
Beating the World's Best at Super Smash Bros.
MASSACHUSETTSMIUTE

Deep Reinforcement Learning OF TECHNOLOGY

by I AR 13 2017

Vlad Firoiu LIBRARIES

Submitted to the Department of Electrical Engineering and Computer A
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Auhr..Signature redactedA uthor

Department of Electrical Engineering and Computer Science

I'll')January 27, 2017

Signature redacted
C ertified by

-~ I,, Joshua B. Tenenbaum
Professor of Brain and Cognitive Science

Thesis Supervisor

Accepted by
Signature redacted

~I Iw Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

with

2

Beating the World's Best at Super Smash Bros. with Deep

Reinforcement Learning

by

Vla(d Firoiu

Submitted to the Department of Electrical Engineering and Computer Science
on January 27, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

There has been a recent explosion in the capabilities of game-playing artificial in-
telligence. Many classes of RL tasks, from Atari games to motor control to board
games, are now solvable by fairly generic algorithms, based on deep learning, that
learn to play from experience with often minimal knowledge of the specific domain of
interest. In this work, we will investigate the performance of these methods on Super
Smash Bros. Melee (SSBM), a popular multiplayer fighting game. The SSBM envi-
ronment has complex dynamics and partial observability, making it challenging for
man and machine alike. The multiplayer aspect poses an additional challenge, as the
vast majority of recent advances in RL have focused on single-agent environments.
Nonetheless, we will show that it is possible to train agents that are competitive
against and even surpass human professionals, a new result for the video game set-
ting.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor

3

4

Chapter 1

Introduction

The past few years have seen a renaissance of sorts for neural network models in

Al and machine learning. Driven in part by hardware advances in the GPUs that

accelerate their training, the first breakthroughs came in 2012 when convolutional

architectures were able to achieve record performance on image classification [2].

Today the technique is known as Deep Learning due to its use of many layers that

build up increasingly abstract representations from raw inputs.

In this thesis we focus not on vision but on game-playing. As far back as the

early 90's, neural networks were used to reach expert-level play on Backgammon [7].
More recently, there have been breakthroughs on learning to play various video games

[3]. Even the ancient board game Go, which for long has thwarted attempts by AI

researchers to build human-level programs, fell to a combination of neural networks

and Monte-Carlo Tree Search [6].

1.1 The SSBM Environment

We focus on Super Smash Bros. Melee (SSBM), a fast-paced multiplayer fighting

game released in 2001 for the Nintendo Gamecube. SSBM has steadily grown in

popularity over its 15-year history, and today sports an active tournament and pro-

fessional scene. The metagame is constantly evolving as new mechanics are discovered

and refined, and top players push each other to ever greater levels of skill.

5

From an RL standpoint, the SSBM environment poses several challenges - large

and only partially observable state, complex transition dynamics, and delayed re-

wards. There is also a great deal of diversity in the environment, with 26 unique

characters and a multitude of different stages. The partial observability comes from

the limits of human reaction time along with several frames of built-in input delay,

which forces players to anticipate their opponent's actions ahead of time. Further-

more, being a multiplayer game adds an entirely new dimension of complexity - success

is no longer a single, absolute measure given by the environment, but instead must

be defined relative to a variable, unpredictable adversary.

1.1.1 State, Action, Reward

Many previous applications of deep RL to video games have used raw pixels as obser-

vations. Partly for pragmatic reasons, we instead use features read from the game's

memory on each frame, consisting of each player's position, velocity, and action state,

along with several other values. This allows us to focus purely on the RL challenge of

playing SSBM rather than the perception. In any case, the game features are readily

inferrable from the pixels, and deep networks are known to perform quite well on vi-

sion tasks, so we have good reason to believe that pixel-based models would perform

similarly. Pixel-based networks would also be better able to deal with projectiles,

which we do not currently know how to read from the game memory.

The game runs natively at 60 frames per second, which we lower to 30 by skipping

every other frame. No actions are sent on the skipped frames, which is equivalent to

the controller not changing state. To better match human play, we would lower this

further by skipping more frames, but that would make it impossible to perform certain

important actions which humans perform regularly (for example, some characters

require releasing the the jump button at most 2 frames after pressing it in order to

perform a "short hop" instead of the full jump).

The GameCube controller has two analog sticks, five buttons, two triggers, and a

directional pad, all of which are relevant in SSBM. To make things easier, we eliminate

most of the inputs, leaving only 9 discrete positions on the main analog stick and 5

6

buttons (at most one of which may be pressed at a time), for a total of 54 discrete

actions. This suffices for the majority of the relevant actions in SSBM, although

proficient humans routinely make use of controller inputs outside this limited set

(such as precise angles and partial tilts of the control stick).

The goal of SSBM is to KO the opponent by sending them out of bounds, and

we give scores of 1 for these events. How far opponents are sent flying when hit

depends on their damage, which is displayed on screen. We add the damage dealt (and

subtract the damage taken) from the score, with a small weighting factor. Although

not the ultimate objective, this reward signal is very important to humans, so we felt

it was appropriate to include it. Without it, learning from the very sparse KO signal

alone would be very difficult.

Players respawn in the middle of the stage after being KOed. In tournaments,

games are won after four KOs ("stocks"). To simplify navigating through the SSBM

menus we instead set the game mode to infinite time and arbitrarily mark off episodes

every few seconds.

7

8

Chapter 2

Methods

We used two main classes of model-free RL algorithms: Q-learning and policy gradi-

ents. While standard, we follow with a brief review of these techniques. Henceforth,

we will use s to denote states, a to denote actions, and r to denote rewards, all three

of which may be optionally indexed by a time step. Capital letters denote random

variables.

2.1 Q-learning

In Q-learning, one attempts to learn a function mapping state-action pairs to expected

future rewards:

Q7(st, at) = E[Rt + ARt+1 + A 2 Rt+2 + - (2.1)

We assume that all future actions (upon which the Ri are implicitly dependent)

are taken according to the policy r. In practice, we estimate the RHS from a single

sampled trajectory, and also truncate the sum in order to reduce the variance of the

estimate (at the cost of introducing bias). Our objective function becomes:

L = (Q(st, at) - [rt + Art+, + - + A'Q(st+n, at+n)]) 2 (2.2)

With Q approximated by neural network, we use (batched) stochastic gradient descent

9

on L to learn the parameters. Note that the second (subtracted) Q in the objective

is considered a constant with regards to gradients; we wish to adjust Q to become

a better predictor of future rewards, not to adjust the future rewards to match the

past prediction.

Once we learn Q, for some policy 7r, we can construct a new (better) policy r'

which always takes the best action under the learned Q, and repeat. This is known

as policy iteration, and is guaranteed to quickly converge to the optimal policy for

small environments. Of course, more interesting environments like SSBM have large

(and continuous) state spaces, and so it is prohibitive to exhaustively explore the

entire space. In such cases it is common to generate experiences using an 6-greedy

strategy, in which a random action is taken with probability C. To further explore

promising actions, we also take actions from a Boltzmann distribution over their

predicted Q-values. That is, in state s we take action a with probability proportional

to exp(TQ(s, a)), where T is an (inverse) temperature parameter that must be chosen

to match the scale of the Q-values.

In the RL literature, our approach might be referred to as n-step SARSA. Deep-

Mind's original work using deep Q-networks (abbreviated DQN) on Atari games

employed a slightly different algorithm based on the Bellman equation [3]:

Q*(st, at) = E[Rt + A max Q,(Sti, a)] (2.3)
a

In principle this would allow one to directly learn Q for the optimal policy ^,

independent of the policy used to generate the experiences. However, we found this

to be much less stable than SARSA, with the Q-values rapidly diverging from reality,

likely due to the iteration of the maximum operator during training. There exist

techniques such as the double-DQN [8] to alleviate this effect, which warrant further

exploration.

A note about implementation: our Q-network does not actually take the action

as an input, but instead outputs a vector of Q-values for all the actions.

10

2.2 Policy Gradient Methods

Policy gradient methods work slightly differently from Q-learning. Their main feature

is an explicit representation of the policy 7r, which maps states to (distributions over)

actions, and which is directly updated based on experience. The REINFORCE [41

learning rule is the prototypical example:

A0 O = (R - b)VO log 7 0(s, a) (2.4)

Here R is the sampled future reward (possibly truncated, as above), b is a baseline

reward, and a is the learning rate. Intuitively, this increases the probability of taking

actions that performed better than the baseline, and vice-versa. It can be shown

that, in expectation, AO maximizes the expected discounted rewards, averaged over

all states.

The Actor-Critic algorithm is an extension of REINFORCE that replaces the

baseline b with a parameterized function of the state, known as the critic. This critic

V,(s) attempts to predict the expected future reward from a state s assuming that

the policy 7 is followed, very similar to the above Q function:

V"(s80 = E [R + A Rt+1 + A2 Rt+2 + - - -] (2.5)

Ideally, this removes all state-dependent variance from the reward signal, leaving

only the action-dependent component or advantage, A(s, a) = Q(s, a) - V(s), to

inform policy updates. In our experience the value networks perform quite well,

explaining about 90% of the variance in rewards.

One issue that Actor-Critics face is premature convergence to a suboptimal de-

terministic policy. This is bad because, once the policy is deterministic, different

actions are no longer explored, so we never receive evidence that other actions might

be better, and so the policy never changes. A simple workaround is to add some E

noise to the policy, like in Q-learning. However, because we do not have Q-values, we

can't explicitly explore similarly-valued actions with similar probabilities. Instead,

11

we add an entropy term to the learning rule (2.4) that nudges the policy towards

randomness, and we tune the scale h of this entropy term so that the actor neither

plunges into deterministism (0 entropy) nor remains stuck at uniform randomness

(maximum entropy). Since entropy is simply expected (negative) log-probability, our

resulting Actor-Critic policy gradient is:

AO = a(A(s, a) - h)Vo log wo(s, a)

In this form, we see that the entropy scale h is constant negative distortion on

the reward signal. Therefore, like the REINFORCE baseline b, h does not affect

the overall validity of the policy gradient as a maximizer (in expectation) of total

discounted reward.

Overall our approach most closely resembles DeepMind's Asynchronous Advantage

Actor-Critic, although we do not perform asynchronous gradient updates (merely

asynchronous experience generation). Similar to the Q network, the actor network

outputs a vector containing the probabilities of each action.

2.3 Training

Despite being 15 years old, SSBM is not trivial to emulate. Empirically, we found that,

while a modern cpu can reach framerates of about 5x real time, those typically found

on servers can only manage 1-2x. This is quite slow compared to the performance-

engineered Atari Learning Environment, which can run Atari games over one hundred

times faster than real time. This means that generating experiences (state-action-

reward sequences) is a major bottleneck. We remedy this by running many different

emulators in parallel, typically 50 or more per experiment. 1

The many parallel agents periodically send their experiences to a trainer, which

maintains a circular queue of the most recent experiences. With the help of a GPU,

the trainer continually performs (minibatched) stochastic gradient descent on its set

'Computing resources were provided by the Mass. Green High-Performance Computing Center.

12

of experiences while periodically saving snapshots of the neural network weights for

the agents to load. This asynchronous setup technically breaks the assumption of

the REINFORCE learning rule that the data is generated from the current policy

network (in reality the network has since been updated by a few gradient steps), but

in practice this does not appear to be a problem, likely because the gradient steps are

sufficiently small to not change the policy significantly in the time that an experience

sits in the queue. The upside is that no time is wasted waiting on the part of either

the agents or the trainer.

2.3.1 Hyper-Parameters

All of our policies used an epsilon value of 0.02. Our discount factor A was set such

that rewards 2 seconds into the future were worth half as much as rewards in the

present. We tried different values of n in the discounted reward summation and

settled on n = 10.

All of our neural networks (Q, actor, and critic) used architectures with two fully-

connected hidden layers of size 128. While far from thorough, our attempts with

different architectures did not yield improvements - some, such the 3 x 128 policy

network, actually did worse. On the other hand, the number and sizes of the critic

layers did not have much of an effect.

Our weight variables were initialized to have random columns of norm 1, and the

biases as zero-mean normals with standard deviation 0.1. Our nonlinearity was a

smoothed version of the traditional leaky ReLU which we call "leaky softplus" (with

- 0.01):

fa (x) = log(exp(ax) + exp(x))

2.3.2 Learning rate and second-order methods

Whenever gradient descent is employed, one must worry about choosing the right

learning rate. It must not be too large, or the local linearity assumption breaks down

13

and the loss fails to decrease (or even diverges). But if too small, then learning is

unnecessarily slow. Ideally, the learning rate would be as large as possible, while still

ensuring convergence. Often, some hand-tuning suffices; in our case, a learning rate

of le-4 gave reasonable results.

A more principled approach is to use higher-order derivatives to adjust the learn-

ing rate or even the gradient direction. If the error surface is relatively flat, then

we can take a larger step; if it is very curved, then we should take a small step..

This incidentally solves another issue with first-order methods: that scaling the loss

function (or the rewards) translates into an equivalent scaling of the gradients, which

can mean a dramatic change in the learning dynamics, even though the optimization

problem is effectively unchanged.

In RL, however, we are optimizing more than just a loss function - we are opti-

mizing a policy through policy iteration. This means that we should care about the

change in the policy as well as the change in the loss (and when using REINFORCE

there isn't really a "loss", only a direction in which to improve the policy). This ap-

proach, known as Trust Region Policy Optimization [cite], constrains each gradient

step so that the change in policy is bounded. This change is measured by the KL

divergence between the old policy and the new policy, averaged over the states in our

batch:

D (7r, 7r) =K Dr(7r (s), 7r'(S))
seS

If the old policy is parameterized by 0 which we are changing in the AO direction,

then a second-order approximation of the change in policy is given by:

I
D(7o0 ,o 7oo +o) 21 AOT H(0 0)AO

2

Here H(0) is the Hessian of D(wo6 , 7o). Note that there is no first-order term,

since 0 = 00 is a global minimum of the policy distance. The direction in which the

KL divergence is taken also doesn't matter, as it is locally symmetric.

14

If the policy gradient direction is g, our goal then is to maximize AOTg (the

progress made in improving the policy) subject to the constraint

-AOT HAO < c
2 -

Here c is a our chosen bound on the change in policy. The method of Lagrange

multipliers shows that the optimal direction for AO is given by the solution to Hx = g

(which we then rescale to satisfy the constraint). Unfortunately, H is in practice too

big to invert or even store in memory, as it is quadratic in the number of parameters,

which is already quite large for neural networks. We thus resort to the Conjugate

Gradient method [5], which only requires the ability to take matrix-vector products

with H. This we can do as follows:

Hx = [V0 (XTVoD(7 0 , 7ro))] 00

Note that we are only taking gradients of scalars, which can be done efficiently

with automatic differentation. Each step of conjugate gradient descent improves our

progress in the direction of the policy gradient g within the constrained policy region,

at the cost of extra computation time. In practice, we found that a policy bound of

10-6 and 10-20 conjugate gradient iterations worked best.

15

16

Chapter 3

Results

Unless otherwise stated, all agents, human or Al, played as Captain Falcon on the

stage Battlefield 1. We chose Captain Falcon because he is one of the most popu-

lar characters, and because he doesn't have any projectile attacks (which our state

representation lacks). Using only one character and stage greatly simplifies the envi-

ronment, and makes it possible to directly compare learning curves and raw scores.

3.1 In-game Al

We began by testing the RL algorithms against the in-game Al. After appropriate

parameter tuning, both Q learners and actor-critics proved capable of defeating this

Al at its highest difficulty setting, and reached similar average reward levels within

a day.

For each algorithm, we found little variance between experiments with different

initializations. However, the two algorithms found qualitatively different policies

from each other. Actor-Critics pursued a standard strategy of attacking and counter-

attacking, similar to the way humans play. Q-learners on the other hand would

consistently find the unintuitive strategy of tricking the in-game AI into killing itself.

This multi-step tactic is fairly impressive; it involves moving to the edge of the stage

and allowing the enemy to attempt a 2-attack string, the first of which hits (resulting

Considered to be the best stage for competitive play.

17

0.00

-1.0000-3

-2.0000-3

. ..3.000 j-3

0 4 8 12 16 20

Figure 3-1: Learning curves for Actor-Critic (purple) and "DQN" (yellow) against the
in-game AL. Y-axis is average reward, X-axis is hours.

in a small negative reward) while the second misses and causes the enemy to suicide

(resulting in a large positive reward).

3.1.1 OpenAI Baseline

OpenAI has released Gym and Universe, which provide a uniform RL interface to a

collection of various environments (such as Atari) 11]. They also provide a "starter

agent" implementing the A3C algorithm as a baseline for solving the Gym/Universe

RL tasks 2. While our main work does not use this interface, as it lacks support

for multi-agent environments, we have implemented SSBM as a Gym environment 3

(with the in-game Al as the opponent) for easy access. This allowed us to run (a

slightly modified version of 4) of OpenAl's starter agent on the same task from above:

C. Falcon vs max level C. Falcon on Battlefield. However, after running for several

days on a 16-core machine, the average reward never surpassed -le-3, a level which

both our DQN and Actor-Critic were able to reach in only a few hours. This suggests

that SSBM, even when using the underlying game state instead pixels, is somewhat

more difficult than the Atari environments for which the starter agent was built.

2 http://github.com/openai/universe-starter-agent
3http://github.com/vladfil/gym-dolphin
'http://github.com/vadfil/universe-starter-agent

18

3.2 Self-play

The agents trained against the in-game Al, while successful, would not pose too

much of a challenge to even low-level competitive human players. This is due to

the quality of the opponent - the in-game Al pursues a very specific (and, for the

Q-learner, exploitable) strategy which was does not reflect how experienced players

actually play. Without having ever played against a human-level opponent, it is not

surprising that the trained agents are themselves below human-level.

By switching the player structs in the state representation, we can have a network

play as either player 1 or 2, allowing it to train against old versions of itself in a

similar fashion to AlphaGo. After a week of self-training an Actor-Critic, our network

exhibited very strong play, similar to an expert (if repetitive) human. The author,

himself a mid-level player, was hard-pressed to defeat this Al through conventional

tactics. After another week of training, we brought a copy of the network to two

major tournaments, where it performed favorably against all professional players who

were willing to face it.

Opponent Rank Kills Deaths
S2J 16 4 2
Zhu 31 4 1
Gravy 41 8 5
Crush 49 3 2
Mafia 50 2 1
Slox 51 8 4
Redd 59 12 8
Darkrain 61 12 5
Smuckers 64 8 5
Kage 70 4 1

Table 3.1: Some results against ranked SSBM players. Rankings from http:
//wiki.teamliquid.net/smash/SSBMRank. S2J is considered by some to be the
best Captain Falcon player in the world.

Even this very well-trained network exhibited some strange weaknesses, however.

One particularly clever player found that the simple strategy of crouching at the

edge of the stage caused the network to behave very oddly, refusing to attack and

eventually KOing itself by falling off the other side of the stage. One hypothesis

19

to explain this weakness is the lack of diversity in training - since the network only

played against old copies of itself, it never encountered such a degenerate strategy.

Another limitation is that this network was only trained to play as and against

a specific character and on a particular stage, and predictably performs much worse

if these variables are changed. Our attempts to train networks to play as multiple

characters at once - that is, to simultaneously train on experiences generated from

multiple characters' points of view - did not have much success. Anecdotally, we

observed that these networks would not appropriately change their strategy based

on their character, choosing to use moves from the rather small intersection of the

"good" moves of each character. This is somewhat similar to autoencoders that learn

to generate blurry images that represent the "average" input of their dataset.

3.2.1 Agent Diversity

The simple solution to playing multiple characters is to use a different network for

each character. We did this for the six most popular competitive characters (Fox,

Falco, Sheik, Marth, Peach, and Captain Falcon), and had the networks train against

each other for several days. The results were fairly good, with the networks becoming

challenging for the author to play against. In addition, these did not exhibit the

strange behavior of the earlier Falcon-bot. We suspect that this is due to the added

uncertainty in the environment from training against different opponents.

This set of six networks then became opponents against which to train future

networks, providing a concrete benchmark for measuring performance. Empirically,

none of these future attempts were able to find degenerate counter-strategies to the

benchmark networks, so we tentatively declare that weakness resolved.

3.3 Character Transfer

When training a network to play as a new character, we found it more efficient to

initialize from an already-trained network than from scratch. We can measure this

in the amount of time taken to reach 0 average reward against the benchmark set of

20

agents.

Scratch Sheik Marth Fox Falco Peach Falcon
Sheik 36 0 4 7 7 3 9
Marth 40 5 0 11 10 7 10
Fox 31 8 6 0 2 6 7
Falco 35 9 6 2 0 7 5
Peach 26 2 4 5 5 0 6
C. Falcon 53 9 11 13 12 10 0

Table 3.2: Transfer times (in hours) for Actor-Critics. We consider a network "trained"
once it reaches 0 mean reward against the benchmark agents.

By this measure, transfer provides a significant speedup to training. This is es-

pecially true for similar pairs of characters, such as Fox and Falco. On the whole

these results are not particularly surprising, as many basic tactics (staying on the

stage, attacking in the opponent's direction, dodging or shielding when the opponent

attacks) are universal to all characters.

The data also reveals the overall ease of playing each character - Peach, Fox, and

Falco all trained fairly quickly, while Captain Falcon was significantly slower than

the rest. This to some extent matches the consensus of the SSBM community, which

ranks the characters (in decreasing order) as: Fox, Falco, Marth, Sheik, Peach, C.

Falcon. The main difference is that Peach performs better than would be naively

expected from the community rankings. This is likely due to her very quick and

powerful attacks, which are easier for RL agents to learn to use compared to the

movement speed offered by other characters like Marth and C. Falcon.

21

Character Transfer Heatmap

0 2 4 6 8 10 12

Fao

Figure 3-2: Hierarchical clustering of the characters by transfer time. Fox and Falco,
considered to be "clone" characters, cluster tightly together.

22

Chapter 4

Discussion

4.1 Actor-Critic vs Q-Learning

We found that Q-learners did not perform well when learning from self-play, or in

general when playing against other networks that are themselves training. It could

be argued that learning the Q-function is intrinsically harder than learning a policy.

This technically true in the sense that from Q, one can directly get a policy that

performs as least as well as 7r (by playing greedily), but from 7r it is not easy to get

Q, (that's the entire challenge of Q-learning).

However, we found that Q-learners perform reasonably well against fixed oppo-

nents, such as the in-game AI and the set of benchmark networks. This leads us to

believe that the issue is the non-stationary nature of playing against agents that are

also training. In this scenario the Q function has to keep up with the not only the

policy iteration but also the changes in the opponent.

4.2 Exploration vs Exploitation

Our main method for quantitatively measuring the tendency of an agent to explore

different actions is through the average entropy of its policy. For Q-networks, this is

directly controlled by the temperature parameter.

For Actor-Critics, the entropy scale factor nudges the direction of the policy gra-

23

dient towards randomness during training. At initialization the entropy is quite high

(around 3.8, the maximum possible for discrete distribution of size 54), and decreases

over time during training. Without natural gradients/TRPO bounding the change in

policy, this decrease happens quite rapidly, with the entropy hitting the lower bound

(of about 0.17) imposed by c = .02 within hours.

Looking at only the average (mean) entropy over many states can be misleading,

however. Even when using TRPO, the minimum entropy quickly dips below 0.5, while

the average remains above 3. In many cases we found these seemingly high-entropy

agents to actually play very repetitively. This suggests that on most frames, which

action is taken is largely irrelevant to the agent's performance. Indeed, once an attack

is initiated in SSBM, it generally cannot be aborted during its duration, which can

last on the order of seconds.

Ultimately, a more principled approach to exploration would attempt to quantify

the agent's uncertainty, and prefer to explore actions about which the agent is unsure.

Solutions to the multi-armed bandit problem, such as UCB and Thompson Sampling,

accomplish this by keeping track of the number of attempts at taking each possible

action. Unfortunately this is difficult for RL agents in large state spaces, as it is

difficult to keep track of the number of visits to each state, and doubly difficult for

neural net-based agents whose entire state is saved in the weights of the network.

24

Chapter 5

Future Work

5.1 Action Delay

The main criticism of our agents is that they play with unrealistic reaction speed: 2

frames (33ms), compared to over 200ms for humans. To be fair, Captain Falcon is, of

the popular characters, perhaps the worst equipped to take advantage of this reaction

speed, with attacks that take many frames to become active (on the order of 15, or

250ms). Many other characters have attacks that become active in half the time, or

even immediately (on the very next frame) - this was an additional reason for using

C. Falcon initially.

The issue of reaction time highlights a big difference between these neural net-

based agents and humans. The neural net is effectively cloned, fed a state, asked

for an action, and then destroyed on each frame. While the cloning and destruction

don't really take place, this perspective puts the net in stark contrast to a human,

who has a memory and responds continually to his sensory experiences and internal

thoughts.

The closest a neural network can get to this is via recurrence, where the network

outputs not only an action but also a memory state, and is fed not only the current

game state but also the previous memory. Unfortunately these network are known

to be difficult to train [4], and we were not able to train a competent recurrent

agent. This avenue certainly warrants further investigation - recurrent networks can

25

be trained with any amount of delay and could even in principle handle projectiles, by

learning to remember when they were fired and simulating their trajectory in memory.

Instead, to deal with an action delay of k frames, we use a network that takes

in the previous k + 1 frames as input, along with the actions taken on those frames.

This was sufficient to train fairly strong agents with delay 2 or 4, but performance

dropped off sharply around 8-10 frames. We suspect that the cause for this drop in

performance is not simply the handicap given by the delay, but the further separation

of actions from rewards, making it harder to tell which actions were really responsible

for the already sparse rewards.

In the future, we hope to be able to train agents that have the same restrictions

as humans (whatever those are). This includes not just reaction time, but also action

frequency. Humans certainly input far fewer than the 30 actions per second that our

agents do, despite occasionally performing brief sequences of inputs that match this

rate (such as the previously mentioned "short hop" which requires inputs at most 2

frames apart). A proper refraining of the action space that takes these limitations into

account might even be easier to train than our high-frequency, high-delay attempts.

To the best of our knowledge, action delay (and human-like play in general) is

not an issue that has been addressed by the (deep) RL community, and remains an

interesting and challeging open problem.

5.2 Applications

Training agents to play games at and above human levels is certainly entertaining,

for some of the same reasons we enjoy watching human professionals far beyond our

own skill level. The automation of training can even uncover new strategies that

humans may have overlooked - several of the professionals who played our Falcon-bot

mentioned techniques they saw it use which they would consider incorporating into

their own play.

Perhaps the most obvious application of game playing Al is providing fun and

challenging opponents on demand, especially for players that do not have access to

26

human opponents. Another, more sophisticated application is the critique of human

play. Unlike a human teacher, for whom it is tedious to give more than high-level

advice, a policy or Q network can analyze a human's low-level actions, finding sub-

optimal decisions and suggesting alternatives lines of play. How exactly to synthesize

the network's outputs into something a human could learn from is a difficult question,

however.

27

28

Bibliography

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[21 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097-1105, 2012.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. In NIPS Deep Learning Workshop. 2013.

[41 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In Journal of Machine Learning Research, 2013.

[5] Jonathan R Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[6] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529:484-503, 2016.

[7] Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM,
38(3):58-68, March 1995.

[8] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. CoRR, abs/1509.06461, 2015.

29

