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STACKEL SYSTEMS



STACKEL SYSTEMS

The following three topoics are closely connected

by Stédckel systems, coordinate systems in which the fundas-

mental form 1is
K=n

as? = Z @%(dq.‘)z2

W=t
where @ is the determinant of the n° functions LP‘HL (qa );
g £ 0; K.A=1, 2,3, . . . . .n, a.nd.fﬁ‘,(1 is the minor
of the element Y1 (ay): first, the separation of the
varizbles in the?Hamilton-Jacobi equation which leads to
Stlckel systems, second, the finding of geodesic lines by
quadra*tures and quadratic first integrals, and third, con-
focal quadrics and the generalization of certain well known
proverties which they possess to Riemannian 3-space. This
vaper is a nistorical resume of what has been accomplished
in these three fields insofar as the work done has any
direct connection with Stdckel systems.

In 1839 Jacobi(l) used the following substitu-

tions for finding the equation of the geodesic lines on

the ellipsoid:

where a1, 85, a.3 are real, vositive constants and.

aj< 8x< 2y



x, = */;,1 / (ag—a;) sinq"fa,z cos®y + an sin®y - aq

— .
vago cos@Psin Y

M
M)
Il

X, = “/as / (az-a.l) costl"‘/a.‘.3 - aq coszq) - a, singl.P

Leandq) are the coordinates of any point on
the ellipsoid, which may be shown to be the same as giving
a point on the surface as the intersection of the two lines
of curvature on which it lies( the lines of curvature being
the intersection of the ellipsoid with all confoczl hyper-
boloids). ’

When the above substitutions are made the geo-

desic lines are given by the eguation

i ( Ya, cos®p - a, sin®¢pa
‘}“/a.s - ay cosgcf - ag singlf ‘/(ag—al) coszlf -PA

‘/az coszty + az sin®@ 4 W

v 2 . 2 oo 3
ap cos“Y + a; sin®Y - a, (2 ay) sin®y + 24
where X a.ndﬂ are the two arbitrary constants of integration.

Later, in 1842, Jacobi(2) found the equation of

the geodesic lines on certain n-dimensional surfaces (a

generalization of ellipsoids) by means of general ellic-

tical coordinates.

The surface is given byv:



Y i

x 2 x 2 x 3
S s < S |
a.1+k a.2+A. a,n-l-h
where ay, 8, - - . . a, are positive, real constantes,
and a;< as< e e . . <ah.

For any fixed point on the surface, this is an

equation of the nth degree in A which, it may be oroved,

has n real distinct roots. If we let the roots be desig-

nated by kl, kz, .. ln where hl< K2<'K3<'. . . .<’Kn,

then from the set of equations

i=11, 2, . . . n.
by the successive elimination of xz terms we may obtain

the following expressions

(ay+r)(ag+rg)(ay+rg) - - - - - - (ai+7\p)
.. (ai-ai_ﬁTai—ai+i).. @;-a,)

I.z =
i (a.i— ag)lai- 3.3) .

Differentiating this expression and dividing

through by xiz we find




v . o=M =" 2
Xm
+ 2 § aA, dA_
¥, 5= -a=f (am+ks) (am*.KI‘)

By a theorem of Jacobi's

W= xmz
M. = —_m
1 E 3

S =1 (am+KS)

_ (Ag=Ay) (Ag=Ag) ..... (A=A ) (A=A q) ... C )

(agtrg)(agrhy) ~onvninonnnnn. (ap*hg)

and
Y= N x 2
= =0 T £ s
(a.m+ks) (a,m+}\.r)
w=14
=N 2 m=N 2
Sl Z dxm - Z MmdAm
M=t wa=1
or
-y = d_xm 2 wes N dhm 2
8T = ¢ (=) = z My (g
oy x e
Wt =

But

QT D . ai
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A=V 2 = 2
8T = (" =g )L (T
; Ty ,.‘_Z,.Mm km)
_ (a1+km)(a2+hm) ................... (an+>«.m) (w)3
A=) g=Ag) oo (A=A V(A=A 1) - (Agp=r)  m

which is an eguation in which the variables sevarate.
If we consider the surface under consideration
as tne surface Kl = constant, then tne general =solution

of such an equeation is

_ oW
W(}\zs A'3; ot }\n’ “1’ "\2; ¢ . '«n—l) i-,-'=:_ o )"j_ d-xi L)
wheredl, 0(2, - . &, 4, are arbitrary constants.

The equations of the geodesics on this surface

are

>R
= . i =2, . . . . . n-1
a«i Pl 1

where the pi are arbitrary constants.

In 1846 Liouville(3) found the eguations of the
trajectories of motion and the time on a surface whico has
a line element of the form

2 _ 3 2
as? = {K(ay) - Alag) Haa,® + aqy® |
and the force function is of the form
f(aq) - glay)

In this case the equations of mction =ay be



integrated, and the trajectories are given by

dq1 dqz

*f2f(q1) + C (q;) - & /a - 2g(qy) - CAlqy)
where A is an arbitrary conetant.
Then the geodesics are found by setting U = O,

that is by setting f(ql) and g(qz) = 0.

Liouville then takes up some applications of
this method, namely the cases when a mass point moves in
a plane, on a sphere, on an ellinsoicd (wnich leads to
Jacobi's elliptical coordinates) and on a surface of
rotacion.

In a second paper the same year Liouville gives
a method for solving the oroblem of the free motion of a
mass point in 3-space, where the force function is of tke
form U = U(xl, Xg, x3).

Jacobi has shown (Liouville's Journal, Vol. III
p. 81) that a sufficient condition for the finding of the
trajectories of motion is the existence of a function
®=@(x1, Xo, x3) containing three arbitrary constants
A, B, C, distinct from those which can be formed by

addition, which satisfies the equation

2 2 2
(%9 +(%9 +(%; = 2(U+ C) .

Then the equations of the trajectories and time



are

a®_ ' 4O_ ' d®_ :
as - A a8-B, G-t +C

] t ]
where A , B and C are constants.
Liouville shows that by the introduction of
elliptical coordinates such a fun;tion.C)can be found,

when U has the form

g o =& @) - (€5 F) gle) - (@%-4E) n(w)
(%~ 28X %~ )P~

where @, 44, © are the elliptical coordinates given by

X X X
1 2 3
+ - =1
2T B BT B
2 2 2
x, xg b _
52 2 2 2 & °©
Then
(:) 5— J/Zf(e) +A+B3+a3c?
=\ a
g (°—b2) (p2~c2)

4

JdN/zg(») - A -B2 .3
+
(2-v)(c2-_B)

2 z
fvaBh(0)+A+B + 3C

(%= ) (c2=0P)



If we set f(P), g(u), and h(9) = O in the above

integral, then the equations of the geodesics are given by

a®_ ' a®_ o
T A aB - B .

In 1887 Rostchatius(5) found out what the force
function must be in order that the Familton-Jacobi equation
expressed in generalized elliptical coordinates permit the
separation of variables.

In 1880 Morera(6) proved that the Hamilton-Jacobi
equation (for n = 2) permits a separation of variables if

it is of any one of the following forms:

2 2
Wl + Wz

H(a,) + Al(qy)

(qq) +v
I _ {/u ql + (qZ; +q}= 0

K (qq) + Ala,

II a) E(ql)wl2 + 2F(q1)W1W2 + G(ql)wz2 - ar“ (ql) _ck}= 0
b) E(qu)W,2 + 2F(an)W W, + 6(ax)W,2 - 2{Tl(ay) +«}= o0

where Wi = Wl(qlidns)

Wz = Wz(qz;d'p)

and da.ndp are two arbitrary constants.

Just atout this time there appeared a number of
discussions of the intezral equations resulting from the
separation of the variables in the Hamilton-Jacobi equation,

namely, the disdussions of Weierstrass(4) (1866), Stédckel(7)



(1885) and Staude(8) (1877).

In 1887 Morera(9) showed that if an equation of
the general form F(W,, wz; dq > qz) = 0 permits a separ-
ation of variables, then it is necessary and sufficient
that there exist a functional equation of the form

CiWF, 7, a)), X(F, Wy, o)) =o0.

Thise does not appear to be a very useful fact, however,
since the imvortant question is whether or not the vari-
ables in a given equation separate.

In 1890 St#dckel(1l0) proved that for Liouville
surfaces, if the force function is of tne form considered
by Liouville in 1846(3), the variables in tne Hamilton-
Jacobi equation separate. Conversely, if the Hamilton-
Jacobi equation (n = 2) allows a separaticn of variables,
then the line element can be put in Liouville's form.

The first paper which deals with St#ckel systems
as such (Liouville systems, systems in which ds2 =
§)((q1) + K(qu}{dqlz + dq22 }, and elliptical coordinate
systems being special cases of Stdckel systems) is Stlckel's
paper of 1891(11). Here he considers the possibility of

separating variables in the Hamiiton-Jacobi equation

. 1 H=n 3 3
= 5 —_ - + A =
H 5 E Ak(apk) (M+<) =0,
H_—.l
which has associated with it the line element
=N
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Ay is a function of Py» Pgy = « - - - - Pp»
is the force function, also a function of P1s Pgs

Pp» and 1 is an arbitrary constant.
A general solution of the Hamilton-Jacobi equation
is
M=

W=
E oW E
H=1

N=i
x
If the variables in H separate, then

w
g-;—-: w“ (p" Gl, dz, e e s . «n)

and there must exist n(n+1l) variables%k(p ) where 4 =

1, 2,3, .. . . .n,and A =0, 1, 2, 3, . . . . . n, such
that
]
Ay , 2 R W ,
@ ? @ g
HK=ar

where @ =l Qﬂrk| = Z;}fnl(PH) ¢,{

r < X. 4
1]
g = E pro(p“) D .
K
St#ckel reaches this result by substituting in
" for 2% ite value W,( < _)
Jpx pr’dl)xzi . M . - . n ’

then differentiating with respect to the ©8's.
K=N

3w, 2 1
NS
~, Noocte
K=tz \O '#l

=1
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[N K.—-” <
W, "V
settinglgd;:'l= QR = an.k QK
K=1
Q
Ac=2 g

*
Substituting these values of A 4 back into H we find that

if the variables are assumed separable then

K=~ 2

from which the above results follow.

The remainder of the paper is taken up by a
discussion of the integral equations resulting from such
a separation of variables.

Under certain assumptions they are given as

n-fold periodic functions of the time.
The geodesics are found by settingl] = O, then
SW st eve - ) .
. . . . n)are the required equations.

Se.= Pulu= 2, 5,
In 1893 Stédckel(l3) generalized the fact that

surfaces on which the line element is reducible to the
form of Liouville admit (besides the integral of tne funda-

mental form) one homogeneous integral of the second degree

in the velocities.
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If the line element on a surface is reducible

to the form
K=~

as® = Z K?I(dq,\)g ,

M=
and-—ﬂ = constant, the Hamilton-Jacobi equation associated

with this line element is

where

@ =' P (qk)l =§”('PK7\ Ber >

Kas
as defined in the previous paper.
If we assume that
1 oW 2 =
é‘(‘a_q';) =Ll’m°‘.1-’~€’n<-:.°%_1--> ’“""CPKN I

arbitrary
where c(l, oﬂz,o(s, Y are/constants, then a

general solution of H* is

o
W= Z/A/‘Fkldl +‘efz.‘z+ ot ""‘fkn"n qu

H:l

But 3T=3W=J q and

3 ik ‘)qK ¢K1
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Therefore we have of necessity (n - 1) guadratic

first integrals

The term A = 1 is omitted since this gives us only the

integral of the energy.

Then the problem may be reduced by quadratures

and the equations of motion are

oW
5, = T -¢
AW _
ao:.._"g""‘
where <= 2, 3, . . . . n and 7 and flare arbitrary

constants. If in our original equation H‘ we take /]= o,
then we get the egquations of the geodesics.

In 1893 Stédckel(1l4) connected together the idea
of "analytical equivalents" as given in an earlier paper(1l2),
a special class of motion of a point in 3-dimensions, the
integration of the Hamilton-Jacobi equation through separ-
ation of variables, the solutiorn of the integral equations
thus obtained by means of n-fold periodic functions, and
a class of motions of a point on an n-dimensional surface

which corresponds tc the Jacobian motion on a surface of
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rotation. By the same line of reasoning which Stédckel
used in 1893 to show the existence of (n - 1) guadratic

first integrals belonging to the equation

. il 2
H = %é.z"—l(‘f—“;‘) - M+aty) = 0

when Il = constant, he used again in 1895(15) to show

1 = Z q’ko Dres

we still have (n-l) quadratic first integrals, this time

that when

of the form

Eagiﬁ»q“? = ‘%} +O A =2, 3,

=N
where W, = D Prolay) Byy -
=1
He then generalizes this result still farther,
using the same type of proof given in 1893, tc include

the case when the position of the mass point is given by
the r quantities

9331s Q12> - - - - - 9m
Q21> 922° - - - - - 92n2

Qpy> qn2’ R qnhn
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In this case we have

;Z A AW dw

2 Re <

Cpc=1 =1 ekkaq“ équ-

= Pro * Pri™i v - - ce e P,
and e Pr=hye SGc=hy
gt = 1 Z Pu1 A S W S W
2 @ KeSeda q
N=1 Cx=1 Q-K‘=l oK a keka KQ—K

Wy

There must then exist (n-~1l) guadratic first

integrals of the form

=N f‘zhkq—x_‘ l)g
1 LN B . .
N=1 CPx="' Sx=1
= ‘%& oA
A=2,3%, . . . . . n.

Tthe minvor

R cotaclor Theé i )
Bup,w; 1S the mems® of A"t’k"k\‘-dl‘rldeq by the determinant

of the Ake;tkterms,wnerefkgvk =1, 2, . . . . . hn’§
and the other symbols are those defined irn the earlier

papers discussed in this resume.

This enables one to find new line elements which

rermit the finding of the geodesic lines by gquadratic
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first integrals.

Stdckel generalized the above results still
farther in a paper published in 1897.

In 1897 St#dckel also showed that the results
stated in 1890 are valid for complex as well as real
gquantities. The same year Painlevé(lQ) reached indepen-
dently the sazme conclusions Stéckel arrived at in 1890.

In 1897(20) Levi Civita discussed the dynamical

p«oblem which admits a guadratic first integral of the form

= C X_ X
H rs °r °s R

A necessary and sufficient condition for the

existence of this integral is

qu Cgt) = O
Using thie and the fact that the principal directions are
given by
lcst-Pastl =0
Sind

wE mew Sme- the equations
I PP gyt (P ¥y + (B= ) in = 0

h, i, j =1, 8, . . . . nj h#1i # j

9Cn
IT aTi=2(Ph"Pi)‘rihh
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where the f’i (i =1, 2, . . . . n) are the directions
given by setting the determinant l Cgt — ast\ = 0.

If all these roots are distinct, then there are
(n-1) quadratic first integrals, the solution corresponding
to the Stdckel case, which may be found by making the
assumption that the congruence of reference is normal.

In this case I is fulfilled identically and II gives the
Stdckel results.

An investigation as to the form of the geodesics
on surfaces whose line elements can be put in the Liouville
form was given by St#ckel in 1905(231).

In 1911 J. Hadamard(22) considered the converse
problem of finding the equations of motion, that of deter-
mining the functions in a given set of equations of motion.
Here he uses a theorem of function theory which he had
set up prior to this.

In 1916 Arwin(23) gave a new proof of the
Hamilton-Jacobi, and a discussion of the integration of
the equation of the geodesics on a surface.

In 1523 E. Turriere(24) co.nfirmed the fact that
the equations of motion, in Liouville and St#ckel cases,
may actually be solved by quadratures.

In 1823, a paper by Weinacht(25) showed the

connection between Stlckel systems and confocal quadrics.
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Weinacht proved that each separable mechanical problem
of the motion of a mass point in 3-space must come under
Stédckel's orthogonal case, and must be separable through
the use of elliptical coordinates or their degenerates.
In other words the only orthogonal systems of Stédckel

in euclidean 3-epace are the confocal quadrics and their
degenerates.

In 1927 Drach(26) discussed Liouville elements
and algebraic integrals of the equation of the geodesics.
Later the same year he considered the case of Liouville
surfaces which admit at least two first integrais.

A paper by Blaschke(27) generalizing certain
well known properties of confocal quadrics to Riemannian
space whicn leadsto Stlckel systems was published in
1927. This work is ircluded in a later paper which will
be considered farther on.

At this point a paper by Robertson(28) appeared,
ccnnecting Stéckel systems with quantum mechanics. Given

the Schrédinger wave equation

i=n
P-) B QY 2
JH2— (F 2) +x° (E-VW =0
rre i axi Hi aAi
where H = Hl c e e e . Hn’ Robertson proves tnat if tnis

equaticn can be solved by the separation of variabtles,

k|
.
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that is if a solution of the form ’]Xi (xi) exists

then the following conditions must be fulfilled.

(1) The functions Hiz must be of the St#ckel form.

L=

f(x.)
(2) V= Z—_———;;—

=1 Hi

H.
p— 1 3 1
(3) = I _TEET , where (P is the determinant of

tbhe Stdckel functions.
In 1528 Blaschke(29) continued his earlier work(28)

of generalizing certain properties of confocal quadrics

to the coordinate surfaces u, v, w in Riemannian space.

If we assume that Ivory's diagonal property

holds for the coordinates u, v, w, that is, if the distance

between the points (uo, Vo wo) and (ul, Vi, wl) eqguals
the distance between the two points (uo, Vs wl) and

(ul, Vi, wo), then the line element must have Stidckel's

The proof of this theorem is as follows:

form.
d32 = edu2 + gdvg + hdwz .
ool rof
If D is the geodesic diagonal
oil A8 between (0,0,0) and (1,1,1),
oo 190
assuming the diagonsl property
stated above tc nold
o e




= ¢ Su dv Qw
dD=e g u+glil v+hF w
9D _ . du = e Qu
E) ds ] 111 ds_| 110
D _ ,dv _ 4y
v~ & ;,111 = B ds] 110
Setting e%=lf , f%:'=ql’ g%= , it may be

proved that (= f(r), W= Wiv) , D= (w).

But if the point (0,0,0) has no special position
there must exist a two parameter family of geodesics
obeying these eguations. That is

U =10 (u; Cy cg)=‘fz
V=1V (v Cy» 02) =‘~|’2
W=w(w; c;, cp) = W3

But

U v w o_

s tF Tt z = 1

2] \'J w

1 1 1 _

e * f * g 0

_9u _oV w = OW

where Ul —a—cl , Vl -8—01 , ﬂl 3¢,
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_3U

, €etc.
ICy

where U2

Solving these two eguations for the reciprocals
of e, £, g, we find that the line element under consider-—

ation must have the Stdckel form which ie in this case

v 3

|

duz dv2 dw

V. + +
U; v; ; Q’zvl‘vzwl) (w U,- WU [U1V2-Ue7y)

U
as® =| U

H

Blaschke also proves the converse of this theorem,
which is that Stdckel's line element implies Ivory's
diagonal property.

In the second part of the paper he shows that

on each surface W = constant the parameters u and v are

Licuville parameters.

The third theorem proved is that the common
geodesic tangents to any two of the given coordinate

surfaces form a system which a family of parallel sur-

faces intersect orthogonally. —'f/"””,,/
Blaschke also gen- o
eralizes Staude's principle o\

for confocal ellipsoids. If

= = v_ are tw
u u,, Vv o o of

the coordinate surfaces under

cansideration, and AB their

line of intersection; CD and
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EF are two surface geodesics (tangent to AB), CR and ER
are two space geodesics tangent to the surface geodesics.
Then, if we consider an inelastic string passed through
a loop at R along the space tangent to E, along the sur-
face tangent to 7, then along tne line of intersection to
R and back to R passing through C, this loop at F can be
moved only on the surface V = constant, without spoiling
the tangent contacts or breaking the string.

The last proof in the paper is a geometrical
proof of Weinacht's theorem on Stéckel systems in euclidean
3—-space.

In 1932 W. Vogelsang(30) investigated tne case
in a Riemannian space (n = 3) when the comwmon geodesic

tangents to two ortnogonal surfaces form a normal congruence

and proved that it is sufficient that the space have
Stdckel's line element. In this case tne surfaces con-

sidered are used as coordinate surfaces. Secondly nhe

proved that if all components of tne curvature tensor

with three different indices vanish, then the line element

must be Liouville's. In the tnird part of his paper he

proves that the only solutions to the first vroblemr in
euclidean 3-space are the confocal quadrics.

In 1934(31) Eisenhart continued on witn toe
connection between Stdckel systems and cquantum mechanics.

First he proves that the qJCondition of Robertscn is
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j = 0, where Rij is the Ricci tensor
used by Einstein. His second theorem, which is really

eguivalent to Ri

Weinacht's theorem, is that the only o¥tnogonal coordinate
systems in which the 3-dimensionral Schrédinger wave
equation can be solved by sevaration of variables are
the confocal quadrics and their degenerates (one or more
families consisting of planes). The last part of this
paper snows that both these results can be generalized
to include spaces of higher dimensions.

Later, in 1935. Eisenhart(32) considered Sté#ckel
systeme in connection with conformal spaces. Given a

Riemannian n-space witn the fundamental form

e=N

as® = > m? (ax;)?,

=1

he investizates the case when

ﬁia - e_2<l- H, 2°
“ i = 1,3, . . . . n)

are the coefficients of the fundamental form of an
euclidean n-space, in which case the Riemannian space is

confdrmally flat. By using the results of his previous
+ = _ 26— . = _
paper(3l) and the facts that 8ij = e g;; and Rij =

i 5 B (A _ a

where &5 is the fundamental tensor of the Riemannian

J
space; Gfi.==§:‘ % G_»'ij is the second covariant derivative
i
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of U with respect to the g's,

G ij &G 9G” i g .
X X

he finds three necessary conditions. Among the solutions
of the equations giving these three conditions are
Stlckel systems for spaces of constant Riemannian curva-
ture.

The papers listed here all show now St#ckel
systems connect together various problems in ordinary
mechanics, quantum mechanics and differential geometrTy.
Of particular interest from the point of view of geometry
are the following facts: first, the generalizations of
many well known properties of Liouville surfaces to
Stldckel spaces; second, the finding of geodesic lines by
quadratures and quadratic first integrals; and third, the
fact that Stéckel systems in euclidean 3-space are the
confocal quadrics and their degenerates. From the point
of view of ordinary mechanics the separation of the
Hamilton-Jacobi equation and its connection with St#ckel
systems is the interssting piece of information, while
from the point of view of quantum mechanics solving the
Schrédinger wave equation in tnree dimensions and the
proof that the confocal quadrics and tneir degenerates
are the only coordinate systems in euclidean 3-space in

which the Schr#dinger wave eqguation can be solved is

important.
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