
Verifying an I/O-Concurrent File System

by

Tej Chajed

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Author . Signature redacted
Department of Electrical Engineering and Computer Science

Certified by.

Certified by.....

A - I I 7

Signature redacted

Cha

Signature redacted

January 31, 2017

M. Frans Kaashoek
rles Piper Professor

Thesis Supervisor

Nickolai Zeldovich
Associate Professor

Thesis Supervisor

Accepted by. Signature redacted
/ 'Yrofessor Leslie A. Kolodziejski

Chair, Committee on Graduate StudentsMASSACTUSML NSTITUTE
OF TECHNOLOGY

MAR 13 2017

LIBRARIES

2

LOW

Verifying an I/O-Concurrent File System

by

Tej Chajed

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

Systems software is a good target for verification due to its prevalent usage and its
complexity, which can lead to tricky bugs that are hard to test for. One source of
complexity in systems software is concurrency, but thus far verification techniques
have struggled to enable large-scale verification of concurrent systems. This thesis
contributes a verified file system, CIO-FSCQ, with I/O concurrency: if a file system
call experiences a miss in the buffer cache and starts a disk I/0, the file system
overlaps the I/O with the execution of another file system call.

CIO-FSCQ re-uses the implementation, specifications, and proofs of an existing
verified sequential file, FSCQ, and turns it into an I/O-concurrent file system. This
re-use is enabled by CIO-FSCQ's optimistic system calls. An optimistic system call
runs sequentially if all the data it needs is in the buffer cache. If some data is not
in the cache, CIO-FSCQ issues I/Os to retrieve the data from disk and returns an
error code. In the miss case, a system call wrapper reverts any partial changes and
yields the processor so that another system call can run in parallel with the I/O.
CIO-FSCQ retries the system call later, at which point the data is likely in the
buffer cache. A directory-isolation protocol guarantees that FSCQ's specifications
and proofs can be re-used even if optimistic system calls are retried. An evaluation
of CIO-FSCQ shows that it speeds up a simple file-system workload by overlapping
disk I/O with computation, and that the effort of building and verifying CIO-FSCQ
is small compared to the effort of verifying FSCQ.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor

3

4

Acknowledgments

This thesis wouldn't have been possible without the help and support of many people.

First, I thank my parents for instilling an appreciation for the importance of educa-

tion, and my whole family for their eternal support, of myriad forms I couldn't possi-

bly enumerate. Thanks to everyone who gave feedback on the thesis: Jon Gjengset,

Robert Morris, Nickolai Zeldovich, and Frans Kaashoek. Thanks to Adam Chlipala,

who mentored us through all the PL. Special thanks go to Nickolai, for staying on

top of the technical details enough to always be ready to bounce ideas off of, and for

valuable benchmarking guidance. And most of all thanks to Frans, for his faith and

support when there was no file system, and patience and support while writing the

thesis.

5

6

Contents

1 Introduction

1.1 Problem and goal

1.2 Approach: optimistic systems calls

1.3 Design overview

1.4 CIO-FSCQ prototype

1.5 Thesis contributions

1.6 Thesis outline

2 Related Work

2.1 I/O concurrency in systems

2.2 Concurrent verification

2.2.1 Verified systems

2.2.2 Logics

3 Design

3.1 Cooperative Concurrency Logic

3.1.1 Programs

3.1.2 Execution Semantics

3.1.3 Protocols

3.1.4 Specifications

3.2 CIO-Cache

3.3 CIO-translator

3.4 Wrapped system calls

7

13

13

15

18

20

21

21

23

23

24

25

26

29

30

30

35

39

41

41

45

47

3.5 File-system protocols . 48

4 Implementation 51

4.1 Modularity for memory and ghost variables 51

4.2 Coq implementation and proofs . 52

4.3 Haskell runtime . 52

5 Evaluation 55

5.1 E ffort . 55

5.2 I /0 concurrency performance . 56

6 Future work 61

6.1 Design changes . 61

6.2 Iinplenientation limitations . 62

7 Conclusion 65

8

List of Figures

1-1 Execution flowchart of the CIO-FSCQ rename system call. 16

1-2 Example execution showing I/O concurrency 17

3-1 Components of CIO-FSCQ. 29

3-2 Example of using memory and ghost state to implement a lock in CCL. 31

3-3 Usage examples of the disk API in CCL. 33

3-4 Example of issuing a read asynchronously in CCL. 35

3-5 Execution semantics for each primitive operation in CCL. 37

3-6 Execution semantics for error cases of primitive operations in CCL. . 38

3-7 Example execution showing where the protocol applies in a valid exe-

cution . 39

3-8 Execution semantics for the Yield operation. 40

3-9 Pseudocode for CacheRead. 42

3-10 Specifications for CacheCommit and CacheAbort. 43

3-11 Code for translating specifications for optimistic system calls. 46

3-12 Translator and its correctness property. 46

3-13 Example of system call wrapper for f ile-get-attr 48

3-14 Specification for file-get-attr. 50

5-1 Completion times for large read/small reads concurrent benchmark. . 58

9

10

List of Tables

3.1 Primitive memory and ghost state operations in CCL. 30

3.2 Disk operations provided by CCL. 32

3.3 Hash operation provided by CCL. 34

3.4 Cooperative concurrency operations provided by CCL. 34

3.5 Operations provided by CIO-Cache. 44

4.1 Lines of code in CIO-FSCQ. 52

5.1 Characteristics of large read,/snall reads concurrent benchmark. . . . 57

11

12

Chapter 1

Introduction

Verification of software correctness has recently made great progress and is becoming

realistic for systems [4, 15-17, 24, 26, 39, 401. Verified systems come with a specifica-

tion and a machine-checked proof that their implementation meets their specification.

Verification eliminates large classes of bugs that plague software. Unfortunately, these

successes have largely involved sequential systems. While many approaches have been

proposed for verifying concurrent programs, there are few examples of applying these

approaches to complete systems.

This thesis focuses on adding I/0 concurrency to a file-system implementation,

taking advantage of the idle CPU to execute system calls while disk operations com-

plete in the background. The rest of this chapter explains I/O concurrency within

a file system and describes a novel approach to take a verified sequential file system

(FSCQ) and make it I/O concurrent while re-using the sequential implementation,

specifications, and proofs. The chapter concludes with a summary of the main con-

tributions and with a roadmap for the rest of the thesis.

1.1 Problem and goal

Today's hardware offers many opportunities to exploit concurrency. A modern com-

puter has several processors and I/O devices. Exploiting these opportunities is chal-

lenging, because writing correct concurrent code is difficult. The programmer must

13

avoid tricky race conditions that can result in subtle bugs. Research in verification

has resulted in many frameworks to prove the absence of such subtle bugs [10, 12, 13,

32, 34, 35]. These frameworks strive to apply fine-grained notions of concurrency, but

tend to focus on small example programs rather than large systems. In this thesis

we want to explore how to add simple but effective forms of concurrency to exist-

ing sequential systems, re-using sequential specifications and their proofs as much as

possible. Here we do not tackle multiprocessor concurrency, focusing on parallelism

between a single processor and an I/O device, specifically a disk. We isolate con-

current reasoning such that the bulk of the verification re-uses the large verification

effort present in FSCQ.

As a starting point of this exploration, this thesis targets a limited form of con-

currency: I/O concurrency. I/O concurrency allows I/O to devices to proceed in

parallel with computation on a processor. Consider two applications sharing a single

processor that have both issued system calls to the file system. Without any con-

currency, the system calls would simply execute sequentially. With I/O concurrency,

if the first application's data isn't in memory, the file system issues a disk read to

fetch it but does not wait for its completion. Instead, it starts executing the second

application's system call using the otherwise idle processor. The file system resumes

the first application's system call at some point after the I/O completes. Since I/O

operations typically take a long time, I/O concurrency can lead to a large improve-

ment in performance: while one system call is blocked waiting for I/O, another can

compute. Without I/O concurrency the processor would be idle for large periods of

time.

Our goal is to add I/O concurrency to the sequential FSCQ while re-using its

implementation, specifications, and proofs as much as possible. This problem is

challenging since FSCQ does not support several threads of computation and has no

support to coordinate accesses of several threads to shared data structures in the file

system such as the buffer cache. To understand the challenge in more depth, consider

two threads, one of them executing a rename operation. Suppose the rename locates

the source file, avoiding I/O by relying on cached data, and unlinks it, then goes on

14

to locate the destination directory. If the destination directory isn't in the cache,

then ideally the file system would start the disk I/O and switch to the other thread.

However, now the other thread could observe an inconsistent state: the file doesn't

exist, in either in the source or the destination directory. Such a state would never

be observable in a sequential file system without I/O concurrency.

The problem here is that even on a uniprocessor, I/O concurrency leads to inter-

leaving and interference between threads. At first glance changing FSCQ to support

I/0 concurrency seems to require much work: the top-level specifications must be

changed to capture threads interleaving, the implementation must avoid problematic

interference, and the proofs must be changed to verify that the new implementation

meets the new specification. How can we reduce the burden of this work?

1.2 Approach: optimistic systems calls

The approach we take is to execute system calls optimistically, hoping to read all

necessary data from the buffer cache. If that is the case, the system call behaves

like a regular sequential system call: it runs from the start to the end without other

system calls interleaving. If the system call misses in the buffer cache, the file system

issues a disk read and rolls back any writes the system call has made since it started.

At some point later, the file system restarts the system call (e.g., after the disk I/0

completes) from the beginning. Now it is likely that the data needed for the system

call is in the buffer cache, and the system call executes to completion. This approach

works well since system calls tend to each read only a few blocks and thus need few

retries, and the buffer cache is large enough to hold blocks for several system calls.

Figure 1-1 illustrates the approach by showing an example execution in terms of

system calls. An ongoing rename misses in the cache at . It initiates reading

from disk but does not wait for the result, instead rolling back its partial state and

restarting at . Other threads run, then rename restarts. This time it hits in

the cache at , blocking if the disk fetch is not yet complete. A subsequent read

requires the same restart if the cache misses. If all cache reads succeed, then the

15

start rename

2
cache read

(Di9missI
rollback

®hit

cache read

hit

miss

E @return I
Figure 1-1: Execution flowchart of the CIO-FSCQ rename system call, showing a
cache miss at Q, rollback and restart at ®, and subsequent cache hit ® at the

same point. When all cache reads hit, rename can run to J and complete without
1/o.

16

writes

I A*

function proceeds to ® and returns. It is possible that multiple system calls miss in

the cache and initiate disk reads, which can then run in parallel. The disk hardware

might then pipeline requests and complete them faster.

To be able to revert changes inexpensively, an optimistic system call buffers its

changes in memory and commits them only when the system call completes. If the

system call must abort because one of its reads misses in the cache, the system deletes

the buffered changes, rolling the file system back to its state before the system call

started.

This approach is inspired by the EAGAIN error code that certain Unix systems calls

can return [21]. For example, modern UNIXes support asynchronous read system calls

and return EAGAIN when the data isn't available yet. A key difference, however, is that

we return an error code from within all optimistic system calls, not just the read-only

ones. This pattern is safe since when we retry optimistic system calls, any writes are

rolled back before other threads run.

Disk
disk fetch

rename * Qcache miss rename retry

create,
create2

(CPU) time

Figure 1-2: An example execution showing I/O concurrency: the create1 and create 2
system calls run in parallel with the disk I/O for the rename.

Figure 1-2 show how optimistic system calls achieve I/O concurrency and how

17

they can improve performance compared to a non-I/O concurrent file system. As in

the previous example, an ongoing rename misses on a read in the cache at Q. While

fetching from disk, rather than let the CPU sit idle, the file system runs two system

calls from another application that modify data in the cache: create1 and create 2

without needing I/O. These two system calls execute concurrently with the disk I/O

for the rename. At g the disk read completes and the rename is re-scheduled; this

time it executes to completion without missing in the cache.

The approach using optimistic system calls allows us to reuse much of the specifi-

cation, implementation, and proofs of the sequential FSCQ. With the above approach,

switching between threads happens only when the optimistic system call misses in

the cache. Since the system state is rolled back, the switch logically appears before

the system call has started. Inside the file system the optimistic call runs sequentially

without interleaving with other threads, and can thus be implemented and verified

by re-using the sequential FSCQ.

1.3 Design overview

The above approach reduces the specification, implementation, and proof work of

turning FSCQ into CIO-FSCQ to developing the following components:

* Cooperative Concurrency Logic (CCL). A concurrent logic to define the

operations in I/O-concurrent programs (e.g., starting a read, yielding the pro-

cessor, and collecting the result of the read later) and a way of writing specifi-

cations for programs that use those operations.

" CIO-Cache. A concurrent cache which schedules I/O when reads miss, returns

an error code to the system call when a read misses, and blocks threads when

on a retry the I/O hasn't completed. We insert this buffer cache between FSCQ

and the disk, and it provides the same disk interface FSCQ expects, so that we

can insert it without any modifications to FSCQ.

* System call wrapper. A wrapper around optimistic system calls that handles

18

p l ' | | ii' ' l" 9 | l R i l lli l l1 11 1 1 11 1 1f 1 l || ' 1 1 ' 1 Jlil | | ll ' III l 111 11 1 1' 1 Jlli~ g |||l ill 11 1111111 1l

errors by rolling back, yielding the processor to other threads, and retrying

afterward.

* Sequential to concurrent translator. CIO-translator translates FSCQ's se-

quential system calls to automatically produce optimistic system calls using

CIO-Cache. These sequential calls are programs written using FSCQ's Crash

Hoare Logic (CHL). The translator re-writes these sequential programs to pro-

grams in CCL using CIO-Cache rather than accessing the disk directly. A gen-

eral proof of correctness for the translator guarantees that verified sequential

code is translated to an optimistic system call with an analogous specification,

providing a verified implementation of much of the concurrent system call.

* A proof of correctness assuming a file-system protocol. The remaining

proof is that the wrapped optimistic system calls are correct, based on proofs

for the optimistic system calls alone. This is difficult to prove because when

a thread retries, other threads have run in the meantime, while to use the

sequential specification for the retry, its precondition must still hold. FSCQ's

specifications in particular impose some restrictions in each precondition beyond

the file-system invariants, notably that the current working directory exist for

each system call (a requirement that the VFS layer in Linux guarantees).

To reason about the behavior of other threads, as in other concurrent logics,

CCL requires users to define a protocol that defines a restriction on threads so

that we can prove the correctness of interleaved executions. We can use this

protocol to satisfy FSCQ's restrictions on each precondition even when other

threads run. The most interesting protocol under which we prove correctness is

a protocol that restricts threads to operate on different directories, a common

usage pattern for file systems in practice. Under this assumption, we can prove

that threads that modify their own directories can retry FSCQ's system calls

after other threads run. The top-level specification states that as long as all

threads follow the protocol, each operation is linearizable: it appears to occur

atomically after other threads run.

19

These components are mostly independent of the specifics of FSCQ, except for

the last component, which involves defining a protocol and showing that it preserves

FSCQ's preconditions. Chapter 3 describes each of these components in detail.

While building and verifying the above components requires substantial effort,

they represent much less work than writing an I/O-concurrent file system from scratch.

The extra verification work is mostly in reasoning about concurrency inside the cache

and at the level of retrying systems calls.

1.4 CIO-FSCQ prototype

We built a prototype of CIO-FSCQ within the Coq proof assistant [6]. Most of the

implementation uses Gallina, the purely functional language of Coq, with a strategy

for modeling external I/O and concurrency that borrows from FSCQ. We use Coq's

built-in extraction feature combined with a trusted interpreter in Haskell to produce

runnable implementations of each system call. As in FSCQ, these implementations

can be run using the standard UNIX system call interface from unmodified applica-

tions with FUSE, a library that forwards file-system calls to a userspace file-system

implementation.

There are three main caveats to the prototype of CIO-FSCQ. First, CIO-Cache

currently does not provide persistence; data is not written from the cache to the

disk, so the file system loses data when unmounted and re-mounted. This is only a

limitation of the prototype, which could provide an unmount operation to empty the

cache and prove that unmount does not change the abstract disk or directory tree.

Second, CCL does not model crashes. Handling crashes requires some careful

changes to the design. In particular, the protocol would likely have to be extended

with a crash invariant, since a crash could occur while other threads are running.

Translation of crash persistence could be accomplished by moving writeback to the

end of a system call; without I/O concurrency for flushing data to disk this change

would be relatively straightforward. Due to the lack of crashes in the semantics, we

also do not model asynchronous writes with a disk write barrier in CCL, making

20

writes instantly persistent instead. Reasoning about crashes and asynchronous writes

would be an interesting direction of future work, and would test how CHL generalizes

to a concurrent setting.

Third, CIO-FSCQ inherits the large CPU overhead of FSCQ due to following the

same approach to executing the Coq code. The performance of the extracted Haskell,

combined with inefficiency within the Gallina implementation (e.g., deserialization of

entire data structures for a single record), means both FSCQ and CIO-FSCQ can be

bottlenecked by the CPU rather than I/0. For this reason, we can only demonstrate

an improvement in CIO-FSCQ compared to FSCQ on slow I/O devices.

1.5 Thesis contributions

The main result of this thesis is the first verified file system with I/0 concurrency.

More specifically, the contributions of the thesis are as follows:

1. An approach based on optimistic system calls for adding I/0 concurrency to

an existing verified file system, as a means of obtaining concurrency with lower

verification effort.

2. A design consisting of five components to realize the goal of a verified I/0

concurrent file-system.

3. A prototype of the design in Coq, including a runtime platform in Haskell to

execute system calls through the standard file-system interface.

4. An evaluation of the prototype demonstrating I/O concurrency. On a parallel

workload of two threads, CIO-FSCQ is 26% faster overall and 3x faster for the

CPU-bound thread that blocks on the other thread's disk I/O in FSCQ.

1.6 Thesis outline

Here we give a brief overview of the rest of this thesis. In Chapter 2, we discuss re-

lated work from the perspectives of both verification and systems techniques. Next, in

21

Chapter 3 we present the design of CIO-FSCQ. The design walks through each com-

ponent mentioned above in detail. Chapter 4 discusses the implementation, including

the runtime that makes the Coq implementation executable, and how programs inter-

act with the file system with the UNIX system call interface. In Chapter 5 we present

an evaluation of CIO-FSCQ showing that it achieves better performance than FSCQ

in a concurrent workload, and demonstrates I/O concurrency by executing system

calls while disk reads complete in the background. In Chapter 6 we discuss some lim-

itations with the current design that are good opportunities for future work. Finally,

in Chapter 7 we conclude.

22

Chapter 2

Related Work

As far as we know CIO-FSCQ is the first verified I/O-concurrent file systems. This

thesis builds on previous research on I/0 concurrency in systems and verification

of concurrent software. There are several existing verified file systems [1, 3, 23, 331,

which are all sequential. While we re-use some aspects of FSCQ in order to extend it,

the design of CIO-FSCQ largely involved techniques orthogonal to those introduced

by existing verified file systems.

2.1 I/O concurrency in systems

I/O concurrency dates back to the early days of operating systems (e.g., Stretch [51,
CTSS 17], THE [9]). These systems use I/O concurrency to provide time sharing:

when one user is thinking, the operating system runs the process of another user.

Similarly, when one user's process blocks on I/O, the operating system runs another

user's process. CIO-FSCQ uses the same idea inside the file system to talk to the

disk.

Previous file systems have used a more complicated plan for issuing I/O efficiently.

The file system uses multiple threads: threads take a lock on inodes or files before

issuing I/0. The locks prevent other file-system threads from observing partial results

and avoids the race described in Section 1.1. Reasoning about locking is complicated.

Optimistic system calls avoid the need for locks, simplifying reasoning, but at the

23

cost of potential retries.

The idea of returning a signal indicating a cache miss from optimistic system calls

was inspired by UNIX's non-blocking I/O (e.g., the ONONBLOCK option to POSIX's

read function [211), which returns the EAGAIN error code when data is not yet avail-

able. The intention is that the caller can retry an I/O operation until it completes.

Non-blocking I/O in UNIX, however, is targeted for reading from network connec-

tions in high-performance network servers in the style of Flash [30]. UNIX file systems

do not support non-blocking I/O via returning EAGAIN because file systems have no

support for roll back. Instead, file systems efficiently support concurrency by using

multiple kernel file-system threads, requiring careful synchronization in file-system

code.

Work from NetApp [8] on Waffinity incrementally parallelized an existing legacy

code base. While this general approach resembles the spirit of CIO-FSCQ adding

concurrency to FSCQ, the techniques used differ significantly. In particular, Waffinity

identifies operations that are safe to run in parallel and uses locks to ensure that only

safe operations can be executed concurrently. For example, reads to disjoint regions

of a file are allowed to proceed in parallel, whereas operations that modify metadata

acquire a reader-writer lock. Such a structure requires less intrusive modification

than modifying the entire codebase, but would be difficult to verify. In contrast, CIO-

FSCQ does not examine the internal structure of FSCQ (and cannot even assume

that disjoint regions of a file do not overlap in some way) and adds concurrency in an

always-correct manner. Furthermore, we prove that the approach is correct, adding

assurance that the concurrency introduced is safe under only our assumptions about

file-system usage.

2.2 Concurrent verification

Research in verification has two main themes that are relevant to this thesis: re-

search on verified concurrent systems and research on designing logics for verifying

concurrent software.

24

I I IIIFIII I, I'll

2.2.1 Verified systems

Most certified systems software today is not concurrent (e.g., seL4 [24], XMHF [361,
CertiKOS 1141 until recent work, IronClad [161, CompCert [26], and FSCQ [31). We

discuss here a few systems that have demonstrated verified concurrent reasoning.

Microsoft Research developed CIVL [18], a language and verifier within BOOGIE,

and used the system to verify a concurrent garbage collector. The proof is organized

into several layers of abstraction. The proof includes a top-level functional specifica-

tion, showing that the garbage collector operates atomically as far as threads observe.

The verification relies on proving atomicity of operations in each abstraction layer.

The annotation burden appears to be quite high, with invariants that required deep

knowledge of how the code works and why it is correct. Boogie is based on Z3, an

SMT solver; as with other work using automated theorem proving, scaling proves a

challenge: interference checking in CIVL can degenerate to an unscalable quadratic

check between all pairs of actions if isolation is not carefully established.

Microsoft Research has also attempted an ambitious goal of verifying the HyperV

hypervisor using VCC [25]. This project appears to have stopped with around 20%

of the code verified. The approach taken was to verify existing code with annotations

and specifications for internal functions, which appears to be difficult compared to

writing the software with verification in mind from the beginning.

Recently the authors of CertiKOS extended their verified operating system to sup-

port concurrency [15]. The accomplishment is impressive but required heavyweight

techniques and many abstraction layers. It is unclear how to apply the deep specifica-

tion approach used in CertiKOS to other systems. The goals of CIO-FSCQ differ in

that we focus on a limited form of concurrency (CertiKOS is verified against a model

of a multicore x86 processor) and aim for much lower verification effort by re-using

the sequential verification for the bulk of the system.

Verified distributed systems include projects such as Verdi [39j, used to verify

linearizability of the Raft consensus protocol [281, and IronFleet [17]. Distributed

system verification faces some of the same challenges as concurrent verification: pro-

25

cesses on different machines interleave execution in a similar manner to threads on

a single machine. However, distributed systems restrict interactions between the pro-

cesses to message passing (sending and receiving requests over the network), whereas

application using a file system interact through shared memory (e.g., a shared buffer

cache).

2.2.2 Logics

While there are few examples of verified concurrent systems software, there are

many examples of logics for verifying concurrent programs. A few classic propos-

als [20, 22, 29] introduced several ideas that continue to be influential, much as

Hoare logic [19] and the more recent separation logic [311 continue to form the basis

for much sequential verification even today.

In concurrent verification logics, there is a great deal of modern work [10-13, 27,

32, 34, 351. These formalisms address a variety of problems, but all fall short of ver-

ifying realistic programs. Many are mechanized within a proof assistant and include

proofs of example programs, but these programs are generally of theoretical interest

as verification challenges (e.g., proving the Trieber lock-free stack correct). Extend-

ing a logic to include verification of larger, realistic programs introduces engineering

challenges that themselves have a large design space.

There are several directions that concurrent logics push against. One is the defini-

tion of concurrency itself: the most basic setting for concurrent execution is verifying

several programs all running concurrently from start to finish. This is a fine theoret-

ical setting and includes many of the challenges of concurrent verification, but does

not reflect how concurrent software is written and executes. Modeling and reasoning

about dynamic threads and message passing introduces further complexity. In our

setting of the file system, the execution model looks like a client-server architecture:

each system call is a handler and is called concurrently by the outside world (the

Linux VFS layer for a standard file system). Orthogonal to how concurrency arises is

the granularity of thread interactions: these can range from cooperative semantics, the

easiest to reason about, to true multicore concurrency, where execution of instructions

26

is simultaneous and issues such as data races and weak memory models arise. Finally,

modular verification is a challenging target even for a logic, independent of imple-

mentations: it is desirable for the logic to allow verifying programs in isolation and

re-using this proof when the program is composed with concurrent threads or used

as a primitive in a larger program. Concurrency makes reasoning about abstraction

layers much more challenging than sequential verification.

There are some common themes in verification frameworks highlighted by the

Views metatheory 1101: concurrent verification is about threads reasoning locally, as-

suming some limited interference from other threads, while simultaneously manipu-

lating state according to some protocol. Furthermore, concurrent reasoning seems to

always require some form of abstract state (sometimes described as virtual or ghost

state), to capture properties about thread interactions that are not present at run-

time. Finally, some facts are stable under interference from other threads. Especially

for fine-grained concurrency, proving stability under the protocol is a common proof

obligation that some frameworks ameliorate.

We've experimented with concurrency by implementing parts of concurrent sepa-

ration logic (CSL) [2] and local rely guarantee (LRG) [12], both of which incorporate

separation logic, an idea we found especially useful in the sequential file system. CSL

provides local reasoning by separating memory into disjoint resources and specify-

ing a protocol where threads lock resources (acquiring them) and then release them.

LRG more generally allows threads to be proven with respect to any rely condition

(specifying interference) and guarantee (specifying the local rules) - threads with

compatible rely/guarantee conditions can be composed. These two approaches are in

some ways opposite extremes: in CSL composition is trivial but sharing resources is

almost expressly forbidden, whereas in rely-guarantee sharing is expressive but com-

position requires the conditions to line up correctly. The CCL concurrency framework

is a simple variant of rely-guarantee reasoning, with a single protocol rather than in-

dependent rely-guarantee conditions.

27

28

Chapter 3

Design

CIO-FSCQ consists of five components, as organized in Figure 3-1: a logic, CCL

(Section 3.1); a cache, CIO-Cache, written using CCL (Section 3.2); a translator from

verified sequential code to verified optimistic system calls (Section 3.3); a wrapper

for optimistic system calls producing the implementation of the CIO-FSCQ file sys-

tem (Section 3.4); and finally verification of this implementation against a protocol

(Section 3.5).

(3.5)

(3.4)

FSCQ system
calls

1 (3 .
CIO-translator

Figure 3-1: Components of CIO-FSCQ. Circled references are section numbers.

29

File system
with protocol

Wrapped
system calls

Verified optimistic

system calls

CIO-Cache

CCL

function signature description

Get<T>(var: variable T) : T Return the value of variable var
Set<T>(var: variable T, v: T) Set variable var to v
GhostUpdate(update: S -> S) Update ghost state s to

update(s)

Table 3.1: Primitive memory and ghost state operations provided by CCL. Ghost
state collectively has type S throughout. The type variable T refers to a variable
holding a T; the set of variables and types is fixed and determined separately.

3.1 Cooperative Concurrency Logic

At the base of CIO-FSCQ is Cooperative Concurrency Logic (CCL). CCL consists of

three parts: a small programming language for disk operations and cooperative mul-

tithreading, a semantics to define the meaning of the operations in the programming

language, and a specification language that allows the programmer to state Hoare-

style pre- and post-conditions. To be able to prove that an implementation meets its

specification, CCL supports defining a protocol to put restrictions on the execution

of all threads. The following four subsections explain each part in more detail.

3.1.1 Programs

Programs manipulate a disk, a memory, and ghost state. The memory is typed: each

location in memory has an associated type, and programs are guaranteed to use the

memory in a well-typed manner. The ghost state behaves much like the memory, but

it cannot influence program behavior. Programs manipulate ghost state to ease verifi-

cation by explicitly indicating how the abstract state evolves. At runtime, ghost state

is neither stored in memory nor updated. Memory and ghost state are manipulated

with the operations in Table 3.1.

Programs can retrieve a memory cell with Get; the type parameter determines

what the expected return type is. The type variable T is a pointer into the memory;

by construction, using a dependent type in Gallina, pointers only type-check if they

point to valid variables, with the correct type. Similarly when memory is updated with

Set, the value necessarily has the correct type. Ghost state is updated atomically and

30

Definition AcquireLock

1 <- Get (mLock);
if 1 == Unlocked then

tid+- GetTIDO;

Set(mLock, Locked);
GhostUpdate (A _ = Owned tid);
Ret

else
Yieldo;

AcquireLock()

Definition ReleaseLock

Set(mLock, Unlocked);
GhostUpdate(A - =: Free)

Figure 3-2: Code for acquiring and releasing lock.

with access to the entire ghost state using GhostUpdate. The ghost state of type S

is represented with the same type as the memory, but with a different set of typed

pointers. While ghost state can be updated based on both its current value and

outside information, including variables by referencing them in a closure passed to

GhostUpdate, there is no operation that can read ghost state and use it to affect

program execution, so that at runtime it is safe to not execute ghost updates.

As an example of using the typed memory and ghost updates, consider using a

lock. Suppose the program had pre-allocated a lock in memory, referred to as mLock.

The type of the lock will be a simple boolean, represented as Inductive LockFlag

: Locked I Unlocked. However, the ghost state for the lock will be a more expres-

sive type Inductive LockState := Owned TID I Free, also capturing the owning

thread. For simplicity of presentation, suppose that the entire ghost state consists of

only a S = LockState, the state for mLock. We give code to acquire and release this

lock, with the appropriate ghost updates, in Figure 3-2. Such a lock is not needed

in CIO-FSCQ, but we verified a similar example while developing CCL. In a larger

program, verification can take advantage of the fact that this implementation tracks

not just the binary state of the lock but also the owning thread, despite the memory

state not capturing this information.

31

function signature description

BeginRead(a: addr) Schedule a disk fetch of address a
WaitForRead(a: addr) : block Get data from a scheduled read of

address a
Write(a: addr, v: block) Write v to address a

Table 3.2: Disk operations provided by CCL.

The disk model consists of the representation of the disk itself and the operations

that act on the disk in CCL. The operations are given in Table 3.2. Addresses are

written as addr and refer to block indices on the disk: we use natural numbers to

represent these indices. Disk blocks are fixed to be 4KB of binary data. Writes are

straightforward: they update the block at an address. We assume writes are visible

immediately since real disk hardware guarantees this: writes go into a buffer within

the disk and reads check this buffer. Reads are asynchronous to support I/O concur-

rency: a disk read is split into a call to BeginRead to signal the intention to read

a block and WaitForRead to block until it completes and retrieve the result. The

disk representation tracks in-flight reads, which enable the model to treat issuing

WaitForRead without a prior BeginRead as an error.

To give some intuition for asynchronous reads, we give some examples of correct

and incorrect code in Figure 3-3. SynchronousRead and Copy assume are no concur-

rent reads for the same address pending. IncorrectBegin is always incorrect, since

the second read is guaranteed to fail; this is a conservative model of the physical disk,

which permits concurrent reads. IncorrectDataRace always fails since writes require

that there are no pending reads to the address being written, and is considered an

error by the semantics since in practice CIO-Cache avoid all data races.

FSCQ uses checksum logging for efficiency. Checksums logging records a hash of

data in the log to track whether the data on disk matches what is expected, which is

useful to detect when a crash interrupted writing the log to disk. However, verification

using hashes requires some technique to avoid considering the possibility of a hash

collision; collisions always thwart the intention of using hashes but in practice are

highly unlikely. The approach taken in FSCQ is to add hashing as a primitive to

32

Definition SynchronousRead(a: addr) : block

BeginRead (a);
v +- WaitForRead(a);
Ret v

Definition Copy(a: addr, a': addr)
v +- SynchronousRead(a);

Write(a', v)

Definition IncorrectBegin(a: addr) : block

BeginRead (a);
(* cannot have two pending reads for the same address *)

BeginRead (a) ;
v +- WaitForRead(a);
Ret v

Definition IncorrectDataRace(a: addr, v: block)
BeginRead (a);
(* cannot write to an address with a pending read *)

Write(a, v)

Figure 3-3: Some short usage examples for disk code. See main text for discussion of
how the correct examples work and why the incorrect programs trigger errors.

33

function signature description

Hash(sz: nat, buf: bytes sz) : bytes 32 Compute the hash of the data in
buf, looping infinitely if this re-
sults in a hash collision.

Table 3.3: Hash operation provided by CCL.

function signature description

GetTID() TID Get the thread identifier for the
current thread

Yield() Let other threads execute

Table 3.4: Cooperative concurrency operations provided by CCL.

the programming language and model hash collisions within a given execution as

an infinite loop [38]: conceptually, the system tracks all values hashed, and if two

different values hash to the same result, the program does not terminate and thus the

partial correctness specifications say nothing about it. At runtime collisions are not

detected, but finding a collision is unlikely so the proof gives reasonable confidence

in the behavior of the program. In order to translate FSCQ's programs accurately,

we add hashes to CCL with the same semantics as in FSCQ. For completeness, the

signature of the hash operation is given in Table 3.3.

Finally, CCL provides two operations for cooperative concurrency, given in Ta-

ble 3.4. Threads can access a unique thread identifier with GetTID, and can invoke

Yield to let other threads execute before returning control to the current thread. For

I/O concurrency, threads should issue BeginRead and then yield until the disk read

completes; this desirable pattern is shown in Figure 3-4. While the AsyncRead does

not have a way of guaranteeing after yielding that the disk read is complete and that

WaitForRead will not block, the runtime for CCL programs (described in more detail

in Section 4.3) makes this pattern efficient. In particular, threads are scheduled such

that pending I/O issued before a yield has completed before control returns to the

thread. In the SynchronousRead example of Figure 3-3, there is no yield between

starting the I/O and requesting the data; threads are cooperatively scheduled so the

runtime cannot let another thread run while waiting for the disk.

34

Definition AsyncRead(a: addr) : block

BeginRead(a);

Yield();

v +- WaitForRead (a);

Ret v

Figure 3-4: Example of issuing a read asynchronously. For this to work, threads must
coordinate so that other threads do not finish the pending read or write to a during
the yield.

3.1.2 Execution Semantics

In CCL, a program is a sequence of the above operations. CCL uses the standard

monadic combinators Ret and Bind [37] for sequencing operations. The type of pro-

grams producing values of type A is cprog A. The Bind combinator enables programs

to include arbitrary code within Gallina while referencing the above I/O operations.

We use this shallow embedding into Gallina so that programs do not need to model

control flow and local memory (only I/O operations and shared memory), getting

these features for free from Gallina.

To describe the disk operations' semantics, we return to the disk model by describ-

ing how disk state is represented. A disk is at its most basic a set of blocks, which we

fix at 4KB. For verification purposes it is convenient to abstract away the fact that

a disk is an array of blocks and represent it as a mapping from addresses to blocks.

Furthermore, CCL abstracts away the size of the disk and allows it to map only some

of the addresses. This basic disk representation is a partial map from addresses (we

use addr to refer to an address, but the concrete representation in the prototype is an

unbounded natural number) to blocks (these are chunks of 4KB worth of data). For

convenience of verifying that asynchronous reads are used correctly, CCL augments

this state with some additional per-address information. Specifically, the semantics

track if any thread is reading each address. The semantics makes it an error to is-

sue BeginRead when someone else is reading, to issue WaitForRead without someone

having started the read, and to attempt to write to an address while another thread

is reading it. These semantics are restrictive compared to real hardware (concurrent

35

reads are not races) but our usage in CIO-FSCQ follows these more restrictive rules

since the cache tracks pending reads and avoids concurrent reads and writes to the

same address.

More formally, the semantics is expressed a big-step relation: it relates initial states

and programs to final states and return values. A special final state identifies error

executions, which include, for example, attempts to write out-of-bounds addresses.

All verified programs prove that they never cause an error if their preconditions are

satisfied. The semantics can be understood by understanding how we model each

primitive procedure above; the semantics of Bind simply chains together procedures,

producing an error if any intermediate computation does so. There are some cases

where there is no execution from some state: this is called stuck execution and is

produced in particular by an infinite loop. CCL specifications are always written in a

partial correctness style, which only talks about behavior when a program terminates.

Non-terminating programs are rare in CIO-FSCQ, but the retry loop used for each

system call is a notable example (see Section 3.4, and in particular the loop in Figure 3-

13).

The execution states of programs include the disk, hashed values, memory, and

ghost state. Furthermore, states track both an "initial" and current ghost state: the

initial ghost state gives the ghost state from the last yield point, which is needed

to ensure yields only succeed if the program has followed the protocol since its last

yield point. The hashed values are used to detect hash collisions in the semantics.

We will refer to the tuple of state with {d; h; m; so; s}, with the variables consistently

representing disk, hashed values, memory, initial ghost state, and current ghost state.

The disk state is represented as a partial map from addresses to a combination of

a block and a bit to track pending reads: in Gallina it has the type addr -> option

(block * bool), where the boolean is true if there is a pending read at that address.

Addresses outside of the range of the disk can simply map to None.

Figure 3-5 presents the semantics of the primitive operations in CCL. We defer

discussion of Yield and its semantics to Section 3.1.3. As we described for the API,

programs have a fixed set of variables and ghost state collectively has type S. The

36

Get(v : variable(T)) - {d; h; m; so; s} + get(m, v)

Set(v : variable(T),val : T) {d; h; set(m,v,val); so; s}

GhostUpdate(update : S - S) + {d; h; m; so; update(s)}

BeginRead(a: addr) o {d[a - (bo, true)]; h; m; so; s}

if d[a] = (bo, false)

WaitForRead(a: addr, b : block) F-+ {d[a -+ (bo, f alse)]; h; m; so; s} + bo

if d[a] = (bo,true)

Write(a : addr, b block) F-+ {d[a '-+ (b, false); h; m; so; s]}

if d[a] = (bo, false)

Hash(sz : nat, buf : bytes(sz)) '-+ {d; h U {buf}; m; so; s} + hash(buf)

if buf does not collide with h

GetTIDO '- {d; h; m; so; s} + tid

Figure 3-5: Execution semantics for each primitive operation. The presentation above
gives the transitions for each operation. We write p - -' + r when program p steps
to a new state -' and returns value r, omitting the return value if it is of type unit.
The starting state {d; h; m; so; s} is left implicit, as is the current thread ID tid (as
referenced by the rule for GetTID()).

37

BeginRead(a) '-s error

if d[a] undef V

d[a] = (bo,true)

Wait ForRead(a) '-4 error

if d[a] undef V

d[a] = (bo, false)

W rite(a, b) '-4 error

if d[a] undef V

d[a] = (bo,true)

Figure 3-6: Execution semantics for error cases of primitive operations. The starting
state {d; h; m; so; s} is left implicit.

type variable (T) above internally depends on the set of memory variables, such that

well-typed variable references always point to valid memory addresses.

In addition to the above rules, CCL distinguishes between normal executions and

those that result in an error. Explicitly executing to an error lets specifications talk

about the absence of error executions. The cases where each primitive operation

results in an error are given in Figure 3-6. When the semantics chains operations via

Bind, errors halt the entire execution. The error rules for BeginRead, WaitForRead,

and Write ensure that every usage of these operations can always execute, either

to a next state or to an error; without this property, there would be states where

these primitives' execution would get stuck and appear indistinguishable from an

infinite loop. Note that hashes cause an infinite loop in the semantics when two

colliding values are hashed: specifications intentionally ignore this situation, which

is in practice unlikely for good hash functions (that is, encountering a collision at

runtime is unlikely, even if some collision must exist).

38

rely(tido)

invariant invariant

tid tid
eYield()7

tid, tid2

uar(tio guar(tidl) guar(tid 2)

Figure 3-7: Example execution showing where the protocol applies in a valid execution.

The thread tido issues a Yield, letting threads tidi and tid2 run. It must guarantee

that it has respected guar(tido) and the invariant, and in turn knows that rely(tido)

and the invariant hold.

3.1.3 Protocols

The execution semantics takes as a parameter a protocol. The protocol states what

guarantees thread provide across yields. For example in CIO-FSCQ, the most inter-

esting protocol we defined is that each thread operates in its own directory. This

protocol, which we describe in detail in Section 3.5, allows us to re-use FSCQ's speci-

fications after retrying even when other threads run, since they cannot interfere with

each system call's precondition.

A protocol consists of two parts: an invariant, which governs what holds at yield

points, and a guarantee, which governs allowed transitions between yield points. An

example execution showing what the protocol governs is given in Figure 3-7. Invari-

ants are the most basic rule threads follow. For the directory isolation protocol, the

invariant merely links the disk and memory state to a directory tree abstraction stored

as ghost state. The guarantee gives a relational rule, enabling protocols to express

notions such as read-only or append-only. The guarantee is parameterized by a thread

ID, to enable distinguishing threads and giving threads special privileges. The direc-

tory isolation protocol has a global set of permissions denoting which threads own

which directories. The isolation part of the protocol is expressed as a guarantee condi-

39

Yield() - {d'; h'; m'; s'; s'}

whenever invariant(d, m, s) A guar (tid, sO, s)A
invariant(d', m', s') A rely(tid, s, s')

A h C h'

Yield(a) H-+ error

if -invariant(d, m, s)V
-,guar(so, s)

Figure 3-8: Execution semantics for the Yield operation, starting in state
{d; h; m; so; s}.

tion: between yields, each thread can only change directories that are world-writable

or that it has exclusive ownership of.

While the guarantee condition is in principle more general than an invariant, for

properties that can be expressed as an invariant it is often convenient to use the

invariant rather than the guarantee condition. In addition, separating the protocol

into these two parts allows us to write the invariant over the full system state while the

guarantee condition is expressed in terms of only the ghost state. When, for example,

memory variables are relevant to a guarantee condition, they can be mirrored in the

ghost state and required to match via the invariant. The directory isolation protocol

requires that an invariant covering the disk and memory to establish the directory tree

abstraction but has a guarantee condition written solely in terms of this abstraction.

The protocol is used to determine the semantics of Yield. The formal semantics

are given in Figure 3-8. In the figure, we use rely(tid, s, s') for the rely condition, which

is defined as an arbitrary number of steps between s and s' that respect the guarantee

condition, for threads other than tid. As the rule shows, the yield instruction requires

that the invariant holds at call time, so that other threads observe a consistent state;

if it is violated, yielding results in an error. In turn, the semantics promise that when

the yield completes, the invariant will still hold. In addition, the yield requires each

thread to prove that between its last yield and the current state, it respected the

40

guarantee condition; if the thread does not do so, yield again results in an error. In

turn, the semantics guarantees that other threads did so as well, using rely to express

the behavior of other threads in terms of the guarantee condition.

The semantics of yield abstract over what other threads may do, promising only

that they follow the protocol. As long as all running threads follow the protocol, this

abstraction is valid. CCL is cooperative in that threads are guaranteed to execute

sequentially until they choose to yield; this shows up in the semantics as the protocol

appearing only in the rule for yields, whereas otherwise the behavior of other threads

does not influence program behavior.

Hashing is incorporated into the yield semantics by promising that the set of

hashed values only increases. This is sufficient for any use of hashing: more hashed

values only increases the number of inputs that will trigger a hash collision. In ad-

dition, the semantics guarantee that programs can only increase the set of hashed

values, so other threads are guaranteed to satisfy this condition.

3.1.4 Specifications

Specifications in CCL are written in a standard Hoare triple style with a partial-

correctness interpretation, as mentioned above: a program is associated with a precon-

dition and postcondition, and a proof of a specification expresses that if the program

is run in a state satisfying the precondition and terminates, the final state will satisfy

the postcondition. Furthermore, we define correctness such that any verified program

(regardless of specification) does not result in an execution error if the precondition

is satisfied.

3.2 CIO-Cache

We have written a program in CCL we call CIO-Cache, a concurrent buffer cache

with support for transactional writes. The cache provides four operations, listed in

Table 3.5. Of particular note is CacheRead, whose pseudocode implementation we

give in Figure 3-9. CacheRead is unusual for a read operation in that it may fail in

41

Definition CacheRead(a: addr) : option value

c--- Get(mCache);

match cache-get c a with

I Present v . Ret (Some v)

I Missing = BeginRead(a);
Set(mCache, set-pending c a));

Ret None

I Pending =* v <- WaitForRead(a);
Set(mCache, fillval c a v);
Ret (Some v)

end.

Figure 3-9: Pseudocode for CacheRead. Note that a miss followed by a read for the

same address will trigger the pending case and read the value from disk. For I/O

concurrency, the caller should yield after a miss but before reading again.

the case of a cache miss, returning None. This signals to the caller that the read

missed in the cache and that the cache has issued an I/O to read the data from disk;

the caller is expected to yield (to allow I/O concurrency) and retry the read. Upon

retrying, the cache will call WaitForRead on the pending disk read and block, this

time succeeding.

Writes in CIO-Cache are transactional: CacheWrite buffers the write separately

from the cache until either a commit (CacheCommit), which makes the writes part

of the cache, or an abort (CacheAbort), which discards all the buffered writes since

the last commit. The specifications for CacheCommit and CacheAbort are shown in

Figure 3.2. While somewhat verbose, these specifications capture the transactional

behavior of the cache on its state, namely vdisk s and vdiskcommitted s. The

current implementation requires the specifications to assert that other parts of the

memory and ghost state are not modified; see Section 4.1 for a discussion of this

modularity issue.

CIO-Cache uses some part of the memory to hold the cache, and has some associ-

ated ghost state we call vdisk_ committed and vdisk, which represent the committed

and current state of the virtual disk exposed by the cache respectively. The virtual

disk is a simple abstraction with a 4KB block per address. When cache reads succeed,

42

Theorem CacheCommitok:
SPEC tid I

PRE d m so s:
CacheInvariant(d, m, s)

POST d' m' so' s':
CacheInvariant(d', M', s') A
vdisk s' = vdisk s A
(* the committed disk is updated *)
vdisk-committed s' = vdisk s A

modified cachevars m m' A
modified cache-ghost s s' A
So = S0

>} CacheCommit.

Theorem CacheAbortok:
SPEC tid I-

PRE d m so s:
CacheInvariant(d, m, s)

POST d' m' so' s':
CacheInvariant(d', M', s') A
(* the current disk is reverted *)

vdisk s' = vdiskcommitted s A
vdiskcommitted s' = vdiskcommitted s A
modified cachevars m m' A
modified cache-ghost s s' A
So =S 0

>} CacheAbort.

Figure 3-10: Specifications for CacheCommit and CacheAbort.

43

function signature description

CacheRead(a: addr) : option value Read address a from the cache;
if not present in the cache,
schedule a disk read and return
None

CacheWrite(a: addr, v: block) Write v to address a
CacheCommit () Commit writes since the last

abort or commit
CacheAbort() Abort writes since the last

abort or commit

Table 3.5: Operations provided by CIO-Cache. The type option T is either Some t
with t: T, or is None.

they return immediately, but they may miss and return an error instead. Internally,

the cache starts reading from disk with BeginRead when a read misses, recording that

a read is pending. When a second read for the same address finds the pending marker,

it completes the pending read with WaitForRead, returning a result and filling the

cache entry. The specifications for each cache operation specify behavior in terms of

modifications to these ghost variables. Each operation also takes care to update the

ghost variables to reflect changes to the abstraction.

Recall that the semantics of programs are governed by a protocol, as explained

in Section 3.1.3. The protocol specifically governs behavior when a program yields.

However, the cache does not include internal yields, leaving these to the caller (for

example, if CacheRead misses, it does not yield after scheduling the disk read). As

such, each specification requires and preserves some invariants internal to the cache

but does not require the protocol's invariant. This is an appropriate specification:

optimistic system calls will not guarantee global invariants while running on the cache.

The cache also explicitly states that it does not modify variables other than those

controlled by the cache, so that file-system code can reason about its own memory.

44

'li 1 |||1 F'I l

3.3 CIO-translator

CIO-Cache exposes read and write operations that resemble sequential code operating

on a synchronous disk. We formalize this intuition by translating sequential programs

written using Crash Hoare Logic (CHL) from FSCQ to the cache operations using

CIO-translator. The translated code as a whole returns an error if any read misses.

When CacheRead fails and returns None (signaling a cache miss), the translator han-

dles this by in turn by returning None early in the translated code. Thus programs of

type prog A are translated into concurrent programs of type cprog (option A).

In addition to this straightforward compilation, the translator also translates se-

quential CHL specifications regarding the disk to concurrent specifications regarding

the virtual disk ghost variable. Simplified code for the specification translation is

shown in Figure 3-11. In this specification translation we drop the CHL crash con-

dition, since CCL does not model crashes. We must also thread the cache assertions

that only cache variables are modified, so users of the specification can rely on the

translated code not modifying other variables. The translator is parameterized over

the memory variables, ghost state and a global protocol in essentially the same was

as the cache.

The goal of the translator is to preserve sequential specifications: verified code

when translated should satisfy the translated specification. We show a statement

of this correctness property in Figure 3-12. The intuition behind the proof of this

statement is that the translated, isolated code behaves in the same way as the original

code. We prove this via simulation: every execution of the compiled code has an

equivalent execution of the sequential code. We state the property in three parts,

covering the three possible outcomes of running the compiled code: the result may

be a successful run, the cache may have missed at some point, or the code may

have failed due to an out-of-bounds write. For successful runs, we show that the

resulting virtual disk is the same as the disk from some execution of the sequential

code (this is the optimistic case). When a read misses in the cache, we merely show

that the code followed the cache protocol, since the system call wrapper will abort any

45

Definition OptimisticSpec A (spec: SeqSpec A) : ConcurrentSpec (option A)

(* the crash condition in spec is unused *)

let (seq-pre, seq-post, _seq-crash) := spec in

A d m so s =

{I precondition

CacheInvariant d m s A
seq-pre (vdisk s)

postcondition := A d' m' so' s' r=a

CacheInvariant d' m' s' A

match r with

I Some r= >seq-post r (vdisk s')

I None=> T

end A

modified cachevars m m' A

modified cache-ghost s s' A

so) = so I}

Figure 3-11: Simplified code for the translation from a sequential specification to

an appropriate specification for its optimistic, translated version. The concurrent

specification is a function from the initial state so that the postcondition can refer to

the initial state; sequential specifications do not do this.

partial updates anyway and restore the committed virtual disk. When the concurrent

code fails, we show the sequential code would have failed as well - when using the

simulation in the context of verified programs we will rule this possibility out.

To use this simulation argument to argue specifications are translated correctly,

we prove that if the sequential code satisfies some specification spec, the translated,

isolated code satisfies a translated specification spec', where spec' must refer to the

virtual disk whenever spec refers to the physical disk. In this proof, we rule out the

Definition translate (p: prog A) : cprog (option A) :=

Theorem translatorcorrect : V A (p: prog A) (spec: SeqSpec A),

prog-ok p spec -+

cprog-ok (translate p) (OptimisticSpec spec).

Figure 3-12: The function signature for the translator and its correctness property.

Translation preserves specifications, after they are translated by OptimisticSpec.

46

case of the concurrent code failing by using the fact that the sequential code would also

fail and the assumption in both cases that the precondition of the sequential code

was satisfied. If the optimistic system call misses in the cache, we guarantee some

consistency properties of the variables (this includes the fact that the committed disk

does not change), but cannot guarantee the specification's postcondition.

3.4 Wrapped system calls

We designed a generic wrapper that turns an FSCQ call into an optimistic system

call. In the error case, the wrapper rolls back the disk so other threads see a clean

state between system calls, and then yields to let other threads run concurrently.

After yield returns, the wrapper retries the system call. The retry is likely to succeed,

but if it fails the wrapper tries again.

Turning FSCQ systems into optimistic systems calls requires dealing with FSCQ's

memstate, which is passed to and returned from every FSCQ system call. This in-

memory state is important to thread through FSCQ system calls for correctness.

The concurrent system calls cannot take this approach: when a system call yields,

it must observe the new memory state produced by other system calls that ran in

the meantime. In wrapping FSCQ system calls, CIO-FSCQ moves this memory state

into a CCL memory variable, updating it between system calls to make it visible to

other threads. The wrapped optimistic system calls are collectively the file-system

implementation in CIO-FSCQ.

For verification purposes, CIO-FSCQ programs manipulate ghost state represent-

ing the abstractions involved in the code. In the case of a file system, the main

ghost state is a directory tree. Each top-level system call requires an appropriate call

to GhostUpdate to update this abstract directory tree (other than read-only oper-

ations). FSCQ already includes a representation of directory trees as an inductive,

recursive datatype, which its top-level specifications refer to. We store a copy of this

directory tree in ghost state for verification purposes. To update it in CIO-FSCQ, we

add a call to GhostUpdate in each system call with an appropriate update function

47

Definition file-get-attr(inum)

memstate +- Get (mMemState);

r - optimistic file-get-attr(mem-state, inum);

match r with

I Some (attr, memstate ') = Set(mMemState, mem_ state');

CacheCommit (;

GhostUpdate(id);

Ret attr

I None = CacheAbort 0;
Yieldo;
file-get-attr(inum)

end.

Figure 3-13: Example of wrapping the automatically generated

optimistic-f ile-get-attr to include modifications to mutable memory and

a retry loop. Note that the structure of this code is identical for every system

call, although other system calls will modify the abstract directory tree where

f ile-get-attr calls GhostUpdate(id).

implementing that operation, this time as a functional program on a directory tree.

This code is largely copied from the specifications of FSCQ, which are already written

in this style of functional updates.

An example of a complete system call built from its optimistic version is show in

Figure 3-13. The figure shows f ile-getattr, which is used to implement the stat

system call. This is a read-only system call so no update to ghost state is needed;

the code redundantly calls GhostUpdate to show where the abstract state would be

updated if necessary. The implementation uses a generic wrapper function rather than

duplicating this pattern for each system call.

3.5 File-system protocols

The compiled file-system operations retry when they fail, but only after yielding to

other threads. This yield is clearly safe since after rolling back the disk, the state is

identical to the initial state. However, starting the system call again must satisfy the

system call precondition to prove anything about the result; that is, the precondition

48

should be stable under interference. We do so by specifying a file-system protocol and

proving each precondition remains true under interference allowed by the protocol.

For example, if threads operate in disjoint directories, it is safe to retry creating a file

since no other thread will remove the containing directory in the meantime, a fact

we prove to verify the create system call. We also prove each system call obeys the

protocol.

We wrote two protocols for the file system and proved specifications for the CIO-

FSCQ system calls under each: the first one is a read-only file system, supporting only

read-only system calls; the second one, which we call directory isolation, partitions

the file systems into subtrees and assigns each subtree to a different thread. Both

protocols share a common abstract structure, built on top of the cache. As mentioned

above, FSCQ's mutable memory memstate is stored in a CCL variable. The ghost

state includes the abstract directory tree. The invariant in the protocol connects

this memstate and the cache's virtual disk to the abstract directory tree, re-using a

predicate in all of FSCQ's top-level system call specifications.

The read-only file system has a simple guarantee condition, requiring that the

directory abstraction does not change. The memory and disk state may still evolve

(e.g., the cache may change), but must represent the same logical tree. Under this

protocol, the file system is relatively easy to verify since the abstract state does not

evolve.

The directory-isolation protocol allows controlled modification to the file system.

It reflects a common usage pattern for file systems: for example, users often operate

in disjoint directories. When a given user runs several programs concurrently, they

tend to operate on disjoint sets of files rather than using synchronization or relying

on thread safety of the file system implementation. The directory-isolation protocol

captures this common practice by defining ownership of directories. Each directory

in the file system can be either shared, owned by a specific thread, or read-only. In

addition, the protocol states some consistency properties for ownership: children of

a node in the tree must be at least as restrictive as their parents. This avoids, for

example, stating that a directory is read-only but that a file in it is shared. The

49

Theorem file-getattrok: V inum,

SPEC tid F-

{< pathname attr data,

PRE d m so s:

Invariant(d, m, s) A

findsubtree pathname (directory-tree s) = Some (File inum attr data) A

Owner pathname = Owned tid A

Guarantee(tid, so , s)

POST d' m' so' s' r:
Invariant(d', m', s') A

Rely(tid, s, s') A

r = attr A

Guarantee(tid, so', s')

>} file.getattr inum.

Figure 3-14: Simplified specification for f ile-getattr. The specification shows lin-

earizability: the Rely(tid, s, s') indicates other threads may have run, following

the protocol. However, the ownership requirement in the precondition guarantees that

the file does not change and thus the returned attributes correspond to the original

(and current) file.

semantics of the protocol, to be usable within CCL, are defined as a per-thread

guarantee condition: for each file or directory in the file system, if some thread does

not have permission to access it (it is either read-only or owned by a different thread),

then that file or directory must remain unchanged.

For the directory isolation protocol, system calls that are read-only have straight-

forward specifications: the return values are guaranteed to be consistent with the

original state, since the precondition and protocol together guarantee the files and

directories being accessed are read-only to other threads. An example specification

for f ile-getattrok (which is read-only) is shown in Figure 3-14. System calls that

modify the directory tree have linearizable specifications: first other threads run, mod-

ifying parts of the directory tree, then the system call modifies the tree atomically.

Again, while other threads execute, the precondition and protocol together guarantee

that the paths being accessed do not change.

50

Chapter 4

Implementation

4.1 Modularity for memory and ghost variables

CCL as described requires all memory variables and their types to be given ahead of

time for each program. This is inconvenient for writing code written in several ab-

straction layers, where not all the variables required are known until the highest-level

layer. For example, the CIO-Cache uses some memory variables, but the file system

using the cache requires some additional ones. To work around this requirement, the

cache is parameterized over a set of memory variables, with the requirement that

users include variables for the cache in this set. When the file system uses the cache,

it follows this requirement by including the appropriate variables. Furthermore, the

cache's memory variables are all internal implementation details (in fact, only the

cache's vdisk and vdiskcommitted ghost variables are relevant to users), yet users

must know about these variables to include them in the global memory.

A similar problem arises in defining the global protocol. CCL programs are verified

with a particular global protocol. The cache is instead verified against a generic, caller-

specified protocol; since it does not yield internally, the global protocol does not affect

its semantics.

51

Lines of code
Common components

FSCQ Coq implementation and proof 72,000
Shared Haskell runtime 400
I/O concurrency-specific

Coq implementation and proof 11,000
Concurrent Haskell runtime 730

Table 4.1: Lines of code in CIO-FSCQ.

4.2 Coq implementation and proofs

CIO-FSCQ is implemented largely in Coq. The number of lines of code in the imple-

mentation is summarized in Figure 4.1. The implementation has around 83,000 lines

of Coq code, including implementation, specifications, and proof scripts. Of these,

11,000 are specific to the I/O concurrent FSCQ. The remaining 72,000 lines are for a

recent version of the sequential FSCQ, which is needed for both its implementation

and full proof. The concurrent Haskell runtime is comparable in size to the FSCQ

runtime, which is 570 lines of code (much of which is duplicated in the concurrent

runtime due to insufficient factoring). The extracted code from CIO-FSCQ comprises

about 36,000 lines of automatically generated Haskell code.

4.3 Haskell runtime

Our implementation in Coq specifies and models I/O, but has no way of actually ex-

ecuting with a physical disk, or scheduling threads between yields. Following FSCQ,

we run the file system by first using the native extraction feature of Coq to produce

an analogous Haskell version of each system call. The Haskell program is actually a

datatype, with constructors for the I/O operations, memory interactions, and concur-

rency primitives (in CCL, these are just GetTID and Yield), as well as sequencing in

the form of Bind constructors. An interpreter written in Haskell takes this program

and runs it within the Haskell I0 monad.

The Haskell interpreter interacts with the disk through a file with the file-system

52

image. It executes reads and writes by issuing reads and writes to offsets within this

file. It is also possible to use the block device (e.g., /dev/sdbl) for an external drive;

Linux then translates reads and writes to this file into driver operations, using only

VFS code rather than another file system.

To allow overlap of computation and I/O, BeginRead uses Haskell's lightweight

threads from Control. Concurrent to create a new background thread for the I/O

operation, reading from the physical disk. When the program invokes WaitForRead,

it must block until the background thread has completed reading the data. To do

so, BeginRead creates a Haskell MVar that it eventually fills with the result, and

WaitForRead reads this MVar, a blocking operation in Haskell. The runtime keeps

track of the MVars for pending reads in a map keyed by address. Since the runtime

runs verified code, it can assume that code calls these methods in sequence and thus

that when a thread invokes WaitForRead, there is an associated MVar and the runtime

has started the I/O.

The cooperative concurrency is straightforward to implement within Haskell's

concurrent runtime: the interpreter spawns a thread per system call, assigning it

a unique thread id, and coordinates access to the CPU with a global lock. To execute

a Yield, the interpreter releases the lock.

Scheduling when a thread resumes is important to achieve I/0 concurrency: CIO-

FSCQ system calls follow a pattern of initiating I/O, then yielding before expecting

the results. This pattern allows for I/0 concurrency as long as other threads run in the

meantime, but the scheduler might not achieve this if threads were re-scheduled too

soon after initiating I/O. The interpreter uses a simple heuristic to encourage good

thread scheduling: when a thread yields, before attempting to resume by acquiring

the global lock, the interpreter waits for the thread's pending I/O to finish. This

heuristic assumes threads yield after starting I/O because they need the results after

resuming, and might be inefficient for programs that yield for other reasons. Note

that the decision to wait affects liveness but CIO-FSCQ makes no promises about

liveness.

The Haskell interpreter also implements memory operations. The Haskell type

53

system cannot directly express the heterogeneous list we use in Coq, so the runtime

represents the memory as a Data. Map from integers (list indices) to Any, the special

Haskell primitive for representing a value of any type. Each Get then escapes the

Haskell type system to coerce this value to the right type. This is safe because the

program type checks within Coq, which has a stronger type system that can express

the heterogeneous list. The runtime initializes all the variables in the memory map

with default values.

54

Chapter 5

Evaluation

We evaluate CIO-FSCQ to answer two questions:

1. What is the effort involved in building and verifying CIO-FSCQ? (Section 5.1)

2. Does CIO-FSCQ successfully employ I/O concurrency to improve performance?

(Section 5.2)

5.1 Effort

To answer the first question, we examine the lines of code in CIO-FSCQ, reported

in Table 4.1. FSCQ is about 83,000 lines of code (i.e., specification, implementation,

and proofs), to which CIO-FSCQ adds I/O concurrency with 11,000 lines of code.

Based on these numbers, it is clear that the design of CIO-FSCQ succeeds in leaving

much of the file-system implementation and verification to the existing sequential file

system.

In addition to few total lines of code, CIO-FSCQ can leverage incremental changes

to FSCQ easily, because CIO-FSCQ's design is mostly agnostic to FSCQ. For exam-

ple, CIO-FSCQ incorporates a newer version of FSCQ that implements a new logging

protocol to get higher performance but CIO-FSCQ started with an older version of

FSCQ. As FSCQ becomes more sophisticated, incorporating changes would require

no change to CCL, the cache, or the translator, or to any of their proofs. There are

55

about 3,100 lines of code involved in translating FSCQ's specifications, describing the

directory isolation protocol, and proving the system calls correct under this proto-

col, but much of this code is boilerplate. For example, proving even a read-only file

system correct, which requires almost no reasoning about FSCQ's specifications, still

takes 1,300 lines of code. Furthermore, changes to FSCQ that maintain the top-level

specifications about the directory tree can be incorporated with no modification to

the I/O concurrency-specific code.

5.2 I/O concurrency performance

To answer the second question, we measured the performance of CIO-FSCQ on a

concurrent workload and compared it to two baseline measurements. The first is

running FSCQ, which executes system calls sequentially. The second is Seq-CIO-

FSCQ, a configuration for CIO-FSCQ where the interpreter does not release and

re-acquire the global lock during a yield, so that programs run sequentially. This

baseline includes the overhead of using the concurrent cache and retrying optimistic

system calls, but cannot take advantage of I/O concurrency.

To evaluate I/O concurrency, we constructed a small benchmark that exercises

the disk in parallel with operations that can run from the cache. We initialize the

disk with a large file (10MB) and a small file (4KB). The benchmark consists of two

processes: the "large read" process reads the large file in 4KB chunks, while the "small

reads" process reads the small file repeatedly 2500 times, each time in one read system

call. The benchmark starts these two processes at the same time so that in a system

that supports I/O concurrency they can run in parallel: when the large-read process

misses in the cache, the small-read process can make progress.

The setup for running the benchmark consists of a Linux machine with a 2.83GHz

Intel Core 2 CPU with 4 cores. In all cases the file system is mounted on an external

USB drive and accessed directly through its block device in /dev. The USB drive

achieves relatively slow read throughput (5.9 MB/s for random 4KB reads and 11.6

MB/s for sequential 4K reads), leading to enough I/O delay that CIO-FSCQ improves

56

Task time (sec)

10MB disk read 1.9
Small reads (FSCQ) 0.4
Small reads (CIO-FSCQ) 0.6

Table 5.1: Characteristics of the benchmark when run sequentially.

throughput. CPU overhead in FSCQ is high enough that fast I/O (e.g., through an

SSD) masks the speedup from I/0 concurrency. All runs start with a freshly initialized

file system, so the large read's system calls all miss in the cache. The small reads hit

in the cache after the first iteration.

Table 5.1 shows the performance of each process run individually on FSCQ. FSCQ

is faster for the small reads than CIO-FSCQ, because CIO-FSCQ pays CPU overhead

for its cache and retrying system calls when they miss.

The results of running the benchmark are shown in Figure 5-1. We show the

completion time for both the large-read and small-reads process. The benchmark's

completion time is the time at which the slowest process finishes.

Compared to the sequential systems, CIO-FSCQ completes the benchmark quicker

(in 1.9s), because during each system call of the large read, small reads can begin and

finish, with little impact on the performance of the large read. In contrast, on FSCQ

there is no I/O concurrency and the benchmark completes in 2.5s; this total running

time is slightly larger than the sum of the completion time of the small-read process

(0.4s) and the large-read process (2.0s).

Figure 5-1 also shows that with CIO-FSCQ the process that runs small-reads

finishes sooner than with the sequential systems. The small-read finishes in about

0.8s, with the large reads running in parallel. The reason is that every time when the

large-read process misses in the buffer cache and is waiting for a disk read to complete,

CIO-FSCQ processes a system call from the small-reads process. Some CPU time is

consumed by the large read in CIO-FSCQ: the small reads take 0.8s rather than 0.6s

when run alongside the large read compared to alone. FSCQ could achieve an early

completion time for the small-read process if the small reads were all scheduled before

the large read went to disk, but FSCQ has no way of predicting when a system call

57

CIO-FSCQ

FSCQ

Seq-CIO-FSCQ

I I I I I

0 0.5

time (seconds)

System large read small reads overall (sec)

CIO-FSCQ 1.9 0.8 1.9
FSCQ 2.0 2.4 2.4
Seq-CIO-FSCQ 2.3 2.9 2.9

Figure 5-1:
time is the

Completion times for large read/small reads concurrent benchmark. Each
average of ten runs; standard deviations were less than 70ms in all cases.

58

iarge small

1.5 2 2.5 3I

will miss in the cache.

Comparing FSCQ and Seq-CIO-FSCQ shows the overhead of adding the cache

and retrying system calls to finish cache reads (there are around 2500 disk reads in

this benchmark, each of which triggers a retry). This overhead amounts to less than

0.5s for the total completion time of the benchmark.

In summary, the results in this section demonstrate that CIO-FSCQ is able to

exploit I/0 concurrency with a modest effort for verification. To be able to benefit

from I/0 concurrency with faster devices, however, we must improve CIO-FSCQ's

CPU's performance.

59

60

Chapter 6

Future work

6.1 Design changes

There are several limitations in the design of CIO-FSCQ which form good directions

for future work.

More concurrency. CIO-FSCQ models only I/0 concurrency, allowing only a sin-

gle thread to access the CPU at any given time. While this can mask I/0 latency,

it leaves CPU resources idle on multicore machines. In general allowing simultaneous

access to the shared memory would break the correctness of FSCQ. However, it should

be possible to safely run read-only file-system calls in parallel, with a guarantee in

the FSCQ specifications both that the memstate is not updated and that the disk is

never written.

To extend CIO-FSCQ to allow read parallelism would first require modeling mul-

ticore execution of programs. Instead of programs interfering only at yield points,

they would need to interleave at arbitrary points. Multicore execution also introduces

the possibility for data races on memory (the semantics already includes races on the

disk). Since interference is now present at every program step, the protocol would

need to govern every step rather than only behavior at yield time. Finally, the in-

terpreter would have to guarantee that the program steps are observed atomically

to other threads, as modeled in the semantics; this is relatively easy in the current

61

execution semantics since threads only interact at yield time, so a global lock provides

the correct guarantees.

For more fine-grained concurrency and read-write parallelism, we will likely need a

different approach, since threads in the file-system will need to coordinate to maintain

consistency of internal data structures like allocators, the in-memory log, and inodes.

Modeling crashes. FSCQ is distinguished by its support for crash-safety in its ver-

ification. CIO-FSCQ does not model crashes or even provide persistence. We believe

that crashes could be incorporated into CCL and faithfully translated to a modified

cache, as follows.

FSCQ writes are asynchronous, with a Sync operation that flushes any pending

writes to the disk. The asynchrony manifests itself at crash time: any data written

after the latest Sync might not be persistent and could be lost following a crash.

To correctly imitate this behavior in a concurrent setting, optimistic system calls

should have I/O behavior identical to their sequential counterparts. As long as the

cache tracks the sequence of writes and syncs by the translated code, if the optimistic

system call completes without needing to read from disk, its writes can be committed

by synchronously reproducing the tracked sequence of writes and syncs.

A further optimization is to allow I/O concurrency between syncs and read-only

operations, hiding the disk writes from other threads by keeping the old values in the

cache. Any crash during this process would be equivalent to a sequential crash of the

syncing thread.

6.2 Implementation limitations

The current prototype of CIO-FSCQ has a few limitations independent of its design

that we hope to address in future work.

The execution semantics of CCL consider a single thread a time, modeling other

threads abstractly using the protocol. Since verified code follows the protocol, we

believe this is a sound model of threads cooperatively interleaving. However, the se-

62

mantics still abstracts over details not present during execution: ghost state is explic-

itly manipulated, and yields should simply run other threads. An extension to CCL

that would improve trust in the semantics to faithfully model execution would be a

lower-level operational semantics for execution of a collection of threads, interleaved

at yield points. We could connect the existing, instrumented and thread-local seman-

tics to the lower-level and global semantics with a proof that guarantees verified code

in the instrumented semantics is also correct in the thread-local semantics, as long

as each thread is launched with its precondition satisfied. Such a proof would both

model threads interleaving and make precise the notion that ghost state is unneeded

at execution time by not including it in the lower-level semantics.

Even without modeling crashes and including crash invariants in specifications,

CIO-FSCQ could support durability at an implementation level by flushing writes

from the cache, especially when unmount is called to cleanly shut down the file system.

CIO-FSCQ with unmount could be proven correct with a specification that asserts

the file-system is unchanged while the memory is reset to default values. A related

task is to support cache eviction, especially of dirty writes (which must also persist

data).

As mentioned in Section 4.1, CCL programs require all memory variables to be

declared in advance. The cache has an ad-hoc scheme to work around this for the

purpose of leaving the memory undetermined until the translation and file system

code. However, this scheme is unsatisfactory in several ways. First, as mentioned,

it fails to hide implementation details from callers. Second, the cache is provided

with the whole memory even though it uses only a portion of it: for this reason its

specifications all explicitly mention that non-cache variables are unmodified. Finally,

the scheme the cache uses is general in many ways, and could be used by applications

verified on top of the file-system, but is implemented as a specific pattern for the

cache.

One concern with retrying optimistic system calls is that it might take many tries

before all the data is in cache, or that before all the data is available some of it is

evicted from the cache. Generally this does not pose a problem: most system calls

63

only read a few blocks from disk. However, reads can potentially be large, and POSIX

places no limits on the maximum size of a read. The current prototype of CIO-FSCQ

makes no special provision for large reads. Since data is not evicted from the cache,

eventually all system calls will finish, but large reads require an inefficient pattern

of retries that each read one additional block of data. One way to ameliorate this

problem is to prefetch more data whenever issuing I/O, e.g., heuristically reading

eight contiguous blocks whenever a miss occurs. The file system could even execute

sufficiently large reads without yielding, with a proof that in this case restarting the

system call is unnecessary.

64

Chapter 7

Conclusion

This thesis contributes an approach to verifying I/0 concurrency and CIO-FSCQ, a

verified I/0-concurrent file system based on that approach. The design of CIO-FSCQ

aims to re-use the verification effort of a sequential file system, as a means of lowering

proof burden, while still achieving concurrency between a single system call running

within the file-system and disk I/0. CIO-FSCQ is based on optimistic system calls,

which attempt to run using only a cache and abort rather than wait for disk I/0

to complete; a generic translator produces optimistic system calls from FSCQ while

preserving specifications. The concurrent file system includes a protocol - directory

isolation - that guarantees FSCQ system calls are used correctly and its specifica-

tions can be used when optimistic system calls are re-tried until they find all data

in the cache. The directory-isolated file system has a linearizable version of FSCQ's

sequential specifications and a proof based only on these top-level specifications.

We implemented a prototype of CIO-FSCQ in Coq with a Haskell runtime to

execute system calls through the standard file-system interface. An evaluation of

the prototype shows that on a benchmark with potential to overlap disk I/O and

computation, CIO-FSCQ improves performance.

65

66

Bibliography

[11 S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O'Connor, J. Beeren,
Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein,
and G. Heiser. COGENT: Verifying high-assurance file system implementations.
In Proceedings of the 21th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 175-188,
Atlanta, GA, Apr. 2016.

[2] S. Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 375(1-3), May 2007. Festschrift for John C. Reynolds's 70th Birthday.

[31 H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich.
Using Crash Hoare Logic for certifying the FSCQ file system. In Proceedings of
the 25th ACM Symposium on Operating Systems Principles (SOSP), Monterey,
CA, Oct. 2015.

[4] A. Chlipala. Mostly-automated verification of low-level programs in computa-
tional separation logic. In Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 234-245,
San Jose, CA, June 2011.

[5] E. F. Codd, E. S. Lowry, E. McDonough, and C. A. Scalzi. Multiprogramming
STRETCH: Feasibility considerations. Commun. ACM, 2(11):13-17, Nov. 1959.
ISSN 0001-0782. doi: 10.1145/368481.368502. URL http://doi.acm. org/10.
1145/368481.368502.

[6] Coq development team. The Coq Proof Assistant Reference Manual, Version
8.6. INRIA, Apr. 2016. http://coq.inria.fr/distrib/current/refman/.

[7] F. J. Corbato, M. Merwin-Daggett, and R. C. Daley. An experimental time-
sharing system. In Proceedings of the May 1-3, 1962, Spring Joint Computer
Conference, AIEE-IRE '62 (Spring), pages 335-344, New York, NY, USA, 1962.
ACM. doi: 10.1145/1460833.1460871. URL http://doi.acm.org/10.1145/
1460833.1460871.

[8] M. Curtis-Maury, V. Devadas, V. Fang, and A. Kulkarni. To Waffinity and
beyond: A scalable architecture for incremental parallelization of file system code.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI'16, pages 419-434, Berkeley, CA, USA, 2016. USENIX

67

Association. ISBN 978-1-931971-33-1. URL http://dl.acm.org/citation.
cfm?id=3026877.3026910.

19] E. W. Dijkstra. The structure of the "THE"-multiprogramming system. In
Proceedings of the First ACM Symposium on Operating System Principles, SOSP
'67, pages 10.1-10.6, New York, NY, USA, 1967. ACM. doi: 10.1145/800001.
811672. URL http: //doi. acm. org/10. 1145/800001.811672.

[101 T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views:
Compositional reasoning for concurrent programs. In Proceedings of the 40th
ACM Symposium on Principles of Programming Languages (POPL), pages 287-
300, Rome, Italy, Jan. 2013.

[111 M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning.
In Proceedings of the 18th European Symposium on Programming Languages and
Systems: Held As Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, ESOP '09, pages 363-377, Berlin, Heidelberg, 2009.
Springer-Verlag. ISBN 978-3-642-00589-3. doi: 10.1007/978-3-642-00590-9_26.
URL http: //dx.doi.org/10.1007/978-3-642-00590-9_26.

1121 X. Feng. Local rely-guarantee reasoning. In Proceedings of the 36th ACM Sym-
posium on Principles of Programming Languages (POPL), Savannah, GA, Jan.
2009.

[13] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent
separation logic and assume-guarantee reasoning. In European Symposium on
Programming, pages 173-188. Springer, 2007.

114] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng, H. Zhang,
and Y. Guo. Deep specifications and certified abstraction layers. In Proceedings
of the 42nd ACM Symposium on Principles of Programming Languages (POPL),
Mumbai, India, Jan. 2015.

[15] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sj6berg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent OS ker-
nels. In 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pages 653-669, GA, 2016. USENIX Association.
ISBN 978-1-931971-33-1. URL https: //www.usenix. org/conf erence/osdi6/
technical- sessions/presentation/gu.

[16] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and
B. Zill. Ironclad Apps: End-to-end security via automated full-system verifica-
tion. In Proceedings of the 11th Symposium on Operating Systems Design and

Implementation (OSDI), pages 165-181, Broomfield, CO, Oct. 2014.

[17] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,
S. Setty, and B. Zill. IronFleet: Proving practical distributed systems cor-
rect. In Proceedings of the 25th ACM Symposium on Operating Systems Princi-
ples (SOSP), Monterey, CA, Oct. 2015.

68

118] C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran. Automated and modular
refinement reasoning for concurrent programs. Technical Report MSR-TR-2015-
8, Microsoft Research, Feb. 2015.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, Oct. 1969.

[20] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 26(1):100-106, Jan. 1983.

[21] IEEE (The Institute of Electrical and Electronics Engineers) and The Open
Group. The Open Group base specifications issue 7, 2016 edition (POSIX.1-
2008/Cor 1-2016), Sept. 2016.

[22] C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems (TOPLAS),
5(4):596-619, 1983.

[23] G. Keller, T. Murray, S. Amani, L. O'Connor, Z. Chen, L. Ryzhyk, G. Klein,
and G. Heiser. File systems deserve verification too. In Proceedings of the 7th
Workshop on Programming Languages and Operating Systems, Farmington, PA,
Nov. 2013.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an OS kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (SOSP), pages 207-220, Big
Sky, MT, Oct. 2009.

[25] D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V hypervisor with
VCC. In Proceedings of the 2nd World Congress on Formal Methods, pages 806-
809, 2009.

126] X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107-115, July 2009.

[27] P. W. OHearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271-307, Apr. 2007. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.12.035.
URL http://dx.doi.org/10.1016/j.tcs.2006.12.035.

[28] D. Ongaro and J. Ousterhout. In search of an understandable consensus algo-
rithm. In Proceedings of the 2014 USENIX Annual Technical Conference, pages
305-319, Philadelphia, PA, June 2014.

[29] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.
Acta Informatica, 6(4):319-340, 1976.

69

1301 V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable

web server. In Proceedings of the Annual Conference on USENIX Annual Tech-

nical Conference, ATEC '99, pages 15-15, Berkeley, CA, USA, 1999. USENIX

Association. URL http://dl.acm.org/citation. cfm?id=1268708.1268723.

[311 J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
pages 55-74, Copenhagen, Denmark, July 2002.

[321 I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-grained

concurrent programs. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI '15, pages 77-87,

2015.

[33] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button

verification of file systems via crash refinement. In 12th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 16),

pages 1-16, GA, 2016. USENIX Association. ISBN 978-1-931971-33-1.

URL https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/sigurbjarnarson.

[341 K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates. In

Proceedings of the 23rd European Symposium on Programming Languages and

Systems, pages 149-168, 2014.

1351 A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory with
ghosts, protocols, and separation. In Proceedings of the 2014 A CM International

Conference on Object Oriented Programming Systems Languages & Applications,

OOPSLA '14, pages 691-707, New York, NY, USA, 2014. ACM. ISBN 978-1-

4503-2585-1. doi: 10.1145/2660193.2660243. URL http: //doi . acm. org/10.

1145/2660193.2660243.

[361 A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta. Design,

implementation and verification of an extensible and modular hypervisor frame-

work. In Proceedings of the 34th IEEE Symposium on Security and Privacy, San

Francisco, CA, May 2013.

[37] P. Wadler. Monads for functional programming. In Advanced Functional Pro-

gramming, First International Spring School on Advanced Functional Program-

ming Techniques- Tutorial Text, pages 24-52, London, UK, UK, 1995. Springer-

Verlag. ISBN 3-540-59451-5. URL http://dl.acm.org/citation. cfm?id=

647698.734146.

1381 S. Wang. Certifying checksum-based logging in the RapidFSCQ crash-safe filesys-

tem. Master's thesis, Massachusetts Institute of Technology, June 2016.

70

[39] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson. Verdi: A framework for implementing and formally verifying dis-
tributed systems. In Proceedings of the 2015 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 357-368, Port-
land, OR, June 2015.

[40j J. Yang and C. Hawblitzel. Safe to the last instruction: Automated verification of
a type-safe operating system. In Proceedings of the 2010 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), pages
99-110, Toronto, Canada, June 2010.

71

