standardized platform for the DARPA FLA program: a DJI Flamewheel F450

airframe, with DJI E600 motors and 12" propellers. Onboard computation is provided

by a dual-core Intel NUC5i7RYH. The total vehicle weight is 2.8 kg. The vehicle can

hover at approximately 61% throttle with its 6S LiPo battery. The sensor used for

obstacle perception was the ASUS Xtion sensor, mounted with 15 deg tilt up. The

Xtion provides depth images with ~8-10 m range at 30 Hz at VGA (640 x 480)

resolution, which were downsampled to 160 x 120 resolution. An onboard 2D laser,

the Hokuyo UTM-30LX, was used for state estimation, as well as a downward-facing

single-point LIDAR (LidarLite v2). Attitude control and an onboard InvenSense

MPU-6000 IMU was provided by a 3DR Pixhawk, running the ETH Pixhawk software

stack'. The chassis is a custom 3D print.

Figure 3-1: Draper-MIT quadrotor in configuration used for indoor flight experiments,
flying at speed (left, and top right), and the fleet of airframes (bottom right).

'https://pixhawk.ethz.ch/software/start

53

State Estimation

For state estimation, a Gaussian Particle Filter (GPF) [41, 42] was used that fused

measurements from the Hokuyo laser scans matched against a prior-built map, the

downward-facing single-point laser, and the onboard IMU. Only the state estimation

not obstacle perception or planning - has any prior map information available.

Environment

Indoor warehouse results are presented from testing inside of the dedicated Draper-

MIT FLA testing facility. The obstacles in this environment are floor-to-ceiling pillars,

which are approximately 1 meter in diameter, and are spaced in a grid with center-to-

center distance of approximately 7 meters. Since the pillar obstacles are all convex,

there is no need for a global planner.

3.1.2 Results from Indoor Flight

Three autonomous flights, varying only by the target max speed Vtarget, are presented.

The start, goal, and environment were the same for each flight. A goal location is

given to the vehicle 32 m away at a 10 deg angle, so the vehicle is forced to cross one

row of pillars. The vehicle is programmed to autonomously navigate to the goal at

1.4 m altitude, and return the start location, with Vtarget = {5, 8, 10} i.

Figure 3-2: Setup of warehouse environment, and locations of start and goal (32 m
away, behind the row of pillars).

54

The vehicle was able to successfully navigate the unknown environment, and

achieve the target max speed in each scenario. A summary of the results is pro-

vided in Table 3.1. The maximum estimated speeds achieved for the three flights

were respectively 5.5, 8.4, and 10.2 M. The speed profiles over time for each flight are

plotted in Figure 3-3. The beginning of the third flight in particular showcases the

system's capability to intelligently slow down and speed up again while rounding a

sharp corner around the pillars. For the most part, each one-way trip produced two

autonomous dodges of the pillars2 . The maximum estimated roll angles achieved for

the three flights were respectively 25.3, 37.4, and 42.6 deg.

Duration

(s)

Distance

Traveled (m)

Max Max Obstacles

Speed (!) Roll (deg) Dodged Result

Flight i 32.4

Flight ii 31.8

Flight iii 27.5

75.3

80.3

76.4

5.5 25.3

8.4 37.4

10.2 42.6

5 Autonomous return and land

4 Autonomous return and land

4 Autonomous return and land

Table 3.1: Summary of three flights of increasing speed in warehouse.

10 15

Time [s]
20 25

Figure 3-3:
is near 0, it

Speed over time for the three warehouse flights. When the vehicle speed
is turning around at the goal.

2 A dodged pillar was counted if the vehicle deliberately chose to avoid it.

55

10
- Flight i, (5 m/s)

-. ..-...............-. - - . -- Flight ii, (8 m/s)
- Flight iii, (10 m/s)

-.......-------------. ..-- ------------------.........-. .----.-- -------.-- ------+ -

----------------...... ..-- -.. -.. -... -----.------.-..------------.------..--.-.-

-.......... -.--- --.. --. -.. -------. - -.---.--------.----------..---- .---. --

E

'a

C,

CU
E
V5
ul

8

6

4

2

0
0 5 30

A sampling of the obstacle avoidance maneuvers are analyzed in step-by-step detail

in Figures 3-4, 3-5, and 3-6. For each figure, three sequential moments are represented

by a pair of an RGB image (left) which helps provide the reader with context, and a

3D visualization (right) of the integrated perception and control. In the visualization,

for each motion primitive path (light green), the approximated collision probability of

each primitive is visualized with the sphere at the end of each primitive, (red is high

collision probability green is low, i.e. RGB = [Pcollision, 1 - Pcoiiision, 0]). The point

cloud produced by each Xtion depth image is rendered so that color corresponds to

depth (red is close, blue is far). The laser scans (white) are also shown, which help

give a sense of the attitude of the vehicle. The chosen motion primitive (purple) is

shown with the o- of the time-varying distribution of configuration.

Note that the Xtion sensor was tilted (pitched) 15 deg up, and so images that

look near-level are actually during forward-pitch flight.

56

11 M1 11111 .11 IR 1111 1111 I'll 1 111.1.1 1 1.. I - -- -MMMM I IN - IT,

Figure 3-4: Outbound flight at 5 m/s. The vehicle approaches the second pillar at
speed (top), then begins to roll left as soon as the previous pillar is passed (middle),
taking this turn with a roll angle of approximately 25 deg (bottom).

57

Figure 3-5: Outbound flight at 8 m/s. The vehicle approaches the first pillar and
takes a different route than the previous flight, cutting sharply around the first pillar
(top), quickly rolling and then choosing to come out of the turn (middle), aggressively
coming out of this swerve at approximately 37 deg roll (bottom). Rotational motion
blur in the RGB images is significantly higher than the 5 m/s flight.

58

- I

Figure 3-6: Return flight at 10 m/s. The motion blur from the linear velocity of 10

m, at 1.4 m altitude, is noticeable, and the 40 deg pitch causes obstacles to almost
be out of the FOV, even with a 15 deg tilt angle for the Xtion (top). The vehicle
decides which distance to keep from the pillar according to its collision probabilities
(top), then starts rolling and pitching back (middle) and execute a 42.6 deg roll to
come out of the turn around the second to last pillar (bottom).

59

3.2 Outdoor Forest and Near-Building Flight

3.2.1 Adaptations for Outdoor Flight

Transitioning to outdoor flights in more complex environments and with a visual

inertial odometry (VIO) state estimation system presented a variety of difficulties

beyond the scenario presented for the indoor flights. Accordingly, a variety of adap-

tations were implemented for the integrated perception and control system, which are

outlined below.

Smooth Flight with Chance-Constrained Optimal Primitive

A non-optimal result of the motion primitive library previously presented, in which

primitives are sampled over the acceleration input space, is that discretization effects

can cause non-smooth flight alternating between primitives. Particularly for the ben-

efit of visual inertial odometry, it was preferable to have vehicle motion that avoids

unnecessary rapid attitude changes, which makes visual feature tracking difficult. To

address this, an additional primitive was generated which rather than sampling over

an acceleration input, is calculated to be the approximate optimal input, in the ab-

sence of obstacles. The minimum-time input for a double integrator system subject

to a nonlinear actuator constraint cannot be calculated in closed form, but instead an

approximation was used that works well in practice. Given the planning horizon time,

tf, the position in the local frame at t = tf with no control input is easily calculated:

pt=tf = votf. The optimal acceleration is then approximated as the acceleration that

will get the vehicle moving in the direction P4f,desired = pgoal - pt=tf at the desired

top speed, i.e. vf,desired = 'Pfdesired x .maxl. With the double integrator approxi-
IPf, desired I

mation, this optimal acceleration is a* = Vfdesed-0 . If the optimal acceleration was

above the chosen acceleration limits, then it was scaled down to within the acceler-

ation limit, i.e. if Ja*J > lamaxl, then a* := - x lamaxl. A similar process is applied

for when the vehicle is within stopping distance of the goal.

To supply clear constraints, the optimal primitive was chosen in a chance-constrained

approach. This ensured it was chosen when viable, rather than subject its selection

60

to the mixing of other rewards (from obstacles, global guidance, and terminal velocity

cost). In particular, the optimal primitive was chosen if Pc0 0ision(A4*) < c, where E is

some small probability (E = 0.02 was used). If not, then all primitives were evaluated

with all mixed rewards.

Global Planner Integration

To be able to navigate complex, maze-like environments, global guidance was provided

by a 2D A* planner from the global-planner module of the open-source navigation

ROS package3 . Its integration was designed to allow slack for the local planning

system to "selectively listen" to the global guidance only when needed. This desire

for loose integration was due to: (i) mapping errors causing spurious obstacles to

appear in the global map, and (ii) the inability of the A* paths to represent dynamic

constraints. Rather than follow the global path exactly, as in a map-plan-track type

approach, we wanted only the global planner to give a general direction for the local

planning component, and when the vehicle was stuck in a dead-end, to get it turned

around and moving in the correct direction. The solution used was to have the local

goal for the local planning system to be a "carrot" on the global planner's path,

where the carrot distance dcarrot scaled by the vehicle's velocity, jvj. The relation

used was dcarrot = 1+ 41vl, with a minimum carrot distance of 1. Rigorous analysis

of any global-local planning integration is difficult, but empirically this architecture

provided strong results. Global frequency was limited to 2 Hz, with approximately

100 ms latency. Conversely the local obstacle avoidance was performed at the depth

image rate (60 Hz) with approximately 1 ms latency. The global-local interaction is

analyzed more later.

A simple prior map was used which did not include individual obstacle information

but biased the vehicle in the correct general direction (Figure 3-7a). This map would

clear out and fill with obstacles as the vehicle progressed (Figure 3-7b). Due to high

noise of the RealSense sensor, only the Hokuyo laser was used to clear obstacles.

61

3 http://wiki.ros.org/navigation

(a) (b)

Figure 3-7: Prior map (a) and map on return flight (b). The inset shows an onboard
image at the start location pointing north (a), and on the return flight in the forest
(b). The 2D A* global plan is shown in light green. The colored view cone is the
FOV of the RealSense sensor, which will give returns out to 60 m, even though only
the first -10-20 m are typically useful.

Vertical Oscillations to Help Monocular State Estimator

Since the monocular VIO state estimation system had difficulties in handling the case

of constant forward-velocity flight, which is an otherwise ideal flight regime for the

vehicle, vertical oscillations were commanded to help overall system performance. The

cause of this difficulty is a well known aspect of monocular visual odometry: when the

velocity vector is parallel to the camera axis [100], the scale factor cannot be estimated

well. During accelerations, an IMU can provide a visual-inertial estimator with a

sense of scale, but not if there are no accelerations, such as during constant forward-

velocity flight. Hence, until our estimation system can handle these degenerate cases,

a stopgap solution used was to sinusoidally oscillate the z setpoint for the vehicle,

according to z(t) = A*cos(t* i), where the amplitude A used was 0.5 m, and period

T was 3 seconds.

Robust 2D Flight with Laser and Stereo Combination

Given the difficulties of vision-based obstacle detection for certain difficult lighting or

low-texture environments, it was determined that a laser-based perception system was

62

needed to complement the vision-based system. Even if the vision-based perception

from the RealSense was highly capable at perceiving natural high-texture obstacles

such as trees, it was essentially blind to important obstacles, like the broad sides of

low-texture walls. Complementary perception was provided by a 2D Hokuyo laser

sensor, which even in worst-case lighting conditions (direct sunlight) can reliably

detect obstacles at approximately 10 - 15 m (although it is specified for 40 m range,

this only applies in indoor / low-light conditions). This sensor offers reliable detection,

but its rigid mounting and lack of a vertical field of view presents difficulties for flight

with aggressive rotations. To address this, laser-data-processing assumed the world

is mostly 2.5 dimensions - i.e., a the 3D laser point cloud data was projected into

the 2D plane at the altitude of the vehicle. To avoid projecting the ground, points

were only projected up to the vehicle plane if they were within 0.5 meters below

the vehicle, or any distance above. To incorporate both laser and vision data, the

collision probability approximation used the n = 1 closest laser point and the n = 1

closest depth image point, with an independence approximation between them. The

FOV constraints for the depth image were still imposed. Accordingly, for each time-

sampled distribution of configuration pt, (q), we have:

[1-P(Collision, pt, (q))] =e if P(pQ E 1
lj=faser,stereo} [1 - P(Collision, pt, (q), dj)], otherwise

(3.1)

Emergency Stop Maneuver

There is a worst-case failure mode for the approach presented previously, when all

collision probabilities are very large (i.e., the vehicle believes it has no chance of

avoiding a wall). To address this, an emergency-stop maneuver was implemented. To

avoid false-positive detection of the need for an emergency stop, only the laser data,

which is typically cleaner than the vision data, was used to determine the emergency

stop. If all motion primitives, according to the laser only, had a higher collision

63

probability than some threshold (Pcollision = 0.7 was used), then the stop maneuver

was executed.

3.2.2 Experimental Setup for Outdoor Flight

Hardware

The hardware used for the outdoor experiments were almost identical, with only slight

modifications. Rather than an ASUS Xtion depth sensor, an Intel RealSense R200

(mounted with 0 pitch angle) was used, which provided depth images at 60 Hz and

480 x 360 resolution, which were then median-filtered to reduce spurious obstacles

and down-sampled to 120 x 90 resolution. The Hokuyo was still present, but this time

its point cloud was actually used for obstacle detection rather than state estimation.

For these flights, a PointGrey Flea3 (FL3-U3-13Y3M-C) monocular camera, and a

navigation-grade ADIS 16448 IMU was added for the VIO state estimation system.

With additional camera and IMU hardware, and board to read and synchronize this

data, total vehicle weight for these flights was approximately 3.2 kg.

Figure 3-8: Draper-MIT quadrotor in configuration used for outdoor flight exper-
iments, including with front-mounted Intel RealSense sensor and bottom-mounted
Point Grey Flea3 camera. (Images courtesy of Jon How)

State Estimation

State estimation was provided by a monocular visual inertial odometry (VIO) graph-

based smoother, "Samwise", developed by Draper Laboratory. Samwise leverages

64

a

GT-SAM 4 for solving its pose graph.

3.2.3 Results for Outdoor Flight

Sustained Flight Through Dense Forest

Three autonomous flights in a forested environment are presented, in which the target

speed was respectively Vtarget ={5, 6, 6}. The start and goal locations were the

same for each flight. A goal location was given to the vehicle 270 m away, and after

taking off pointing north with a fiducial for orientation (Figure 3-7a,), the vehicle

was programmed to autonomously navigate to the estimated goal location at a 2 m

altitude, and return. A portion of the flight (approximately half) was through an

edge-of-forest clearing, while the other half was through the forest (Figure 3-9).

Figure 3-9: Overhead imagery of the flight path. The vehicle was instructed to
navigate 270 m, of which approximately half of the flight was along a clearing next
to the forest, and the other half was in the forest. (Image taken from Google Maps.)

The vehicle successfully navigated into and out of the forest and achieved the

target max speed in each scenario. A total of 84 obstacles (trees, shrubs, vehicle),

65

4https://bitbucket.org/gtborg/gtsam

were dodged along the way'. A summary of the results is provided in Table 3.2. The

maximum estimated speeds achieved for the three flights were respectively 5.3, 6.4,

and 6.2 !. The speed profiles over time for each flight are plotted in Figure 3-10.
S

The maximum estimated roll angles achieved for the three flights were respectively

25.2, 33.5, and 44.2 deg.

Duration Distance Max Max Obstacles

(s) Traveled (m) Speed (Q-) Roll (deg) Dodged Result

Flight i 192.3

Flight ii 158.3

Flight iii 127.8

716.4

711.5

508.6

5.3 25.2 39 Autonomous return and land

6.4 33.5 27 Autonomous return and land

6.2 44.2 18 Safety pilot land

-8

E

-04

CU
E

0

0

Table 3.2: Summary of three flights through forest.

- Flight i, (5 m/s)
----------------------------- ------------------------------- ----------------.. - F lig h t ii, (6 m /s)

- Flight iii, (6 m/s)

------------ ---- --...--.--.-. ...-----. ...----. .-- --.
50 100

Time [s]
150

Figure 3-10: Speed over time for the three flights through the forest. The moments
where vehicle speed drops to near 0 are either when the vehicle is turning around at
the goal, or is stuck in a dead end.

Before analyzing the vehicle's flight, it is helpful to get a sense of the raw depth

sensor data that was available. In the high-texture forest, the RealSense sensor per-

forms notably well, detecting depth returns with reasonable reliability in the 10-20 m

range, although noisy. Figure 3-11 displays this raw data from a variety of moments

throughout the test environment.
5Distinct obstacles were counted for each separate object (tree, shrub, etc) that the vehicle

intentionally dodged in its flight path.

66

Time

Figure 3-11: Raw RGBD data from the RealSense sensor, from a variety of moments
throughout Flight i. The point cloud from the depth image is displayed as an axis
color map (red is close, green is far) and is projected onto the RGB image. Time
progresses down each column, starting with the left, then moving to the middle and
right columns. Note that many natural textures, including thin trees (middle column),
grass, and shrubs (right column, second from top) are detected. A Polaris vehicle (top
right) was also detected and dodged. The bark of the large tree, however (bottom
left), is blind to the depth sensor - as an IR sensor, it is very surface-sensitive.

67

A sampling of the obstacle avoidance maneuvers are analyzed in step-by-step

detail in Figures 3-12 through 3-16, etc. The visualizations are similar to what was

provided for the indoor flights, except the global A* path (light green), the velocity-

scaled "carrot" (orange), and global 2D map are also provided in the image.

Figure 3-12: Outbound, 5 m/s from Flight i.
(top), rolls left 21.2 deg and then rolls right out

Vehicle approaches a pair of trees
of the dodge (middle), and returns

to forward flight (bottom). Note that although the global plan veers off to the left
due to mapping errors, the local planner chooses to fly through the open.

68

Figure 3-13: Return, 5 m/s from Flight i. Quadrotor approaches a pair of obstacles
(top), not that although the initial velocity is to the right, the A* planner does not
encode dynamic constraints and plans a path to the left. The quadrotor instead
dynamically avoids the car to the right, passing the car (bottom) and returning to
level flight (bottom).

69

Figure 3-14: Demonstration of the global planner helping the vehicle get out of a dead
end. The vehicle approaches a dead end (top) at 5 m/s (Flight i), chooses to stop to
avoid collision (middle), and the global planner then guides the vehicle around to the
left, out of the dead end (bottom).

70

IJ

Figure 3-15: Outbound, 6 m/s from Flight ii. Vehicle approaches tree (top) and rolls
to left, then chooses to snap around tree as soon as it is safely past (middle), rolling
28.9 deg as it comes around (bottom).

71

Figure 3-16: Outbound, 6 m/s from Flight iii. Vehicle approaches shrubs and rolls
left around them (top), snaps around the corner with a 44.2 deg roll (middle), then
returns to level flight (bottom).

72

The robustness of the method is apparent from the 84 obstacles that were consec-

utively dodged over the course of these three flights.

One item to note is the interaction of the global planner and local planner. In

a variety of figures above, the local planner overrides the global planner's guidance,

since it has a more detailed local understanding of obstacle information, and encodes

the dynamic constraints (including initial velocity and acceleration of the vehicle).

As demonstrated in Figure 3-14, however, the global planner is critical for enabling

the vehicle to turn around out of dead ends.

Near-Building Flight: Rounding Building Corners and Exiting Buildings

In addition to the forest flights, we present results from flying near buildings outside

at speed. Flying near large walls at speed presents its own challenges, different than

those of flying in the forest. In part, this is due to the perception difficulty: since man-

made walls are often low-texture, they are hard for the vision sensors (i.e., RealSense)

to perceive well. In our case, this meant relying on the 2D laser to perceive these walls.

Also, however, the obstacle avoidance is also particularly challenging: small lateral

dodges, as work with trees, are not always viable. One common obstacle avoidance

method that is suited well both for trees, and for walls, can be difficult. Since most of

the duration of the following two flights did not involve obstacles, so we focus only on

the obstacle avoidance moments. Figure 3-17 shows the vehicle coming around the

corner of a building at 7 m/s, in which mostly the laser data is relied upon. Figure

3-18 shows the vehicle navigating out of a door, at 6 m/s.

73

Figure 3-17: Flight at 7 m/s around the edge of a hangar. With mostly laser returns
and only sparse RealSense returns, the vehicle rolls right to avoid the wall (top).
Despite a bug in the global planner that caused it to propose bad plans when in false-
positive occupied space (middle), the local planner is responsible for navigating the
vehicle to safety. As soon as the vehicle has dynamically cleared the wall (bottom),
it snaps around it with a left roll.

74

4j
Figure 3-18: Flight at 6 m/s exiting a warehouse to outdoors. The vehicle relies on
mostly laser perception (top) to see the opening, then snaps around it (middle), and
comes to level flight after clearing the exit (bottom).

75

3.3 Discussion

We have demonstrated some of the fastest and most robust flight, in difficult environ-

ments, at speeds of 5 - 10 m/s. As a highlight, we have increased the fastest sustained

flight ever achieved through a forest by a factor of 4.

Despite the successes we have observed in hardware experimentation, there are

a variety of areas that offer room for improvement and further research. Many of

these opportunities are outside the realm of capabilities addressed here - for example,

improving raw perception data. Other possible improvements would be to work on

tuning small things, such as tuning to make flight smoother. It is expected that

eliminating the vertical oscillations in altitude would help reduce flight jerkiness in

outdoor environments.

Perhaps the largest opportunity for the most tangible increase in performance

would be to incorporate some memory into the obstacle avoidance. There have been

a variety of times where the vehicle will oscillate due to forgetting what it has just

seen. This topic is addressed in the next chapter.

76

Chapter 4

Robust Obstacle Avoidance Beyond

Maximum-Likelihood Maps:

Depth-Pose-Graph Planning

4.1 Introduction

Robust, fast motion near obstacles is an open problem that is central in robotics, with

applications spanning across manipulation, autonomous cars, and UAV navigation

in unknown environments. To address this problem, this chapter explores how to

efficiently and robustly use a short history of depth measurements, particularly in

regimes of difficult state estimation for UAVs. The common approach is to build a map

from a history of maximum-likelihood estimated poses, but in regimes of significant

state estimation uncertainty, mapping errors can be the downfall of planning motions

around obstacles [11, 32]. Accordingly, a notable trend in the state of the art has

been to develop state-space planning approaches to obstacle avoidance that use only

the most recent depth sensor measurement [10-12,17,32], which effectively eliminates

pose estimation uncertainty from the problem.

It would seem that using memory of depth sensor measurements should be strictly

superior to a memoryless approach, since additional information should only benefit

77

decision-making. In every map-based obstacle avoidance method known to the au-

thors, however, the representation of the world used in the planning process is either

a maximum-likelihood estimate map batched over some time interval, MMLE, for ex-

ample in a SLAM (Simultaneous Localization And Mapping) method allowing loop

closures, or is a map built incrementally from maximum-likelihood poses. Whenever

a maximum-likelihood estimate does not represent the distribution well (for exam-

ple, distributions that are high-variance and/or multi-modal), mapping errors can be

difficult to recover from (even if future measurements are good).

(a)

TF 4 T- 3T 2 T_ -O~--~-.

/pt(q)

T- F2 pt (q)

~T\ PPt (q)

(b)

Figure 4-1: (a) Depiction of frame-specific configuration uncertainty -ipt(q) for a
series of depth image field of views (FOVs). (b) Visualization of using Depth-Pose-
Graph Planning to navigate a simulated forest (simulated image on left, visualization
of subset of recent FOVs on right).

In this chapter, we present a novel formulation, Depth-Pose-Graph Planning, that

enables robust obstacle avoidance with memory, through incorporating a distribution

of the world in the obstacle avoidance decision-making process. Rather than oper-

ating on a summarized representation of the world as in mapping based methods,

78

this approach uses the entirety of the information available to evaluate motions: raw

depth images and a pose graph (as in a pose graph SLAM framework). This struc-

ture respects both the natural field of view (FOV) and occlusions of the information

available, and also enables appropriate modeling of uncertainty. In this framework,

raw depth sensor data is not fused in order to create a map, but rather the raw depth

sensor data and the pose graph itself are used to collectively score motions. Since

we do not build a map but rather only use sensor data to the extent that it scores

motion plans, we think of this as a type of "perception in the service of control".

To those familiar with robotic mapping and planning, the idea to use a distribu-

tion of the world state rather than a maximum-likelihood estimate seems desirable,

but expensive computationally. Efficient inference, however, can be done using both

the raw depth image data and uncertainty measures incorporating pose estimation,

velocity estimation, and depth sensing. In particular when the structure of the prob-

lem is exploited through a hierarchy of graph search and spatial partitioning, it can

be tractable for real-time implementation. The computational efficiency is notably

desirable when loop closures are allowed: mapping approaches require reinsertions for

each N depth measurements in memory, i.e. O(N) insertion complexity for uniform

grid maps or (9(N log N) for octree structures, but there is no increase in complexity

for loop closures with our method.

In terms of contributions, this is the only work known to the authors that addresses

obstacle avoidance where the representation of the obstacles incorporates a history

of pose estimation uncertainty into a distribution for the world state. Among the

new ideas demonstrated in this work are: (i) using frame-specific uncertainty for

planning with depth sensors, (ii) efficiently using independently spatially partitioned

depth measurements, and (iii) searching a history of recent raw depth measurements

to satisfy field of view constraints.

79

4.2 Background and Related Work

The POMDP (Partially Observable Markov Decision Process) provides a general

framework for belief space planning [7], where decisions are made based on a prob-

ability distribution of what the state of the world is. General-purpose solvers exist

for POMDPs, and although there have been gains made in the size of problems they

can address [60,101-103], discretizing the world state with a fine resolution leads to

an intractable number of states, and complexity scales exponentially with the num-

ber of time steps in the planning horizon. Belief space planning approaches that

exploit particular problem structure at the expense of restricting themselves from

general-purpose solvers have been addressed through a large variety of works, with

a general sampling-based framework provided by the Belief Roadmap (BRM) [67].

Belief space planning with Linear-Gaussian belief spaces, as we use here, has also

been used broadly [66]. To varying extents, however, all previous works involving

avoiding obstacles with belief space planning require some prior knowledge about the

obstacles of the environment, or use a deterministic world state rather than including

a distribution of the world state.

A few related works share some features of using pose estimation uncertainty in

planning, but do not address planning around obstacles in unknown environments.

Previous works have used directly the uncertainty of a pose graph framework for

planning but have a critical limitation that they only plan over graphs of pre-known

poses [104,105]. Other work seeks to develop generalized belief space that includes

distributions over worlds, but there are no obstacles in these worlds, only landmarks

for navigation [106]. Another related work includes a sampling of depth perception

estimates (a discrete probability distribution), but inserts them into a map structure

using maximum-likelihood poses [291.

Rather than deal with the belief space of previous poses, the predominant ap-

proach for incorporating memory has been to ignore pose uncertainty, and use a

maximum-likelihood mapping approach [37,441. Mapping-based approaches benefit

from extensive decades of research into the robot mapping problem. When they are

80

q 11 M 11 1~ ~ RWR I III W-111, ; R-IMPROMIRIMMMINN.RM", a- - I 1, T-IR

well constrained, many SLAM approaches are able to create precise maps that are

the maximum likelihood estimate map .MMLE from the fusion of a variety of noisy

depth sensor, RGB, and other sensor data. There are a variety of different ways to

formulate a map - the most common version are occupancy grids, which are used

ubiquitously [46]. Occupancy grids can probabilistically incorporate depth sensor

measurements (multiple measurements can be required for a cell to be occupied), but

this doesn't address pose estimation uncertainty. Other forms include polar maps,

and for some dense SLAM techniques, surfel maps are used. The accuracies of map

structures are subject to the limits of discretization (i.e., voxel and polar maps), or

are limited by parametric representations of geometry (i.e., surfel maps).

A different and popular approach to the obstacle avoidance problem under sig-

nificant state estimation uncertainty is to essentially cut pose estimation out of the

equation, which can be done via a method that uses no memory of depth sensor

measurements. In addition to planning-based approaches that exhibit this prop-

erty [10-12,16,17,321, any obstacle avoidance approaches that are considered reactive

approaches may inherently have this property as well. Reactive approaches, including

optic flow methods [15], reactive imitation-learning 123], and non-planning-based geo-

metric approaches [27] have demonstrated considerable success at obstacle avoidance

for UAVs. The limitations of memoryless obstacle avoidance have been well noted,

however [16, 23]. Related approaches have limited map-building to very short time

horizons [3], or have used map structures that exponentially decay old depth sensor

measurements [29].

4.3 Problem Formulation

We consider the robust obstacle avoidance problem as a particular type of planning

problem. This problem, which is concerned with latency on the order of seconds and

a spatial area only the size of the robot's stopping distance, has a set of constraints

that differs by orders of magnitude from the navigate-the-maze planning problem,

which can tolerate seconds of latency and has to operate over whichever spatial area

81

is of concern to the robot (potentially kilometers or more). Accordingly, we consider

a layered approach [11, 19, 28, 107] in which a higher-level planner provides a global

navigation function Rnav (r), for any policy 7r, without itself needing to consider

collision risk rigorously.

Higher-level Planner

Rnav
)

Obstacle Avoidance System

r* = argmax F Rnav(7r) Pcoliston(7r)

Control inputs to actuators or
lower-level control

Figure 4-2: Layered planning structure that abstracts the obstacle avoidance problem
away from the higher-level planning problem.

Given a higher-level navigation function, the obstacle avoidance problem reduces to

determining the risk of collision for each policy 7r. In a probabilistic framework,

this means evaluating the collision probability Pcolliion(r). If this quantity can be

estimated for any policy, then the optimal policy may be chosen by optimization over

some chosen mapping F:

r= argmax F Rnav (7), Pcolision (7r) (4.1)

In particular in this work, we consider a finite set of policies 1II = {7o, ri, ... , IrK}

as in popular motion library approaches, which have a variety of practical benefits

including avoiding nonconvex optimization. This enables the optimal policy to be

chosen as simply the best from the discrete set evaluated, 7r* = argmax F(.).

We also specifically consider the obstacle avoidance problem where all of the infor-

mation 4/V about the true world state V4 is given in the form of a depth-pose-graph.

The depth-pose-graph is defined fully in Section 4.4.1, but the two main components

are (i) a sequence of depth images, and (ii) a pose graph. Since a maximum-likelihood

82

map can be produced from a depth-pose-graph, this set of information is general

enough to allow typical mapping-based approaches.

4.4 Depth-Pose-Graph Planning

Before describing the details, we provide a brief overview of the key ideas. When each

depth image is received, the raw depth image and a k-d-tree of its associated point

cloud are stored in memory together with the pose from which they came. To evaluate

motions for collision risk, this memory is searched to see if a queried point in space is

found in the viewed free space of a depth image. If such a depth image view is found,

the configuration distribution is transformed backwards in time through the uncertain

pose graph. Now in the frame of a previous depth image, efficient querying of the

closest obstacle is provided by the previously constructed k-d-tree associated with

each depth image (within its frame, it does not need to be re-spatially-partitioned,

despite a changing pose graph).

In the following subsections, we define a depth-pose-graph, describe searching a

depth-pose-graph, describe how to evaluate motions using the search of the graph,

and complete the description with a model, motion library, and policy for selection

motions.

4.4.1 The Depth-Pose-Graph

A depth-pose-graph is the correlated combination of two types of information com-

monly available in robotic hardware systems that have a depth image sensor, and

perform graph-based SLAM. In a depth-pose-graph, the depth images are paired

with time-synchronized poses in a pose graph.

The graph Gdepthpose = ({x, D}, E) is a combination of a set of depth im-

ages D and pose graph G = (x, S) such that each node in the graph {xi, di}

is the pairing of the depth image di that corresponds to the timestamp of

that pose xi. It is assumed that depth images each have a corresponding

time-stamped pose.

83

The two components are specifically defined as follows:

1. A set of n depth images, 'D = {do, d_1 , ..., dn}. Each depth image has these

following key characteristics: r x c pixels, finite range Rrange, camera intrinsic

matrix K which defines the finite field of view (FOV), and obstacles create

occlusions for the depth sensor (the depth dr,c at each pixel is the measure to

the closest obstacle, and is blind to objects behind the obstacle).

2. A pose graph G = (x, 8), whose vertices x are n poses xo, x 1 , ... , x-n, and

whose edges 8 are noisy measurements zij of pairwise relative transforms x,, =

(tij, Rij) between poses, xij A x7' x3 (i #j A.

We assume that the edges of the pose graph, the noisy pairwise relative transforms

zij, are provided by a separate SLAM front-end, which are available in many varieties

and are often packaged separate than the back-end graph optimization solver [108].

We note that pose-graph-based SLAM is only one type of approach to SLAM - other

approaches can use a simple filter, for example, or there also exist dense SLAM

techniques without a pose graph [109]. The pose graph, however, contains all of the

information that would be available to any other SLAM technique - one could simply

run a filter, for example, on the sequential information from the pose graph.

4.4.2 Greedy Search on a Depth-Pose-Graph

Each depth image is subject to FOV limitations as shown in Figure 4-3, and so is

only able to percept a limited, non-necessarily-convex polyhedron of free space.

(1)Free space

(2)Laterally outside FOV

(3)Inside occupied frustum

(2) (4)In occluded frustum

(5)Beyond sensor horizon

Figure 4-3: The five subsets of space partitioned by one depth image.

84

Greedy search provides a heuristic for which depth-pose to use: the first depth image

which has the mean of the queried mean point p(t = ti), inside its FOV. This equates

to calling only a fast subroutine, IsInFOVO, for each node of the depth-pose-graph

searched. This subroutine is fast, as shown below, where 7r is the projective transform,

(u, v) = (1, 2), in the right-down-forward Cartesian frame of the depth image, and

(x, y, z) = Ku with K the camera intrinsics matrix.

IsInFOVO = <

true, if 0 < u < r and

0 < v < c and

z < dr,c and

z < Rrange and

z >0

false, otherwise

In some cases, multiple depth images may all have a view of a particular subset of

space. Each depth-pose could be used to contribute to the overall evaluation, but it

is helpful to limit the expensive querying of each k-d tree (which for 160x120 images,

has 19,200 nodes) to only when the depth image is the most useful.

We use a hierarchy of breadth-first-search (BFS) graph search and spatial parti-

tioning for a fast use of the depth-pose-graph. In the greedy search, the first depth

image found that evaluates IsInFOV() = true is used. This method is depicted in

the figure below.

ForL
0

each frame F, Independently spatially-partitioned Gda,t _,,

F
epth image k-d tree

Ordering in BFS greedy search

Figure 4-4: Greedy search on the depth-pose-graph.

85

(4.2)

When there are no loop closures in the pose graph, the greedy search reduces to a

search down an array of depth-pose nodes, where temporal preference (more recent

is better) is used as a heuristic for which depth image to use.

4.4.3 Evaluating Motions With A Depth-Pose-Graph

We consider a type of sampling-based motion planning with a depth-pose-graph, in

which a discrete library of motions is evaluated. Previous works have had success

using a small library of motion primitives and replanning at high rate (i.e., 30-60

Hz) [11, 12]. The motion primitives we consider are open-loop input trajectories,

of the form u(t) over some finite horizon t E [0, N, and are executed in a Model-

Predictive-Control (MPC) type fashion, without any position-tracking controller [11].

A key step is to determine a time-varying distribution of configuration, for any

motion primitive. (Since only configuration space matters for collisions, only a time-

varying distribution of configuration is needed, rather than full state.) We consider

a finite set of K open-loop input trajectories, U= {Ui, U2, ..., UK}. Future states are

determined with the given dynamical model, x= f(x, u). In the current frame of

the robot F, there is no initial position or orientation uncertainty. Accordingly to

determine the time-varying distribution of configuration in frame Fo, for a second

order system only the velocity estimates are needed. With a current velocity esti-

mate ,O, together with the open-loop input trajectory, a time-varying distribution of

configuration can be determined {iO, u(t)} -+ pt(q).

Unless we are performing Monte Carlo evaluation1 , we need to sample the time-

varying configuration distributions over a sequence of times:

{io, u(t)} +
sample over times ti,t2 ,--tN (43)

A, (q), pt 2 (q), AN.,p(q) all in frame F0

'As mentioned in the previous chapter, Monte Carlo evaluation was deemed too slow for our
purposes, although recent work has shown that highly parallel implementations of Monte Carlo can
enable reasonable computation times [110].

86

ptN(q)

p =0) pt2 (q) pt, (q)

Figure 4-5: In current frame Fo, sampling time-varying distribution of configuration
at times t1 , t 2, ... , tN. The FOV of the depth sensor is shown with the gray triangle.

We then use a simple independence approximation to combine evaluations of multiple

times in order to evaluate the whole trajectory. This is not a perfect approximation,

and its accuracy limitations have been previously addressed [71J, but empirically it

has shown to be useful [11]. With the independence approximation, the probability

of collision for the whole trajectory is

N

Pco1i ,i,(pt(q)) 1 - I (-Pcoiiision(Pti (q)) (4.4)
i=O

The problem then reduces to determining the Pcolision at each time step, for which

the entire depth-pose-graph may be used:

Pcoision (pt, (q) | Gdepth-pose) (4.5)

The efficient, uncertainty-conscious evaluation of the above expression is the central

part of this work. The previous subsection described searching the depth-pose-graph

- once the appropriate depth-pose has been found, its frame-specific uncertainty is

determined as described in the next section.

4.4.4 Determining Frame-Specific Uncertainty

Each time-sampled configuration distribution is originally considered always in the

current robot frame Fo, and so transforming this distribution through the uncertain

pose graph edges zij creates a different uncertainty distribution Tipt (q) in the frame

.F of each different pose.

87

-M

Frame-specific uncertainty

Fpt, (q

i_1'_2 pt, (q)(q

Figure 4-6: The uncertain frame transformations zj are used to determine the frame-
specific time-sampled distributions of configuration.

The colors in the above depiction match each pose (and corresponding depth image)

with their respective uncertainty of the time-sampled distribution of configuration.

We make the simplifying assumption that rotations are known, and there is only

uncertainty is in the transformations. Although incorporating rotational uncertainty

would be more rigorous, this assumption is actually the same made for least-squares-

based pose graph SLAM, which is commonly used.

In the current frame F, for a Linear-Gaussian model we have mean p(t) and

covariance E(t):

Fopi(t) ~- (At), E(t) (4.6)

Now for frame F associated with pose j we incorporate the mean translation toj and

its covariance Eoj, which both sum (they are Linear-Gaussian):

Tj pi (t) ~ Ar (1(t) + tOj, E(t) + EOj (4.7)

This completes the determination of frame-specific configuration uncertainty.

4.4.5 Evaluation Within Each Frame, With Inverse-Depth Gaus-

sian Noise

Given the frame-specific configuration uncertainty, the task is to evaluate the prob-

ability of collision, given only the depth image in that frame. Previous work has

addressed fast planning with current-depth-image-only FOV constraints accelerated

88

Gdepth-pose

by spatial partitioning [111. We offer an improvement over this previous method for

handling one depth image - we now incorporate a model of depth image uncertainty.

We do this by adding an uncertainty component to the covariance which is only in

the direction of depth - in a right-down-forward convention of the Cartesian frame

of a depth image, this corresponds to a 3 x 3 covariance Edepth whose only non-zero

component is the bottom right entry. We use inverse-depth Gaussian noise, so if the

depth at a particular pixel is drc, we have:

1
FZdepth3 ,3

1I

where o- can be determined for the specific sensor. This is added to the other two

sources of uncertainty previously discussed:

E(t) + ZOj + Zdepth

Although inverse-depth Gaussian noise does not perfectly model the real failure modes

of depth sensors (which may have binary "don't see object at all" failure modes rather

than a Gaussian decay of depth uncertainty), it is an improved model over modeling

no depth image uncertainty. Operating in inverse-depth is a well-established tech-

nique when dealing with range data computed from triangulation, for example in

stereo/monocular vision [111].

4.4.6 Marginalization and Pruning of the Pose Graph

For computational purposes it is useful to not keep a fully dense pose graph. Local

obstacle avoidance does not require a long history of depth information - only a

short history is necessary. Specifically, we consider a small handful of seconds (10)

to be sufficient. Given a framerate frequency fframerate in Hz, this would be 10 x

fframerate depth images, but not every depth image is needed. Instead, we consider

that remembering only 5 Hz of depth information is sufficient. Thus our depth-pose-

graph will have 50 nodes, which is reasonably small complexity.

89

Although a back-end graph optimization tool is not required for our approach,

and is not involved in the critical-path latency (complex graphs can sometimes take

seconds to solve). To reduce a high framerate of depth-pose nodes down to 5 Hz

requires pruning - but rather than throw away some of the odometry information, it

is better to perform marginalization of the full pose graph. Sparsification can leverage

well-developed methods for marginalization from SLAM back-ends, which can run in

a parallel thread to our planning thread.

Marginalizaffon and

'Aprning F0Z

A A)

TA
Figure 4-7: Sparsification of a subgraph of a pose graph, which can be provided by a
SLAM back-end optimizer.

4.4.7 Quadrotor Obstacle Avoidance with a Triple Integrator

Model

For the robot of interest, a specific Linear-Gaussian dynamics model needs to be

chosen. We use a previously described quadrotor model, in which the closed loop

around the inner-loop attitude controller is approximated as a triple integrator, as

described in previous work 111]. This triple-integrator Gaussian-noise model is:

pi(t) - Ar I j(t3 + Iaot2 + Vo,gt, t2Ez) Vt E [0, tj] (4.8)

4.4.8 Collision-Probability-Constrained Motion Library

We consider a particular F (see the Problem Formulation), similar to chance-constrained

programming, which favors the maximum reward policy R,v that meets a collision

90

constraint'. The collision constraint, however, is defined for the entire policy, rather

than any specific time (as is done in chance-constrained programming). If the collision

constraint cannot be met, we choose the minimum-Pcollision policy.

argmax Rnav (ri), V 7ri with Pcolision(7i) < 6
7r = "" (4.9)

argmin Pcoiision(7ri), if /I 7i with Pcoaision(7ri) < 6

With the chance-constrained formulation, an arbitrary R-nav will not allow purpose-

fully allow the collision probability to exceed some threshold E.

4.5 Comparison with Memoryless and

Maximum-likelihood Mapping Approaches

Now that Depth-Pose-Graph Planning has been formulated, and we have provided a

complete description of a Greedy Depth-Pose-Graph Planning algorithm, we analyze

its properties compared to the two alternatives mentioned: (i) memoryless current-

depth-image-only planning, and (ii) maximum-likelihood mapping-based planning.

First, we ignore computation time, and analyze their properties in the absence

of computational limits. Then we perform time complexity analysis. We note that

space complexity is not a limit in practice: with 32 GB of RAM available on our

hardware platform, the entirety of sensor data can be stored in memory for many

minutes before running out of space. As mentioned before, for obstacle avoidance we

only care about a small number of seconds of memory, which is of insignificant size.

Comparison of properties, ignoring computational complexity

First, we note that both (i) memoryless planning, and (ii) maximum-likelihood mapping-

based planning, can both be reduced from the full information of (iii) planning with

2 In previous work, we have used unconstrained objective functions, but the problem is potentially
cleaner with a constrained objective. An unconstrained objective is subject to relative scaling
problems, whereas in a constrained objective the navigation function R'av can be scaled arbitrarily.

91

a depth-pose-graph. In other words, the entirety of information available to both

of these other approaches is only a subset of information available to planning with

a depth-pose-graph. In that sense, planning with a depth-pose-graph is strictly su-

perior, modulo computational complexity. This is not true, however, of the Greedy

Depth-Pose-Graph Planning method, which is the tractable variant presented.

One potentially useful aspect of mapping-based planning is the sensor fusion of

depth data over multiple time steps. In general, however, planning with a depth-pose-

graph can also achieve combining data over multiple points in time. The depth-pose-

graph framework even allows the opportunity to selectively only do sensor fusion -

"lazy sensor fusion" - which is not a property of a mapping-based approach, which

exhaustively fuses sensor data even if it is never used for the planning system.

Another key distinction is that mapping-based planning methods offer the ability

to do discrete-space planning, which can leverage discrete planning algorithms such

as A*. This may seem like a disadvantage of depth-pose-graph approaches, but upon

further analysis, this is not much of a limitation. For one, discrete-space planning

approaches do not offer great ways of handling dynamic constraints of a robot, which

is critical for obstacle avoidance. Additionally, depth-pose-graph methods can still

use discrete planning tools, but over a graph of motion primitives rather than over

graph of discretized space. Sampling-based planning is fully available to all three of

these methods.

Finally, we note that, ignoring uncertainty, the raw frustum information of depth

images is closer to "polygon world" that classical planning approaches would refer

to operate with. If uncertainty is either bounded or eliminated from the situation,

then path collision evaluation can be performed without sampling (a whole continuous

segment of a path through configuration space can be said to be obstacle-free). This is

a nice property of depth-pose-graphs which may be attractive in particular situations.

Comparison of computational complexity

The comparison of computational complexity depends on a number of parameters.

We note them below:

92

Sensor and memory parameters

* Npixels = r x c = # pixels in each depth image

" Nmem= # depth images to remember

Motion planning parameters

* Nsamples = # time-sampled configurations for motion planning

Mapping parameters

* Nvoxels = # voxels in discretized map

For (i), the computational complexity of memoryless planning as described in [11],

we have the following expression. In our implementation, with Npixeis = 19, 200, F

is dominated by k-d tree building, and F 2 is dominated k-d tree lookup. Our total

latency has previously been measured at ~2 ms:

F1(Npixeis) + Nsamples * F2(Npixels)

For (ii), the computational complexity of mapping-based planning, there is a sizable

difference in whether the map is built incrementally, or in a batch fashion (which is

required in order to allow loop closures). When the map is built incrementally, we have

the following expression, where F3 represents map-building, and the motion-planning

latency is assumed to be dominated by collision-detection in the map structure.

F3(Npixels , Nvoxels) + Nsamples X Kookup

We have previously measured the above latency on the order of 100 ms for the first

term only, and this does not allow for loop closures. When batched maps, rather than

incremental maps, are used, the latency increases significantly:

F3(Nixels X Nmem, Nvoxeis) + Nsamples X Klookup

93

For (iii), greedy planning with a depth-pose-graph, we have a similar complexity to

(i), with only the addition of another term, where KFOVcheck is the fast IsInFOV()

subroutine described before.

F1(Npixeis) + Nsamples X Nmem x KFOVcheck + Nsamples * F2(Npixels)

Initial experimentation has suggested that, due to KFOVcheck being small, that the

total worst-case latency of planning with Nmem = 50 rather than 1, only increases

the total latency to -3 ms.

4.6 Simulation Experiments

Figure 4-8: Screen capture from three consecutive moments of a simulated quadrotor
flying through a forest using our method.

Initial simulation experiments have demonstrated the robust ability of a field-of-

view constrained quadrotor to navigate complex environments (Figure 4-8). Among

the types of maneuvers that are capable with robustly adding memory: (i) the quadro-

94

tor can pass by a tree, and remember that it was on its left, not its right, (ii) fast

horizontal obstacle avoidance can strafe, without needing first to yaw, (iii) during

decelerations while the FOV is pointed up in the air due to vehicle's pitch, it can

remember the obstacle in front of it. These types of behaviors make the vehicle's

motion more graceful, and even under pose estimation noise allows the vehicle to

reason about which areas outside its current FOV are safe and which are not.

4.7 Discussion

We have presented a formulation that efficiently applies a robust planning viewpoint

to planning with memory, and initial simulation experiments have suggested its prac-

tical capabilities. Testing this approach in hardware is future work that we hope will

be under way soon.

There are a number of other areas in which this work could be expanded. Although

a Depth-Pose-Graph Planning framework coupled with a sampling-based exploration

strategy such as a PRM [49] or RRT [50] offers the ability to navigate arbitrary maze-

type environments, the performance problem we are most interested in is local robust

collision avoidance, rather than global minimum-cost planning.

It would be ideal, as an alternative to greedy search, to be able to use a spatial

partitioning of depth image views in order to determine which depth image to use.

Unfortunately, although there exist fast methods for querying distances to convex

polyhedra [1121 and spatially partitioning them [113], the polyhedra of free space

associated with each depth image has many faces, is not necessarily convex. Since we

can limit the size of the graph with pruning and marginalization we resort to greedy

search.

Our current implementation only simulates noise that would come from a real

SLAM front-end, and so it would be of course interesting to integrate with a real

SLAM framework. We also discussed but have not implemented the use of a back-

end to marginalize a pose graph. It would be interesting to explore what are good

metrics for choosing which keyframes are good to keep - this is a different problem

95

than just pure pose-graph SLAM, since we want to keep view cones of free space, not

just minimize maximum-likelihood estimation error.

96

Chapter 5

Discussion and Future Work

We have presented a novel approach to collision avoidance, demonstrated the method

in hardware, and extended it to address the first iteration's largest opportunity for

improvement to robustly incorporate memory. Of note, we have demonstrated for the

first time the basic viability of a UAV navigating among obstacles using planning-

based methods but only executing commands via model predictive control, without

any tracking controller. Further, the results are among the fastest and most robust

results ever demonstrated for a comparable system. More generally applicable across

robotics platforms, we have demonstrated the utility of an approach where perception

and control are closely integrated - in particular, when control specifically plays to

the strengths of available sensor data, while still applying rigorous techniques.

A surprisingly interesting question to reflect on has been: what did we think was

going to be a problem, but turned out to not be a primary issue? There are a variety of

questions that, before the hardware results were obtained, would have seemingly been

questions of primary concerns. This included: will a control approach that is so model-

dependent, and has no trajectory-tracking controller even work? Especially when

there has been essentially no proper system identification performed? Surprisingly,

not once in hardware testing have we thought that we are limited by the inaccuracy of

our dynamic model. This speaks potentially to the benefits of planning for robustness

(the cushion allowed for velocity estimation also provides a cushion for imperfections

of the dynamic model), but also may speak to the simplicity of the dynamics of the

97

quadrotor.

Additionally, after formulating the technique and its first implementation in soft-

ware, an area we thought would have been low-hanging fruit for dramatically im-

proving performance was massively parallel implementations on a GPU. Such imple-

mentations could allow us to increase by orders of magnitude the number of motion

primitives evaluated, and also enable improved path collision probability approxima-

tions. It turns out, though, that a very small number of motion primitives has done

quite well for us, and it is unclear if orders of magnitude more would have signifi-

cantly improved performance. Another area that we would have expected to be an

exciting and rich next step was fully exploring 3D flight. Although not presented,

we actually have implemented and tested in hardware full 3D flight with 3D motion

primitive libraries. There have been a number of issues, however. The primary issue

was perception - the only sensor we had that could reliably detect low-texture sur-

faces was our 2D laser, and so we had to limit flight to 2D without a fully reliable 3D

sensor. The constraints of the field of view are also more difficult to manage for 3D

flight - our new implementation incorporating memory, however, should help with

this limitation, as we can explore more in future testing. It also has turned out that

fast, aggressive 2D flight still is an exciting and difficult problem to work on.

Robustness to wind and disturbances is also something that our method does not

address. This is not an issue in indoor environments, but surprisingly it has turned

out that in approximately 100 flights outdoors, in moderate wind less than 20 mph,

on only a few flights has the lack of wind-disturbance rejection been an issue for a

flight. Implementing an observer to estimate the wind online would enable robustness

to wind.

From the overall perspective of our vehicle's flight performance and where the

biggest opportunities for improvement lie for improving robust and agile UAV flight,

planning is not the primary roadblock. Perception is probably the biggest area of

opportunity. State estimation is also difficult, but there appears to be a clear path to

making VIO estimation incrementally better. Perception has more frontiers - for ex-

ample, achieving human-level scene understanding, using not just depth information

98

but raw RGB vision information.

In terms of particular future work, a couple areas are outlined below.

Integrated Perception and Control on other Platforms

The overall approach of closely integrating perception and control, and attempting

to break de facto trends in separating them, is a concept that offers opportunities for

other systems in addition to UAVs - for example, manipulation and walking. In ma-

nipulation, rather than attempting the solve the grasping problem in one global frame

with full state estimation, but also rather than trying to only use image-coordinate

visual servoing, approaches could be developed that apply rigorous state-space tools

yet play to the strengths of actual sensor information. This could for example be

exciting to incorporate in approaches that combine both visual and tactile sensing.

Robust Perception

In our approach, we have primarily focused on robustness to state estimation, but a

key assumption has been that each depth image is a dependable source of information.

In Chapter 4, we added a modification to allow for inverse-depth Gaussian noise

in the depth image, and although this is preferable to modeling no uncertainty in

the depth image, it is far from perfect. Empirically, the failure modes of depth

sensors are not due to easily-modeled Gaussian decay. Rather, due to poor lighting

conditions, or low surface texture, a vision-based sensor may entirely miss an object,

and think an entire area of the depth image is empty of objects, which is non-ideal for

obstacle avoidance. Even laser-based depth sensors also have varying sensing quality

based on environmental conditions and surface textures. Increasing our capabilities to

understand the limits of perception systems, and using that understanding to increase

the robustness of such systems, is an exciting route for further research.

99

100

Bibliography

[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484-489, 2016.

[2] James M Anderson, Kalra Nidhi, Karlyn D Stanley, Paul Sorensen, Constantine
Samaras, and Oluwatobi A Oluwatola. Autonomous vehicle technology: A guide
for policymakers. Rand Corporation, 2014.

[3] Andrew J Barry. High-speed autonomous obstacle avoidance with pushbroom
stereo. PhD Thesis, MIT, 2016.

[4] Rudolf Emil Kalman et al. Contributions to the theory of optimal control.

[5] Geir E Dullerud and Fernando Paganini. A course in robust control theory: a
convex approach, volume 36. Springer Science & Business Media, 2013.

[6] Tryphon T Georgiou and Anders Lindquist. The separation principle in stochas-
tic control, redux. IEEE Transactions on Automatic Control, 58(10):2481-2494,
2013.

[7] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning
and acting in partially observable stochastic domains. Artificial intelligence,
101(1):99-134, 1998.

[8] Quentin Bateux and Eric Marchand. Histograms-based visual servoing. IEEE
Robotics and Automation Letters, 2(1):80-87, 2017.

[9] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. Journal of Machine Learning Research,
17(39):1-40, 2016.

[10] Shreyansh Daftry, Sam Zeng, Arbaaz Khan, Debadeepta Dey, Narek Melik-
Barkhudarov, J Andrew Bagnell, and Martial Hebert. Robust monocular flight
in cluttered outdoor environments. arXiv preprint arXiv:1604.04779, 2016.

[11] Pete Florence, John Carter, and Russ Tedrake. Integrated perception and con-
trol at high speed: Evaluating collision avoidance maneuvers without maps. In
Algorithmic Foundations of Robotics XII. 2016.

101

[12] Brett T. Lopez and Jonathan How. Aggressive 3-d collision avoidance for high-
speed navigation. In ICRA (Accepted but not published, 2017.

[13] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Vision-
based state estimation for autonomous rotorcraft mavs in complex environ-
ments. In Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on, pages 1758-1764. IEEE, 2013.

[14] Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza.
Aggressive quadrotor flight through narrow gaps with onboard sensing and com-
puting. arXiv preprint arXiv:1612.00291, 2016.

[15] Antoine Beyeler, Jean-Christophe Zufferey, and Dario Floreano. Vision-based
control of near-obstacle flight. Autonomous robots, 27(3):201-219, 2009.

[16] Michael W Otte, Scott G Richardson, Jane Mulligan, and Gregory Grudic.
Path planning in image space for autonomous robot navigation in unstructured
environments. Journal of Field Robotics, 26(2):212-240, 2009.

[17] Larry Matthies, Roland Brockers, Yoshiaki Kuwata, and Stephan Weiss. Stereo
vision-based obstacle avoidance for micro air vehicles using disparity space.
In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 3242-3249. IEEE, 2014.

[18] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on, pages 2520-2525. IEEE, 2011.

[19] Sebastian Scherer, Sanjiv Singh, Lyle Chamberlain, and Mike Elgersma. Flying
fast and low among obstacles: Methodology and experiments. The International
Journal of Robotics Research, 27(5):549-574, 2008.

[20] Stefan Hrabar and Gaurav Sukhatme. Vision-based navigation through urban
canyons. Journal of Field Robotics, 26(5):431-452, 2009.

[21] Joseph Conroy, Gregory Gremillion, Badri Ranganathan, and J Sean Humbert.
Implementation of wide-field integration of optic flow for autonomous quadrotor
navigation. Autonomous robots, 27(3):189-198, 2009.

[22] Andrew M Hyslop and J Sean Humbert. Autonomous navigation in three-
dimensional urban environments using wide-field integration of optic flow. Jour-
nal of guidance, control, and dynamics, 33(1):147-159, 2010.

[23] St6phane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas
Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning
monocular reactive uav control in cluttered natural environments. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 1765-
1772. IEEE, 2013.

102

[24] Huili Yu and Randy Beard. A vision-based collision avoidance technique for mi-
cro air vehicles using local-level frame mapping and path planning. Autonomous
Robots, 34(1-2):93-109, 2013.

[25] Torsten Merz and Farid Kendoul. Dependable low-altitude obstacle avoidance
for robotic helicopters operating in rural areas. Journal of Field Robotics,
30(3):439-471, 2013.

[26] Eric N Johnson and John G Mooney. A comparison of automatic nap-of-the-
earth guidance strategies for helicopters. Journal of Field Robotics, 31(4):637-
653, 2014.

[27] Helen Oleynikova, Dominik Honegger, and Marc Pollefeys. Reactive avoidance
using embedded stereo vision for may flight. In 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 50-56. IEEE, 2015.

[28] Matthias Nieuwenhuisen and Sven Behnke. Hierarchical planning with 3d local
multiresolution obstacle avoidance for micro aerial vehicles. In ISR Robotik
2014; 41st International Symposium on Robotics; Proceedings of, pages 1-7.
VDE, 2014.

[291 Debadeepta Dey, Kumar Shaurya Shankar, Sam Zeng, Rupesh Mehta, M Talha
Agcayazi, Christopher Eriksen, Shreyansh Daftry, Martial Hebert, and J An-
drew Bagnell. Vision and learning for deliberative monocular cluttered flight.
In Field and Service Robotics, pages 391-409. Springer, 2016.

[30] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland
Siegwart. Receding horizon" next-best-view" planner for 3d exploration. In
Robotics and Automation (ICRA), 2016 IEEE International Conference on,
pages 1462-1468. IEEE, 2016.

[31J Jing Chen, Tianbo Liu, and Shaojie Shen. Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments. In Robotics
and Automation (ICRA), 2016 IEEE International Conference on, pages 1476-
1483. IEEE, 2016.

132] Sikang Liu, Michael Watterson, Sarah Tang, and Vijay Kumar. High speed
navigation for quadrotors with limited onboard sensing. In 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1484-1491.
IEEE, 2016.

[33] Abraham Bachrach, Samuel Prentice, Ruijie He, Peter Henry, Albert S Huang,
Michael Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy. Estima-
tion, planning, and mapping for autonomous flight using an rgb-d camera
in gps-denied environments. The International Journal of Robotics Research,
31(11):1320-1343, 2012.

103

[34] I. Lenz, M. Gemici, and A. Saxena. Low-power parallel algorithms for single im-
age based obstacle avoidance in aerial robots. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 772-779, Oct 2012.

[35] Brian MacAllister, Jonathan Butzke, Alex Kushleyev, Harsh Pandey, and
Maxim Likhachev. Path planning for non-circular micro aerial vehicles in con-
strained environments. In Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, pages 3933-3940. IEEE, 2013.

[36] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz
Meier, Petri Tanskanen, and Marc Pollefeys. Vision-based autonomous mapping
and exploration using a quadrotor mav. In Intelligent Robots and Systems
(IROS), 2012 IEEE RSJ International Conference on, pages 4557-4564. IEEE,
2012.

[37] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran.
Continuous-time trajectory optimization for online uav replanning. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5332-5339, Oct 2016.

[38] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning
deep control policies for autonomous aerial vehicles with mpc-guided policy
search. In Robotics and Automation (ICRA), 2016 IEEE International Confer-
ence on, pages 528-535. IEEE, 2016.

[39] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[40] Ruijie He, Sam Prentice, and Nicholas Roy. Planning in information space for a
quadrotor helicopter in a gps-denied environment. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pages 1814-1820. IEEE,
2008.

[41] Adam Bry, Abraham Bachrach, and Nicholas Roy. State estimation for ag-
gressive flight in gps-denied environments using onboard sensing. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 1-8.
IEEE, 2012.

[42] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory plan-
ning for aggressive quadrotor flight in dense indoor environments. In Robotics
Research, pages 649-666. Springer, 2014.

[43] Benoit Landry, Robin Deits, Peter R Florence, and Russ Tedrake. Aggressive
quadrotor flight through cluttered environments using mixed integer program-
ming. In 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016.

[44] Michael Burri, Helen Oleynikova, Markus W Achtelik, and Roland Siegwart.
Real-time visual-inertial mapping, re-localization and planning onboard mavs

104

III! 'II IIIIII~IP!IIl I'll

in unknown environments. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 1872-1878. IEEE, 2015.

[451 Aditya A Paranjape, Kevin C Meier, Xichen Shi, Soon-Jo Chung, and Seth
Hutchinson. Motion primitives and 3d path planning for fast flight through a
forest. The International Journal of Robotics Research, 34(3):357-377, 2015.

[46] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. Octomap: An efficient probabilistic 3d mapping framework based
on octrees. Anton. Robots, 34(3):189-206, April 2013.

[47] Matthias Nieuwenhuisen and Sven Behnke. 3d planning and trajectory opti-
mization for real-time generation of smooth may trajectories. In Mobile Robots
(ECMR), 2015 European Conference on, pages 1-7. IEEE, 2015.

[48] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in
cluttered environments. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 42-49. IEEE, 2015.

[49] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566-580, 1996.

[50] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 1998.

[511 Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846-894,
2011.

[52] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International journal of robotics research,
34(7):883-921, 2015.

[53] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed
integer programming for multi-vehicle path planning. In Control Conference
(ECC), 2001 European, pages 2603-2608. IEEE, 2001.

[54] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 477-
483. IEEE, 2012.

[55] Karl Johan Astr6m and Richard M Murray. Feedback systems: an introduction
for scientists and engineers. Princeton university press, 2010.

[561 Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. CoRR, abs/1601.04037, 2016.

105

[571 Robin Ritz and Raffaelo D'Andrea. A global strategy for tailsitter hover control.
International Symposium on Robotics Research (ISRR), 2015.

[58] Joseph Moore, Rick Cory, and Russ Tedrake. Robust post-stall perching
with a simple fixed-wing glider using lqr-trees. Bioinspiration & biomimetics,
9(2):025013, 2014.

[59] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[60] Yuanfu Luo, Haoyu Bai, David Hsu, and Wee Sun Lee. Importance sampling
for online planning under uncertainty.

[61] Selim Temizer, Mykel Kochenderfer, Leslie Kaelbling, Tomas Lozano-Prez, and
James Kuchar. Collision avoidance for unmanned aircraft using markov decision
processes. In AIAA guidance, navigation, and control conference, page 8040.

[62] Haoyu Bai and David Hsu. Unmanned aircraft collision avoidance using
continuous-state pomdps. Robotics: Science and Systems VII, 1:1-8, 2012.

[63] Romain Pepy and Alain Lambert. Safe path planning in an uncertain-
configuration space using rrt. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 5376-5381. IEEE, 2006.

[64] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion
planning under uncertainty. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 723-730. IEEE, 2011.

[65] Brendan Burns and Oliver Brock. Sampling-based motion planning with sensing
uncertainty. In Robotics and Automation, 2007 IEEE International Conference
on, pages 3313-3318. IEEE, 2007.

[66] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state information.
The International Journal of Robotics Research, 30(7):895-913, 2011.

[67] Samuel Prentice and Nicholas Roy. The belief roadmap: Efficient planning in
belief space by factoring the covariance. The International Journal of Robotics
Research, 2009.

[68] Patrycja E Missiuro and Nicholas Roy. Adapting probabilistic roadmaps to han-
dle uncertain maps. In Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, pages 1261-1267. IEEE, 2006.

[69] Robert Platt Jr, Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-Perez.
Belief space planning assuming maximum likelihood observations. 2010.

106

[70] Shridhar K Shah, Chetan D Pahlajani, Nicholaus A Lacock, and Herbert G
Tanner. Stochastic receding horizon control for robots with probabilistic state
constraints. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 2893-2898. IEEE, 2012.

[71] Lucas Janson, Edward Schmerling, and Marco Pavone. Monte carlo motion
planning for robot trajectory optimization under uncertainty. International
Symposium on Robotics Research (ISRR), 2015.

[72] Sachin Patil, Jur Van Den Berg, and Ron Alterovitz. Estimating probabil-
ity of collision for safe motion planning under gaussian motion and sensing
uncertainty. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 3238-3244. IEEE, 2012.

[73] Wen Sun, Luis G Torres, Jur Van Den Berg, and Ron Alterovitz. Safe mo-
tion planning for imprecise robotic manipulators by minimizing probability of
collision. In Robotics Research, pages 685 701. Springer, 2016.

[74] Jia Pan, Sachin Chitta, and Dinesh Manocha. Probabilistic collision detection
between noisy point clouds using robust classification. In International Sympo-
sium on Robotics Research (ISRR), pages 1-16, 2011.

[75] Jia Pan and Dinesh Manocha. Fast probabilistic collision checking for sampling-
based motion planning using locality-sensitive hashing. The International Jour-
nal of Robotics Research, page 0278364916640908, 2016.

[76] Abraham Charnes and William W Cooper. Chance-constrained programming.
Management science, 6(1):73-79, 1959.

[77] Lars Blackmore, Hui Li, and Brian Williams. A probabilistic approach to op-
timal robust path planning with obstacles. In American Control Conference,
2006, pages 7-pp. IEEE, 2006.

[78] Lars Blackmore, Masahiro Ono, Askar Bektassov, and Brian C Williams. A
probabilistic particle-control approximation of chance-constrained stochastic
predictive control. IEEE transactions on Robotics, 26(3):502-517, 2010.

[79] Lars Blackmore, Masahiro Ono, and Brian C Williams. Chance-constrained op-
timal path planning with obstacles. IEEE Transactions on Robotics, 27(6):1080-
1094, 2011.

[80] Brandon Luders, Mangal Kothari, and Jonathan P How. Chance constrained rrt
for probabilistic robustness to environmental uncertainty. In AIAA Guidance,
Navigation, and Control Conference, Guidance, Navigation, and Control, 2010.

[81] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas Roy, and
Jonathan P How. Probabilistically safe motion planning to avoid dynamic
obstacles with uncertain motion patterns. Autonomous Robots, 35(1):51-76,
2013.

107

[82] Mangal Kothari and Ian Postlethwaite. A probabilistically robust path planning
algorithm for uavs using rapidly-exploring random trees. Journal of Intelligent

4 Robotic Systems, pages 1-23.

[83] Thierry Fraichard and Hajime Asama. Inevitable collision states?a step towards
safer robots? Advanced Robotics, 18(10):1001-1024, 2004.

[84] B. L?Esp6rance and K. Gupta. Safety hierarchy for planning with time con-
straints in unknown dynamic environments. IEEE Transactions on Robotics,
30(6):1398-1411, Dec 2014.

1851 Raia Hadsell, Pierre Sermanet, Marco Scoffier, Ayse Erkan, Koray Kavackuoglu,
Urs Muller, and Yann LeCun. Learning long-range vision for autonomous off-
road driving. Journal of Field Robotics, 26(2):120-144, February 2009. <a
href-='http: //youtu.be/ GLgX8ku5TOQ'>Video< /a>.

[86] David C Moore, Albert S Huang, Matthew Walter, Edwin Olson, Luke Fletcher,
John Leonard, and Seth Teller. Simultaneous local and global state estimation
for robotic navigation. In Robotics and Automation, 2009. ICRA'09. IEEE
International Conference on, pages 3794-3799. IEEE, 2009.

[87] Mihail Pivtoraiko, Daniel Mellinger, and Vijay Kumar. Incremental micro-
uav motion replanning for exploring unknown environments. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages 2452-2458.
IEEE, 2013.

[88] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE transactions on robotics,
21(6):1077-1091, 2005.

[89] Debadeepta Dey, Tian Y Liu, Boris Sofman, and Drew Bagnell. Efficient opti-
mization of control libraries. Technical report, DTIC Document, 2011.

[90] Alessandro Giusti, J6rome Guzzi, Dan C Ciregan, Fang-Lin He, Juan P Ro-
driguez, Flavio Fontana, Matthias Faessler, Christian Forster, Jiirgen Schmid-
huber, Gianni Di Caro, et al. A machine learning approach to visual percep-
tion of forest trails for mobile robots. IEEE Robotics and Automation Letters,
1(2):661-667, 2016.

[91] Andrew J Barry and Russ Tedrake. Pushbroom stereo for high-speed navigation
in cluttered environments. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 3046-3052. IEEE, 2015.

[92] Noel E Du Toit and Joel W Burdick. Probabilistic collision checking with chance
constraints. IEEE Transactions on Robotics, 27(4):809-815, 2011.

[93] Masahiro Ono, Marco Pavone, Yoshiaki Kuwata, and J Balaram. Chance-
constrained dynamic programming with application to risk-aware robotic space
exploration. Autonomous Robots, 39(4):555-571, 2015.

108

[94] Anirudha Majumdar and Russ Tedrake. Robust online motion planning with
regions of finite time invariance. In Algorithmic Foundations of Robotics X,
pages 543-558. Springer, 2013.

[95] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. Lqr-
trees: Feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research, 2010.

[96] Charles Richter, William Vega-Brown, and Nicholas Roy. Bayesian learning
for safe high-speed navigation in unknown environments. In Proceedings of the
International Symposium on Robotics Research (ISRR 2015), Sestri Levante,
Italy, 2015.

[97] Russ Tedrake. Drake: A planning, control, and analysis toolbox for nonlinear
dynamical systems, 2014.

[98] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation
and control for precise aggressive maneuvers with quadrotors. Int. J. Rob.
Res., 31(5):664-674, April 2012.

[991 Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraundor-
fer, and Marc Pollefeys. Pixhawk: A micro aerial vehicle design for autonomous
flight using onboard computer vision. Auton. Robots, 33(1-2):21-39, August
2012.

[100] Damien Dusha and Luis Mejias. Error-analysis and attitude observability of a
monocular gps/visual odometry integrated navigation filter. The International
Journal of Robotics Research, 31(6):714-737, 2012.

[101] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.

[102] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Ad-
vances in neural information processing systems, pages 2164-2172, 2010.

[103] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp
planning with regularization. In Advances in neural information processing
systems, pages 1772-1780, 2013.

[104] Rafael Valencia, Marti Morta, Juan Andrade-Cetto, and Josep M Porta. Plan-
ning reliable paths with pose slam. IEEE Transactions on Robotics, 29(4):1050-
1059, 2013.

[1051 Ernesto H Teniente, Rafael Valencia, and Juan Andrade-Cetto. Dense outdoor
3d mapping and navigation with pose slam. 2011.

[106] Vadim Indelman, Luca Carlone, and Frank Dellaert. Towards planning in gen-
eralized belief space. In Robotics Research, pages 593-609. Springer, 2016.

109

[1071 Jason Israelsen, Matt Beall, Daman Bareiss, Daniel Stuart, Eric Keeney, and
Jur van den Berg. Automatic collision avoidance for manually tele-operated
unmanned aerial vehicles. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 6638-6643. IEEE, 2014.

[108] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. A
tutorial on graph-based slam. IEEE Intelligent Transportation Systems Maga-
zine, 2(4):31-43, 2010.

[109] Thomas Whelan, Stefan Leutenegger, Renato F Salas-Moreno, Ben Glocker,
and Andrew J Davison. Elasticfusion: Dense slam without a pose graph. In
RSS 2015.

[110] Brian Ichter, Edward Schmerling, Ali-akbar Agha-mohammadi, and Marco
Pavone. Real-time stochastic kinodynamic motion planning via multiobjective
search on gpus. arXiv preprint arXiv:1607.06886, 2016.

[111] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse depth
parametrization for monocular slam. IEEE transactions on robotics, 24(5):932-
945, 2008.

[112] Ming C Lin and John F Canny. A fast algorithm for incremental distance
calculation. In Robotics and Automation, 1991. Proceedings., 1991 IEEE Inter-
national Conference on, pages 1008-1014. IEEE, 1991.

[113] Stephen A Ehmann and Ming C Lin. Accelerated proximity queries between
convex polyhedra by multi-level voronoi marching. In Intelligent Robots and
Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Con-
ference on, volume 3, pages 2101-2106. IEEE, 2000.

110

