
Design and Implementation of Low-latency, Low-power

Reconfigurable On-Chip Networks

by

Chia-Hsin Chen
B.S., National Taiwan University (2007)

S.M., Massachusetts Institute of Technology (2012)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology
OFTECN OGY

February 2017

Massachusetts Institute of Technology 2017 MAR 13 2017

All Rights Reserved. LIBRARIES

ARQWIVE8

Author.............................. Signature redacted
Department of Electrical Engineering and Computer Science

dt tS October 14 2016

Certified by..... Signature redacted
Li-Shiuan Peh

Professor

) Thesis Supervisor

Accepted by Signature redacted
/ U(Leslie A. Kolodziejski

Professor
Chair of the Department Committee on Graduate Students

Design and Implementation of Low-latency, Low-power

Reconfigurable On-Chip Networks

by

Chia-Hsin Chen

Submitted to the Department of Electrical Engineering and Computer Science
on October 14, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

In this dissertation, I tackle large, low-latency, low-power on-chip networks. I focus on
two key challenges in the realization of such NoCs in practice: (1) the development of
NoC design toolchains that can ease and automate the design of large-scale NoCs, paving
the way for advanced ultra-low-power NoC techniques to be embedded within many-core
chips, and (2) the design and implementation of chip prototypes that demonstrate ultra-
low-latency, low-power NoCs, enabling rigorous understanding of the design tradeoff of
such NoCs.

I start off by presenting DSENT (joint work), a timing, area and power evalua-
tion toolchain that supports flexibility in modeling while ensuring accuracy, through
a technology-portable library of standard cells [108]. DSENT enables rigorous design
space exploration for advanced technologies, and have been shown to provide fast and
accurate evaluation of emerging opto-electronics. Next, low-swing signaling has been
shown to substantially reduce NoC power, but requires custom circuit design in the past.
I propose a toolchain that automates the embedding of low-swing cells into the NoC
datapath, paving the way for low-swing signaling to be part of future many-core chips [17].
Third, clockless repeated links have been shown to be embeddable within a NoC datapath,
allowing packets to go from source to destination cores without being latched at interme-
diate routers. I propose SMARTapp, a design that leverages theses clockless repeaters for
configuration of a NoC into customized topologies tailored for each applications, and
present a synthesis toolchain that takes each SoC application as input, and synthesize a
NoC configured for that application, generating RTL to layout [18].

The thesis next presents two chip prototypes that I designed to obtain on-depth
understanding of the practical implementation costs and tradeoffs of high-level architec-
tural ideas. The SMART NoC chip is a 3 x 3 mm2 chip in 32 nm SOI realizing traversal
of 7 hops within a cycle at 548 MHz, dissipating 1.57 to 2.53 W. It enables a rigorous
understanding of the tradeoffs between router clock frequency, network latency and
throughput, and is a demonstration of the proposed synthesis toolchain. The SCORPIO
36-core chip (joint work) is an 11 x 13 mm 2 chip in 45 nm SOI demonstrating snoopy

coherence on a scalable ordered mesh NoC, with the NoC taking just 19 % of tile power
and 10 % of tile area [19, 28].

Thesis Supervisor: Li-Shiuan Peh
Title: Professor

Acknowledgments

First of all, I would like to thank my research advisor, Prof. Li-Shiuan Peh. It was really

nice working with her and learning from her not only technical knowledge but also

attitude in life and in research. Thanks to her, I had the chance to attend Princeton and

MIT, and to participate in tons of interesting projects in addition to my own research

projects.

I would also like to thank my committee members, Prof. Joel Emer, Prof. Srini

Devadas and Prof. Vivienne Sze, for helping me shape the thesis as well as providing

insightful feedback and comments on my thesis.

I thank all my group mates, Bin Lin, Niket Agarwal, Kostas Aisopos, Manos Kouk-

oumidis, Tushar Krishna, Sunghyun Park, Bhavya Daya, Jason Gao, Woo Cheol Kwon,

Pablo Ortiz, and Suvinay Subramanian. It was a great experience that I collaborated with

most of them on plenty of projects throughout my long 8 years of Ph.D. Specifically, I

would like to Tushar and Suvinay for all the endless, sometimes last minute, technical

discussions; without them, my thesis would not have any progress.

Even though I was an EE student in college, but there are just so many things in

circuits and measurements that I had not learned. Thanks to Chen Sun, Arun Paidimarri,

and Phillip Nadeau, I learned a lot on digital circuits, implementations, and measurements.

I even get my first job as a digital circuit designer/engineer.

Studying aboard in the US and being away from home are tough and lonely. I thank

Hung-Wen Chen, Yin-Wen Chang, Max Hsieh, Yu-Chung Hsiao, Dawsen Hwang and

Hsin-Jung Yang from MIT, Joecy Lin, Alex Huang and Jeremiah Tu from my chorus

group, as well as Karen Chang, my best roommate, for their accompany and all the fun

moments together. Hsin-Jung Yang is my best friend at MIT; we had a great time together:

having meals, watching soap operas, chitchatting, discussing all sorts of matters including

research ideas, and supporting each other during deadlines. She is the first person I would

turn to whenever I am in a bad mood or encounter any obstacles. I would definitely

miss the daily fun snack time we had together. Even though Karen Chang and I were

roommates for only a few months, she accompanied me and filled me with pure positive

energy when I was putting on my final sprint toward my thesis and defense, and dragged

me out of my room to try out many interesting and fun things that I probably would

never attempt. Jeremiah Tu lured me into playing LoL, which helps me make good virtual

friends, and served as my best way to relieve stress and release tension.

Even though I have been away from home for 8 years with only few short visits,

my deepest gratitude goes to my family, my parents and my brother, for their support

throughout my life and always being by my side. Without them, I will not be here and

become Dr. Chen.

Lastly, this year is not only the year that I become Dr. Chen but also the turning

point of my life. I thank all the people who help, support and encourage to be myself

and smoothly transition from Owen to Amy. I appreciate all the efforts they make to

quickly accept my new identity, let me become the person I want to be, and show no

discrimination. I am extremely grateful to have them around me. :

Contents

Abstract iii

Acknowledgments v

Contents vii

List of Figures.......................xiii

List of Tablesxvii

1 Introduction 1

1.1 Network-on-Chip . 2

1.2 Dissertation Overview . 3

1.2.1 DSENT - Design Space Exploration of Networks Tool (Chapter 3) 3

1.2.2 Low-Power Crossbar Generator Tool (Chapter 4) 4

1.2.3 SMARTapp- Low-Latency Network Generator Tool for SoC Ap-

plications (Chapter 5) . 4

1.2.4 SMART Network Chip (Chapter 6) 5

1.2.5 SCORPIO - A 36-core Shared Memory Processor Demonstrating

Snoopy Coherence on a Mesh Interconnect (Chapter 7) 5

1.3 Dissertation Contribution . 6

1.3.1 NoC Toolchains . 6

1.3.2 NoC Chip Prototypes 7

2 Background 9

2.1 Network-on-Chip (NoC). 9

2.1.1 Topology 10

2.1.2 Routing Algorithm 10

2.1.3 Flow Control Mechanism . 11

2.1.4 M icroarchitecture. 11

2.2 Low-Power Link - Low-Swing Signaling 13

2.3 Low-Latency Link - Opto-Electrical Signaling 13

2.3.1 Photonic Link . 14

2.3.2 Prior Photonic NoC Architectures 15

2.4 Low-Latency and Low-Power Routers 15

2.5 Reconfigurable NoC Topologies . 16

2.6 In-network Coherence and Filtering . 16

3 DSENT - Design Space Exploration of Networks Tool 19

3.1 M otivation . 19

3.2 Existing NoC Modeling Tools . 20

3.3 DSENT Framework . 21

3.3.1 Framework Overview . 22

3.3.2 Power, Energy, and Area Breakdowns 23

3.4 DSENT Models and Tools for Electronics 24

3.4.1 Transistor Models . 24

3.4.2 Standard Cells . 25

3.4.3 Delay Calculation and Timing Optimization 26

3.4.4 Expected Transitions . 28

3.4.5 Sum m ary . 28

3.5 DSENT Models and Tools for Photonics 28

3.5.1 Photonic Device Models . 29

3.5.2 Interface Circuitry . 29

7

3.5.3 Ring Tuning Models

3.5.4 Optical Link Optimization . . .

3.5.5 Summary

3.6 Model Validation

3.7 Example Photonic Network Evaluation .

3.7.1 Scaling Electrical Technology and

3.7.2 Photonics Parameter Scaling . . .

3.7.3 Thermal Tuning and Data Rate .

3.8 Summary

Utilization

4 Low-Power Crossbar Generator Tool

4.1 M otivation

4.2 Background

4.2.1 Limitations to current synthesis flow

4.3 Datapath Generator

4.3.1 Building Block Pre-characterization .

4.3.2 Layout Generation

4.3.3 Verification and Extraction

4.3.4 Post-characterization and Selection

4.4 Evaluation

4.4.1 Generated vs. Synthesized Datapath .

4.4.2 Case Study

4.5 Summary

5 SMART - Low-Latency Network Generator Tool

5.1 M otivation

5.2 Background - Clockless Repeated Links .

5.3 SMART Network Architecture

5.3.1 Router Microarchitecture

5.3.2 Routing

5.3.3 Flow Control

T

for SoC

radeoff

Applications

30

31

32

32

34

35

38

38

40

43

43

46

48

49

51

52

55

55

56

56

58

60

61

61

63

65

65

67

. 68

5.4 Tool Flow .

5.4.1 Physical Implementation

5.4.2 Application Mapping

5.5 Case Study .

5.5.1 Configurations

5.5.2 Performance Evaluation

5.5.3 Power Analysis:

5.6 Summary .

6 SMART Network Chip

6.1 Motivation .

6.2 Design Analyses of SMART on Process Limitation

6.2.1 Repeated Link

6.2.2 Data Path

6.2.3 Control Path

6.2.4 Summary

6.3 Chip Architecture

6.3.1 NIC and Tester Microarchitecture

6.3.2 Router Microarchitecture

6.4 Implementation Consideration

6.5 Evaluation

6.5.1 Setup

6.5.2 Area

6.5.3 Timing - Static Timing Analysis (

6.5.4 Timing - Measurement

6.5.5 Power - Simulation

6.5.6 Power - Measurement

6.5.7 Sources of Discrepancies.....

6.5.8 Insights

6.6 Summary

.TA) ...

69

70

71

72

72

73

74

75

77

77

79

79

80

81

83

83

85

86

90

91

91

92

94

96

98

100

100

101

102

.

7 SCORPIO - A 36-core Shared Memory Processor Demonstrating Snoopy

Coherence on a Mesh Interconnect 105

7.1 Motivation 105

7.2 Globally Ordered Mesh Network . 107

7.2.1 Walkthrough Example . 109

7.2.2 Main Network Microarchitecture 111

7.2.3 Notification Network Microarchitecture 115

7.2.4 Network Interface Controller Microarchitecture 116

7.3 36-Core Processor with SCORPIO NoC 118

7.3.1 Processor Core and Cache Hierarchy Interface 119

7.3.2 Coherence Protocol . 120

7.3.3 Functional Verification . 122

7.4 Architecture Analysis . 124

7.4.1 Performance . 126

7.4.2 NoC Design Exploration for 36-Core Chip 127

7.4.3 Scaling Uncore Throughput for High Core Counts 129

7.5 Architectural Characterization of SCORPIO Chip 132

7.5.1 L2 Service Latency . 132

7.5.2 O verheads . 134

7.6 Chip Measurements and Lessons Learned 135

7.7 Related W ork . 136

7.8 Sum m ary . 139

8 Conclusion 141

8.1 Dissertation Summary . 141

8.1.1 Development of NoC Design Toolchains 141

8.1.2 Design and Implementation of Chip Prototypes 143

8.2 Future Research Directions . 143

A SMART Network Architecture Targeting Many-core System Applications 145

A .1 M otivation . 145

A.2 SMART Router and Terminology 146

A.3 SMART in a k-ary 1-Mesh 148

A.3.1 SMART-hop Setup Request (SSR) 149

A.3.2 Switch Allocation Global: Priority 151

A.3.3 Ordering 152

A.3.4 Guaranteeing Free VC/buffers at Stop Routers 153

A.3.5 Additional Optimizations . 154

A.3.6 Summary . 155

A.4 SMART in a k-ary 2-Mesh . 155

A.4.1 Bypassing routers along dimension 155

A.4.2 Bypassing routers at turns . 156

A.5 Sum m ary . 157

Bibliography 159

List of Figures

1-1 Core count trend over the years . 1

2-1 Router Microarchitecture . 12

2-2 A typical opto-electronic NoC including electrical routers and links, and

a wavelength devision multiplexed intra-chip photonic link 14

3-1 DSENT Framework with Examples of Network-related User-defined Models 22

3-2 Standard cell model generation and characterization. In this example, a

NAND2 standard cell is generated. 25

3-3 Mapping Standard Cells to RC Delays 26

3-4 Incremental Timing Optimization . 27

3-5 Comparison of Network Energy per bit vs. Network Throughput . . . 36

3-6 Energy per bit Breakdown at Various Throughputs 36

3-7 Sensitivity to Waveguide Loss . 37

3-8 Sensitivity to Heating Efficiency . 38

3-9 Comparison of Thermal-Tuning Strategies at 16.5 Tb/s Throughput . . . 39

4-1 2-bit 4 x 4 crossbar schematic . 46

4-2 Logical 4:1 Multiplexer (a) and Two Realizations (b)(c) 46

4-3 Simplified datapath . 47

4-4 Standard synthesis flow . 48

Proposed Datapath Generator's Tool Flow

Schematic of Transmitter and Receiver . .

Transmitter Abstract Layout

Example Single-bit Crossbar Layout with 6 Inputs and 6 Outputs

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

Link

5-1 Mesh Reconfiguration for Three Applications. A

one-cycle. .

5-2 VLR Schematic

5-3 SMART Router Microarchitecture and Pipeline .

5-4 SMART NoC in Action with Four Flows (The r

arrow indicates the traversal time of that flow.) . .

5-5 Tool Flow .

5-6 One-bit SMART Crossbar

5-7 32-bit Tx Block Layout

5-8 Generated 4x4 NoC Layout

5-9 Performance .

5-10 Power Breakdown

6-1 Achievable HPCmna for Repeated Links at 1 GHz.

6-2 Energy and Area versus HPCinax for Crossbar . . .

6-3

6-4

6-5

6-6

Implementation of SA-G at Wi and Eut for 1D vet

Energy and Area versus HPCnax for 1D version of

Energy and Area versus HPCmax for 2D version of

Chip Layout .

11 links in bold tak

nmber next to eaci

.A-..........

SA-..........

.

.

SA-G

SA-G

4-bit Crossbar Abstract Layout with 1 Port Connecting to the

Selected Wire Shielding Topology

Example 6 x 6 64-bit Datapath Layout with One Link Shown

Energy per bit Sent of 64-bit Datapaths

Crossbar Area with Various Architectural Parameters

Five-port Router in a Mesh Network

Synthesized Router with Generated Low-swing Datapath . .

50

51

52

52

53

54

55

57

58

58

59

62

63

66

67

69

70

70

70

73

74

80

81

81

82

82

84

6-7 Node Microarchitecture

6-8 Router Microarchitecture.

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

Router Pipeline

Router Pipeline

Folded network with router pitchi

Area Breakdown

Router Critical Paths

Chip Critical Path

Flit/Credit Only Path Delay . . .

Flit/Credit + SSR Path Delay . .

Leakage Power Breakdown

Dynamic Power Breakdown . . .

Measured Power

6-20 Average Latency versus Injection 1

of lmm

ate

7-1 Proposed SCORPIO Network

7-2 Time Window for Notification Network

7-3 Walkthrough Example (from Ti to T3)

7-4 Walkthrough Example Cont. (from T4 to

7-5 Walkthrough Example Cont. (from T6 to

7-6 Router Microarchitecture

7-7 Notification Router Microarchitecture .

T5)..

T7)..

7-8 Network Interface Controller Microarchitecture

7-9 36-core Chip Layout with SCORPIO NoC . . .

7-10 36-core Chip Schematic

7-11 sync Test for 2 Cores

7-12 Normalized Runtime and Latency Breakdown .

7-13

7-14

7-15

Normalized Runtime with Varying Network Parameters .

Pipelining effect on performance and.scalability

L2 Service Time Breakdown (barnes)

84

. . . . 86

87

88

90

92

93

95

97

97

98

99

99

102

108

108

110

111

112

113

115

117

119

120

123

126

128

130

132

.

.

.

.

.

7-16 L2 Service Time Histogram (barnes) . 134

7-17 Tile Overheads . 135

A-1 SMART Router Microarchitecture . 146

A-2 Example of Single-cycle Multi-hop Traversal 146

A-3 k-ary 1-Mesh with dedicated SSR links. 148

A-4 SMART Pipeline . 148

A-5 SMART Example: No SSR Conflict 150

A-6 SMART Example: SSR Conflict with Prio=Local 150

A-7 SMART Example: SSR Conflict with Prio=Bypass 151

A-8 k-ary 2-Mesh with SSR Wires From Shaded Start Router 156

A-9 Conflict Between Two SSRs for No0 t Port 157

A-10 SMART_2D SA-G priorities . 157

List of Tables

3-1 DSENT Parameters . 24

3-2 DSENT Validation Points . 33

3-3 Network Configuration . 34

3-4 Default Technology Parameters . 35

3-5 Sweep Parameters Organized by Section 35

4-1 Inputs to Proposed Datapath Generator 49

4-2 Pre-characterization Results . 51

4-3 Performance of 1 mm Link of Two Organizations 55

4-4 Example Generated Datapaths . 56

4-5 Router Specifications . 58

5-1 Simulation Results of Max Number of Hops per Cycle 65

5-2 4x4 NoC Configuration 72

6-1 Chip specification . 85

6-2 Flit Link Length and Delay . 95

6-3 Clock Skew (ns) . 96

7-1 SCORPIO chip features . 121

7-2 Regression Tests . 123

7-3 Request Categories . 132

7-4 Comparison of multicore processors . 137

1-1 Terminology . 147

Introduction

Advances in CMOS technology have enabled increasing transistor density on a chip.

Due to the power wall, general-purpose computer architects have stopped using the

extra transistors to increase the complexity of a single processing core. Instead, they

have embraced a more power/area efficient approach, using the additional transistors to

increase the number of processing cores and run these cores in parallel to obtain higher

performance. Meanwhile, in the embedded domain, system-on-chip (SoC) designers

have also started adding more and more general-purpose/application-specific intellectual

128

64

Teraflops

Tile64

Tile-Gx

SCC Octeon IlIl

32 -

16

8

4

2

80286 80386

1980 1985

80486

1990

SPARC T3 SPARC TS

Westmere

UltraSPARCT1 Ce 0 Sandy Bridge
-T 0-* -0-W 652

UltraSPARTT2 Nehale SPARCT4 Ivy Bridge
K10 4p Bulldozer 0

Piledriver
K10 Westmere Ivy Bridge

Nehalem Sandy Bridge Haskell
Snapdragon

PS P6 K7 NetBurst

1995 2000

NetBurst Core

K9 Penryn

K8

2005 2010 2015
Year

Figure 1-1: Core count trend over the years

0

.0

E
Z

0

Chapter 1 - Introduction

property (IP) with the emergence of diverse computation-intensive applications over the

past few years, and this has intensified with the proliferation of smart phones. Figure 1-1

shows the number of cores on chip of some well-known architectures from Intel, AMD,

Oracle (Sun Microsystems), IBM, Tilera and others. Starting from 2004, the number

of cores has continued to increase. While desktop processors have employed 8 to 16

cores, high-throughput targeted processors have reached more than 48 cores. This trend is

expected to continue with future architectures incorporating tens or hundreds of cores.

1.1 Network-on-Chip

One or more on-chip networks (NoCs) are used to support efficient communication

among the cores. A decade ago, when the number of the cores was few, buses were

adopted from the off-chip network to serve as the communication medium. However,

as the number of cores increases, buses cannot sustain the ever-increasing bandwidth

demand and incur high packet delivery latency, which worsens the system performance

significantly. To overcome the shortcomings of the buses, two extremes (in terms of

crossbar radix size) of the NoC topologies are used: flat crossbar and ring. A flat crossbar

enables direct all-to-all communication between cores, providing both high throughput

and low delivery latency. However, the crossbar structure requires a large amount of

silicon and wiring resources, which grows quadratically with the number of cores. On

the other hand, while a ring does not suffer from the resource issue, its throughput is

limited and the delivery latency grows proportional to the core count in the system.

Systems with higher core count incorporate more complex network topologies, such

as meshes, to alleviate the resource and performance issues of rings and flat crossbars.

These topologies usually consist of several smaller crossbars and employ more direct

connections than rings between cores. The use of several small crossbars lowers the

complexity of the resource required for a flat crossbar from quadratic to linear in the

number of cores. Meanwhile, more connections between cores allow a lower network

diameter, allowing delivery latency to scale sub-linearly with network size. Throughout

1.2. Dissertation Overview 3m

this dissertation, I will refer to a small crossbar along with its flow control logic as a

router, and the point-to-point wires that connect the routers/cores as links.

While the use of routers could enhance the link utilization, which effectively reduces

the need of excessive amount of links and improves the throughput, routers also come

with some disadvantages. The more routers on the path from a source core to a destination

core, the more latency and power cost'. These costs are significant as compared to the

ideal scenario, where a path with the same length only consists of a link and no routers.

In the past ten years, many works have been proposed to improve NoC performance

while keeping its power consumption at a reasonable level. These works can be roughly

classified into four categories: topology, routing algorithm, flow control technique, and

physical implementation.

1.2 Dissertation Overview

This dissertation aims to make ultra-low-latency, low-power NoCs for future many-core

systems. Chapter 2 provides necessary background on NoC and an overview on signaling

techniques along with past research proposals for low-latency and low-power NoCs. The

rest of this section provides an overview of each project involves in this dissertation and

its associated chapter.

1.2.1 DSENT - Design Space Exploration of Networks Tool (Chap-

ter 3)

Opto-electronic links have been shown to have potential to replace copper wires as an

ultra-low-latency, low-energy interconnect for NoCs. However, architecting and exploring

of the design space for opto-electronic NoCs are difficult with the lack of fast, accurate

models that capture photonics and electronics. This chapter presents DSENT, a NoC

cost evaluation tool that provides timing, power and area information for both electrical

A unidirectional ring represents a worst case scenario, where a core intends to send a packet to the core
connected to the upstream router. The packet needs to traverse all other routers before it reaches the
destination, resulting a minimum packet delivery latency bound of N - 2, where N is the number of
cores in the network.

Chapter 1 - Introduction

and emerging photonic NoCs with a given set of NoC parameters. The tool is designed

to provide fast, yet accurate estimation (within seconds) to help researchers to quickly

evaluate various network proposals and their impact on the overall system. [108]

This is joint work with Chen Sun. I focused on electrical components' modelings

and validation, while Chen focused on photonic components' modeling. Specifically, I

developed models for electrical primitive cells and basic components that are essential for

any NoC designs and validated the models with the place-and-routed designs for various

architectural parameters using a commercial 45 nm SOI technology node.

1.2.2 Low-Power Crossbar Generator Tool (Chapter 4)

In addition to the opto-electronic signaling, low-swing signaling is another signaling

technology that can substantially reduce NoC power, but has required custom design

in the past. I identify that the datapath of a router, crossbar and link, is one of the

major power consumption source, and incorporate low-swing signaling techniques into

the datapath to lower its power consumption. As the existing VLSI tool chain does

not support low-swing circuit integration, I develop a tool chain along with a layout

generation tool that takes architectural parameters and generates a layout of a low-power

datapath integrated with provided low-swing circuits. [17]

1.2.3 SMARTapp- Low-Latency Network Generator Tool for SoC

Applications (Chapter 5)

Clockless repeated links can be embedded within a NoC datapath, allowing packets

to traverse from a source to a destination multiple hops away within a single cycle,

without needing to be latched at intermediate routers. These clockless repeaters enable

configuration of a NoC into customized topologies tailored for each application, what we

term as SMARTapp- In this chapter, I present the SMARTapp architecture, and I propose

a tool flow that takes SoC applications as input, synthesizes a NoC that reconfigures

its topology for each application, along with its register-transfer level (RTL) netlist and

layout. [18]

1.2. Dissertation Overview

1.2.4 SMART Network Chip (Chapter 6)

In addition to the SMARTapp, SMARTcycie, a joint work with Tushar Krishna (briefly

described in Appendix A), is a variant of SMART network that targets manycore system

applications. While both SMARTapp and SMARTcyce dramatically reduce the packet

delivery latency, this latency benefit relies on CMOS process characteristics and careful

physical implementation. To demonstrate its feasibility, I designed and implemented a

chip prototype of a 64-node SMART NoC, with switchable modes between SMARTapp

and SMARTcycie. In this chapter, I discussed the various decisions I made in the design

of the test chip, driven by detailed characterization of the design on the targeted process.

Furthermore, I present the silicon measurements that enabled an in-depth understanding

of the tradeoffs between router clock frequency, network latency and throughput.

1.2.5 SCORPIO - A 36-core Shared Memory Processor Demonstrat-

ing Snoopy Coherence on a Mesh Interconnect (Chapter 7)

Servers are moving toward shared memory many-core architectures, and NoCs have

been proposed as the communication fabric that can scale to handle such shared memory

many-core processors. However, power has been a limiting constraint, and low-power

scalable mesh NoCs have not been demonstrated to be able to handle the high bandwidth,

low latency requirements of snoopy cache coherent many-core processors. In this chapter,

I present the 36-core SCORPIO test chip that tackles this challenge - it incorporates

global ordering support within the mesh NoC, while maintaining low latency and low

power, bringing mesh NoCs into mainstream snoopy coherence many-core chips. This is

a joint project where I led the chip design and implementation. I will discuss the design

decisions made, present the RTL simulations that evaluate the scalability of the chip to 100

cores, the detailed timing, area and power analysis. The analysis showed that the 36-core

test chip can attain 1 GHz (833 MHz post-layout) at 28.8 W on 45 nm SOI, with the NoC

just taking up 10 % of tile area and 19 % of tile power, demonstrating that low-latency,

low-power mesh NoCs can be realized for mainstream snoopy coherence. [19, 28]

5 E

Chapter 1 - Introduction

This is joint work with Bhavya Daya, Woo-Cheol Kwon, Suvinay Subramanian,

Sunghyun Park and Tushar Krishna. I co-led the SCORPIO project with Bhavya Daya,

with her as the architecture lead while I was the chip RTL and design lead. Specifically, I

participated in the architecture design and oversaw the chip RTL implementation. I was

in charge of implementing the interface between the proposed network and commercial

memory controller, as well as some functionalities in the L2 cache controller. I performed

the physical implementation, taking the chip RTL to layout.

1.3 Dissertation Contribution

In this dissertation, I focus on two key challenges in the realization of such NoCs in

practice:

" The development of NoC design toolchains that can ease and automate the design of

large-scale NoCs, paving the way for advanced ultra-low-power NoC techniques to be

embedded within many-core chips.

" The design and implementation of chip prototypes that demonstrate ultra-low-latency,

low-power NoCs, enabling rigorous understanding of the design tradeoffs of such

NoCs.

In the following, I expand on my contributions in addressing these challenges in these

projects.

1.3.1 NoC Toolchains

9 I proposed and developed a fast, yet accurate electrical NoC timing, area and power

modeling tool. It is validated and shown to be within 20 % of circuit-level Spice simu-

lations. DSENT has since been incorporated within gem5 [gem5] and McPAT [70]

and widely used in the architectural community.

0 I developed a tool chain along with a layout generation tool that takes architectural

parameters and generates a layout of a low-power datapath integrated with provided

low-swing driver/receiver circuits. I proposed and developed a low-power crossbar

1.3. Dissertation Contribution

layout generation tool that enables, for the first time, the automated design of large-

scale NoCs with custom low-swing cells. It was the first demonstration of a generated

low-swing crossbar and link within a fully-synthesized NoC router.

* I proposed and developed a toolchain that synthesizes and configures a single-cycle

multi-hop NoC into customized topologies tailored for each application. It enables

the automated generation of a single-cycle multi-hop NoC given an application task

graph, automatically carried through layout, enabling significant reduction in packet

delivery latency for the targeted SoC applications.

1.3.2 NoC Chip Prototypes

" I designed and fabricated the SMART NoC chip prototype, demonstrating for the first

time through chip measurements that SMART enables up to 7 hops to be traversed

within a cycle, and can be realized at low area/power overhead. However, as the

critical path is stretched, reducing max frequency from 817 to 548 MHz, the overall

maximum delay savings reduce from 7x to (7 x 1.2ns/1.8ns = 3.2 x).

" I co-designed and implemented the SCORPIO chip prototype which showed that

ordering can be supported within a scalable, mesh NoC, realizing a 36-core snoopy

cache coherence with high performance (833 MHz post layout), at reasonable area

(10 %) and power (19 %) overhead.

7 E

Chapter 1 - Introduction

2

Background

In this chapter, we provide an overview of the necessary background on on-chip inter-

connection networks. In addition, we also present background on techniques that can be

applied to the network designs to achieve low-power and/or low-latency.

2.1 Network-on-Chip (NoC)

The network-on-chip (NoC) is a network that enables communications between various

nodes on the same chip, such as general processing cores, specialized cores, caches, as

well as memory controllers, etc. We define a stream of communication between two

nodes as a communication flow. If the flows or the flow patterns between any two nodes

are deterministic, then it is possible to design a tailored network, which is common in

the system-on-chip (SoC) domain. However, in other domains such as general-purpose

multicore processors, potentially any node would communicate with any other nodes

and a network that supports all-to-all communication is required.

The primary features that characterize a NoC are its topology, routing algorithm,

flow control mechanism and microarchitecture. We describe each of these briefly. A more

thorough discussion can be found in [27, 94].

Chapter 2 - Background

2.1.1 Topology

A NoC comprises a set of routers and links that connect the nodes on the same chip. The

topology is the physical connection of these routers and links. Some common topologies

are bus, crossbar, ring, mesh, cos and flattened butterfly.

The topology determines the minimum distance, or number of hops, between commu-

nicating nodes, where a hop is referred as the unit distance between adjacent routers. A

high hop count typically indicates a high network delay to deliver a message and this is the

issue that we tackle in this dissertation. The topology also determines the path diversity,

which is the number of alternate shortest paths between a source and a destination. The

path diversity improves the robustness of the network as well as the fault tolerance.

Crossbars and rings are popular topologies in current off-the-shelf multicore processors

and graphics processing units (GPU). However, as the number of nodes in a network

increases, a network with only a crossbar may be too complex and not feasible, while

the ring topology may not be able to fulfill bandwidth and latency requirements. As a

result, among all other topologies, the mesh topology is a popular topology used in many

research proposals [36, 42, 43, 110, 119], because of its regular structure and scalability.

We use this topology extensively in this dissertation.

2.1.2 Routing Algorithm

The routing algorithm determines how a message is forwarded in the network from its

source to destination. In general, routing algorithms can be classified into three categories,

i.e. deterministic, oblivious, and adaptive. While using a deterministic routing algorithm,

messages always traverse the same path for the same source-destination pair. These

deterministic routing algorithms are easy to implement at low area and power cost. On

the contrary, both oblivious and adaptive routing algorithms allow messages to traverse

different paths for the same source-destination pair. The difference between these two

algorithms is that the oblivious routing algorithm chooses a route without considering

any current network's state; while the adaptive routing algorithm uses network's state to

determine the route.

0 10

2.1. Network-on-Chip (NoC)

Dimensional-ordered routing (DOR) algorithm, or XY (YX) routing algorithm, is a

commonly used algorithm for the mesh network, which is simple and guarantees deadlock

freedom. While routing with this algorithm, messages are first routed along the X (or Y)

dimension and then along the Y (or X) dimension.

2.1.3 Flow Control Mechanism

The flow control mechanism defines how a message is forwarded in a network; more

specifically how network resources (buffers and links) are allocated. A good flow control

mechanism allocates these resources efficiently to achieve high throughput and low latency.

Flow control mechanisms can be classified based on the granularity at which resource

allocation occurs. Circuit switching allocates all the links along the route from the source

to destination at once for each message. Even though the circuit switching mechanism

achieves low latency and does not require buffers in the routers, it often leads to poor

bandwidth utilization. Mechanisms such as store-and-forward and virtual-cut-through

dissemble messages into packets that can be fitted into the router's buffer, interleaving

them on links by allocating resources at packet level to improve utilization.

The packet can be dissembled into an even smaller unit, called aflit. Virtual channel

(VC) flow control is an example of flow control that allocates buffers and links at the flit

level. Unlike packet-level flow control mechanisms that require buffer allocation for the

whole packet at the next router, virtual channel flow control allows flits to move forward

to the next router as long as there are buffers for the flits. A virtual channel is essentially

a buffer queue in the router, and flits in different VCs can be multiplexed onto the links

to further improve the resource utilization. VCs can also be used to guarantee deadlock

freedom in the network or in the system. In cache-coherent systems, VCs are often used

to break coherence protocol level deadlocks.

2.1.4 Microarchitecture

Figure 2-1 shows an example router microarchitecture for a two-dimensional mesh net-

work that uses VC flow control. The router has five input and output ports, corresponding

HE

Chapter 2 - Background

Input Port
(East/South/West/North)

SA Unit Credit Unit Cr44t

Flit,, FIlt -10 Flit buffer Crossbar

Figure 2-1: Router Microarchitecture

to its four neighboring directions: north (N), south (S), east (E), west (W), and a local or

core port (L/C). Essentially, the router consists of input buffers, route computation logic,

virtual channel selectors, switch allocators, and a crossbar. A typical router performs the

following actions:

" Buffer Write (BW): Buffer the incoming flit.

* Route Compute (RC): If the incoming flit is the head of a packet, compute the route

to determine the output port to depart from.

" Switch Allocation (SA): Arbitrate among buffered flits for the crossbar access as well

as link access.

" VC Selection (VS): Select and reserve a VC at the next router from a pool of free

VCs [63] for the head flit that won the SA.

" Switch Traversal (ST): Forward the flits that won the SA from their input ports to

output ports.

* Link Traversal (LT): Forward the flits from the output ports to the next routers.

Depending on the clock frequency, the routers are typically pipelined into two or

more stages to move from one router to another. Therefore, at the minimum, it takes

two cycles to traverse one hop. In case of contention, flits may be buffered and hence take

more cycles to move to the next router.

0 12

2.2. Low-Power Link - Low-Swing Signaling 130l

2.2 Low-Power Link - Low-Swing Signaling

Current on-chip network architectures require both long interconnects for the connec-

tion of processor cores, and small wire spacing for higher bandwidth. This trend has

significantly increased wire capacitance and resistance. Unfortunately, physical properties

of the on-chip interconnects are not scaling well with transistor sizes. In general, the

low-swing technique can lower energy consumption and propagation delay but at the

cost of a reduced noise margin [97]. Most existing low-swing on-chip interconnects

(lower supply voltage drivers [97, 127], cut-off drivers [34, 126, 127] and charge sharing

techniques [40, 68, 125]), however, are optimized for low-power signaling to maximize

energy efficiency at the link level, leading to increase in propagation delay caused by

reduced driving current. While pre-emphasis techniques such as equalization [41, 55, 77]

can generate energy-efficient low-swing signaling along with the inherent channel loss

of global links without sacrificing propagation speed, their application to an NoC with

only relatively short router-to-router links, such as a mesh, is limited due to huge area

overheads of the equalized drivers, poor bandwidth density of differential wiring and lack

of point-to-point global wiring space.

Noise is one of the main concerns while using low-swing signaling techniques. Some

of the noise concerns in low-swing designs can be mitigated by sending data differentially,

which helps eliminate common-mode interference. However, this takes up two wires

which doubles the capacitance and area. Adding shielding wires also helps reduce crosstalk

and could potentially lower voltage-swing, but it also adds coupling capacitance and area.

Increasing the sensitivity of the receiver helps lower voltage-swing on the wires, but it

often needs a larger sized transistor or more sophisticated receiver design that has larger

footprint and capacitance.

2.3 Low-Latency Link - Opto-Electrical Signaling

Recognizing the potential scaling limits of electrical interconnects, architects have pro-

posed emerging nanophotonic technology as another option for both on-chip and off-chip

Chapter 2 - Background

networks [10, 66, 89, 113]. As optical links avoid capacitive, resistive and signal integrity

constraints imposed upon electronics, photonics allows for ultra-low latency and efficient

realization of physical connectivity that is costly to accomplish electrically.

2.3.1 Photonic Link

Chip

ExEn l ectrical W O frmCre E
to Core

Laser Sender A Sender B Link Receiver A Receiver B
Source

Modultor Receiver

Coplr Moulr--.I~ Photodetector- RC iri

Single Mode Ring Modulator Ring Modulator On-chip Ring Filter with A, Ring Filter with A2
Fiber with A1 resonance with A2 resonance Waveguide resonance resonance

Figure 2-2: A typical opto-electronic NoC including electrical routers and links, and a
wavelength devision multiplexed intra-chip photonic link

Waveguides, Couplers, and Lasers: Waveguides are the primary means of routing

light within the confines of a chip. Vertical grating couplers [109] allow light to be

directed both into and out-of the plane of the chip and provide the means to bring light

from a fiber onto the chip or couple light from the chip into a fiber. In this dissertation

(Chapter 3), we assume commercially available off-chip continuous wave lasers, though

we note that integrated on-chip laser sources are also possible [45, 71].

Ring Resonators: The optical ring resonator is the primary component that enables

on-chip wavelength division multiplexing (WDM). When coupled to a waveguide, rings

perform as notch filters; wavelengths at resonance are trapped in the ring and can be

potentially dropped onto another waveguide while wavelengths not at resonance pass

by unaffected. The resonant wavelength of each ring can be controlled by adjusting the

device geometry or the index of refraction. As resonances are highly sensitive to process

mismatches and temperature, ring resonators require active thermal tuning [33].

Ring Modulators and Detectors: Ring modulators modulate its resonant wavelength

by electrically influencing the index of refraction [96]. By moving a ring's resonance in and

N 14

2.4. Low-Latency and Low-Power Routers

out of the laser wavelength, the light is modulated (on-off keyed). A photodetector, made

of pure germanium or SiGe, converts optical power into electrical current, which can

then be sensed by a receiver [32] and resolved to electrical ones and zeros. Photodetectors

standalone are generally wideband and require ring filters for wavelength selection in

WDM operation.

The dynamics of a wavelength-division-multiplexed (WDM) photonic architecture are

shown in Figure 2-2. Wavelengths are provided by an external laser source and coupled

into an on-chip waveguide. Each wavelength is modulated by a resonant ring modulator

dropped at the receiver by a matching ring filter. Using WDM, a single waveguide can

support dozens of independent data-streams on different wavelengths.

2.3.2 Prior Photonic NoC Architectures

Many photonics-augmented architectures have been proposed to address the interconnect

scalability issue posed by rapidly rising core-counts, The Corona [113] architecture uses a

global 64 x 64 optical crossbar with shared optical buses employing multiple matching

ring modulators on the same waveguide. Firefly [89] and ATAC [66] also feature global

crossbars, but with multiple matching receive rings on the same waveguide in a multi-drop

bus configurations. The photonic clos network [50] replaces long electrical links charac-

teristic of clos topologies with optical point-to-point links (one set of matching modulator

and receiver ring per waveguide) and performs all switching electrically. Phastlane [23]

and Columbia [39] networks use optical switches in tile-able mesh-like topologies.

2.4 Low-Latency and Low-Power Routers

A plethora of research in NoCs over the past decade coupled with technology scaling has

allowed the actions within a router to move from serial execution to parallel execution, via

lookahead routing [27], simplified VC selection [63], speculative switch arbitration [76,

82], non-speculative switch arbitration via lookaheads [58, 61, 62, 64, 91] to bypass

buffering and so on. This has allowed the router delay to drop from 3 to 5 cycles

150M

Chapter 2 - Background

in industry prototypes [42, 43] to 1-cycle in academic NoC-only prototypes [62, 91],

resulting in 2-cycle-per-hop traversal.

2.5 Reconfigurable NoC Topologies

Prior works on reconfigurable NoCs motivated the need for application-specific topology

reconfiguration and proposed various NoC architectures that support reconfiguration.

Application-Aware Reconfigurable NoC [79] adds extra switches next to each router

(a second crossbar in principle), and presets static routes based on application traffic.

VIP [80] supports reconfiguration virtually, by prioritizing a virtual channel (VC) in the

network to always get access to the crossbars, enabling single-cycle-per-hop for flits on

this VC. ReNoC [105, 107] adds an extra topology switch (a set of muxes) at the output

ports for each router and presets them to enable static routes in the network before the

application is run. Skip-links [48] dynamically reconfigures the topology based on the

traffic at each router when application is run, and sets up the crossbars to allow flits to

bypass buffering and arbitration stages at intermediate routers.

2.6 In-network Coherence and Filtering

Various proposals, such as Token Coherence (TokenB), Uncorq, Time-stamp snooping

(TS), and INSO extend snoopy coherence to unordered interconnects. TokenB [74]

performs the ordering at the protocol level, with tokens that can be requested by a core

wanting access to a cacheline. TokenB assigns T tokens to each block of shared memory

during system initialization (where T is at least equal to the number of processors). Each

cacheline requires an additional 2 + log T bits. Although each token is small, the total

area overhead scales linearly with the number of cachelines.

Uncorq [106] broadcasts a snoop request to all cores followed by a response message on

a logical ring network to collect the responses from all cores. This enforces a serialization

of requests to the same cacheline, but does not enforce sequential consistency or global

ordering of all requests. Although read requests do not wait for the response messages to

0 16

2.6. In-network Coherence and Filtering 17 N

return, the write requests have to wait, with the waiting delay scaling linearly with core

count, like physical rings.

TS [73] assigns logical time-stamps to requests and performs the reordering at the

destination. Each request is tagged with an ordering time (OT), and each node maintains

a guaranteed time (GT). When a node has received all packets with a particular OT, it

increments the GT. TS requires a large number of buffers at the destinations to store

all packets with a particular OT, prior to processing time. The required buffer count

linearly scales with the number of cores and maximum outstanding requests per core.

For a 36-core system with 2 outstanding requests per core, there will be 72 buffers at

each node, which is not practical and will grow significantly with core count and more

aggressive cores.

INSO [5] tags all requests with distinct numbers (snoop orders) that are unique to

the originating node which assigns them. All nodes process requests in ascending order of

the snoop orders and expect to process a request from each node, If a node does not inject

a request, it is expected to periodically expire the snoop orders unique to itself. While

a small expiration window is necessary for good performance, the increased number of

expiry messages consume network power and bandwidth. Experiments with INSO show

that the ratio of expiry messages to regular messages is about 25 for a time window of

20 cycles. At the destination, unused snoop orders still need to be processed leading to

wasteful consumption of cycles and worsening of ordering latency.

*18 Chapter 2 - Background

DSENT - Design Space Exploration

of Networks Tool

3.1 Motivation

With the rise of many-core chips that require substantial bandwidth from the NoC,

integrated photonic links have been investigated as a promising alternative to traditional

electrical interconnects [10, 50, 66, 89, 113], because photonic links avoid the capacitive,

resistive and signal integrity constraints imposed upon electronics. Photonic technology,

however, is still immature and there remains a great deal of uncertainty in its capabil-

ities. Whereas there has been significant prior work on electronic NoC modeling (see

Section 3.2), evaluations of photonic NoC architectures have thus-far not yet evolved past

the use of fixed energy costs for photonic devices and interface circuitry, whose values

also vary from study to study. To gauge the true potential of this emerging technology,

inherent interactions between electronic/photonic components and their impact on the

NoC need to be quantified.

In this chapter, we propose a unified framework for photonics and electronics, DSENT

(Design Space Exploration of Networks Tool) [108], that enables rapid cross-hierarchical

area and power evaluation of opto-electronic on-chip interconnects'. We design DSENT

for two primary usage modes. When used standalone, DSENT functions as a fast

'We focus on the modeling of opto-electrical NoCs in this chapter, though naturally, DSENT's electrical
models can also be applied to pure electrical NoCs as well

Chapter 3 - DSENT

design space exploration tool capable of rapid power/area evaluation of hundreds of

different network configurations, allowing for impractical or inefficient networks to be

quickly identified and pruned before more detailed evaluation. When integrated with

an architectural simulator [3, 78], DSENT can be used to generate traffic-dependent

power-traces and area estimations for the network [67].

DSENT makes the following contributions:

* Presents the first tool that is able to capture the interactions at electronic/photonic

interface and their implications on a photonic NoC.

" Proposes the first network-level modeling framework for electrical NoC components

featuring integrated timing, area, and power models that are accurate (within 20 %)

in the deep sub-100 nm regime.

" Identifies the most profitable opportunities for photonic network optimization in

the context of an entire opto-electronic network system. In particular, we focus on

the impact of network utilization, technology scaling and thermal tuning.

The rest of the chapter is organized as follows. Section 3.2 provides an overview on

prior NoC modeling. We describe the DSENT framework in Section 3.3 and present

its models for electrical and optical components in Section 3.4 and 3.5, respectively.

Validation of DSENT is shown in Section 3.6. Section 3.7 presents an energy-efficiency-

driven network case-study and Section 3.8 summarizes the chapter.

3.2 Existing NoC Modeling Tools

Several modeling tools have been proposed to estimate the timing, power and area of

NoCs. Chien proposed a timing and area model for router components [22] that is

curve-fitted to only one specific process. Peh and Dally proposed a timing model for

router components [93] based on logical effort that is technology independent; however,

only one size of each logic gate and no wire model is considered in its analysis. These

tools also only estimate timing and area, but not power.

0 20

3.3. DSENT Framework

Among all the tools that provide power models for NoCs [8, 9, 51, 115], Orion [51,

115], which provides parametrized power and area models for routers and links, is the

most widely used in the community. However, Orion lacks a delay model for router

components, allowing router clock frequency to be set arbitrarily without impacting

energy/cycle or area. Furthermore, Orion uses a fixed set of technology parameters

and standard cell sizing, scaling the technology through a gate length scaling factor that

does not reflect the effects of other technology parameters. For link components, Orion

supports only limited delay-optimal repeated links. Orion does not model any optical

components.

PhoenixSim [16] is the result of recent work in photonics modeling, improving the ar-

chitectural visibility concerning the trade-offs of photonic networks. PhoenixSim provides

parameterized models for photonic devices. However, PhoenixSim lacks electrical models,

relying instead on Orion for all electrical routers and links. As a result, PhoenixSim uses

fixed numbers for energy estimations for electrical interface circuitry, such as modulator

drivers, receivers, and thermal tuning, losing many of the interesting dynamics when

transistor technology, data rate, and tuning scenarios vary. PhoenixSim in particular does

not capture trade-offs among photonic device and driver/receiver specifications that result

in an area or power optimal configuration.

To address shortcomings of these existing tools, we propose DSENT to provide a

unified electrical and optical framework that can be used to model system-scale aggressive

electrical and opto-electronic NoCs in future technology nodes.

3.3 DSENT Framework

In our development of the generalized DSENT modeling framework, we observe the

constant trade-offs between the amount of required user input and overall modeling

accuracy. All-encompassing technology parameter sets can enable precise models, at the

cost of becoming too cumbersome for predictive technologies where only basic technology

parameters are available. Overly simplistic input requirements, on the other hand, leaves

significant room for inaccuracies. In light of this, we design a framework that allows for a

210M

Chapter 3 - DSENT

DSENT
Model Ae

Parameters
Ni. Arbiter Router Mesh Network Non-Data-
Neut Multiplexer Crsbr Repeated Link Electrical Clos DpndnPwr

Decoder BfrsOptical ILink Photonic Clos Dt-eedn

TechnotoeY Sup~ort
Parameters...........

Process Standard Cells Optical Link Timing Optimization Delay
VDD Components

Win Expected Optical Link
T Technology Characterization Transitions Optimization

Figure 3-1: DSENT Framework with Examples of Network-related User-defined Models

high degree of modeling flexibility, using circuit- and logic-level techniques to simplify

the set of input specifications without sacrificing modeling accuracy. In this section, we

introduce the generalized DSENT framework and key features of our approach.

3.3.1 Framework Overview

DSENT is written in C++ and utilizes the object-oriented approach and inheritance for hi-

erarchical modeling. The DSENT framework, shown in Figure 3-1, can be separated into

three distinct parts: user-defined models, support models, and tools. To ease development

of user-defined models, much of the inherent modeling complexity is off-loaded onto

support models and tools. As such, most user-defined models involve just simple instanti-

ation of support models, relying on tools to perform analysis and optimization. Like an

actual electrical chip design, DSENT models can leverage instancing and multiplicity to

reduce the amount of repetitive work and speed up model evaluation, though we leave

open the option to allow, for example, all one thousand tiles of a thousand core system

to be evaluated and optimized individually. Overall, we strive to keep the run-time of a

DSENT evaluation to afew seconds, though this will vary based upon model size and

complexity.

0 22

3.3. DSENT Framework

3.3.2 Power, Energy, and Area Breakdowns

The typical power breakdown of an opto-electronic NoC can be formulated as the

following:

Potal " Pelectrical + Poptical

celectrical "router + Plink + Pinterface + tuning

optical - laser

The optical power is the wall-plug laser power (lost through non-ideal laser efficiency

and optical device losses). The electrical power consists of the power consumed by

electrical routers and links as well as electric-optical interface circuits (drivers and receivers)

and ring tuning. Power consumption can be split into data-dependent (DD) and non-

data-dependent (NDD) parts. Non-data-dependent power is defined as power consumed

regardless of utilization or idle times, such as leakage and un-gated clock power. Data-

dependent power is utilization-dependent and can be calculated given an energy per each

event and frequency of the event. Crossbar traversal, buffer read and buffer write are

examples of high-level events for a router. Power consumption of a component can

thus be written as P = PNDD + PDD =NDD + Ej Eifi , where PNDD is the total non-

data-dependent power of the module and E, fi are the energy cost of an event and the

frequency of an event, respectively.

Area estimates can be similarly broken down into their respective electrical (logic,

wires, etc.) and optical (rings, waveguides, couplers, etc.) components. The total area is

the sum of these components, with a further distinction made between active silicon area,

per-layer wiring area, and photonic device area (if a separate photonic plane is used).

We note that while the area and non-data-dependent power can be estimated statically,

the calculation for data-dependent power requires knowledge of the behavior and activities

of the system. An architectural simulator can be used to supply the event counts at the

network- or router-level, such as router or link traversals. Switching events at the gate- and

transistor-level, however, are too low-level to be kept track of by these means, motivating

a method to estimate transition probabilities (Section 3.4.4).

230M

Chapter 3 - DSENT

Table 3-1: DSENT Parameters

(a) Process (NMOS)

Parameter 45 nm SOT 11

Nominal Supply Voltage (VDD) 1.0

Minimum Gate Width 150

Contacted Gate Pitch 200

Gate Capacitance / Width 1.0

Drain Capacitance / Width 0.6

Effective On Current / Width [84] 650

Single-transistor Off Current 200

Subthreshold Swing 100

DIBL 150

(b) Interconnect

Parameter

Minimum Wire Width

Minimum Wire Spacing

Wire Resistance (Min Pitch)

Wire Capacitance (Min Pitch)

Resistivity

Wire Thickness

Dielectric Thickness

Dielectric Constant

(Global Wire

45 nm SOI

150

150

0.700

0.150

24.1

255

250

2.76

im TG

0.6

40

44

2.42

1.15

738

100

80

125

Layer)

11 nm TG

120

120

0.837

0.167

25.1

250

220

2.76

Unit

V

nm

nm

fF/pm

fF/pm

pA/pm

nA/pm

mV/dec

mV/V

Unit

nm

nm

i/pm

fF/pm

n m

nm

nm

3.4 DSENT Models and Tools for Electronics

As the usage of standard cells is practically universal in modern digital design flows,

detailed timing, leakage, and energy/op characterization at the standard-cell level can

enable a high degree of modeling accuracy. Thus, given a set of technology parameters,

DSENT constructs a standard cell library and uses this library to build models for the

electrical network components, such as routers and repeated links.

3.4.1 Transistor Models

We strive to rely on only a minimal set of technology parameters (a sample of which is

shown in TabIc 3-1) that captures the major characteristics of deep sub-100 nm technolo-

0 24

3.4. DSENTModels and Toolsfor Electronics

Standard Cels NAND2 X1 1
INV _X1 i :

NOR2_X1Eauivalenit CircuitEau alen ciruitTiming Abstract

LATQ_X1 Delay(A->Y)
INVX Delay(B->Y)

NAND2_X2 Ci(A)
NOR2_X2 x Ci(B)
DFFQ_X2 ARt(Y)

Leakage
Leak(A=O, B=O)

- Leak(A=0, B=1)
Technology Leak(A=1, B=O) EnerMv/O

NMOS/PMOS 1. Leak(A=1, B=1) NAND2Event
NMOS/PMOS 1.f orttgat pitch

GaEter DelayCaDrain Unit Cap Design Leakage Model Expected Elmore Delay
Heuristics Transitions Model

Figure 3-2: Standard cell model generation and characterization. In this example, a
NAND2 standard cell is generated.

gies without diving into transistor modeling. Both interconnect and transistor properties

are paramount at these nodes, as interconnect parasitics play an ever larger role due to

poor scaling trends [95]. These parameters can be obtained and/or calibrated using ITRS

roadmap projection tables [47] for predictive technologies, or characterized from SPICE

models and process design kits when available.

Currently, DSENT supports the 45, 32, 22, 14 and 11 nm technology nodes. Technol-

ogy parameters for the 45 nm node are extracted using SPICE models. Models for the

32 nm node and below are projected [53] using the virtual-source transport of [54] and

the parasitic capacitance model of [118]. A switch from planar (bulk/SOI) to tri-gate

transistors is made for the 14 and 11 nm nodes.

3.4.2 Standard Cells

The standard-cell models (Figure 3-2) are portable across technologies, and the library

is constructed at run-time based on design heuristics extrapolated from open-source

libraries [85] and calibrated with commercial standard cells.

We begin by picking a global standard cell height, H = Hex + a(1 + O)Wai where #

represents the P-to-N ratio, W1 ,s is the minimum transistor width, and Hex is the extra

height needed to fit in supply rails and diffusion separation. a is heuristically picked such

250M

Chapter 3 - DSENT

XZ

INV NAND2 NAND2

\Equivalent
Equivalent 'Circuit~Equivalent Circuit

Circuit - ,.--------------- ------------

X I NV ~ J.Ro n -NANDz2 RoI,-NAND 2 Z
IIIN

P.-NAAD2 Z~-rAA&-,

A-Y + A-Y + A-Y +
lay Dela Deay

Cin.NI ' I. - N

* - .- NAN In 'a - -

..............L- - - - I....---------------. --

Figure 3-3: Mapping Standard Cells to RC Delays

that large (high driving strength) standard cells do not require an excessive number of

transistor folds and small (low driving strength) cells do not waste too much active silicon

area. For each standard cell, given a drive strength and function, we size transistors to

match pull-up and pull-down strengths, folding if necessary. As lithography limitations

at deep sub-100 nm force a fixed gate orientation and periodicity, the width of the cell is

determined by the max of the number of NMOS or PMOS transistors multiplied by the

contacted gate pitch, with an extra gate pitch added for separation between cells.

Currently, DSENT provides an essential set of standard cells that are commonly used

in VLSI design, e.g., INV, BUF, NAND2, NOR2, LATQ, DFFQ, DFFRPQ, DFFSRPQ,

MUX2, XOR2, and ADDF; DSENT also provides cells with various number of foldings

ranged from 1 to 16.

3.4.3 Delay Calculation and Timing Optimization

To allow models to scale with transistor performance and clock frequency targets, we

apply a first-order delay estimation and timing optimization method. Using timing

information in the standard cell models, chains of logic are mapped to stages of resistance-

capacitance (RC) trees, shown in Figure 3-3. An Elmore delay estimate [37, 97] between

two points i and k can be formed by summing the product of each resistance and the total

0 26

3.4. DSENTModels and Toolsfor Electronics

Figure 3-4: Incremental Timing Optimization

downstream capacitance it sees:

k k

Td,i-k = ln(2) 1 E RnCm (3.1)
n=i m=n

Note that any resistances or capacitances due to wiring parasitics is automatically

factored along the way. If a register-to-register delay constraint, such as one imposed by

the clock period, is not satisfied, timing optimization is required to meet the delay target.

To this end, we employ a greedy incremental timing optimization algorithm, as shown

in Figure 3-4. We start with the identification of a critical path. Next, we find a node to

optimize to improve the delay on the path, namely, a small gate driving a large output

load. Finally, we size up that node and repeat these three steps until the delay constraint

is met or if we realize that it is not possible and give up. Our method optimizes for

minimum energy given a delay requirement, as opposed to logical-effort based approaches

employed by existing models [15, 70, 93], which optimize for minimum delay, oblivious

to energy. Though lacking the rigorousness of timing optimization algorithms used by

commercial hardware synthesis tools, our approach runs fast and performs well given its

simplicity.

Timing Optimization Iteration 1, Timing Optimization Iteration 2
5006 Timing

" 54, 15 0 60 not00

6

I 20 Timing 1~--~ 60 Tmn
no not

met! met!
0 Big Cap~ 0 Big Cap' ..

Timing Optimization Iteration 3 Timing Optimization Iteration 4
.... 55 Timing 2

not 5
met!

0 400 40 met!

0 Big Cap 7 I 0 Big Cap 7

27 E

Chapter 3 - DSENT

3.4.4 Expected Transitions

The primary source of data-dependent energy consumption in CMOS devices comes

from the charging and discharging of transistor gate and wiring capacitances. For every

transition of a node with capacitance C to voltage V, we dissipate an energy of E =CV 2 .

To calculate data-dependent power usage, we sum the energy dissipation of all such

transitions multiplied by the clock frequency and activity factors, PDD = i

Node capacitance C can be calculated for each model and, for digital logic, V is the

supply voltage, fi is the clock frequency and ao is the activity factor. The frequency of

occurrence, aifi, however, is much more difficult to estimate accurately as it depends on

the pattern of bits flowing through the logic. As event counts and signal information at

the logic gate level are generally not available except through structural netlist simulation,

DSENT uses a simplified expected transition probability model [72] to estimate the

average frequency of switching events. Probabilities derived using this model are also

used with state-dependent leakage in the standard cells to form more accurate leakage

calculations.

3.4.5 Summary

DSENT models a technology-portable set of standard cells from which larger electrical

components such as routers and networks are constructed. Given a delay or frequency

constraint, DSENT applies (1) timing optimization to size gates for energy-optimality

and (2) expected transition propagation to accurately gauge the power consumption.

These features allow DSENT to outpace Orion in estimating electrical components and

in projecting trends for future technology nodes.

3.5 DSENT Models and Tools for Photonics

Chen Sun led the modeling ofphotonics devices briefly described in this section as background.

A complete on-chip photonic network consists of not only the photonic devices but

also the electrical interface circuits and the tuning components, which are a significant frac-

M 28

3.5. DSENT Models and Toolsfor Photonics

tion of the link energy cost. In this section we present how we model these components

in DSENT.

3.5.1 Photonic Device Models

Similar to how it builds the electrical network model using standard cells, DSENT

models a library of photonic devices necessary to build integrated photonic links. The

library includes models for lasers, couplers, waveguides, ring resonators, modulators and

detectors. The total laser power required at the laser source is the sum of the power

needed by each photodetector after applying optical path losses:

Paser = Psense,i 1lOSSz/l (3.2)

where Psense,, is the laser power required at photodetector i and lossi is the loss to that

photodetector, given in dB. Note that additional link signal integrity penalties (such as

near-channel crosstalk) are lumped into lossi as well.

3.5.2 Interface Circuitry

The main interface circuits responsible for electrical-to-optical and optical-to-electrical

conversion are the modulator drivers and receivers. The properties of these circuits affect

not only their power consumption, but also the performance of the optical devices they

control and hence the laser power [33].

Modulator Driver: We adopt the device models of [33] for a carrier-depletion mod-

ulator. We first find the amount of charge AQ that must be depleted to reach a target

extinction ratio, insertion loss, and data rate. Using equations for a reverse-biased junc-

tion, we map this charge to a required reverse-biased drive voltage (VRB) and calculate the

effective capacitance using charge and drive voltage Ceff = AQ/VRB. Based on the data

rate, we size a chain of buffers to drive Cef. The overall energy cost for a modulator driver

can be expressed as:

1
Edriver =-AQ max(VDD, VRB) + Ebuf (Ceff, f) (3.3)

29 E

Chapter 3 - DSENT

where -y is the efficiency of generating a supply voltage of VRB and Ebuf(Cff, f) is the

energy consumed by the chain of buffers that are sized to drive Ce& at a data rate f.
Receiver: We support both the TIA and integrating receiver topologies of [33]. For

brevity, we focus the following discussion on the integrating receiver, which consists of a

photodetector connected across the input terminals of a current sense-amplifier. Electrical

power and area footprints of the sense-amplifier is calculated based on sense-amplifier

sizing heuristics and scaled with technology, allowing calculation of switching power.

To arrive at an expression for receiver sensitivity (Pense), we begin with an abbreviated

expression for the required voltage buildup necessary at the receiver sense amp's input

terminal:

Vd= Vs + Vos + Vm +I>(BER) an (3.4)

which is the sum of the sense-amp minimum latching input swing (V), the sense-amp

offset mismatch (V,), a voltage margin (Vm), and all Gaussian noise sources multiplied

by the number of standard deviations corresponding to the receiver bit error rate (BER).

The required input can then be mapped to a required laser power requirement, Psense at

the photodetector:
1 ER 2f

Psense =Rd ER - 1 in 1 - 2f1 (3.5)

where Rpd is the photodetector responsivity (in terms of A/W), ER is the extinction ratio

provided by the modulator, Cin is the total parasitic capacitance present at the receiver

input node, f is the data rate of the receiver, and Tj is the clock uncertainty. The factor of

2 stems from the assumption that the photodetector current is given only half the clock

period to integrate; the sense-amp spends the other half in the precharge state.

Serializer and Deserializer: DSENT provides models for a standard-cell-based serial-

izer and deserializer (SerDes) blocks, following a mux/de-mux-tree topology [38]. These

blocks provide the flexibility to run links and cores at different data rates, allowing for

exploration of optimal data rates for both electrical and optical links.

3.5.3 Ring Tuning Models

An integrated WDM link relies upon ring resonators to perform channel selection.

Sensitivity of ring resonances to ring dimensions and the index of refraction leaves them

0 30

3.5. DSENT Models and Toolsfor Photonics

particularly vulnerable to process- and temperature-induced resonance mismatches [14,

86, 88], requiring active closed-loop tuning methods that add to system-wide power

consumption [50]. In DSENT, we provide four models for four alternative ring tuning

approaches [33]: full-thermal tuning, bit-reshuffled tuning, electrically-assisted tuning, and

athermal tuning.

Full-thermal tuning is the conventional method of heating using resistive heaters

to align their resonances to the desired wavelengths. Ring heating power is considered

non-data-dependent, as thermal tune-in and tune-out times are too slow to be performed

on a per-flit or per-packet basis and thus must remain always-on. Bit-reshufflers provide

freedom in the bit-positions that each ring is responsible for, allowing rings to tune to

its closest wavelength instead of a fixed absolute wavelength. This reduces ring heating

power at the cost of additional multiplexing logic. Electrically-assisted tuning uses the

resonance detuning principle of carrier-depletion modulators to shift ring resonances.

Electrically-tuned rings do not consume non-data-dependent ring heating power, but is

limited in tuning range and requires bit-reshufflers to make an impact. Note that tuning

distances too large to be tuned electrically can still be bridged using heaters at the cost of

non-data-dependent heating power. Athermal tuning represents an ideal scenario in which

rings are not sensitive to temperature and all process mismatches have been compensated

for during post-processing.

3.5.4 Optical Link Optimization

Equation 3.3 and 3.5 suggest that both the modulator driver's energy cost and the laser

power required at the photodetector depend on the specification of extinction ratio (ER)

and insertion loss (IL) of the modulator on the link. This specification can be used to

tradeoff power consumption of the modulator driver circuit with that of the laser. This

is an optimization degree of freedom that DSENT takes advantage of, looping through

different combinations to find one that results in the lowest overall power consumption.

310M

Chapter 3 - DSENT

3.5.5 Summary

DSENT provides models not only for optical devices but also for the electrical backend

circuitry including modulator driver, receiver and ring tuning circuits. These models

enable link optimization and reveal tradeoffs between optical and electrical components

that previous tools and analysis could not accomplish using fixed numbers.

3.6 Model Validation

We validate DSENT results against SPICE simulations for a few electrical and optical

models. For the receiver and modulator models, we compare against a few early prototypes

available in literature (fabricated at different technology nodes) to show that our results are

numerically within the right range. We also compare our router models with a post-place-

and-route SPICE simulation of a textbook virtual channel router and with the estimates

produced by Orion2.0 [51] at the 45 nm SOI technology node. To be fair, we also report

the results obtained from a modified Orion2.0 where we replaced Orion2.0's original

scaling factors with characterized parameters for the 45 nm SOI node and calibrated

its standard cells with those used to calibrate DSENT. Overall, the DSENT results for

electrical models are accurate (within 20 %) compared to the SPICE simulation results. We

note that the main source of inaccurate Orion2.0 results is from the inaccurate technology

parameters, scaling factors, and standard cell sizing. The re-calibrated Orion2.0 reports

estimations at the same order of the SPICE results. The remaining discrepancy is partly

due to insufficient modeling detail in its circuit models. For example, pipeline registers on

the datapath and the multiplexers necessary for register-based buffers are not completely

modeled by Orion2.0.

0 32

Table 3-2: DSENT Validation Points

(a) Photonic Devices

Model Ref. Point DSENT Unit Config

Ring Modulator Driver [29]-50 60.87 (21.74%) fJ/bit 11 Gb/s, ER = 10 dB, IL = 6 dB

Receiver [32]-52 43.02 (-14.0%) fJ/bit 3.5 Gb/s, 45 nm SOI

(b) Router

Model Ref. Point Orion2.0 Orion2.0 (re-calibrated) DSENT Unit Config

Buffer SPICE-6.93 34.4(396%) 3.57 (-48.5 %) 7.55 (8.94 %) mW * 6 input/output ports

Crossbar SPICE-2.14 14.5(578%) 1.26 (-41.1%) 2.06 (-3.74%) mW e 64 bit flit width

Control SPICE-0.75 1.39 (85.3 %) 0.31 (-58.7%) 0.83 (10.7%) mW * 8 VCs per port

Clock Dist. SPICE-0.74 28.8 (3791%) 0.36 (-51.4%) 0.63 (-17.5%) mW e 16 buffers per port

Total SPICE-10.6 91.3(761%) 5.56 (-47.5 %) 11.2 (5.66%) mW * 1 GHz clock frequency

Total Area Encounter-0.070 0.129 (84.3 %) 0.067 (-4.29 %) 0.062 (-11.2%) mm 2 e 0.16 flit injection rate

U4

Chapter 3 - DSENT

Table 3-3: Network Configuration

(a) Network

Parameter Value

Number of tiles 256

Chip area (divided equally amongst tiles) 400 mm2

Packet length 80 Bytes

Flit width 128 bits

Core frequency 2 GHz

Clos configuration (m, n, r) 16, 16, 16

Link latency 2 cycles

Link throughput 128 bits/core/cycle

(b) Router

Parameter Value

Number pipelines stages 3

Number virtual channels (VC) 4

Number buffers per VC 4

3.7 Example Photonic Network Evaluation

Though photonic interconnects offer potential for improved network energy-efficiency,

they are not without their drawbacks. In this section, we use DSENT to perform an

energy-driven photonic network evaluation. We choose a 256-tile version of the 3-stage

photonic clos network proposed by [50] as the network for these studies. Like [50],

the core-to-ingress and egress-to-core links are electrical, whereas the ingress-to-middle

and middle-to-egress links are photonic. The network configuration parameters are

shown in Table 3-3. While DSENT includes a broader selection of network models, we

choose this topology because there is an electrical network that is logically equivalent (an

electrical clos) and carries a reasonable balance of photonic and electrical components. To

obtain network-level event counts with which to animate DSENT's physical models, we

implement the clos network in Garnet [3] as part of the gem5 [12] architecture simulator.

Though the gem5 simulator is primarily used to benchmark real applications, we assume

a uniform random traffic pattern to capture network energy at specific loads. Given

network event counts, DSENT takes a few seconds to generate an estimation.

M 34

3.7. Example Photonic Network Evaluation

Table 3-4: Default Technology Parameters

Technology Parameters

Process technology

Optical link data rate

Laser efficiency

Coupler loss

Waveguide loss

Ring drop loss

Ring through loss

Modulator loss (optimized)

Modulator extinction (optimized)

Photodetector Capacitance

Link bit error rate

Ring tuning model

Ring heating efficiency

Default Values

11 nm TG

2 Gb/s

0.25

2 dB

1 dB/cm

1 dB

0.01 dB

0.01 to 10.0dB

0.01 to 10.0dB

5 fF

1 x 10-15

Bit-Reshuffled [13, 33]

100 K/mW

Table 3-5: Sweep Parameters Organized by Section

Section Sweep Parameter Sweep Range

3.7.1 Electrical Process 45 nm SOI, 11 nm TG

3.7.2 Waveguide Loss 0.0 to 2.5 dB

Ring Heating Efficiency 10 to 400 K/mW

Full-Thermal,

Tuning Model Bit-Reshuffled [13, .33],

Electrically-Assisted [33]

Link Data Rate 2 to 32 Gb/s per A

In the following studies, we investigate the impact of different circuit and technology

assumptions using energy cost per bit delivered by the network as our evaluation metric.

Unless otherwise stated, the default parameters set in Table 3-4 are used. The parameters

we sweep are organized by section in Table 3-5.

3.7.1 Scaling Electrical Technology and Utilization Tradeoff

We first compare the photonic clos network with an electrical equivalent, where all

photonic links are replaced with electrical links of equal latency and throughput (128

wires, each at 2 GHz). We perform this comparison at the 45 nm SOI and 11 nm Tri-

350M

-&- EClos 45nn
[0 -E- PCIos 45nn

-- EClos 11nn
-8- PCIos 11nn

0-. El-

0 5 10 15 20
Achieved Throughput [Tb/s]

Figure 3-5: Comparison of Network Energy per bit vs.

m

30 35

Network Throughput

5

4.5

4

3.5

2 3

2.5
0.

2
a)
C

WU 1.5

4.5

4

- 3.5

0.3

2.5
0.

2

W 1.5

4.5

4

- 3.5

0 3

2.5
0.

CL 2

LU

0.5- 0.5-- 0.5-

0 0
E45 P45 Eli P11 E45 P45 Eli P11 E45 P

Configuration Configuration C

(a) 4.5 Tb/s (Low Throughput) (b) 16.5 Tb/s (Med Throughput) (c) 33 Tb/s (M

Figure 3-6: Energy per bit Breakdown at Various Throughputs

=Ring Tuning
Leakage
Routers

=Elect Links
MMod/Rec
M Laser

45 Eli P11
onfiguration

ax Throughput)

Gate technology nodes, representing present and future electrical technology scenarios,

respectively. Energy per bit is plotted as a function of achieved network throughput

(utilization) in Figure 3-5 and a breakdown of the energy consumption at three specific

throughputs is shown in Figure 3-6. The utilization is plotted up to the point where the

network saturates, which is defined as when the latency reaches 3 x the zero-load latency.

Chapter 3 - DSENTM 36

5

4.5

4

3.5

.3

2.5

CL 2

1.5

1

0.5

-
1.5-

-I
370l3.7. Example Photonic Network Evaluation

-0- 0 dB/cm
-8- 0.5 dB/c
-- 1.0 dB/c

X -1.5 dB/c
2.0 dB/c
2.5 dB/c

X,

- -

'1 25
0O 5 10 15 20 25

Achieved Throughput [Tb/s]

(a) Energy per bit vs. throughput

5

4.5

4

3.5

a 3

2.5

2
(D

U 1.5

0.5

n

m1

m1
m1

mm

4.5-

4-

3.5

a3

25

M Ring Tuning
M Leakage
M Routers
=dElect Links

IM Mod/Rec
M Laser

-5)
2-

W 1.5

0.5

'0
35 0.0 0.5 1.0 1.5 2.0 2.5

Waveguide Loss [dB/cm]

(b) Energy per bit Breakdown at 16 Tb/s
Throughput

Figure 3-7: Sensitivity to Waveguide Loss

Note that in all configurations, the energy per bit rises sharply at low network

utilizations, as non-data-dependent (NDD) power consumption (leakage, un-gated clocks,

etc.) is amortized across fewer sent bits. This trend is more prominent in the photonic

clos as opposed to the electrical clos due to a significantly higher NDD power stemming

from the need to perform ring thermal tuning and to power the laser. As a result, the

electrical clos becomes energy-optimal at low utilizations (Figure 3-6a). The photonic

clos presents smaller data-dependent (DD) switching costs, however, and thus performs

more efficiently at high utilization (Figure 3-6c).

Comparing 45 and 11 nm, it is apparent that both photonic and electrical clos net-

works benefit significantly from electrical scaling, as routers and logic become cheaper.

Though wiring capacitance scales slowly with technology, link energies still scale due to a

smaller supply voltage at 11 nm (0.6 V). Laser and thermal tuning cost, however, scale

marginally, if at all, allowing the electrical clos implementation to benefit more. In the

11 nm scenario, the electrical clos is more efficient up to roughly half network of the

saturation throughput. As networks are provisioned to not operate at high throughputs

where contention delays are significant, energy efficiency at lower utilizations is critical.

30

Chapter 3 - DSENT

0 dB/cm
-8-0.5 dB/cm

1.0 dB/cm
S-X - 1.5 dB/cm

2.0 dB/cm
2.5 dB/cm

' XA

'~~--x- - - - -- --X

5-

4.5-

4-

3.5 -

2.5-

2 -

W 1.5-

0.5-

0 30 35

4.5

4

3.5

2.5
C.

2

LU1.5

=Ring Tuning
=Leakage
M Routers
=Elect Links
M Mod/Rec
M Laser

0.5
0

0.0 0.5 1.0 1.5 2.0 2.5
Waveguide Loss [dB/cm]

(b) Energy per bit Breakdown at 16 Tb/s
Throughput

Figure 3-8: Sensitivity to Heating Efficiency

3.7.2 Photonics Parameter Scaling

For photonics to remain competitive with electrical alternatives at the 11 nm node and

beyond, photonic links must similarly scale. The non-data-dependent laser and tuning

power as particularly problematic, as they are consumed even when links are used

sporadically.

In Figure 3-7 and 3-8, we evaluate the sensitivity of the photonic clos to waveguide

loss and ring heating efficiencies, which affect laser and tuning costs, using the 11 nm

electrical technology model. We see that our initial loss assumption of 1 dB/cm brings

the photonic clos quite close to the ideal (0 dB/cm) and the network could tolerate up

to around 1.5 dB/cm before laser power grows out of proportion. Ring tuning power

will also fall with better heating efficiency. However, it is not clear whether a 400 K/mW

efficiency is physically realizable and it is necessary to consider potential alternatives.

3.7.3 Thermal Tuning and Data Rate

Per wavelength data rate of an optical link is a particularly interesting degree of freedom

that network designers have control over. Given a fixed bandwidth that the link is

responsible for, an increase in data rate per wavelength means a decrease in the number

of WDM wavelengths required to support the throughput. In other words, since the

038

5 10 15 20 25
Achieved Throughput [Tb/s]

(a) Energy per bit vs. throughput

3.7. Example Photonic Network Evaluation

5

4.5-

4-

3.5

3

V2.5

2 -

1.5-

0.

2 4 8 16 32
Data Rate per X [Gb/s]

(a) Full-Thermal Tuning (conservative)

4.5

4

3.5

. 3

2.5
0.

L1 2

UJ 1.5

.0

0

.5-

4

.5-

3-

.5 -

2-

.5 --

.5

0
2 4 8 16 32

Data Rate per?, [Gb/s]

(b) Bit Reshuffled Tuning (default)

Ring Tuning
Leakage
Routers
Elect Links
Mod/Rec

W SerDes
Laser

0.5

2 4 8 16 32
Data Rate per X [Gb/s]

(c) Electrically-Assisted Tuning (optimistic)

Figure 3-9: Comparison of Thermal-Tuning Strategies at 16.5 Tb/s Throughput

throughput of each link is 128 bits/core/cycle at a 2 GHz core clock, a data rate of 2, 4,

8, 16 and 32 Gb/s per wavelength (A) implies 128, 64, 32, 16 and 8 wavelengths per link.

This affects the number of ring resonators and, as such, can impact the tuning power.

Under the more conservative full-thermal (no bit-reshuffling) tuning scenario (Figure 3-

9a), the energy spent on ring heating is dominant and will scale proportionally with the

number of WDM channels (and thus inversely with per wavelength data rate). Modulator

and receiver energies, however, grow with data rate as a result of more aggressive circuits.

Laser energy cost per bit grows with data rates due to a relaxation of modulator insertion

loss/extinction ratios as well as clock uncertainty becoming a larger fraction of the receiver

39 E

Chapter 3 - DSENT

evaluation time. Routers and electrical links remain the same, though a small fraction of

energy is consumed for serialization/deserialization (SerDes) at the optical link interface.

These trends result in an optimal data rate between 8 to 16 Gb/s, where ring tuning power

is balanced with other sources of energy consumption, given the full-thermal tuning

scenario.

This trend is no longer true once bit-reshuffling (the default scenario we assumed for

Section 3.7.1 and 3.7.2) is considered, shown in Figure 3-9b. Following the discussion

in Section 3.5.3, a bit-reshuffler gives rings freedom in the channels they are allowed to

tune to. At higher data rates, there are fewer WDM channels and hence rings that require

tuning. However, the channel-to-channel separation (in wavelength) is also greater. Given

the presence of random process variations, sparser channels means each ring requires, on

average, more heating in order to align its resonance to a channel. These two effects cancel

each other out. Since the bit-reshuffler logic itself consumes very little power at the 11 nm

node, ring tuning costs are small and remain relatively flat with data rate.

If electrical-assistance is used (Figure 3-9c), tuning power favors high WDM channel

counts (low data rates). This is a consequence of the limited resonance shift range that

carrier-depletion-based electrical tuners can achieve. At high WDM channel counts where

channel spacing is dense, rings can align themselves to a channel by electrically biasing

the depletion-based tuner without a need to power up expensive heaters. By contrast,

when channels are sparse, ring resonances will often have to be moved a distance too far

for the depletion tuner to cover and costly heaters must be used to bridge the distance.

As such, the lowest data rate, 2 Gb/s per wavelength, is optimal under this scenario. A

well-designed electrically-assisted tuning system could completely eliminate non-data-

dependent tuning power. Hence, it is a promising alternative to aggressive optimization

of ring heating efficiencies.

3.8 Summary

Integrated photonic interconnects is an attractive interconnect technology for future many-

core architectures. Though it promises significant advantages over electrical technology,

0 40

3.8. Summary

evaluation of photonics in existing proposals have relied upon significant simplifications.

To bring additional insight into the dynamic behavior of these active components, we

developed a new tool, DSENT, to capture the interactions between photonics and elec-

tronics. By introducing standard-cell-based electrical models and interface circuit models,

we complete the connection between photonic devices and the rest of the opto-electrical

network. In addition to providing fast and accurate evaluations, DSENT keeps an essen-

tial set of technology parameters that can be easily obtained and updated for predictive

technologies. Using our tool, we show that the energy-efficiency of a photonic NoC is

poor at lower utilizations due to non-data-dependent laser and tuning power. We released

DSENT open-source [30]. Till today, DSENT has been incorporated into gem5 [1.2] and,

used significantly, e.g., [21, 57, 59, 65, 67, 116, 117].

410M

M 42 Chapter 3 - DSENT

Low-Power Crossbar Generator Tool

4.1 Motivation

Crossbar is the fundamental building block that connects input ports to output ports.

A 1-bit N x M crossbar consists of N x M interconnected wires that are controlled by

switches and enable any port to connect to any other port. The outputs of a crossbar

connect to links that then connect to an IP block or a router. The crossbar and links

thus together form the datapath of a NoC. Apart from the clocking power consumed by

the buffers, the datapath dominates the NoC power consumption. Fabricated chips from

academia, such as MIT RAW [111] and UT TRIPS [98], use RTL synthesis to generate

the datapath, and the ratio of datapath power consumption and the total on-chip network

power consumption are reported to be 69 and 64 %, respectively. Intel Teraflops [42]

uses a custom-designed double-pumped crossbar with a location based channel driver to

reduce the channel area and peak channel driver current [112], and is thus able to reduce

datapath power to 32 % of the total on-chip network power. Other circuit techniques

that have been proposed to reduce this power consumption involve dividing the crossbar

wires into multiple segments and partially activating selected segments [69, 114] based

on the input and output ports. These circuit techniques present only the capacitance

between the input and output port, and disable/reduce other capacitances. They are thus

successful in reducing wasteful power consumption. However, they still require complete

Chapter 4 - Low-Power Crossbar Generator Tool

charging/discharging of the long wires from the input port to the output port and the

core-core links, which are significant power consumers.

Low-swing signaling techniques can help mitigate the wire power consumption. The

energy benefits of low-swing signaling have been demonstrated on-chip from 10 mm

equalized global wires [55], through 1 to 2 mm core-to-core links [99], to less than 1 mm

within crossbars [62, 102, 120]. However, such low-swing signaling circuits, which can be

viewed as analog circuits, require full custom design, resulting in substantial design time

overhead. Circuit designers have to manually design schematic/netlists, optimize logic

gates for each timing path, and size individual transistors. Moreover, layout engineers

have to manually place all the transistors and route their nets with careful consideration

of circuit symmetry and noise coupling. This custom design process leads to high

development cost, long and uncertain verification timescales, and poor interface to other

parts of a many-core chip, which are mostly RTL-based.

In the past, designers faced similar challenges while integrating low-power memory

circuits with the VLSI CAD flow, with their sense amplifiers, self-timed circuits and

dynamic circuits. Memory compilers, which are now commonplace, have solved the

problem and enabled these sophisticated analog circuits to be automatically generated,

subject to variable constraints specified by the users. This chapter proposes to similarly

automate and generate low-swing signaling circuits as part of the datapath (crossbar and

links) of a NoC, thereby integrating such circuits within the CAD flow of many-core

chips, enabling their broad adoption.

Since crossbars and links are such an essential component of on-chip networks, there

have been efforts in the past to automate their generation. Sredojevic and Stojanovic [103]

presented a framework for design-space exploration of equalized links, and a tool that

generates an optimized transistor schematic. However, they rely on custom-design

for the actual layout. ARM AMBA [7], STMicroelectronics STBus [104], Sonics Mi-

croNetworks [122], and IBM CoreConnect [44] are examples of on-chip bus generators;

DX-Gt [101] is a crossbar generator; and x pipes [26] is a network interface, switch

and link generator. These tools are aimed at application specific network-on-chip (NoC)

component generation, but they all stop at the synthesizable HDL level, i.e. they generate

0 44

4.2. Background

RTL, and then rely on synthesis and place-and-route tools to generate the final design.

This is not the most efficient way to design crossbars, as we show below in Section 4.4

highlighting that a synthesized crossbar design consumes significantly more power than a

custom low-swing crossbar.

In this chapter we present a NoC datapath generator [17], which is the first to integrate

low-swing links in an automated manner. It is also the first to generate a noise-robust

layout at the same time, embedded within the synthesis flow of a 5-port NoC router in

45 nm SOI. Our tool takes a low-swing driver as input and ensures (1) a crosstalk noise-

robust routing, (2) supply noise-robust differential signaling, and (3) crosstalk-controlled

full-shielded links, in the generated datapath. To the best of our knowledge, our tool

provides the following contributions to the low-power NoC community in the following

important ways:

" It is the first automated generation of noise-robust low-swing links within the crossbar,

and between routers.

* It is the first automated layout generation of a crossbar for a user specified number of

ports, channel-width, and target frequency.

* It. is the first demonstration of a generated low-swing crossbar and link within a

fully-synthesized NoC router.

* Our automatically generated low-swing crossbar achieves an energy savings of 50 %, at

the same targeted frequency of the synthesized crossbar, at 3 to 4 times the area over-

head. Relative to the entire router, the larger footprint of the crossbar is manageable,

at just 30 % of the overall router area.

The rest of the chapter is organized as follows. Section 4.2 presents some background

on crossbars and low-swing link design. Section 4.3 explains our low-swing crossbar and

link generator. Section 4.4 provides a case study of the datapaths generated using our tool,

and Section 4.5 summarizes the chpater.

450M

046 Chapter 4 - Low-Power Crossbar Generator To

W W) < > 0 0
A A A A A A A A A A A A A A A A

0 a~ 0 C) __& 0 _&~ 0 0 0 10
V V V V V V V V V V V V V V V V

ou

Dout0<1>

Dout1 <0>

Doutl<1>

Dout2<0>

Dout2<1>

Dout3<0>

Dout3<1>

_ IN,

out0

Dout1<0>

Dout2<0>

Dout3<0>

Dout0<1>

Dout1<1>

Dout2<1>

not3<1>

I- bl___

01

(a) Port-sliced Organization (b) Bit-sliced Organization

Figure 4-1: 2-bit 4 x 4 crossbar schematic

(a) (b) (c)

Figure 4-2: Logical 4:1 Multiplexer (a) and Two Realizations (b)(c)

4.2 Background

A N x M crossbar connects N inputs to M outputs with no intermediate stages, where

any inputs can send data to any non-busy outputs. Figure 4-1 shows the schematic of a

2-bit 4 x 4 crossbar. In effect, a 1-bit N x M crossbar consists of M N : 1 multiplexers,

one for each output. The N : 1 multiplexer can be realized as one logic gate or cascaded

smaller N' : 1 multiplexers, where N' < N, as shown in Figure 4-2. A custom-circuit

designer often favors the former implementation due to the layout regularity, as it enables

various optimization techniques. However, this implementation suffers from the fact

that the intrinsic delay of the multiplexer grows with N. Synthesis tools usually use the

latter approach that cascades smaller multiplexers to implement a N : 1 multiplexer with

4.2. Background

rans RReceiver

C T 1/2C 1/2C W _ L;

Figure 4-3: Simplified datapath

arbitrary N. By using this approach, the intrinsic delay grows with log N instead of N.

However, it may lead to higher power consumption since more multiplexers are used.

Two gate organizations are possible for many-bit crossbars, as shown in Figure 4-1.

One organization, port-slicing, groups all the bits of a port close to each other. The other

organization, bit-slicing, groups all the gates of a bit together. The former approach eases

routing (since all bits for an input/output port are grouped together), and minimizes the

span of the control wires that operate the multiplexers for each input port. However,

using the former approach leaves lot of blank spots that increases area, and folding the

crossbar over itself to reduce area is non-trivial. The latter approach, on the other hand,

minimizes the distance between the gates that contribute to the same output bit. This

design is easier to optimize for area by placing all the bit-cells together and eliminating

blank spaces, but requires more complicated routing to first spread out and then group all

bits from a port.

In addition to a crossbar, links and receivers form a datapath. Different design

decisions for these components would result in trade-offs in area, power and delay. From

the perspective of sending a signal, a datapath can be simplified to three components

connected together: a transmitter, a wire, and a receiver, as shown in Figure 4-3. The

corresponding delay and energy consumption can be formulated as follows:

Energy = (Cd + C, + CL)VDDVing

Delay = ((Cd + Ow + CL) Vswing/Iav)

470M

Chapter 4 - Low-Power Crossbar Generator Tool

-y RTL synthesis

Library /
Module Logic optimization

generators

-yPhysical design

C LayoutD

Figure 4-4: Standard synthesis flow

where Cd is the output capacitance of the transmitter, Cw is the wire capacitance, CL is

the input capacitance of the receiver. VDD is the power supply of the circuit, and Vwi,,g is

the voltage swing on these capacitors. av is the average (dis)charge current. In general,

lowering the capacitance, reducing the voltage swing, and increasing the (dis)charging

current can help in reducing energy consumption and delay.

A transmitter with larger sized transistors would have larger (dis)charging current

which would decrease the delay. But it has larger footprint and Cd. Greater wire spacing

lowers the coupling capacitance between wires but it takes larger metal area. Increasing

wire width could reduce the wire resistance but it also increases capacitance and metal

area.

4.2.1 Limitations to current synthesis flow

Given a hardware description of a crossbar, the existing synthesis flow, like the one

shown in Figure 4-4, with a standard cell library could synthesize and realize a crossbar

circuit. Unfortunately, the existing synthesis flow and standard cell libraries are designed

for full voltage-swing digital circuits. New features in certain CAD tools enable low

power designs by supporting multiple power domains and power shutdown techniques.

However, none of them support analysis and layout for low voltage swing operations.

E 48

4.3. Datapath Generator

Table 4-1: Inputs to Proposed Datapath Generator

Type . Inputs

Number of input ports (N)

Number of output ports (M)
Architectural parameters Dt it nbt WData width in bits (W)

Link length (L)

Input port location

User preferences Output port location

Link wire width and spacing

Standard cell library

Technology related information Metal layer information

Transmitter and receiver design

Second power supply level (if needed)

System design constraints Target frequency, power, area

Moreover, place-and-route tools are often too general and cannot take full advantage

of the regularity of a crossbar and fail to generate an area-efficient layout. Therefore, a

system designer needs to custom-design a low-swing crossbar, which is time-consuming

and error-prone.

4.3 Datapath Generator

In this section we present our crossbar and link generator for low-swing datapaths. The

low-swing property is enabled by replacing the cross-points of a crossbar with low-swing

transmitters, and adding receivers at the end of the links to convert low-swing signals back

to full-swing signals. The data links that connect transmitters and receivers are equipped

with shielding wires to improve signal integrity. As shown in Fable 4-1, our proposed

datapath generator takes architectural parameters (e.g. the number of inputs and outputs,

data width per port, link length), user layout preferences (e.g. port locations, link width

and spacing), and technology files (e.g. standard cell library, targeted metal layers, TX and

RX cells), and generates a crossbar and link layout that meets specified user preferences

and system design constraints: area, power, and delay. The output files of our proposed

datapath generator are fed directly into a conventional synthesis tool flow, which is similar

490M

Chapter 4 - Low-Power Crossbar Generator Tool

Transmitters and Tech Architectural User
Receivers Layout Files Parameters Preferences

characterization Design selection

Selection

Layout generation

.gds, sp,.lib ef,
.v

Verification & extraction

Extraction Can be directly fed
I4 into synthesis flow

Post-characterization
for delay, power, area

Library Generation

Figure 4-5: Proposed Datapath Generator's Tool Flow

to how we use a memory compiler. Figure 4-5 shows the proposed datapath generation

flow. The generation involves two phases, library generation and selection. In the library

generation phase, the program takes a suite of custom-designed transmitters and receivers,

architectural parameters that users are interested in, and technology files as inputs; then,

it pre-characterizes the custom circuits. Next, the tool generates the layout of all possible

combinations and simulates them to get post-layout timing, power, and area. This forms

the library of components for the selection phase. In the selection phase, the generator

takes architectural parameters and user preferences as inputs to find the most suitable

design from the results generated in the library generation phase, and outputs the files

needed for the synthesis flow.

In the following subsections, we walk through a detailed example of generating a

datapath with a 64-bit 6 x 6 crossbar, 1 mm links, and receivers in a 45 nm SOI HVT

technology.

~ 0 50

4.3. Datapath Generator

VDD VDD

Din Ab -

VSS VSS

VDD

En Enb

VSS

VDD

A

A

Enb Doutb

Ab

VDDL

(a) Transmitter

Figure 4-6:

VDD

VDD kk

Ab-
b P Pb

Enb Dout
Dinj inb

A -- LCik

VDDL vss

(b) Receiver

Schematic of Transmitter and Receiver

Table 4-2: Pre-characterization Results

Transmitter Receiver

Average current (pA) 2.6 11.0

Input cap (WF) 1.52 (select) 1.05 (clk)
2.87 (data) 0.4 (data)

4.3.1 Building Block Pre-characterization

We treat the 1-bit transmitters and receivers as atomic building blocks of the genera-

tor, thus giving users the flexibility of using different kinds of transmitter and receiver

designs. Given the transmitter and receiver designs, the generator first performs pre-

characterization using SPICE-level simulators (we used Cadence UltraSim) to obtain

average current and input capacitances. The average current is later used to determine

the power wire width, while the input capacitances are used to determine the size of the

buffers that drive these building blocks. For example, Figure 4-6 depicts the schematic of a

low-swing transmitter design and a receiver design we chose as inputs to the generator [91].

The experiments in both this section and Section 4.4 are performed using the IBM 45 nm

SOI HVT technology, and the pre-characterization results are shown in Table 4-2.

-I

51 E

Dout

Pb Doutb

052 Chapter 4 - Low-Power Crossbar Generator Tool

SelTrnmtecoe
(Noise-sensitive>

Data in I

Figure 4-7: Transmitter Abstract Layout

Dout.k Sel A Transmitter

Din+ E

39.73um
Figure 4-8: Example Single-bit Crossbar Layout with 6 Inputs and 6 Outputs

4.3.2 Layout Generation

In this step, the generator tiles the transmitters and receivers to form the datapath, taking

various aspects into consideration, such as building block restrictions, floorplanning,

routing, and link design. This section details each of these aspects.

Building block restrictions: We applied constraints to the transmitters' and receivers'

pin locations. The reason is twofold. First, the gates of the transistors for low-swing

operations are more sensitive to coupling from full-swing wires. Therefore, some con-

straints on transmitters' and receivers' pin location are helpful to avoid routing low-layer

full-swing signal wires over these transistors. Second, constraints on pin locations make

the transmitter/receiver cells more easily tile-able. Without loss of generality, we chose

one specific pin layout, restricted as shown in Figure 4-7. The power and ground pins'

locations are chosen to be the same as the corresponding pins in standard cells. All other

pins are placed relative to the transmitter's core, which contains noise-sensitive transistors.

For example, the Select pin is on the left of the core, the Data-in pin is at the bottom, and

the Data-out pin is on the right. Similar constraints are also applied to the receiver cell

design.

4.3. Datapath Generator

1 -bitLCrnkRbar

1-bit Crossbar 1-bit Crossbar

Figure 4-9: 4-bit Crossbar Abstract Layout with 1 Port Connecting to the Link

Floorplanning: To achieve higher transmitter cell area density, we chose the bit-sliced

organization, which was shown earlier in Figure 4-1b. The tool first generates a 1-bit N x

M crossbar as shown in Figure 4-8. The transmitters are placed at the cross-points of

input horizontal wires and output vertical wires. The tool then places W 1-bit crossbars

in a 2-dimensional array to form a W-bit N x M crossbar, as shown in Figure 4-9. The

number of 1-bit crossbars on each side is calculated to square the crossbar layout area so

as to minimize the average length of the wires each bit needs to traverse. Receivers are

placed so that the routing area from the links to the receiver inputs is minimal.

Although a port-sliced organization is also effective, it requires a more sophisticated

wire routing algorithm to achieve the same cell area density as a bit-sliced organization. A

naive approach, as shown in Figure 4-la, would result in low-transistor density and a W2

bit-to-area relationship, instead of W which can be readily achieved by using the bit-sliced

organization.

Routing: For each 1-bit crossbar, the number of metal layers needed to route the

power and signals is kept minimal, to maximize the number of available metal layers

for output wire routing. No wiring is allowed above noise-sensitive transistors in lower

metal layers. While this increases the total crossbar area, it lowers'the wiring complexity

for Data-out wires from each 1-bit crossbar to crossbar outputs. Since we employed the

bit-sliced organization, the Data-out wires are distributed across the entire crossbar. Two

metal layers are used to route the Data-out wires to the edge of the crossbar: one is used

for outputs in horizontal direction, while the other is used for the vertical direction. Since

the same metal layer is used to route all wires in a particular direction, the crossbar area is

limited by the wire pitch if the transmitter's cell area is small. Otherwise, it is limited

530M

Chapter 4 - Low-Power Crossbar Generator Tool

Differential
data wires

Shielding wires

Figure 4-10: Selected Wire Shielding Topology

by transmitter cell area. As shown in Figure 4-9, Data-out wires coming out from the

edge of the 1-bit crossbar array are routed to the inputs of links. We carefully designed

the routing algorithm so that it takes minimal wiring area to connect the outputs of a

crossbar to the links.

A structured layout of the power distribution network is applied. A power ring that

surrounds the whole crossbar, one that surrounds the whole receiver block, and power

stripes, are all automatically generated. The widths of the power wires are calculated

based on the average current so that the current density is less than 1 mA/pm to avoid

electromigration. Using the results from the pre-characterization, we used both 0.8 Pm-

wide and 0.7 pm-wide power wire for crossbar and receiver respectively.

Link Design: Link parameters such as link wire length, width, and spacing are

specified as the inputs of the generator. Since the links are running at low-swing, they are

more vulnerable to noise. We thus add shielding wires to improve the noise immunity at

the cost of increase in link area1 . We chose the shielding wire organization that is shown

in Figure 4-10, where a shielding wire is placed on the same layer as link between two

different bits and two shielding wires are placed right below the differential wires. This is

chosen as it minimizes low-swing noise from other links and full-swing logic from lower

metal layers.

Typically the wire length is set based on the distance between the crossbar and the

components this crossbar is connected to. Different choices of wire width and spacing

would affect the timing and energy consumption of transmitting a signal. For example,

'The area cost is around 1.5x on the same layer and 1x on the layer below.

0 54

4.3. Datapath Generator

Table 4-3: Performance of 1 mm Link of Two Organizations

Wire width Wire spacing Delay (ps) Energy/bit (fJ) Link area (mm 2)
1 2 70.0 35.0 0.093

2 4 33.7 30.5 0.176

Figure 4-11: Example 6 x 6 64-bit Datapath Layout with One Link Shown

one could reduce the delay by doubling the wire pitch but it requires larger wiring area.

Table 4-3 shows this trade-offs between link area and link performance, where the wire

width is normalized to the minimum wire width and the wire spacing is normalized to

the minimum spacing. The performance was simulated by transmitting a full-swing signal

on the link.

A layout of the example datapath generated is shown in Figure 4-11.

4.3.3 Verification and Extraction

We use Calibre from Mentor Graphics to check if the generated circuit obeys the design

rules, and to perform layout versus schematic (LVS) verification. A schematic netlist is

generated for LVS. In order to get a more accurate delay of the circuit, RC extraction is

done for the post-characterization of the generated design.

4.3.4 Post-characterization and Selection

Post-characterization is performed to determine the actual frequency, power, and area the

crossbar can achieve. The selection step chooses the suitable datapath design based on the

results from the post-characterization step, and outputs the files needed for the standard

synthesis flow.

550M

Chapter 4 - Low-Power Crossbar Generator Tool

Table 4-4: Example Generated Datapaths

Link wire width Link wire spacing Max freq (GHz) Crossbar area (mm2) Energy/bit (fJ)

1 2 2.5 0.053 46.4

2 4 2.7 0.084 48.3

The Table 4-4 shows the simulation results for the walk-through examples. At the

selection step, for example, if the criteria is to achieve high frequency and have little

constraint on the area, the design with doubled link pitch is returned.

4.4 Evaluation

In this section, we first evaluate the crossbars generated by our proposed tool, against

the synthesized crossbars. We then present a case study of a 5-port NoC virtual channel

router that is integrated through the standard synthesis flow with the low-swing datapath

generated by our tool.

In all our experiments, we used Cadence Ultrasim to evaluate the performance and

power consumption of the RC extracted netlists.

4.4.1 Generated vs. Synthesized Datapath

Using the transmitter and the receiver design we describe in Section 4.3, we generated low-

swing datapaths across a range of architectural parameters and compared the simulation

results with datapaths generated by standard CAD tools using only standard cells. We

will refer to the crossbar/datapaths generated by our tool as generated crossbars/datapaths,

and those generated by standard CAD tools using standard cells as synthesized cross-

bars/datapaths. Evaluating generated datapaths with different transmitter and receiver

designs can be done but is equivalent to evaluating the effectiveness of different low-swing

techniques, which is beyond the scope of this work. In our experiments, we assumed

a link length of 1 mm and specified a delay constraint of 0.6 ns from the input of the

crossbar to the output of the link for synthesized datapaths.

M 56

4.4. Evaluation 570l

120.00 120.00

100.00 100.00

- 80.00 80.00

60.00 60.00

r 40.00 j 400.J

20.00 20.00

0.00 0.00
32 64 96 128 4 6 8

Data width (bit) Number of ports

M generated-crossbar M synthesized-crossbar a generated-crossbar M synthesized-crossbar

(a) Vary Data Widths (b) Vary Number of Ports

Figure 4-12: Energy per bit Sent of 64-bit Datapaths

Energy per bit: We simulated the datapaths (crossbar and link) at 1.5 GHz and

report the results for varying data widths and varying number of ports in Figure 4-12a

and Figure 4-12b, respectively. As shown in Figure 4-12a, for both crossbars, as the data

width increases, the energy per bit sent also increases because an increase in the data width

leads to an increase in the area of the crossbar. This increase results in longer distance

(on average) for a bit to travel from an input port to an output port. Longer distance

translates to higher energy consumption. The energy per bit sent also increases with the

number of ports, because a bit needs to drive more transmitters. Overall, our simulations

showed that a generated datapath, as in our design, results in 50 % energy savings (on

average per bit sent) compared to a synthesized datapath.

Area: Figure 4-13 shows the area of the generated vs. synthesized crossbars. Due

to the bit-sliced organization and larger transmitter size, the generated crossbar area is

dominated by the transmitter area. Using this organization results in its crossbar area

growing linearly with the data width and quadratically with the number of ports, as

captured in Figure 4-13. On the other hand, as Figure 4-13 indicates, a synthesized crossbar

has a smaller area footprint because the transmitter design we are simulating is differential,

and our wire routing is conservative to achieve high immunity to noise. Both of these

factors result in increased area footprint.

Chapter 4 - Low-Power Crossbar Generator Tool

50 100
Data width (bit)

-4x4 gen-crossbar

-+-6x6 gen-crossbar

-8x8 gen-crossbar

-4x4 syn-crossbar

---6x6 syn-crossbar

-8x8 syn-crossbar

150

Figure 4-13: Crossbar Area with Various Architectural Parameters

I)D 0) 0_ (
E

U

(~~)
U

a E 0 0 a E 0LW0
C)U

* ~.

* U

U a

a a

N Router

0 ProcesU sing Unit

-1
U

U

* U

*
U- U

U

* U

m
U

U

Figure 4-14: Five-port Router in a Mesh Network

4.4.2 Case Study

We synthesized a typical NoC router of a mesh topology integrated with a low-swing

datapath using the files generated by our tool. The router is a 3-stage pipelined input

Table 4-5: Router Specifications

Parameter Value

of input ports

of output ports

Data width

of buffers per port

Flow control

Buffer management

Working frequency

5

5

64

16 (1k bits)

Wormhole with VC

On/Off

1 GHz

058

0.25

0.2

E
0.15

to

-0 0.1

U 0.050

0

0

4.4. Evaluation

itO j, 4t-4;,"- 207um

E E
Links to west

Processing Poesn

394um
Figure 4-15: Synthesized Router with Generated Low-swing Datapath

buffered virtual channel (VC) router with five inputs and five outputs [27], and with a

64-bit data path. As shown in Figure 4-14, one input and one output port are connected to

the local processing unit, while the remaining ports are connected to neighboring routers.

We assumed that the local processing unit resides next to the router, the distance between

routers is 1 mm, and the target working frequency is 1 GHz. Table 4-5 shows the detailed

router specifications.

We used the same synthesis flow shown in Figure 4-4 to realize the router design

from RTL to layout. Figure 4-15 shows the final layout of the router with the generated

datapath. The black region in the figure is assumed to be occupied by processing units.

The low-swing crossbar occupies about 30 % of the total router area. The delay of the

low-swing datapath is 630 ps. The power consumed in the generated datapath is 18 % of

the total power consumed by the router2 . The power consumption was obtained from

UltraSim simulations by feeding a traffic trace through all the ports of the router. The

traffic trace was generated from RTL simulations of a 4 x 4 NoC; every node injects one

message every cycle destined to a random node. The final synthesized router with the

generated low-swing crossbar and links consists of 286,079 transistors.

2It should be pointed out that this is a textbook NoC router. With a bypassing NoC router, such as that
in [62], the NoC power will be largely that of the datapath, since most packets need not be buffered and
can go straight from the input port through the crossbar to the output port and link.

590M

060 Chapter 4 - Low-Power Crossbar Generator Tool

4.5 Summary

In this chapter, we present a low-swing NoC datapath generator that automatically creates

layouts of crossbar and link circuits at low voltage swings, enabling the ready integration

of such interconnects in the regular CAD flow of manycore chips. Our case study

demonstrates our generated datapath embedded within the synthesis flow of a 5-port NoC

mesh router, leading to 50 % savings in energy-per-bit. While our case study leverages

a specific low-swing transmitter and receiver circuit, our generator can work with any

TX/RX building block.

SMART - Low-Latency Network

Generator Tool for SoC Applications

5.1 Motivation

Systems-on-Chip (SoCs) have started adding more and more general-purpose/application-

specific IP cores with the emergence of diverse compute intensive applications over the past

few years [35, 52], and this has intensified with the proliferation of smart phones [123].

Networks-on-chip (NoCs) are used to connect these cores together, and routers are used

at crosspoints of shared links to perform multiplexing of different messages flows on the

links.

To reduce on-chip packet delivery latency, one proposed approach is to tailor the

NoC topology to match application communication patterns at design time. Examples

include Fat Tree [1], Star-Ring [56], Octegon [52] and high-radix crossbar [92], etc. If

coupled with sophisticated link designs such as [41, 55, 60, 77], these NoCs can realize

a single cycle transmission between distant cores. However, this requires knowledge of

all applications and their communication graphs at design time to be able to pin these

dedicated express links to specific pairs of dedicated cores, and assumes sufficient wiring

density to support dedicated links between all communicating cores.

The alternate approach is proposed to use a scalable topology at design time, such

as a 2D Mesh connecting a collection of generic IPs (such as ARM processors), then

Chapter 5 - SMA R T Network A rchitecture

1 2 3 1 2 0 1 2 3

4 s 6 7 4ii[5 6 7 4 5 6 7
Reconfigure Reconfigure

a 9 10 1 8 1jJ 9 10 11 8 9 10 11

12 13 14 15 [12] 1 4 j 1 12 13 14 15

WLAN H264 VOPD

Figure 5-1: Mesh Reconfiguration for Three Applications. All links in bold take one-cycle.

reconfigure it at run time to match application traffic. Since router delays can vary

depending on congestion [27, 35], some prior research [48, 79, 80, 105, 107] has proposed

pre-reservation of (parts of) the route to provide predictable and bounded delays. These

works perform an offline computation of contention free routes, allowing flits to bypass

queues and arbiters at routers where there is no conflict between the routes of different

flows.

In this chapter, we propose SMART, Single-cycle Multi-hop Asynchronous Traversal,

to enable flits to potentially incur a single-cycle delay all the way from the source to

destination, thus providing a virtually tailored topology within a shared mesh. In addition,

we present a tool flow that (1) generates the RTL netlist of SMART network and brings it

to layout, and (2) takes applications' task graphs with communication flows and generates

configurations for tailored topologies. Figure 5-1 shows the goal of our design, where a

network reconfigures into 3 different topologies for 3 different applications.

We make the following contributions:

" We propose SMART network that allows flits traversing multiple hops within a single

cycle, breaking the on-chip latency barrier (i.e., one cycle per hop).

* We present a tool flow that takes SoC application task graphs, maps each application

onto the multi-core fabric, reconfigures the underlying SMART NoC so that it is

customized for the SoC application. The tool also provides parameterized RTL netlist

for SMART network that can be synthesized and place-and-routed into layout.

" We use the tool to implement a 4 x 4 SMART mesh network and evaluate the impact

on multiple SoC applications, showing that it is only 1.5 cycles off in performance

0 62

5.2. Background - Clockless Repeated Links

lay Coll delay cell

EN (A.4um width) EN

Figure 5-2: VLR Schematic

from a dedicated topology for that application. Compared to a mesh network with

3-cycle router, we observed 60 % saving in packet delivery latency and 2.2 x reduction

in power consumption.

The chapter is organized as follows: we first show the feasibility of traversing multiple

within a single cycle in Section 5.2. Then, we present the SMART network architecture

in Section 5.3. In Section 5.4 describes the tool flow we develop to power the SMART

network. And case studies on a 4 x 4 SMART network are shown in Section 5.5. We

summarize the chapter in Section 5.6.

5.2 Background - Clockless Repeated Links

As discussed in Section 2.5, most prior works explore single-cycle-per-hop, which can be

viewed as a long link connecting the source and destination router with a clocked repeater

inserted each router on the route. However, the actual wire delay of a link between

adjacent routers is much shorter than a typical router cycle time (0.5 to 1 ns), which

means that it is possible to replace the clocked repeaters with clockless repeaters and allow

flits or packets to traverse multiple hops in a single cycle.

We explore the low-swing signaling techniques that can be used to lower both energy

consumption and propagation delay, where lower propagation delay implies higher

number of hops that can be traversed in a cycle. However, typical low-swing signaling

techniques described in Section 2.2 require a clocked receiver and hence are not suitable

for our purpose, which requires an asynchronous repeater.

630M

Chapter 5 - SMART Network Architecture

Park proposed the voltage lock repeater (VLR) [90], a low-swing clockless repeater

that stretches the maximum distance a full-swing repeated link can span in a cycle at lower

energy. In this section, we briefly introduce the mechanism and measurement results of

the VLR, and re-optimize the circuit to meet our need.

Figure 5-2 shows the schematic of VLR. A single-ended design is chosen over double-

ended design because of lower-wire capacitance per bit and higher data density. The

low-swing property is achieved by locking the node X to swing near the threshold

voltage of INV1x without decreasing the driving current, enabling lower delay of the next

symbol propagation delay in link. The voltage swing level is determined by transistor

sizes and link wire impedance'. The delay cell in the feedback path generates transient

overshoots at the node X, resulting in lower repeater intrinsic delay and larger noise

margin without significant energy overhead. Careful transistor sizing and extracted

simulations are required to prevent oscillation and static current through the RxP-RxN

path in all possible process corners.

Even though VLR does not require clocking power and differential signaling, it has

static current paths between two consecutive repeaters, TxP-wire-RxN for logic high and

TxN-wire-RxP for logic low. It should be noted, however, that the static energy is much

less than a conventional continuous-time comparator since the static current paths include

a highly-resistive link wire. Also, switching off the enable signal (EN) when the link is

not used helps eliminate unnecessary static power.

[90] shows that the VLR can achieve the maximum data rate of 6.8 Gb/s with 4.14 mW

power consumption (i.e., 608 fJ/b energy efficiency for 10-hop (10 mm) link traversal,

maintaining bit error rate (BER) below 1 x 10-'. On the other hand, the equivalent

full-swing repeaters can transmit 5.5 Gb/s data at most with BER less than 1 x 10-,

consuming 4.21 mW (i.e., 765 fJ/b), whereas VLR consumes 3.78 mW (i.e., 687 fJ/b) at

the same data rate. Latency wise, Park shows that the delay of a link with VLRs is around

60 ps/mm, whereas the delay of a link with full-swing repeaters is around 100 ps/mm.

'Vhigh is given by link wire resistance, TxP's on-state resistance and RxN's on-state resistance, while Vj0 is
determined by link wire resistance, TxN's on-state resistance and RxP's on-state resistance.

M 64

5.3. SMARTNetwork Architecture

Table 5-1: Simulation Results of Max Number of Hops per Cycle

(a) Resized/Optimized Circuit for Low-frequency (2 GHz) with Wider Wire
Spacing

Data Rate 1 Gb/s 2Gb/s 3 Gb/s

Full-swing 13 (103 fJ/b/mm) 6 (95 fJ/b/mm) 4 (84 fJ/b/mm)

Low-swing 16 (128 fJ/b/mm) 8 (104 fJ/b/mm) 6 (87 fJ/b/mm)

(b) Sizing used in [901 with Wider Wire Spacing

Data Rate 4 Gb/s 5 Gb/s 5.5 Gb/s

Full-swing 4 (98 fJ/b/mm) 3 (89 fJ/b/mm) 3 (85 fJ/b/mm)

Low-swing 7 (132 fJ/b/mm) 6 (107 fJ/b/mm) 5 (96 fJ/b/mm)

However, in a SoC, the maximum clock frequency is usually limited by the core and

router critical path rather than the link. We thus re-optimize the transistor sizes and

wire spacing of VLR for a lower clock frequency of 2 GHz, instead of 6.8 GHz, to meet

our system-level design goal of single-cycle multiple-hop link traversal without unnecessary

energy consumption and the simulation results are shown in Table 5- 12. At 2 GHz, 8-hop

(8 mm) link can be traversed in a cycle at 104 fJ/b/mm.

5.3 SMART Network Architecture

In this section, we present the SMART network architecture that can be tailored at

runtime for different applications to enable near single-cycle traversal for flits between

communicating cores. We first describe how we modify the router microarchitecture,

followed by its routing algorithm and flow control mechanism.

5.3.1 Router Microarchitecture

As shown in Figure 5-3, in addition to the input buffers of the router, the crossbar is also

fed by the incoming links to enable a combinational path directly from a router input to a

router output. For each direction, an extra multiplexer is added to multiplex the crossbar

input port between the input buffer and the incoming link. If the multiplexer is preset to

2Smaller transistor sizes and 2x wider wire spacing than the spacing used in [90].

650M

Chapter 5 - SMART Network Architecture

E:14

W-14

Ca

Bypass path

n t uer

I Arbiters

5x5 xbar
SMART Crossbar

SMART Router

EOut ,

N-Out,

CrOu

ip Buffer Write Switch SMART
PipelineI Allocation Crossbar + Link

Figure 5-3: SMART Router Microarchitecture and Pipeline

connect the incoming link to the crossbar3, a bypass path is enabled: incoming flits move

directly to the crossbar, traverse it to the outgoing link, and do not get buffered/latched

in the router. On the other hand, if the multiplexer is set to connect the input port

buffer, the bypass path is disabled, which happens when the output link is shared across

communication flows from different input ports. In this case, an incoming flit enters the

router and goes through the three pipeline stages described below:

Stage 1: The incoming flit gets buffered and generates an output port request based

on the preset route in its header.

Stage 2: All buffered flits arbitrate for the access to the crossbar.

Stage 3: Flits that win arbitration traverse the crossbar and output links to the next

routers.

E 66

5.3. SMARTNetwork Architecture

0 1 2 3
07

4 5 6 7

1 1 71 7

8 9 10 11

12 13 14 1

Figure 5-4: SMART NoC in Action with Four Flows (The number next to each arrow
indicates the traversal time of that flow.)

5.3.2 Routing

Given an application communication graph, one can use NoC synthesis algorithms like

NMAP [83] (see Section 5.5) to map tasks to physical cores and communication flows to

static routes on a mesh. Figure 5-4 shows an example SMART NoC with preset routes for

four arbitrary flows. In this example, the green and purple flows do not overlap with any

other flow, and thus traverse through a series of SMART crossbars and links, incurring

just a single-cycle delay from the source NIC to the destination NIC, without entering

any of the intermediate routers. The red and blue flows, on the other hand, overlap over

the link between routers 9 and 10, and thus need to be stopped at the routers before and

after this link to arbitrate for the shared crossbar ports4 . The rest of the traversal takes a

single-cycle. It should be noted that before the application is run, all the crossbar selection

lines are preset such that they either always receive a flit from one of the incoming links

or from a router buffer.

Since the routes are static, we adopt source routing and encode the route in 2 bits for

each router. At the source router, the 2-bit corresponds to East, South, West and North

output ports, while at all other routers, the bits correspond to Left, Right, Straight and

3The crossbar signals also need to be preset to connect this input port to another output port.
4If flits from the red and blue flow arrive at router 9 at exactly the same time, they will be sent out serially
from the crossbar's East output port.

670M

Chapter 5 - SMART Network Architecture

Core. The direction Left, Right and Straight are relative to the input port of the flit. In

this design, we avoid network deadlocks by enforcing a deadlock-free turn model across

the routes for all flows.5

5.3.3 Flow Control

In a conventional hop-by-hop traversal model, a flit gets buffered at each hop. Thus, a

router only needs to keep track of the free VCs/buffers at its neighbors before sending

a flit out. Without loss of generality, we adopt the virtual cut-through flow control to

simplify the design. A queue is maintained at each output port to track the available free

VCs at the downstream router connected to that output port. A free VC is dequeued

from this queue before a head flit is sent out of the corresponding output port. Once a

VC becomes free at the downstream router, the router sends a credit signal (VCid) back

to the upstream router which enqueues this VCid into the queue.

In the SMART NoC, a flit could traverse multiple hops and get buffered, bringing up

challenging flow control issues. A router needs to keep track of free VCs at the endpoint

of an arbitrary SMART route, though it does not know the SMART route till runtime.

We solve this problem by using a reverse credit mesh network, similar to the forward

data mesh network that delivers flits. The only overhead of the credit mesh network is a

[log(# VCs) + 1(valid)]-bit crossbar added at each router. For example, if the number of

VCs is 2, the overhead of the credit network is 2-bit wide crossbars. If a forward route

is preset, the reverse credit route is preset as well. A credit that traverses multiple hops

does not enter the intermediate routers and goes directly to the crossbar which redirects it

along the correct direction.

For example, in Figure 5-4, for the blue flow, credits from NIC 3 are forwarded by

preset credit crossbars at routers 3, 7 and 11 to router 10's East output port in a single-cycle

without going into intermediate routers; credits from router 10's West input port are sent

to router 9's East output port and credits from router 9's West input port are sent to NIC

8.

sDeadlock can also be avoided by marking one of the VCs as an escape VC [27] and enforcing a deadlock-free
route within that. The exact deadlock-avoidance mechanism is orthogonal to this work.

0 68

5.4. Tool Flow

User

Network
RTL Library

Clockiless
Low-Swing

Layout Generatc

TX/RX
Macro Cells

Standard
Cell Library

Network
Parameters

Synthesize
Network

r Gate-Level

Netlist

Place and Route

Layout

Figure 5-5: Tool Flow

Task
Graphs

Map Tasks to Mesh
Cores

Router
Configs

Simulate RTL &
Analyze Power

The beauty of this design is that the router does not need to be aware of the reconfig-

uration and compute whether to buffer/forward credits. Since the credits crossbars act

as a wrapper around the router, and are preset before the application starts, the credits

automatically get sent to the correct routers/NICs. Thus, if a router receives a credit, it

simply enqueues the VCid into its free VC queue. This free VC queue might actually be

tracking the VCs at an input port of a router multiple hops away, and not the neighbor,
as explained above.

5.4 Tool Flow

In this section, we describe the tool flow, shown in Figure 5-5, that we develop to

power the SMART network. The tool flow can be divided into two parts: physical

implementation and application mapping.

690M

Chapter 5 - SMART Network Architecture

Low-swing: Full-swing

E I

WA>n

N R

C-In

Rx

Crossbar

____ 1:7.. 1: .. I:!.,
I| I I| | | | |

I I it

Tx
YY

E-Out S-Out W-Out N-Out

Figure 5-6: One-bit SMART Crossbar

Figure 5-7: 32-bit Tx Block Layout Figure 5-8: Generated 4x4 NoC Layout

5.4.1 Physical Implementation

VLR-Integrated Crossbar: To leverage the benefit from the VLR described in Section 5.2,

we integrate it into the crossbar, as shown in Figure 5-6. The idea is to insert a crossbar

between the Rx and Tx components of each repeater. The data received from the link

will first be converted to full-swing (Rx), traverse the full-swing crossbar, and then be

converted back to low-swing (Tx) again before it is forwarded to the next hop. To

implement the crossbar, we develop a SKILL script to take 1-bit Tx/Rx layout and data

with as input and place-and-route them regularly to multi-bit Tx/Rx blocks. Figure 5-7

shows an example of a 32-bit Tx block. We do not embed the VLRs in the crossbar

as discussed in Chapter 4, because that leads to high area overhead. Also, we do not

C-Out

.. I- ..-L jJ_

0 70

if 11

5.4. Tool Flow

use existing commercial place-and-route tools, because these tools are often designed for

general circuit blocks and cannot leverage the regularity property, adding unnecessary

overhead. In addition, the script also generates the timing liberty format (.lib) and the

library exchange format (.lef) files to allow the generated layout to be place-and-routed

with the router.

Other Router Components: We develop a parameterized library of various router

components in Verilog, and a tool that generates the RTL description of the SMART

router and network with given network parameters. The input and output ports are clock-

gated to reduce unnecessary dynamic power consumption based on the preset signals,

which are set before each application runs. We provide scripts to help synthesis and

place-and-route the router with the VLR-integrated crossbar, bringing the SMART router

to layout. Furthermore, due to the limitation of the general routing tool that introduces

unnecessary wiring overhead, we develop TCL scripts to control the tool to generate links

between routers.

Reconfiguration Registers: To support SMART path reconfiguration for different

applications, we encode the preset signals for crossbars and input/output ports into a

double-word configuration register for each router. These registers are memory mapped

such that these can be set by performing a few memory store operations. Before each

application runs, these registers need to be set properly to suit the application's traffic

characteristic. The network needs to be emptied while setting the registers. The values

of the registers are determined based on the mapped flows on the mesh. Application

developers need to prepend the application with memory store instructions to set the

registers properly and the reconfiguration cost at runtime is just the amount of time to

execute these instructions. For example, for a 16-node SMART NoC, there are 16 registers

to be set which correspond to 16 instructions. If there is only 1 core that can perform the

reconfiguration, a separate network (e.g., ring) is required to set these registers.

5.4.2 Application Mapping

The purpose of this part is to determine the preset signals for the application that will

be run. We assume that the applications are already mapped to core and we take the

710M

Chapter 5 - SMART Network Architecture

Table 5-2: 4x4 NoC Configuration

Name Value

Technology 45 nm SOI

VDD, Freq 0.9 V, 2 GHz

Topology 4 x 4 mesh

Channel width 32 bits

Credit width 2 bits

Router ports 5

VCs per port 2, 10-flit deep

Packet size 256 bits

Flit size 32 bits

Header width 20 bits (Head), 4 bits (Body, Tail)

resulting task graphs including tasks to be mapped to physical cores and communication

demands (flows) between them as the input to our tool. We adopt a modified NMAP

algorithm [80] to map the tasks to physical cores in the mesh. We first map the task

with highest communication demand to the core with the most number of neighbors

(i.e., middle of the mesh). Then, we pick a task that communicates the most with the

mapped tasks and find an unmapped core that minimizes the chance of of getting buffered

at intermediate cores. This process is iterated to map all tasks to physical cores.

As the tasks are mapped to the physical cores, the flows between tasks are also

mapped to routes with minimum number of hops between cores. Note that since

the reconfiguration process only involves a few memory stores, the overhead of the

reconfiguration can be omitted.

5.5 Case Study

5.5.1 Configurations

We use the tool flow present in Scction 5.4 to implement a 4 x 4 SMART NoC and

evaluate it with a suite of SoC applications. The configuration of the network is shown in

Table 5-2, and the final layout is shown in Figure 5-8. It should be noted that the routers

E 72

5.5. Case Study

1ID Mesh E SMART 0 Dedicated
iJ 11-Z 10

9
8

"714;61kV I i
- 4

0

Figure 5-9: Performance

are assumed to be 1 mm spaced and the black regions shown are reserved for the cores.

We refer to this design as SMART.

We evaluate SMART against two baselines: Mesh and Dedicated. Mesh is a state-of-the-

art NoC topology without reconfiguration support [27], where each hop takes 3 cycles

in router and 1 cycle in link. Dedicated is a NoC with 1-cycle dedicated links between all

communicating cores tailored to each application. While this has area overheads, we use

this design as an ideal yardstick for SMART. All designs use the VLR links.

We generate synthetic traffic from 8 SoC task graphs, modeling a uniform random

injection rate to meet the specified bandwidth for each flow'. We feed this traffic through

post-layout simulation of the SMART NoC to get average network latency. We also use

the VCD files from these simulations to estimate power using Synopsys Prime Power.

5.5.2 Performance Evaluation

Figure 5-9 shows the average network latency across the applications for the baseline and

SMART NoCs. Compared to the Mesh, SMART reduces network latency by 60.1 % on

average due to the bypassing of the complete router pipelines'. On average, SMART

reduces the network latency to 3.8 cycles, which is only 1.5 cycles higher than that of

the Dedicated 1-cycle topology. For PIP, VOPD and WLAN, the latencies achieved by

6The bandwidth requirements of the three MMS benchmarks are scaled up 100x to allow reasonable
on-chip traffic in our 2 GHz design. All other benchmarks' bandwidth remain unchanged.

7In the worst case, if all flows contend, SMART and Mesh will have the same network latency.

730M

-12

074

ci
0

Chapter 5 - SMART Network Architecture

8.OOE-02
. 2 Buffer In Allocator 9 Xbar (flit + credit) + Pipeline register U Link

7.00E-02

6.00E-02

5.00E-02

4.00E-02

3.00E-02

2.00E-02

1.00E-02

0 00E+00

4A 0n L 0 0 0

H264 MMSDEC MMSENC MMSMP3 MWD VOPD WLAN PIP

Figure 5-10: Power Breakdown

SMART and Dedicated are almost identical. If there are multiple traffic flows to the

same destination, they need to stop at a router at the destination to go up serially into

the NIC, both in SMART and Dedicated. However, SMART is limited by the available

link bandwidth in a mesh to multiplex all flows, while Dedicated has no bandwidth

limitation. This allows Dedicated to have 2 to 4 cycles lower latency than SMART in

H264 and MMSMP3 where one core acts as a sink for most flows, while another acts as

the source for most flows, thus resulting in heavy contention and multiplexing. This can

be ameliorated by splitting the 32-bit wide SMART channels into two 16-bit narrower

channels (or more)', then clocking them at twice or thrice the rate, leveraging the high

frequency of SMART links to mitigate conflicts. SMART can also enable non-minimal

routes for higher path diversity without any delay penalty. We leave these as future work.

In an actual SoC, the task to core mapping may not be able to change drastically across

applications as cores are often heterogeneous, and certain tasks are tied to specific cores.

This will result in longer paths, magnifying the benefits of SMART.

5.5.3 Power Analysis:

Figure 5-10 shows the post-layout dynamic power breakdown across the applications

for all three designs. All designs send the same traffic through the network, and hence

have similar link power. Compared with Mesh, where flits need to stop at every router,

8Essentially, this increases the radix of the router and the path diversity.

5.6. Summary

SMART reduces power by 2.2 x on average both due to bypassing of buffers, and due to

clock gating at routers where there is no traffic. The total power for Dedicated is much

lower than SMART because only link power is plotted, which is negligible due to low

network activity. A Dedicated topology also has high-radix routers at destinations (if it

acts as a sink for multiple flows), pipeline registers and muxes at the source (if multiple

flows originate from it), which we ignored in the power estimates, though these will not

be negligible.

5.6 Summary

In this chapter, we proposed SMART NoCs and demonstrated how scalable NoCs

such as meshes can realize single-cycle, intra-chip communication while delivering high

bandwidth by dynamically reconfiguring its switches to match application traffic. In the

past, SoC architectures, compilers and applications have been aggressively optimizing

for locality. As we drive towards more and more sophisticated SMART NoCs, we hope

that will pave the way towards locality-oblivious SoC design, easing the move towards

many-core SoCs.

750M

*76 Chapter 5 - SMART Network Architecture

SMART Network Chip

6.1 Motivation

In Chapter 5, we propose the SMART, a network architecture that allows flits or packets

to traverse multiple hops within a single cycle. Even though we only present in Chapter 5

the SMART network targeting SoC applications, we also develop another version of

SMART network that targets manycore system applications, which we will go through

in detail in Appendix A. For the rest of the thesis, we will refer to the SMART for

SoC applications as SMARTapp, and the SMART for many core system applications

as SMARTcyci.c The main difference between these two flavors of SMART network is

that SMARTapp is suitable for applications with predictable traffic patterns and limited

communication flows, whereas SMARTcycIe is suitable for applications with unpredictable

traffic patterns or near all-to-all communication flows.

The key idea behind the SMART network is to dramatically reduce the packet delivery

latency by reducing the number of times that a packet needs to be stopped at intermediate

routers, instead of retiming1 the pipeline stages within a router to achieve higher clock

frequency or lower number of pipeline stages.

1Retiming is a technique used in digital circuits to move the structural location of latches or flip-flops
to improve the performance, area and/or power, while preserving the same functional behavior at the
outputs.

Chapter 6 - SMART Network Chip

The equation of packet delivery latency (T) in cycles is then effectively reduced from:

T = HTr + H + Tc + L/b (6.1)

to

T = [H/HPC] T. + [H/HPC] Tw + Tc + L/b (6.2)

where H is the number of hops, T. is the router pipeline delay, T, is the wire (between

two routers) delay, Tc is the contention delay at routers, L/b is the serialization delay

for the body and tail flits, (i.e., the amount of time for a packet of length L to cross a

channel with bandwidth b), and HPC stands for number of hops that can be traversed

in a cycle. The higher the HPC allowed, the lower the packet delivery latency can be

achieved. For example, as shown in Chapter 5, VLR circuit allows data to traverse 16 mm

(i.e., 16 hops with a 1 mm separation) in 1 ns, indicating that a maximum HPC of 16 is

feasible. However, the actual data path of the SMART network is more complex than a

chain of repeaters and links; it is composed of crossbars and links. Therefore, the actual

maximum HPC is less than 16, which needs to be further examined.

Unlike typical NoC designs where the metrics (e.g., timing, area and power) solely

depend on their router designs, the SMART network's metrics depend on not only the

router design but also the maximum HPC allowed. In this chapter, we investigate the

tradeoffs that SMART network's low-latency benefit comes with between the maximum

HPC and critical metrics (e.g., timing, area and power). We first review the repeated

link and then examine the essential components that are necessary to either SMARTapp

or SMARTcycic. Furthermore, since the maximum HPC allowed is affected by the

link performance, which is hard to characterize accurately even through post-layout

simulations. Therefore, in addition to the analyses on essential components, we present

a case study of a 64-node SMART network chip, fabricated using a 32 nm SOI CMOS

technology, and demonstrate thorough timing and power analyses with measurement

results.

The rest of the chapter is organized as follows. Section 6.2 demonstrates the feasibility

of the SMART network through preliminary timing analyses on repeated link and

E 78

6.2. Design Analyses ofSMARTon Process Limitation 79 N

critical components. Sect ion 6.3 shows the architecture of the chip prototype, where its

implementation consideration is presented in Section 6.4. Section 6.5 evaluates the chip's

area, timing and power through simulations and measurements. Section 6.6 summarizes

the chapter.

6.2 Design Analyses of SMART on Process Limitation

The ultra-low latency of SMART network comes with a price. If we use the same circuit

and transistor sizing, the higher HPCmax requires a higher cycle period (i.e., a lower

clock frequency). On the other hand, we can size up the circuit to improve its timing to

achieve higher HPCmax; however, it comes with a cost of higher area footprint and energy

consumption. In this section, we focus on evaluating the tradeoff between area/energy

and HPCmax for critical components of SMART network: repeated link, data path, as well

as control path for SMARTcYCIC, at a clock frequency of 1 GHz (i.e., 1 ns clock period).

Even though we discussed the benefit of using VLR in Section 5.2 with a tool flow to

ease the integration, evaluating the tradeoffs for those critical components requires both re-

designs of the VLR cells for each HPC max and detailed SPICE-level simulations for correct

behavior, which dramatically increase the complexity and time required. Therefore, we

implement these components with complete full-swing circuits in RTL, and obtain the

energy and area numbers from post-layout circuits.

6.2.1 Repeated Link

In addition to the discussion in Section 5.2, we revisit the performance of full-swing

repeated link under looser constraints. We use Cadence Encounter to place-and-route

a 128-bit repeated link in 45 nm SOI CMOS technology. The wire spacing is 3 x of

the minimum spacing instead of 2x used in Section 5.2, resulting in lower coupling

capacitance (a decrease in overall capacitance by approximately 13 % with an increase in

area by 33 %), and hence lower delay as well as energy consumption.

080

51
48
45

E42
39
36

~33
30
27
24

W21
10

Chapter 6 - SMARTNetwork Chip

;;: -_ V-P

4-

Clocked -- 45nm (Place-and-Route)
Driver *'*45nm (DSENT)

45nm PnR **A--32nm (DSENT)
-XK''22nm (DSENT)

J~ ++-Hh~ -i-
-r v At I -" --- -

15
0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Length (mm)

Figure 6-1: Achievable HPCma. for Repeated Links at 1 GHz.

We keep increasing the length of the wire, letting the tool size the repeaters ap-

propriately, till it fails timing closure at 1 ns (i.e., 1 GHz). 2 Figure 6-1 shows that a

place-and-routed repeated wire in 45 nm can go up to 16 mm in a ns. The sharp rise

in energy per bit is the cost of having HPC. higher than 12, contributed by larger

repeater sizes and poor wire layout for long links3 . Figure 6-1 shows a similar trend for 32

and 22 nm technology, with energy going down by 19 and 42 % respectively, using the

timing-driven NoC power modeling tool DSENT 4 described in Chapter 3.

6.2.2 Data Path

The data path of the SMART network consists of a chain of crossbars and links, and is

modeled as a series of a 128-bit 2:1 multiplexer (for buffer bypass), a 4:1 multiplexer (for

crossbar) followed by a 128-bit 1 mm link.

2Wire Width: DRCmin, Wire Spacing: 3 x DRCmin, Metal Layer: M6. Repeater Spacing: 1 mm

3It is an artifact of using Cadence Encounter, an automatic place-and-route tool, which zig-zags wires to
fit to a fixed global grid that is unfortunately not a multiple of M6 DRCmin width. This artifact adds
unnecessary wire lengths, leading to higher energy cost. A custom design may go farther and with flatter
energy profile.

4DSENT's projections on maximum length a repeated link can achieve in 1 ns are slightly overestimated
because it does not model inter-layer via parasitics (needed to access the repeater transistors on M1 from
the link on M6), which become significant when there are many repeaters.

6.2. Design Analyses of SMART on Process Limitation

70

60

550

40

S30

r 20

10

0

16
14
12
10

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0
HPCmax

(a) Energy

Figure 6-2: Energy and Area versus

1 2 3 4 5 6 7 8 9 10 11 12 13
HPCmax

(b) Area

HPCmax for Crossbar

1mm SSR BWn,

r- SSRv SA-GssR-priority-arbiter SA-GbypassBoW->E SA-Giprtpot B/sei
frec 8

SeLW1.,E

if SSR k I then
bypass-req <- (SSR1 > 1) & (freevc)

else if SSR 2 2 2 then
bypass req <- (SSR 2 > 2) & (freevc)

if SSR3 2 3 then
bypassreq <- (SSR3 > 3) & (freevc)

else Prio = Local
bypassreq <- 0 H PC.,.,= 3

if SAL grantC->E || SAL-grantN->E |
SAL-grantS->E then

XBseLW->E < 0

else if SAL-grantW->E bypassreq
then

XBseiW->E 1
else

XBselW->E <- 0

if XBseI W-E & ~SAL grantW->E then
BMs, <- 0 H/0 => bypass

else
BMsei <- 1 I1 => local

BWen. <- BM,,

Figure 6-3: Implementation of SA-G at Win and E0u, for 1D version of SMARTcycie

Figure 6-2 shows the energy-per-bit and area-per-bit of the modeled data path (without

link). Both energy and area profiles stay flat when HPCmax is less than 7 because the total

path delay is still within the 1 ns constraint with the same cell sizes. After HPCma of 7,

larger cell sizes are used to reduce the per-hop data path delay, leading to increased energy

and area profile. The data path can go up to 11 hops in I ns clock period.

6.2.3 Control Path

The control path consists of HPCma,-hops repeated link and SA-G logic used in SMARTcycie.

Detailed description of how each component works can be found in Appendix A.

In 1D version of SMARTcycle, each input port receives one SSR from every router up

to HPCmax-hops away in that direction. The input, output and internal signals correspond

to the ones shown in the router in Figure A-1. The logic for SA-G for Prio = Local is in

a 1D version of SMARTcycie design at the W; and Eut ports of the router is shown in

810

W

Chapter 6 - SMART Network Chip

200

*82

300

250

200

,w150
W

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 0

HPCmax

(a) Energy

Figure 6-4: Energy and Area versus HPCm

12000

10000

8000
E

6000

$ 4000

2000

0
0 1 2 3 4 5 6 7 8 9 10 C

HPCmax

(a) Energy

Figure 6-5: Energy and Area versus HPC,

150

-100

0

50

Figure 6-3'. To reduce the critical path delay, BWena is relaxed such that it is 0 only when

there are bypassing flits (since the flit's valid-bit is also used to determine when to buffer),

and BMei is relaxed to always pick local if there is no bypass. XBsei is strict and does not

connect an input port to an output port unless there is a local or SSR request for it.

In 2D version of SMARTcycie, all routers that are H-hops away, H E [1, HPCmaX],

together send a total of (2 x HPCmax -1) SSRs to every input port. SA-GSSR_priorityarbiter is

similar to Figure 6-3 in this case and choose a set of winners based on distance, while SA-

Goutputport disambiguates between them based on turns, as discussed earlier in Figure A.4.2.

For 1D version of SA-G, the energy and area increase linearly with HPCma, as shown

in Figure 6-4. And it is able to achieve an HPCmax of 13 with 890 ps SSR and 90 ps SA-G.

As for 2D version of SA-G, since it needs to arbitrate the SSRs from all the routers

HPCmax-hop away, the energy and area grow quadratically with HPCmax. 2D version of

SA-G can only achieve an HPCm. of 9 with 620 ps SSR and 360 ps SA-G.

5The implementation of Prio=Bypass is not discussed but is similar.

& 01110 1

.. 11 "

10000

8000

6000

4000

2000

0

1 2 3 4 5 6 7 8 9 10 11 12 13

HPCmax

(b) Area

iax for 1D version of SA-G

1 2 3 4 5 6 7 8 9 10

HPCmax

(b) Area

for 2D version of SA-G

6.3. Chip Architecture

6.2.4 Summary

To implement the SMARTapp with a clock frequency of 1 GHz, it is possible to design

HPCmax to be 11, based on the data path performance. However, it comes with extra area

footprint and energy consumption. To avoid this overhead, 7 is the maximum HPCmax

that can be set at design time; otherwise a lower clock frequency is required to achieve

higher HPCmax without inducing area/energy overhead.

As for the SMARTCYCIC, compared to the data path, the control path performance is

better, and the increases in its area and energy consumption are mild. In addition, even

though the 2D version offers a lower low-load latency (compared to the 1D version), the

high energy and area overhead as well as the number of SSRs required make it unfavorable.

Therefore, the maximum HPCmax that can be set is also 7.

These analyses guided my design choice as follows:

" Complete full-swing circuits to reduce the design complexity and time.

" A maximum HPCmax of 7 with a clock frequency of 1 GHz at design time for both

SMARTapp and SMARTCYCIe to avoid area and energy consumption overhead.

" 1D version of SMARTcycIe to avoid excessive overhead of the 2D version.

6.3 Chip Architecture

In the rest of this chapter, we present a case study of a chip prototype of a 64-node (8 x 8)

SMART network. The design target is to achieve HPCmax of 7 at a clock frequency of

1 GHz. In addition, we make HPCmax a parameter that we can configure at runtime to

evaluate the tradeoff between the achievable clock frequency and HPCmax at the same

design point.

The chip is 3 x 3 mm in size, as shown in Figure 6-6. Each node constists of a router,

a network interface controller (NIC) and a tester, as illustrated in Figure 6-7. A PLL is

used with a synchronous clock style to clock all the nodes. Detailed specification of the

chip is shown in Table 6-1.

830M

Chapter 6 - SMART Network Chip

C,

(7,0) (7,5) (7,4) (7,1) (7,6) (7,3). (7,2) (7,7)

(2, 0) (2,5) (2,4) (2, 1) (2,6) 1 (2,3) (2,2) (2,7)

(3,0) (3,5) (3,4) (3,1) (3,6) (3,3) (3,2) (3,7)

(6,0) (6,5) (6,4) (6,1) (6,6) (6,3) (6,2) (6,7)

(1,0) (1,5) (1,4) (1, 1) (1,6) (1,3) (1, 2) (1,7)

(4,0) (4,5) (4,4) (4,1) (4,6) (4,3) (4,2) (4,7)

(5,0) (5,5) (5,4) (5,1) (5,6) (5,3) (5,2) (5,7)

(0,0) (0,5) (0,4) (0,1) (0,6) (0,3) (0,2) (0,6)

10PL 10

3mm

Figure 6-6: Chip Layout

Tester NIC Router

ScanIu -Packet,
a - Traffic Sink 4-

WCC - Packetout

- Traffic Source SAReq/Resp
RC Unit FIFO Controller

Figure 6-7: Node Microarchitecture

Due to the die area limitation, several design decisions are made based on multiple

iterations of performance simulation and synthesis. We show those decisions as follows:

" Even though the SMART network, especially SMARTcyce, works better with larger

network sizes, we choose a network of 64 nodes so that the number of nodes is just

enough for design target (i.e., HPCmax of 7 at a clock frequency of 1 GHz).

" We do not include processor cores into our chip. Instead, we place a tester at each

node to generate synthetic traffic to help evaluate the network performance and power

consumption.

0 84

6.3. Chip Architecture

Table 6-1: Chip specification

Name

Chip dimension

Technology

Gate count

Power supply

Clock frequency

Network size

Router pitch

Flit width

VCs

Buffers

Routing algorithm

Flow control

HPCmax

Value

3 x 3 mm2

32 nm SOI

9.19 M

0.9 V

Target: 1 GHz, Actual: 548 to 817.1 MHz

8 x 8

1 mm on average

64 bits

8

1 per VC

X-Y + User-defined

SMARTCYCie + SMARTapp

Configurable from 1 to 7 for SMARTcycie

No restriction for SMARTCYC1 C

0 We assume that each synthetic packet consists of only one flit, and do not implement

the support for multi-flit packets to avoid high amount of buffers required for desired

performance. As a result, a flit width of 64-bit is chosen, one buffer per VC is

sufficient, and a total of 8 buffers is used to achieve decent performance without too

much area overhead.

6.3.1 NIC and Tester Microarchitecture

The tester consists of a traffic source and a traffic sink. The traffic source generates

synthetic packets based on runtime configurations such as traffic type, injection rates,

etc. We use several multi-bit linear feedback shift registers (LFSR) to control the packet

generation, packet destinations, as well as packet payloads. The traffic sink consumes a

packet upon its arrival, and checks if it contains error bits using the parity bit information

tagged with the packet. A custom scan chain is used to transfer the configurations and

collected results.

The NIC serves as an interface between the tester and router. It receives the generated

packets from the traffic source and stores them in a FIFO, and joins the switch arbitration

85 N

Chapter 6 - SMARTNetwork Chip

- - - -----------------Credit,,
Input Port Credit Unit

(East/South/West/North)

I------------'
SSRi | B SA-G Unit Destination Low-Load sA-L Unit

Bypass Unit Bypass Unit

RC Unit

Credit,,t He I
VC Controller SSR0ot

Flit buffer

o CrossbarocalL
_ _ _ IFlitut

SP. Crossbarbypass

Figure 6-8: Router Microarchitecture

to win the access to the crossbar. It also receives packets from the router and forwards

them to the traffic sink. Since the traffic sink is designed to consume packets upon arrival,

a pipeline register is used instead of a FIFO.

6.3.2 Router Microarchitecture

Figure 6-8 shows the microarchitecture of the router. The design supports SMARTapp as

well as one-dimensional SMARTycie. All the routers need to be configured to run in the

same mode for correct behavior. Instead of the 2D version of SMARTycie, the 1D version

is chosen to avoid high area and energy overhead when HPCmax of 7 at design time.

SMART app: We implement a two-cycle router where its pipeline is shown in Figure 6-

9. When an input port is configured to block flows, it first buffers incoming packets in

the input pipeline register, and then performs VC allocation and joins switch arbitration.

If a packet wins the switch arbitration, it traverses the crossbar0 ca and gets buffered in the

output pipeline register, and in the next cycle, it traverses the links and crossbaryp,, and

gets stopped at another input port or NIC. Since there is no computing unit on the chip,

M 86

6.3. Chip Architecture

Update 'Frlirtet travers
Receive flit next turn - Allocate VC buffered flits' Deallocate VC Fcrossbare to

(RC) reqss output port

oBufert art Send flit Send credit,,

Figure 6-9: Router Pipeline

we scan in the configurations for each router, such as the crossbar control bits, turning

information for flows. 6

SMARTcycle: We implement the 1D version of SMART, which allows routers to be

bypassed only along one dimension, as well as the support for bypassing the ejection

router and bypassing SA-L at low load. To increase the maximum achievable clock

frequency, we move the crossbar traversal stage for buffered flits one cycle earlier, which

requires an additional crossbar and an additional credit port to ensure correct functionality

without degrading throughput. We use crossbar 4,i and crossbar,pass to refer to the two

crossbars, and creditiocai and creditpas, for the credit ports.

In Figure 6-10, we present the modified pipeline in detail that a flit may go through

after its SSR is received. The number of pipeline stages varies from 0 to 3 cycles depending

on the scenarios. For simplicity, we assume that the flit arrives at the west input port

and may request to depart to all other ports except west port. We also assume that the

received flit is valid; otherwise, nothing needs to be done. When one or more SSR(s)

arrives in cycle 0, the router first picks the SSR that comes from the closest router and

discards the other SSRs. The router uses the num_hops and is dest information carried by

the SSR to determine how to handle the flit arriving in cycle 1, as shown below:

* Bypass flit to opposite (east):

6However, a mistake was made in the design such that only one flow per router can be configured. It limits
the evaluation since most applications require at least two flows from some nodes.

I

870

N 88

Receive SSRs

Chapter 6 - SMART Network Chip

Bypass flit

Pick closest

Bypass flit

(East port) Artee Wi

detinaon Receive flit A
bypass request

Lose
Buffer flit I " i

Decrement Flit traverse
East port's -W crossbarb,., -00 Send flit cr n

#credit to East port

- osbar - Send flit 4 ce
to NIC port

Compute
lookahead

route
(RC)

'Send SSR to
Win Decrement Flit traverse Bfe lta

A b r te o w n o u t p u p rt's - u p t p r - - o c ro s s b a r l a o - o i S e n d flit

lfed bypassSed li
reussArbitrate

Lose Allocate virtual Buffer flit in buffered flits' Win Decrement

chanel nut bffer req est output port's F
chanel iputbuffr rquessD 4 #credit

(SA-L)

Send creditio,

'SSend SSRato

Fli Pah Credi--t cr ssba r t to - Send flit -
(excep NIC iput bfer vitual cannel output port ouptorport)--

Flit Path Credit Path AR a in VC Control

Figure 6-10: Router Pipeline

6.3. Chip Architecture

Cycle 1: The flit directly traverses the crossbarbypass to the east output port as well

as the link to the next router. The router decrements the east port's credit

and sends a creditbypass back to the router on the west.

" Bypass flit to NIC:

Cycle 0: Since multiple input ports may request to bypass to NIC in the same

cycle, the router arbitrates these requests using a fixed priority arbiter. If

the SSR from the west input port loses the arbitration, the flit will follow

the steps in Bufferflit.

Cycle 1: The flit traverses the crossbarypass to the NIC port. The router decre-

ments the NIC port's credit and sends back a creditbypass to the router on

the west.

" Buffer flit:

Cycle 1: The flit arrives and is buffered in the input pipeline register.

Cycle 2: The router updates the flit's lookahead route information. The flit joins

the low-load bypass arbitration if there was no SA-L winner in cycle 1.

Cycle 2a: The flit wins the arbitration. The router decrements the output port's

credit, and the flit traverses the crossbarocai to the output port and gets

buffered at the output pipeline register. An SSR for this flit is sent out to

the output port (except the NIC port).

Cycle 3a: The flit traverses to the next router or NIC. A creditocal is sent back to

the router on the west.

Cycle 2b: The flit loses the low-load bypass arbitration. The input port allocates a

VC, stores the flit in the flit buffer, and the router performs SA-L for all

buffered flits. If this flit loses the arbitration, it will re-attempt the SA-L

in the next cycle.

Cycle 3b: The flit wins the SA-L, traverses crossbarocal from the flit buffer to the

output port, and gets buffered at the output pipeline register. The credit

of the output port is decremented.

890M

Chapter 6 - SMARTNetwork Chip

Figure 6-11: Folded network with router pitch of 1 mm

Cycle 4b: The router sends the flit to the next router and a credit;ca back to the

router on the west.

6.4 Implementation Consideration

We implement the chip using a two-level bottom-up hierarchical method; we first make

the router into a hard block and then use it as a black box for chip/network level

implementation. Since SMART allows traversing multiple hops within a single cycle,

it indicates that potentially there are excessive amount of combinational loops formed

by links and crossbars. Thus, at the chip level, we remove the timing checks on these

paths to avoid exposing the combinational loops to the tools, and only use the tools to

implement the global clock tree as well as reset and scan chain connections.

Metal Layers: The process that we use to fabricate the chip provides 11 metal layers

to use: 5 for local, 4 for intermediate and 2 for global. We use the global layers to route

the global power network and the top-level clock network, the top 2 intermediate layers

for routing links, while the rest are for router internal wires. It should be noted that even

though the intermediate layers require a wider minimum width constraint compared to

the local layers, the low-resistance property of the intermediate layers due to taller wires

make it suitable for long-distance data transportation.

Link: If we naively squeeze the 8 x 8 network into a 3 x 3 mm2 chip, the router pitch

(distance between routers) would be approximately only 0.35 mm, which is much shorter

than the typical pitch (distance between cores/tiles, typically 1 to 2 mm) used in NoC

research proposals. Therefore, we space out the routers and fold the network twice (see

Figure 6-11 to increase the pitch to 1 mm on average, which increases the link length to

0.75 mm on average. We then explore the link design space by varying repeater types

and sizes as well as wire spacing, and chose the parameters that allow traversing the most

0 90

6.5. Evaluation

number of hops within the same period without violating design rules7 . The repeater

spacing is fixed at 350 mm, which is the router layout pitch. The chosen parameters allow

traversal of a link of length 10 mm with 1 ns.

Router: We implement the router with a target clock frequency of 1 GHz. This

constraint is only applied to ensure that the router can be run at 1 GHz regardless of the

actual HPC ,which is specified at runtime. While setting the timing constraints for

input and output ports, the goal is to implement a router with as low delay as possible

for all paths going through these ports. The timing of all possible paths are discussed in

Section 6.5.3.

6.5 Evaluation

6.5.1 Setup

To evaluate the timing and power consumption of the chip, we perform both post-layout

evaluations and chip measurements. For post-layout evaluations, we run static timing

analysis (STA) on the post-layout netlist to analyze the timing and run simulations to

obtain power breakdown for various scenarios. The post-layout evaluations are performed

using the TT corner library at VDD of 0.9 V and temperature of 50 'C. To increase the

accuracy, we annotate wires' parasitic resistance and capacitance.

For the measurements, we use 3 power supplies to measure the power consumption;

one for IO pads, one for testers and PLL, and one for the rest of the network. Because of

the high current consumption, the resistance of the cables connecting the power supplies

to the board is not negligible and leads to 0.05 to 0.1 V voltage drop. Therefore, we

configure the power supplies to operate in 4-wire sensing mode to resolve this issue.8 A

function generator is used to provide the 10 MHz reference clock for the PLL. In addition,

we also use a heat sink with a fan to dissipate the excessive heat generated by the chip. We

7 We can potentially have a large wire spacing to lower the coupling capacitance between wires. However,
an over-sized wire spacing would violate the minimum metal density rule.

8While operating in 4-wire sensing mode, a power supply dynamically senses the actual voltage level across
the design under test, and adjusts the output voltage level to maintain the specified level across the design
under test.

91 N

092 Chapter 6 - SMART Network Chip

0.06

0.05

R 0.04

E0.03

0.02

0.01

0
Post-Synthesis Post-Synthesis Post-Layout

Two-cycle Router SMART Router

E Input Ports 0 Switch Allocators E Flit Xbar U Credit Xbar U NIC E Tester

Figure 6-12: Area Breakdown

set the VDD to 0.9 V for both timing and power measurements. The ambient temperature

of the measuring environment is approximately 22 'C.

6.5.2 Area

The area of a SMART router is 75,675.6 pm2 with a 64% cell density. We compared

the area breakdown of standard cells in Figure 6-12. The post-layout area is larger than

the post-synthesis area by 48 %. This is because that standard cells are sized up and

extra buffers are added to meet the stringent timing constraint. In comparison to the

post-synthesis area of a two-cycle router9 , the overhead of SMART-specific logics is 140%

due to a larger tester with additional statistic gathering logics.

Among all the components, the input ports contribute to 50 % of the total cell area,

and both the flit crossbar and tester contribute to 15 %, respectively. In contrast to the

flit crossbar of two-cycle router designed to traverse one hop, the flit crossbar of SMART

router is implemented to achieve high HPCm, leading to much larger area.

False path crossing SMARTfl,,)Jm andMART. (665.85 ps)

Low-load SA-L Buffer Re Crossbar
Bypass

SMARTfI.Ib,.
SMARTfx.d

update NIC s Output FIFO Control 1627.3 ps)

Low-load SA-L NIC
BypassI

Buffer at router (135 ps)

Buffering
Chec

Buffer at NIC (233.34 ps)

_* Crossbar
NIC

Start from NIC or router (327.52 ps)

Crossbar

Bypass (95.47 ps)

*(Crossbar

Receive credits (172.21ps)

Update
Control

Send redits (314.87 ps)

Crossbar

Bypass (77 84 ps)

C rossbar

Process SSR

SSRin SA-G

Figure 6-13: Router Critical Paths

6.5. Evaluation 93 N

Flitin Flit2L

Creditin Credit-4*

Send SSR

Low-loadout
Bypass

Chapter 6 - SMARTNetwork Chip

6.5.3 Timing - Static Timing Analysis (STA)

Since SMART allows traversing multiple hops within a cycle, the actual critical path of the

chip may span across multiple hops depending on the HPCmax setting. To understand the

maximum achievable frequency of the chip, we perform STA using Synopsys PrimeTime

to identify the critical paths for different HPCmax. However, at architecture level, the

chip has enormous number of combinational loops, which increases the complexity to

perform STA on the full-chip. Instead, we analyze the router and construct the delay

estimation of the critical path on the chip. The results are shown in Figure 6-13.

Intra-Router: The critical path of the router goes through both SMARTcycie's and

SMARTapp's logic blocks. The path is a false path" because one mode can only be

operated at a time. Nonetheless, it prevents other internal paths from further timing

optimization. The actual critical path starts from low-load bypass logic followed by SA-L,

and ends at NIC's FIFO update logic.

For router's boundary paths, we extract the input-to-register delay (Tin2reg), register-to-

output delay (Trg2out), as well as input-to-output delay (Tin2out) for flit, credit, and SSR

signals. In general, SSR's Tin2reg is 140 to 280 ps and Treg2out is 148 to 160 ps. However, the

input delay and output delay were incorrectly applied to the SSR ports on the north side

during implementation, resulting in Tin2reg of 528 to 722 ps and Treg2cut of 241 ps.

Link: Table 6-2 shows the link length and delay for flit. In average, it takes 53.7ps to

travel to an adjacent router 0.743 mm away. The delay of SSR and credit links are similar

to flit links.

Inter-Router: We identify potential critical paths across multiple hops for flit, credit

and SSR signals, respectively, and construct corresponding delay equations as functions of

9The router is designed to have one cycle for buffering and arbitration, and the other one for crossbar and
link traversal. The same buffer size is used.

104.2x for post-layout, and 1.7x for post-synthesis.
1 A false path is a timing path that will never be exercised in a design.

E 94

6.5. Evaluation

Table 6-2: Flit Link Length and Delay

(a) Horizontal

Segment No. Length (mm) Delay (ps)

1 0.815 69.03

2 0.815 68.97

3 0.520 34.85

4 0.877 59.65

5 0.518 33.44

6 0.878 67.93

7 0.878 67.48

(b) Vertical

Segment No. Length (mm) Delay (ps)

1 0.780 56.85

2 0.780 57.50

3 0.504 31.43

4 0.845 57.33

5 0.504 30.51

6 0.843 58.11

7 0.843 58.68

2.5

2

M 1.5

1

0.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HPCmax

=WFlit -*-Credit -*-SSR

Figure 6-14: Chip Critical Path

HPCmax as shown below.

Treg2reg (Flit, HPCm.)

Treg2 reg(Credit, HPCm.)

Treg2reg(SSR, HPCmax)

= Treg2out(Flit) + Tin2reg (Flit)

+ Tlink(Flit) x HPCm. + Tin2.ut (Flit) x (HPCm. - 1)

= Treg2out(Credit) + Tin2reg (Credit)

+ Tlink(Credit) x HPCma + Tin2out(Credit) x (HPCmax - 1)

= Treg2out(SSR) + Tlink(SSR) X HPCma + Tin2reg(SSR)

We visualize these equations with HPCmax from 1 to 14 for flit and credit, and from 1

to 7 for SSR in Figure 6-14. With HPCma from 1 to 3, the SSR path is the critical path

950M

Chapter 6 - SMART Network Chip

Table 6-3: Clock Skew (ns)

(a) Column

0 1 2 3 4 5 6 7

47.22 60.74 70.10 55.82 47.50 75.44 49.33 81.97

(b) Row

0 1 2 3 4 5 6 7

17.82 26.40 25.65 106.43 31.54 20.12 71.69 29.66

because of the high Tin2reg(SSR). From HPCmax of 4 and above, the flit path starts to

dominate, and lengthens the critical path by 149 ps per additional hop on average.

Clock Skew: Typical mesh network designs only allow flits and credits to be sent

to adjacent routers. Therefore, only the clock skew between the adjacent routers needs

to be considered and its tolerance is high since the link traversal is not on the critical

path. However, since a SMART router may receive data from another router multiple

hops away, the clock skew between any pair of routers on the same row or column may

lengthen the critical path. Table 6-3 shows the clock skew for each column and row. The

maximum clock skew is 106.43 ps.

6.5.4 Timing - Measurement

To determine the maximum achievable frequency of the chip for various HPCmax, we

increment the clock frequency until faulty or missing packets are observed. We conduct

each experiment 10 times. Each time is run with different seeds for 4 billion cycles to

ensure a sufficient amount of packets is sent from each router so that most of the paths

are covered. The critical path delay is computed to be the multiplicative inverse of the

observed frequency.

Flit/Credit Only Path: We run the chip in SMARTapp mode and setup a single route

from a router to another router multiple hops away. Since only one route is setup, the

bypass control logic is determined beforehand, the SSR paths and paths through switch

allocation are not used, and hence the critical path would be the flit path. Figure 6-15

-1

N 96

6.5. Evaluation

2.5

2

1.5

1

0.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HPCmax

aWFlit m0mMeasurement

Figure 6-15: Flit/Credit Only Path Delay

2

C

CU Ia)

.5

2

.5

1

U.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HPCmax

wewFlit -OwSSR -*-Measurement

Figure 6-16: Flit/Credit + SSR Path Delay

shows that the measurement results match the estimation from STA, and thus confirms

this hypothesis.

Flit/Credit + SSR Path: To take the effect of SSR into consideration, we configure

the chip in SMARTcyce mode and run traffic patterns such as uniform random, transpose,

and bit-complement with various packet injection rates. Figure 6-16 shows that the

measurement results follow the estimation from STA with a 250 ps gap. It is because that

higher current is drawn at high injection rate, leading to higher IR-drop in power network

and hence performance degradation.

U,

C

CU

C

15

97 M

Chapter 6 - SMARTNetwork Chip

Chip Other 1% Router Other 6%
Link 7%

NIC 12%
Tester 13%

Crossbar 18%

Input Port 59%

Router 79% SWO 5%

(a) Chip (b) Router

Figure 6-17: Leakage Power Breakdown

6.5.5 Power - Simulation

To estimate chip power consumption, we use Synopsys PrimeTime PX along with signal

activities derived from logic simulations on post-layout netlists. All configurations are

run at the same clock frequency of 500 MHz. We report the average power consumed for

both leakage and dynamic power.

Leakage Power: Figure 6-17 shows the breakdown of the leakage power. In total, the

chip consumes 1.6 W, and 86 % of it is consumed by the routers and links. Each router

consumes 19.8 mW. Since the input port consists of flit buffers, and most of the routing

and flow control logics, it contributes to 59 % of the router leakage power. The reason

why the leakage power is high is because that we use regular Vt cells to implement the

chip for maximum performance; using high V, cells would largely reduce the leakage

current.

Dynamic Power: We perform simulations with uniform random traffic and various

injection rates12 and HPCmax for 20,000 cycles13 , and show the dynamic power breakdown

in Figure 6-18. The dynamic power is approximately the same for all HPCma. At injection

rate of 0.00 1, the dynamic power is 0.54W and 99 % of it is contributed by the clock

1Injection rates of 0.001, 0.1, 0.2, 0.3 and 0.4 packets/cycle/router are simulated, where 0.4 is close to the
saturation point.

"The number of cycles is limited by several constraints, such as simulation time, memory usage, as well as
switching activity file size.

0 98

6.5. Evaluation

I III I I 1 I I I 1II IIIII
12345671234567123456712345671234567

0.001 0.1 0.2 0.3 0.4
HPCmax, Injection Rate (packets/cycle/router)

* Input Port U SWO

* Router Other U Link

* Crossbar

N Tester

E NIC

U Chip Other

Figure 6-18: Dynamic Power Breakdown

3

IIIIIIIIIIIIIIIIIIIII
12345671234567123456712345671234567

0.001 0.1 0.2 0.3
HPCmaxp Injection Rate (packets/cycle/router)

* Router (Static)

* Router (Dynamic)

E Tester + PLL (Static)

E Tester + PLL (Dynamic)

Figure 6-19: Measured Power

network that is not gated. For an injection rate increase of 0.1, the dynamic power is

increased by 0.2 W.

1.4

1.2
1

0.8
0.6
0.4
0.2

0

0
a- III

0

2.5

2

1.5

0.5

0

0.4
| | |

99 0

Chapter 6 - SMARTNetwork Chip

6.5.6 Power - Measurement

Similar to the measurement for timing, we also perform the experiments with various

seeds and run for 4,000,000,000 cycles. The power measurement is obtained by observing

the current drawn from the power supply and multiplying that with the voltage level. We

show the results in Figure 6-19. Overall, the measured power is lower than the simulated

power by 0.62 W.

Static Power: To measure the static power, we run an experiment in reset mode

without the clock reference to ensure zero switching activity. The measured static power

is 0.95 W, which is lower than the simulation result. It is possible if the actual chip

temperature is lower than simulated temperature of 50 'C. For simplicity, in this example,

we assume the static power is the same across all configurations, even though it may

increase with the increased temperature induced by higher traffic loads.

Dynamic Power: Similar to the simulation results, the measured power is approxi-

mately the same across all HPCmax. At zero load, the dynamic power is 0.62 W and is

increased by 0.24 W for an injection rate increase of 0.1.

6.5.7 Sources of Discrepancies

Overall, the measurement results are close to the estimation. The discrepancies are mainly

contributed by the factors listed below.

* Clock skew: Since a SMART bypass path is across routers multiple hopes away, the

clock skew between the start and stop routers reduces the effective amount of time

for flits to travel, and hence reduces the HPCmax at a certain clock frequency. In the

delay estimation of various paths across multiple hops, we only perform static timing

analysis on the paths of a single router without taking the clock skew between routers.

To improve the performance of 1D version of SMARTcyce, we need to design a clock

network that minimize the clock skew between the routers on the same row/column.

And as for 2D version of SMARTcyce, a minimized global clock skew between all

pairs of routers is required, which makes it harder to minimize.

N 100

6.5. Evaluation

" IR-drop: The power estimation shows that the higher the injection rate is applied,

the higher power (i.e., current) is consumed. However, this higher current induces

higher IR-drop and affects the transistor performance, leading to an increase in the

critical path delay. As a result, the difference in measured clock period between zero

load and highest load is approximately 110 ps. Since the leakage current (nearly 1 A)

contributes to a high portion of the total current consumed, to alleviate the IR-drop

issue, one way is to replace the cells not on the critical path (i.e., flit path) with high

V, cells to lower the leakage current at no performance cost.

" Temperature: Since the total amount of current drawn from the chip is high (i.e.,

high power consumption), the chip temperature depends on the effectiveness of the

cooling system. However, because the cooling system is not taken into consideration

while designing the board, the empty space around the package is small, limiting the

size and structure of the heat sink as well as the fan. We have tried several heat sinks

and chose the one that leads to the least leakage current for our measurement.

However, the estimation is far off from the design target; only HPCmax of 4 can be

achieved at a clock frequency of 1 GHz, instead of 7. The design target is set based on

the preliminary analyses present in Section 6.2. While the SSR path can nearly achieve

HPCmax of 7 at the clock frequency of 1 GHz, the difference is mainly because of the

complicated timing relationship between the crossbar selection, flit input and output

signals of the router. As a result, coarse grain timing constraints applied on these paths lead

to a high register-to-output delay (327.52 ps) and high input-to-register delay (233.34 ps)

than assumed, which is the through path delay (95.47 ps). To close the gap, finer grain

timing constraints, which tightly bound the paths for various scenarios, are required.

6.5.8 Insights

While running with the same clock frequency, a higher HPCmax leads to a lower average

low-load latency (see Figure 6-20a); i.e., HPCmax of 7 yields the lowest low-load latency.

Figure 6-20b shows the same figure when we swap the cycle with the measured minimum

clock period (i.e., inverse of the measured clock frequency). It should be noted that in

101 M

Chapter 6 - SMART Network Chip

20 25
18
16 20
14 14

12 C15

101

4 45

0 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Injection Rate (packets/cycle/router) Injection Rate (packets/ns/router)

-*-I -e-2 -*-4 -0-7 -*-1 -e-2 +*4 -0-7

(a) Same Frequency (b) Different Frequencies (Measurement)

Figure 6-20: Average Latency versus Injection Rate

Figure 6-20a, the x-axis is in flits/ns/router and y-axis is in ns, instead of flits/cycle/router

and cycle.

Even though HPCma of 7 allows traversing more hops in a single cycle, the per-

formance increase is marginal and thus the slow clock frequency makes it unfavorable.

HPCma of 4 now presents the lowest network latency at low-load. And HPCma of 1

provides the highest throughput since it can be run at the highest clock frequency.

It should be noted that the performance of the SMART network with HPCmax of 1 is

equivalent to the performance of a network with conventional 2-cycle routers; that is, the

clock frequency of the conventional 2-cycle router needs to be twice as fast as the SMART

network with HPCma. of 4 to beat the SMART network in average latency.

The key takeaway is that the SMART network. achieves low-latency by sacrificing

clock frequency (i.e., lower throughput), and is suitable for applications that are sensitive

to average latency but not throughput. The downside of the SMART network is that its

clock frequency may need to be different from the clock frequency for cores which is

typically 1 to 2 GHz to achieve the lowest average latency. As for the area and power, even

though it takes more area to implement the SMART network, the lower frequency may

lead to a lower dynamic power consumption compared to conventional 2-cycle router.

6.6 Summary

In this chapter, we present preliminary analyses to show the tradeoff between hardware

cost and HPCmax. Then, we present a case study of a 64-node SMART network to

0 102

6.6. Summary 1030

demonstrate the feasibility of the SMART network, and to further study its timing and

power through simulations and measurements. Our measured results show that the chip

works at 817.1 MHz with HPCmax = 1, and at 548 MHz with HPCmax = 7. The chip

consumes 1.57 to 2.53 W across various runtime configurations. We also point out the

critical issues that can be addressed to close the gap between the measurement results and

the design target, and hence to further improve the performance.

M 104 Chapter 6 - SMARTNetwork Chip

SCORPIO - A 36-core Shared

Memory Processor Demonstrating

Snoopy Coherence on a Mesh

Interconnect

This is joint work with Bhavya Daya, Woo Cheol Kwon, Suvinay Subramanian, Sunghyun

Park and Tushar Krishna [28]. I co-led the SCORPIO project with Bhavya Daya, with her as

the architecture lead, while I was the chip RTL and design lead.

7.1 Motivation

Shared memory, a dominant communication paradigm in mainstream multicore proces-

sors today, achieves inter-core communication using simple loads and stores to a shared

address space, but requires mechanisms for ensuring cache coherence. Over the past few

decades, research in cache coherence has led to solutions in the form of either snoopy or

directory-based variants. However, a critical concern is whether hardware-based coher-

ence will scale with the increasing core counts of chip multiprocessors [49, 66]. Existing

coherence schemes can provide accurate functionality for up to hundreds of cores, but area,

Chapter 7 - SCORPIO

power, and bandwidth overheads affect their practicality. Two main scalability concerns

are (1) directory storage overhead, and (2) uncore (caches+ interconnect) scaling.

For scalable directory-based coherence, the directory storage overhead has to be kept

minimal while maintaining accurate sharer information. Full bit-vector directories encode

the set of sharers of a specific address. For a few tens of cores, it is very efficient, but

requires storage that linearly grows with the number of cores; limiting its use for larger

systems. Alternatives, such as coarse-grain sharer bit-vectors and limited pointer schemes

contain inaccurate sharing information, essentially trading performance for scalability.

Research in scalable directory coherence is attempting to tackle the storage overhead while

maintaining accurate sharer information, but at the cost of increased directory evictions

and corresponding network traffic as a result of the invalidations.

Snoopy coherence is not impacted by directory storage overhead, but intrinsically

requires an ordered network to ensure all cores see requests in the same order to maintain

memory consistency semantics. Snoopy compatible interconnects comprise buses or

crossbars (with arbiters to order requests), or bufferless rings (which guarantee in-order

delivery to all cores from an ordering point). However, existing on-chip ordered inter-

connects scale poorly. The Achilles heel of buses lie in limited bandwidth, while that

of rings is delay, and for crossbars, it is area. Higher-dimension NoCs such as meshes

provide scalable bandwidth and is the subject of a plethora of research on low-power and

low-latency routers, including several chip prototypes [36, 43, 91, 110]. However, meshes

are unordered and cannot natively support snoopy protocols.

Snoopy COherent Research Processor with Interconnect Ordering (SCORPIO)

incorporates global ordering support within the mesh network by decoupling message

delivery from the ordering. This allows flits to be injected into the NoC and reach

destinations in any order, at any time, and still maintain a consistent global order; as

a result, SCORPIO enjoys both the low-area benefit from snoopy coherence and low-

latency/high-bandwidth benefit from the mesh network. The SCORPIO architecture

was included in an 11 x 13 mm 2 chip prototype in IBM 45 nm SOI, to interconnect 36

commercial Power Architecture cores, comprising private Li and L2 caches, and two

Cadence on-chip DDR controllers. The SCORPIO NoC is designed to comply with the

N 106

7.2. Globally Ordered Mesh Network

ARM AMBA interface [7] to be compatible with existing SoC IP originally designed for

AMBA buses.

Section 7.2 delves into the overview and microarchitecture of the globally ordered

mesh network. Section 7.3 describes the designed and fabricated 36-core chip with the

SCORPIO NoC. Section 7.4 presents the evaluations and design exploration of the

SCORPIO architecture with software models. Section 7.5 demonstrates the evaluations

of the chip with the implemented RTL, and area/power results. Section 7.6 shows the

lessons learned from the SCORPIO development. Section 7.7 discusses related multicore

chips and NoC prototypes, and Section 7.8 summarizes.

7.2 Globally Ordered Mesh Network

Traditionally, global message ordering on interconnects relies on a centralized ordering

point, which imposes greater indirection' and serialization latency2 as the number of

network nodes increases. The dependence on the centralized ordering point prevents

architects from providing global message ordering guarantee on scalable but unordered

networks.

To tackle the problem above, we propose the SCORPIO network architecture. We

eliminate the dependence on the centralized ordering point by decoupling message

ordering from message delivery using two physical networks, as shown in Figure 7- 1; we

use the main network to deliver the messages and notification network to help determine

the global order of messages. The key idea is to send messages over a high-performance

unordered network and ensure the messages are consumed in the same global order at all

nodes. We next describe the mechanism of the two networks as well as the interaction

between them, followed by a walkthrough example for better understanding.

Main network: The main network is an unordered network and is responsible for

broadcasting actual coherence requests to all other nodes and delivering the responses to

the requesting nodes. Since the network is unordered, the broadcast coherence requests

'Network latency of a message from the source node to ordering point.
2Latency of a message waiting at the ordering point before it is ordered and forwarded to other nodes.

1070M

Chapter 7 - SCORPIO

Main network

Notification
network

Figure 7-1: Proposed SCORPIO Network

Broadcast messages Inject corresponding
on main network notifications

Timeline
Jr Jr

All tiles receive the same
notifications

Ir

Time Window

Figure 7-2: Time Window for Notification Network

from different source nodes may arrive at the network interface controllers (NIC) of each

node in any order. The NICs of the main network are then responsible for forwarding

requests in global order to the cache controller, assisted by the notification network.

Notification network: For every coherence request sent on the main network, a

notification message encoding the source node's ID (SID) is broadcast on the notification

network to notify all nodes that a coherence request from this source node is in-flight

and needs to be ordered. Then, the goal is transformed to ensure all nodes receive the

notification messages, instead of the corresponding coherence messages, in the same order.

To achieve this, we maintain synchronous time windows, send notification messages only

at the beginning of each time window, and design the notification network so that all

nodes receive the same set of notifications at the end of that time window, as shown in

Figure 7-2. By processing the received notification messages in accordance with a consistent

ordering rule, all NICs determine locally the global order for the actual coherence request

I I0 - 0 -* M _

N 108

7.2. Globally Ordered Mesh Network

in the main network. To fulfill the requirements of the notification network, we define

the notification message to be a bit vector with a length of the number of nodes, where

each bit corresponds to a coherence request from a source node, so that the notification

messages can be merged by OR-ing without information loss. As a result, the notification

network is contention-less and has a fixed maximum network latency bound, which we

can use to determine the size of the time window.

Network interface controller: Each node in the system consists of a main net-

work router, a notification router, as well as a network interface controller or logic

interfacing the core/cache and the two routers. The NIC encapsulates the coherence

requests/responses from the core/cache and injects them into the appropriate virtual

networks in the main network. On the receive end, it forwards the received coherence

requests to the core/cache in accordance with the global order, which is determined using

the received notification messages at the end of each time window. The NIC uses an

Expected Source ID (ESID) register to keep track of and informs the main network router

which coherence request it is waiting for. For example, if the ESID stores a value of 3,

it means that the NIC is waiting for a coherence request from node 3 and would not

forward coherence requests from other nodes to the core/cache. Upon receiving the

request from node 3, the NIC updates the ESID and waits for the next request based on

the global order determined using the received notification messages. The NIC forwards

coherence responses to the core/cache in any order.

7.2.1 Walkthrough Example

Next, we walkthrough an example to demonstrate how two messages are ordered.

1. As shown in Figure 7-3, at times T1 and T2, the cache controllers inject cache miss

messages M1, M2 to the NIC at core 11, 1 respectively. The NICs encapsulate these

coherence requests into single flit packets, tag them with the SID of their source (11,

1 respectively), and broadcast them to all nodes in the main network.

2. At time T3, the start of the time window, notification messages Ni and N2 are

generated corresponding to M1 and M2, and sent into the notification network.

109 M

Chapter 7 - SCORPIO

T3. Both cores inject
notification0*

*-
Core 1, 2,3,5, 6, 9 receive

Figure 7-3: Walkthrough Example (from

Broadcast
notification for M1

1 2 3 1.. - 1516
000... 1 0 0

Broadcast
*notification for M2

10 .3 1 o0 . 00

T1 to T3)

3. As shown in Figure 7-4, notification messages broadcast at the start of a time window

are guaranteed to be delivered to all nodes by the end of the time window (T4). At

this stage, all nodes process the notification messages received and perform a local but

consistent decision to order these messages. In SCORPIO, we use a rotating priority

arbiter to order messages according to increasing SID - the priority is updated each

time window ensuring fairness. In this example, all nodes decide to process M2 before

Mi.

4. The decided global order is captured in the ESID register in the NIC. In this example,

ESID is currently 1 - the NICs are waiting for the message from core 1 (i.e., M2).

5. At time T5, when a coherence request arrives at a NIC, the NIC performs a check

of its source ID (SID). If the SID matches the ESID then the coherence request is

processed (i.e., dequeued, parsed and handed to the cache controller) else it is held in

the NIC buffers. Once the coherence request with the SID equal to ESID is processed,

the ESID is updated to the next value (based on the notification messages received).

In this example, the NIC has to forward M2 before M1 to the cache controller. If

Timplinp

z

Milo0

n
ork

GETX
Addr1

ation
ork

Mai
netw

Notific
netw

I

M

I

7.2. Globally Ordered Mesh Network

T3. Both cores inject T4. Notificationsdb guaranteed
notification@ to reach all nodes now

Timeline4

Core Notification 1 0 i 1 0 0
Tracker

M2 is forwarded to the core (SID == ESID)

M1 is not forwarded to the core (SID 1= ESID)

Figure 7-4: Walkthrough Example Cont. (from T4 to T5)

M1 arrives first, it will be buffered in the NIC (or router, depending on the buffer

availability at NIC) and wait for M2 to arrive.

6. As shown in Figure 7-5, core 6 and 13 respond to M1 (at T7) and M2 (at T6)

respectively. All cores thus process all messages in the same order (i.e., M2 followed

by M1).

7.2.2 Main Network Microarchitecture

Figure 7-6 shows the microarchitecture of the three-stage main network router. During

the first pipeline stage, the incoming flit is buffered (BW), and in parallel arbitrates with

the other virtual channels (VCs) at that input port for access to the crossbar's input port

(SA-I). In the second stage, the winners of SA-I from each input port arbitrate for the

crossbar's output ports (SA-O), and in parallel obtain a free VC at the next router if

111 0

Chapter 7 - SCORPIO

Cores receive Mi in any order, T7. Core 6, owner of Addrl,
and process followed by Mi responds(Iti with data to Core 11

Timeline

T6. Core 13, owner of Addr2,
responds with data to Core 1

7t

All cores saw and processed 1followed by m

Figure 7-5: Walkthrough Example Cont. (from T6 to T7)

possible (VA). In the final stage, the winners of SA-O traverse the crossbar (ST). Next,
the flits traverse the link to the adjacent router in the following cycle.

Single-cycle pipeline optimization: To reduce the network latency and buffer read/write
power, we implement lookahead (LA) bypassing [62, 91]; a lookahead containing control
information for a flit is sent to the next router during that flit's ST stage. At the next
router, the lookahead performs route-computation and tries to pre-allocate the crossbar
for the approaching flit. Lookaheads are prioritized over buffered flits3 - they attempt to
win SA-I and SA-O, obtain a free VC at the next router, and setup the crossbar for the
approaching flits, which then bypass the first two stages and move to ST stage directly.
Conflicts between lookaheads from different input ports are resolved using a static, rotat-
ing priority scheme. If a lookahead is unable to setup the crossbar, or obtain a free VC at
the next router, the incoming flit is buffered and goes through all three stages. The control

'Only buffered flits in the reserved VCs, used for deadlock avoidance, are an exception, prioritized over
lookaheads.

0 112

7.2. Globally Ordered Mesh Network

Input
Flits

VCvc

v1L

rVC transferogc

VC State

Bypa1Path

Updated
Switch Re State

redit Point ont
nals Odering Switch

rom Unit Allocator
rev.
Duter Next Route

Computation

LA VC Allocation (VA)
State

Buffer Write (BW)
Switch Arbitration Inport (SA-1)

Buffer Read (BR)
Switch Allocation Outport (SA-0)

VC Allocation (VA)
Lookahead/Header Generation

Bypass Intermediate Pipelines

Switch Traversal
(ST)

Switch Traversal
(ST)

Figure 7-6: Router Microarchitecture

information carried by lookaheads is already included in the header field of conventional

NoCs - destination coordinates, VC ID and the output port ID - and hence does not

impose any wiring overhead.

Single-cycle broadcast optimization: To alleviate the overhead imposed by the co-

herence broadcast requests, routers are equipped with single-cycle multicast support [91].

Instead of sending the same requests for each node one by one into the main network,

we allow requests to fork through multiple router output ports in the same cycle, thus

providing efficient hardware broadcast support.

Deadlock avoidance: The snoopy coherence protocol messages can be grouped into

network requests and responses. Thus, we use two message classes or virtual networks to

avoid protocol-level deadlocks:

* Globally Ordered Request (GO-REQ): Delivers coherence requests, and provides

global ordering, lookahead-bypassing and hardware broadcast support. The NIC pro-

1130

Pipeline
Stages

Bypass
Pipeline
Stages

Link

Chapter 7 - SCORPIO

cesses the received requests from this virtual network based on the order determined

by the notification network.

o Unordered Response (UO-RESP): Delivers coherence responses, and supports

lookahead-bypassing for unicasts. The NIC processes the received responses in

any order.

The main network uses XY-routing algorithm which ensures deadlock-freedom for

the UO-RESP virtual network. For the GO-REQ virtual network, however, the NIC

processes the received requests in the order determined by the notification network which

may lead to deadlock; the request that the NIC is awaiting might not be able to enter

the NIC because the buffers in the NIC and routers enroute are all occupied by other

requests. To prevent the deadlock scenario, we add one reserved virtual channel (rVC)

to each router and NIC, reserved for the coherence request with SID equal to ESID that

the NIC at that router is waiting for. Thus, we can ensure that the requests can always

proceed toward the destinations.

Point-to-point ordering for GO-REQ: In addition to enforcing a global order, re-

quests from the same source also need to be ordered with respect to each other. Since

requests are identified by source ID alone, the main network must ensure that a later

request does not overtake an earlier request from the same source. To enforce this in

SCORPIO, the following property must hold: Two requests at a particular input port of

a router, or at the NIC input queue cannot have the same SID. At each output port, a SID

tracker table keeps track of the SID of the request in each VC at the next router.

Suppose a flit with SID = 5 wins the north port during SA-O and is allotted VC 1 at

the next router in the north direction. An entry in the table for the north port is added,

mapping (VC 1) -÷ (SID = 5). At the next router, when flit with SID = 5 wins all its

required output ports and leaves the router, a credit signal is sent back to this router and

then the entry is cleared in the SID tracker. Prior to the clearance of the SID tracker

entry, any request with SID = 5 is prevented from placing a switch allocation request.

0 114

7.2. Globally Ordered Mesh Network

'neast Insouth 'nwest 'nnorth
I I I I

innic /Notification Tracker (in NIC)

Merged
"Notification

End of time window?

OUtnorth

OUtwest

OUtsouth

OUteast

Notification Router

Figure 7-7: Notification Router Microarchitecture

7.2.3 Notification Network Microarchitecture

The notification network is an ultra-lightweight bufferless mesh network consisting of 5

N-bit bitwise-OR gates and 5 N-bit latches at each router as well as N-bit links connecting

these routers, as shown in Figure 7-7, where N is the number of cores. A notification

message is encoded as a N-bit vector where each bit indicates whether a core has sent a

coherence request that needs to be ordered. With this encoding, the notification router

can merge two notification messages via a bitwise-OR of two messages then forward the

merged message to the next router. At the beginning of a time window, a core that wants

to send a notification message asserts its associated bit in the bit-vector and sends the

bit-vector to its notification router. Every cycle, each notification router merges received

notification messages and forwards the updated message to all its neighbor routers in the

same cycle. Since messages are merged upon contention, messages can always proceed

through the network without being stopped, and hence, no buffer is required and network

latency is bounded. At the end of that time window, it is guaranteed that all nodes in the

network receive the same merged message, and this message is then sent to the NIC for

DFF

X e

NBitwise-OR

115 E

6

Chapter 7 - SCORPIO

further processing to determine the global order of the corresponding coherence requests

in the main network.

For example, if node 0 and node 6 want to send notification messages, at the beginning

of a time window, they send the messages with bit 0 and bit 6 asserted, respectively, to

their notification routers. At the end of the time window, all nodes receive a final message

with both bits 0 and 6 asserted. In a 6 x 6 mesh notification network, the maximum

latency is 6 cycles along the X dimension and another 6 cycles along Y, so the time

window is set to 13 cycles.

Multiple requests per notification message: Thus far, the notification message

described handles one coherence request per node every time window, i.e. only one

coherence request from each core can be ordered within a time window. However, this

is inefficient for more aggressive cores that have more outstanding misses. For example,

when the aggressive core generates 6 requests at around the same time, the last request

can only be ordered at the end of the 6th time window, incurring latency overhead. To

resolve this, instead of using only 1 bit per core, we dedicate multiple bits per core to

encode the number of coherence requests that a core wants to order in this time window,

at a cost of larger notification message size. For example, if we allocate two bits instead of

1 per core in the notification message, the maximum number of coherence requests can

be ordered in this time window can be increased to 34. Now, the core sets the associated

bits to the number of coherence requests to be ordered and leaves other bits as zero. This

allows us to continue using the bitwise-OR to merge the notification messages from other

nodes.

7.2.4 Network Interface Controller Microarchitecture

Figure 7-8 shows the microarchitecture of the NIC, which interfaces between the core/cache

and the main and notification network routers.

4 The number of coherence requests is encoded in binary, where a value of 0 means no request to be ordered,
1 implies 1 request, while 3 indicates 3 requests to be ordered (maximum value that a 2-bit number can
represent).

E 116

7.2. Globally Ordered Mesh Network 117 E

Sending n~~~~~~~~~~otifications:O eevn esg rmcr/ahteNCecpu

Packet ai e a r

correspondingCouterotificainmsaeathebgnngoater Ntiefinows e s

oae iconte

pendg n o mArbiter iredthl

receied mrgednotiicaton mssag int theNotification tAce queue. When the

i tracker oti

Co po e UO-RE

Sending n~~~~~~~~~~~~otificatin:O eevn esg rmcr/ahteNCecpu

message bing aroeecees, the aIC theqeueds r ead an poiassdtroughesa rotat

piort ie to detthoermine theqorse of resing f the incoming dehereneyequestsC(iae

corresponding n~~~~~otificainesaeathebgnngfater Ntime inows. We se

The Countercnb ie rirrl o xetdbrt;wer thZaiu ubro

newL coeece VCuet frm necinnt teman ewok

ntfCaDo Pack ckuee isntepyadteei opeiul edntfcto

egebing pofcesiosed theedin a* thessee fread ande/pase theog aI encapsug

pirity arbtper thoeemnce rhequrde ofdprinessiog the requestg delereneyrequests (iae

Chapter 7 - SCORPIO

to determine ESIDs). On receiving the expected coherence request, the NIC parses the

packet and passes appropriate information to the core/cache, and informs the notification

tracker to update the ESID value. Once all the requests indicated by this notification

message are processed, the notification tracker reads the next notification message in the

queue if available and re-iterate the same process mentioned above. The rotating priority

arbiter is updated at this time.

If the notification tracker queue is full, the NIC informs other NICs and suppresses

other NICs from sending notification messages. To achieve this, we add a stop bit to the

notification message. When any NIC's queue is full, that NIC sends a notification message

with the stop bit asserted, which is also OR-ed during message merging; consequently

all nodes ignore the merged notification message received; also, the nodes that sent a

notification message this time window will resend it later. When this NIC's queue

becomes non-full, the NIC sends the notification message with the stop bit de-asserted.

All NICs are enabled again to (re-)send pending notification messages when the stop bit

of the received merged notification message is de-asserted.

7.3 36-Core Processor with SCORPIO NoC

The 36-core fabricated multicore processor is arranged in a grid of 6 x 6 tiles, as seen

in Figure 7-9 and 7-10. Within each tile is an in-order core, split Li I/D caches, private

L2 cache with MOSI snoopy coherence protocol, L2 region tracker for destination

filtering [81], and SCORPIO NoC (see Table 7-1 for a full summary of the chip features).

The commercial Power Architecture core simply assumes a bus is connected to the AMBA

AHB data and instruction ports, cleanly isolating the core from the details of the network

and snoopy coherence support. Between the network and the processor core IP is the L2

cache with AMBA AHB processor-side and AMBA ACE network-side interfaces. Two

Cadence DDR2 memory controllers attach to four unique routers along the chip edge,

with the Cadence IP complying with the AMBA AXI interface, interfacing with Cadence

PHY to off-chip DIMM modules. All other IO connections go through an external FPGA

board with the connectors for RS-232, Ethernet, and flash memory.

0 118

7.3. 36-Core Processor with SCORPIO NoC

NIC + Router
(with Network

Tester)

L2 Cache Controller
(with Region Tracker and L2 Tester)

L2 Cache
(Tag Array)

Tile Tile Tile Tile Tile Tile L2 Cache

30 31 32 33 34 3(Data Array)

Figure 7-9: 36-core Chip Layout with SCORPIO NoC

7.3.1 Processor Core and Cache Hierarchy Interface

While the ordered SCORPIO NoC can plug-and-play with existing ACE coherence

protocol controllers, we were unable to obtain such IP and hence designed our own. The

cache subsystem comprises Li and L2 caches and the interaction between a self-designed

L2 cache and the processor core's Li caches is mostly subject to the core's and AHB's

constraints.

The core has a split instruction and data 16 KB L1 cache with independent AHB

ports. The ports connect to the multiple master split-transaction AHB bus with two

AHB masters (L1 caches) and one AHB slave (L2 cache). The protocol supports a single

read or write transaction at a time, hence there is a simple request or address phase,

followed by a response or data phase. Transactions, between pending requests from the

same AHB port, are not permitted thereby restricting the number of outstanding misses

to two, one data cache miss and one instruction cache miss, per core. For multilevel

caches, snooping hardware has to be present at both Li and L2 caches. However, the

core was not originally designed for hardware coherency. Thus, we added an invalidation

119 0

Chapter 7 - SCORPIO

Addr:
0x9F00O0000

0XFFFjFF#

I ~Board 1

U1 4-

/ Chio

TIle S ile U Tie 17 Tie 23 Tle 29 ile 35

ile4 Tde 10 Tie 16 Tik 22 Tle 25 11e34 -

'not .3 111. 9 11.15i nk1 n Ilk27 1Til33 1

'n1&2 TOe & TM&e 34 Tlka 20 Ti1e 26 711*32

Vi Il Tl7 T70*13 Til* 19 VkA 2 Tile 31

T11* 0 Tik 6 Til* 12 Tal 1 Tike 24 TO* 30

U

Ha

FPGA

Addr:
OxFFf0_0000

OxFFFF FFFF

FuAftrj

Data Addr:
OxFFOD_0000
State Addr:

OxFFOO_0004

thernt

Doable. Not
yet assigned.

DIDOR2]

Alternative
main

memory

Figure 7-10: 36-core Chip Schematic

port to the core allowing Li cachelines to be invalidated by external input signals. This

method places the inclusion requirement on the caches. With the Li cache operating in

write-through mode, the L2 cache will only need to inform the Li during invalidations

and evictions of a line.

7.3.2 Coherence Protocol

The standard MOSI protocol is adapted to reduce the writeback frequency and to disallow

the blocking of incoming snoop requests. Writebacks cause subsequent cacheline accesses

0 120

7.3. 36-Core Processor with SCORPIO NoC

Table 7-1: SCORPIO chip features

Name Value

Process

Dimension

Transistor count

Gate count

Frequency

Power

Core

ISA

Li cache

L2 cache

L2 replacement policy

Line Size

Coherence protocol

Directory cache

Snoop filter

NoC Topology

Channel width

Virtual networks

Router

Pipeline

Notification network

Memory controller

FPGA controller

IBM 45 nm SOI

11 x 13 mm 2

600 M

88.9 M

833 MHz

28.8 W

Dual-issue, in-order, 10-stage pipeline

32-bit Power Architecture'

Private split 4-way set associative write-through 16 KB I/D

Private inclusive 4-way set associative 128 KB

Pseudo LRU

32B

MOSI (0: forward state)

128 KB (1 owner bit, 1 dirty bit)

Region tracker (4KB regions, 128 entries)

6 x 6 mesh

137 bits (Ctrl packets - 1 flit, data packets - 3 flits)

1. Globally ordered - 4 VCs, 1 buffers each

2. Unordered - 2 VCs, 3 buffers each

XY routing, cut-through, multicast, lookahead bypassing

3-stage router (1-stage with bypassing), 1-stage link

36-bits wide, bufferless, 13 cycles time window,

max 4 pending messages

2 x Dual port Cadence DDR2 memory controller + PHY

1 x Packet-switched flexible data-rate controller

to go off-chip to retrieve the data, degrading performance, hence we retain the data on-chip

for as long as possible. To achieve this, an additional 0_D state instead of a dirty bit

per line is added to permit on-chip sharing of dirty data. For example, if another core

wants to write to the same cacheline, the request is broadcast to all cores resulting in

invalidations, while the owner of the dirty data (in M or 0_D state) will respond with

the dirty data and change itself to the Invalid state. If another cores wants to read the

same cacheline, the request is broadcast to all cores. The owner of the dirty data (now in

M state), responds with the data and transitions to the OD state, and the requester goes

121 N

Chapter 7 - SCORPIO

to the Shared state. This ensures the data is only written to memory when an eviction

occurs, without any overhead because the OD state does not require any additional state

bits.

When a cacheline is in a transient state due to a pending write request, snoop requests

to the same cacheline are stalled until the data is received and the write request is completed.

This causes the blocking of other snoop requests even if they can be serviced right away.

We service all snoop requests without blocking by maintaining a forwarding IDs (FID)

list that tracks subsequent snoop requests that match a pending write request. The FID

consists of the SID and the request entry ID or the ID that matches a response to an

outstanding request at the source. With this information, a completed write request can

send updated data to all SIDs on the list. The core IP has a maximum of 2 outstanding

messages at a time, hence only two sets of forwarding IDs are maintained per core. The

SIDs are tracked using a N bit-vector, and the request entry IDs are maintained using 2N

bits. For larger core counts and more outstanding messages, this overhead can be reduced

by tracking a smaller subset of the total core count. Since the number of sharers of a line

is usually low, this will perform as well as being able to track all cores. Once the FID list

fills up, subsequent snoop requests will then be stalled.

The different messages types are matched with appropriate ACE channels and types.

The network interface retains its general mapping from ACE messages to packet type

encoding and virtual network identification resulting in a seamless integration. The

L2 cache was thus designed to comply with the AMBA ACE specification. It has five

outgoing channels and three incoming channels (see Figure 7-8), separating the address

and data among different channels. ACE is able to support snoop requests through its

Address Coherent (AC) channel, allowing us to send other requests to the L2 cache.

7.3.3 Functional Verification

Besides the unit tests to ensure the correct functionality of each component, Table 7-2

lists the regression tests we used to verify the entire chip. Since the core is a verified

commercial IP, our regression tests focus on verifying integration of various components,

which involves the following:

0 122

7.3. 36-Core Processor with SCORPIO NoC 1230

Table 7-2: Regression Tests

Test Name Description

hello Performs basic load/store and arithmetic operations on non-overlapped
cacheable regions.

mem patterns Performs load/store operations for different data types on non-
overlapped cacheable regions.

config space Performs load/store operations on non-cacheable regions.

flash copy Transfers data from the flash memory to the main memory.

sync Uses flags and performs msync operation.

atom smashers Uses spin locks, ticket locks and ticket barriers, and performs operations
on shared data structures.

ctt Performs a mixture of arithmetic, lock/unlock, load/store operations
on overlapped cacheable regions.

intc Performs store operations on the designate interrupt address which
triggers other cores' interrupt handler.

#include <support.h>
#include <lib/common/utils .h>

volatile uint32_t A _attribute_ ((section(". syncvars"))) = 0;
volatile uint32_t B _attribute_ ((section(". syncvars"))) = 0;

int main(int argc, char *argv[]) {
uint32_t coregid = getCorelDo; // Get its own core id
if (core id = 0)

A = 1;
asm volatile("sync" : "memory");// "A = 1" is seen by other cores
B = 1;
asm volatile("sync" : "memory");// "B = 1" is seen by other cores

else if (coreid = 1)
while (B = 0) { } // Spin while B is 0
if (A != 1) { / B is set to 1, then A should 1 too

exit-fail();

exitpasso;

Figure 7-11: sync Test for 2 Cores

" Load/store operations on both cacheable and non-cacheable regions.

* lwarx, stwcx and msync instructions.

" Coherency between Lis, L2s and main memory.

* Software-triggered interrupt.

For brevity, Figure 7-11 shows the code segment of the shortest sync test. The tests are

written in assembly and C, and we built a software chain that compiles tests into machine

codes for SCORPIO.

M

Chapter 7 - SCORPIO

7.4 Architecture Analysis

Modeled system: For full-system architectural simulations of SCORPIO, we use Wind

River Simics [121] extended with the GEMS toolset [75] and the GARNET [3] network

model. The SCORPIO and baseline architectural parameters as shown in Table 7-1 are

faithfully mimicked within the limits of the GEMS and GARNET environment:

" GEMS only models in-order SPARC cores, instead of SCORPIO's Power cores.

" Li and L2 cache latency in GEMS are fixed at 1 cycle and 10 cycles. The prototype

L2 cache latency varies with request type and cannot be expressed in GEMS, while

the Li cache latency of the core IP is 2 cycles.

" The directory cache access latency is set to 10 cycles and DRAM to 80 cycles in GEMS.

The directory cache access was approximated from the directory cache parameters,

but vary depending on request type for the chip.

" The L2 cache, NIC, and directory cache accesses are fully-pipelined in GEMS.

" Maximum of 16 outstanding messages per core in GEMS, unlike our chip prototype

which has a maximum of two outstanding messages per core.

Directory baselines: For directory coherence, all requests are sent as unicasts to a

directory, which forwards them to the sharers or reads from main memory if no sharer

exists. SCORPIO is compared with two baseline directory protocols. The Limited-pointer

directory (LPD) [2] baseline tracks when a block is being shared between a small number

of processors, using specific pointers. Each directory entry contains 2 state bits, log N

bits to record the owner ID, and a set of pointers to track the sharers. We evaluated LPD

against full-bit directory in GEMS 36 core full-system simulations and discovered almost

identical performance when approximately 3 to 4 sharers were tracked per line as well

as the owner ID. Thus, the pointer vector width is chosen to be 24 and 54 bits for 36

and 64 cores, respectively. By tracking fewer sharers, more cachelines are stored within

the same directory cache space, resulting in a reduction of directory cache misses. If the

number of sharers exceeds the number of pointers in the directory entry, the request is

broadcast to all cores. The other baseline is derived from HyperTransport (HT) [24]. In

E 124

7.4. Architecture Analysis

HT, the directory does not record sharer information but rather serves as an ordering

point and broadcasts the received requests. As a result, HT does not suffer from high

directory storage overhead but still incurs on-chip indirection via the directory. Hence for

the analysis only 2 bits (ownership and valid) are necessary. The ownership bit indicates

if the main memory has the ownership; that is, none of the L2 caches own the requested

line and the data should be read from main memory. The valid bit is used to indicate

whether main memory has received the writeback data. This is a property of the network,

where the writeback request and data may arrive separately and in any order because they

are sent on different virtual networks.

Workloads: We evaluate all configurations with SPLASH-2 [124] and PARSEC [11]

benchmarks. Simulating higher than 64 cores in GEMS requires the use of trace-based

simulations, which fail to capture dependencies or stalls between instructions, and spin-

ning or busy waiting behavior accurately. Thus, to evaluate SCORPIO's performance

scaling to 100 cores, we obtain SPLASH-2 and PARSEC traces from the Graphite [78]

simulator and inject them into the SCORPIO RTL testbench.

Evaluation Methodology: For performance comparisons with baseline directory

protocols, we use GEMS to see the relative runtime improvement. The centralized direc-

tory in HT and LPD adds serialization delay at the single directory. Multiple distributed

directories alleviates this but adds on-die network latency between the directories and

DDR controllers at the edge of the chip for off-chip memory access, for both baselines.

We evaluate the distributed versions of LPD (LPD-D), HT (HT-D), and SCORPIO

(SCORPIO-D) to equalize this latency and specifically isolate the effects of indirection

and storage overhead. The directory cache is split across all cores, while keeping the total

directory size fixed to 256 KB. Our chip prototype uses 128 KB, as seen in Table 7-1, but

we changed this value for baseline performance comparisons only such that we do not

heavily penalize LPD by choosing a smaller directory cache.

The SCORPIO network design exploration provides insight into the performance

impact as certain parameters are varied. The finalized settings from GEMS simulations are

used in the fabricated 36-core chip NoC. In addition, we use behavioral RTL simulations

on the 36-core SCORPIO RTL, as well as 64 and 100-core variants, to explore the scaling

1250M

0 126 Chapter 7 - SCORPIO

0 LD-D 6 HT-D ESCORPIO 0
1.4

0 1.

w 0.8

0

z 02 040 E 62 II.I i Eb2I 1~ F
E E2 .0 a

.~ .~ 0 E

36 Cores 64 Cores

(a) Normalized runtime for 36 and 64 cores

2 Network: Req to Dir 2 Dir Access 0 Network: Dir to Sharer 0 Network: Bcast Req 2 Network: Req to Dir 2 Network: Bcast Req 0 Dir Access

N Req Ordering 0 Sharer Access E Network: Resp U Req Ordering U Network: Resp
120 250

100 200

405

600

barnes iff lu blackscholes canneal fuidanimate average barnes fft blackcholes canneal fludarimate average

(b) Served by other caches (36 cores) (c) Served by directory (36 cores)

Figure 7-12: Normalized Runtime and Latency Breakdown

of the uncore to high core counts. For reasonable simulation time, we replace the

Cadence memory controller IP with a functional memory model with fully-pipelined

90-cycle latency. Each core is replaced with a memory trace injector that feeds SPLASH-2

and PARSEC benchmark traces into the L2 cache controller's AHB interface. We run

the trace-driven simulations for 400 K cycles (220 K for 10 x 10 mesh for tractability),

omitting the first 20 K cycles for cache warm-up.

7.4.1 Performance

To ensure the effects of indirection and directory storage are captured in the analysis, we

keep all other conditions equal. Specifically, all architectures share the same coherence

protocol and run on the same NoC (minus the ordered virtual network GO-REQ and

notification network).

Figure 7-12 shows the normalized full-system application runtime for SPLASH-2

and PARSEC benchmarks simulated on GEMS. On average, SCORPIO-D shows 24.1 %

better performance over LPD-D and 12.9 % over HT-D across all benchmarks. Diving in,

7.4. Architecture Analysis

we realize that SCORPIO-D experiences average L2 service latency of 78 cycles, which

is lower than that of LPD-D (94 cycles) and HT-D (91 cycles). The average L2 service

latency is computed over all L2 hit, L2 miss (including off-chip memory access) latencies

and it also captures the internal queuing latency between the core and the L2. Since the

L2 hit latency and the response latency from other caches or memory controllers are

the same across all three configurations, we further breakdown request delivery latency

for three SPLASH-2 and three PARSEC benchmarks (see Figure 7-12). When a request

is served by other caches, SCORPIO-D's average latency is 67 cycles, which is 19.4 %

and 18.3 % lower than LPD-D and HT-D, respectively. Since we equalize the directory

cache size for all configurations, the LPD-D caches fewer lines compared to SCORPIO-D

and HT-D, leading to a higher directory access latency which includes off-chip latency.

SCORPIO provides the most latency benefit for data transfers from other caches on-chip

by avoiding the indirection latency.

As for requests served by the directory, HT-D performs better than LPD-D due to the

lower directory cache miss rate. Also, because the directory protocols need not forward

the requests to other caches and can directly serve received requests, the ordering latency

overhead makes the SCORPIO delivery latency slightly higher than the HT-D protocol.

Since the directory only serves 10 % of the requests, SCORPIO still shows 17 % and 14 %

improvement in average request delivery latency over LPD-D and HT-D, respectively,

leading to the overall runtime improvement.

7.4.2 NoC Design Exploration for 36-Core Chip

With GEMS, we swept several key SCORPIO network parameters, channel-width, num-

ber of VCs, and number of simultaneous notifications, to arrive at the final 36-core

fabricated configuration. Channel-width impacts network throughput by directly influ-

encing the number of flits in a multi-flit packet, affecting serialization and essentially

packet latency. The number of VCs also affects the throughput of the network and

application runtimes, while the number of simultaneous notifications affect ordering

delay. Figure 7-13 shows the variation in runtime as the channel-width and number of

1270M

Chapter 7 - SCORPIO

SCvW8B U CW=16B 3 CW=32B

0.8

E2

0.0, 111
0. 02barnes ift fmm lu nlu radix water- water- avg

(a) Channel-widths
MCW=BB/#VCS=2 U CW=8B/#VCS=4 U CW=16B/#VCS=2 a CW=16B/#VCS=4

'.0. 8

a: 0.6

E"U. 0.4211

U#VCS=2 U#VCS=4 U#VCS=6

2
0.

Z 0

0. 8

S0.6

90.4

0.2
0
Zn0

fmm lu nlu radix water-nsq water- avg
spatial

(c) UO-RESP VCs

Figure 7-13: Normalized Runtime with

barnes fft fmm lu nlu radix water- water- avg
nsq spatial

(b) GO-REQ VCs

M BW=1b U BW=2b a BW=3b

fft fmm lu nlu radix water- water- avg
nsq spatial

(d) Simultaneous notifications

Varying Network Parameters

VCs are varied. All results are normalized against a baseline configuration of 16-byte

channel-width and 4 VCs in each virtual network.

Channel-width: While a larger channel-width offers better performance, it also incurs

greater overheads - larger buffers, higher link power and larger router area. A channel-

width of 16 bytes translates to 3 flits per packet for cache line responses on the UO-RESP

virtual network. A channel-width of 8 bytes would require 5 flits per packet for cache line

responses, which degrades the runtime for a few applications. While a 32 byte channel

offers a marginal improvement in performance, it expands router and NIC area by 46 %.

In addition, it leads to low link utilization for the shorter network requests. The 36-core

chip contains 16-byte channels due to area constraints and diminishing returns for larger

channel-widths.

Number of VCs: Two VCS provide insufficient bandwidth for the GO-REQ virtual

network which carries the heavy request broadcast traffic. Besides, one VC is reserved for

deadlock avoidance, so low VC configurations would degrade runtime severely. There is a

negligible difference in runtime between 4 VCs and 6 VCs. Post-synthesis timing analysis

of the router shows negligible impact on the operating frequency as the number of VCs is

N 128

7.4. Architecture Analysis

varied, with the critical path timing hovering around 950 ps. The number of VCs indeed

affects the SA-I stage, but it is off the critical path. However, a tradeoff of area, power, and

performance still exists. Post-synthesis evaluations show 4 VCs is 15 % more area efficient,

and consumes 12 % less power than 6 VCs. Hence, our 36-core chip contains 4 VCs in the

GO-REQ virtual network. For the UO-RESP virtual network, the number of VCs does

not seem to impact run time greatly once channel-width is fixed. UO-RESP packets are

unicast messages, and generally much fewer than the GO-REQ broadcast requests. Hence

2 VCs suffices.

Number of simultaneous notifications: The Power Architecture cores used in our

36-core chip are constrained to two outstanding messages at a time because of the AHB

interfaces at its data and instruction cache miss ports. Due to the low injection rates, we

choose a 1-bit-per-core (36-bit) notification network which allows 1 notification per core

per time window.

We evaluate if a wider notification network that supports more notifications each

time window will offer better performance. Supporting 3 notifications per core per

time window, will require 2 bits per core, which results in a 72-bit notification network.

Figure 7-13d shows 36-core GEMS simulations of SCORPIO achieving 10 % better

performance for more than one outstanding message per core with a 2-bit-per-core

notification network, indicating that bursts of 3 messages per core occur often enough to

result in overall runtime reduction. However, more than 3 notifications per time window

(3-bit-per-core notification network) does not reap further benefit, as larger bursts of

messages are uncommon. A notification network data width scales as O(m x N), where

m is the number of notifications per core per time window. Our 36-bit notification

network has < 1% area and power overheads; wider data widths only incurs additional

wiring which has minimal area and power compared to the main network.

7.4.3 Scaling Uncore Throughput for High Core Counts

As core counts scale, if each core's injection rate (cache miss rate) remains constant,

the overall throughput demand on the uncore scales up. We explore the effects of two

techniques to optimize SCORPIO's throughput for higher core counts.

1290M

Chapter 7 - SCORPIO

*6x6 M8x8 M 10x10

350

300

250
E

1 200

. 150

&I 5100

S50

0"

9- CL CL CL C _ C C C L L CL L
0 0 0 0 0
zz z z z z z

barnes blackscholes canneal fft fluidanimate lu avg

Figure 7-14: Pipelining effect on performance and scalability

Pipelining uncore: Pipelining the L2 caches improves its throughput and reduces

the backpressure on the network which may stop the NIC from de-queueing packets.

Similarly, pipelining the NIC will relieve network congestion. The performance impact

of pipelining the L2 and NIC can be seen in Figure 7-14 in comparison to a non-pipelined

version. For 36 and 64 cores, pipelining reduces the average latency by 15 % and 19 %,

respectively. Its impact is more pronounced as we increase to 100 cores, with an improve-

ment of 30.4 %. Canneal's 10 x 10 result is better than 8 x 8 case because within 220 K

cycles, higher latency requests are not captured.

Boosting main network throughput with VCs: For good scalability on any mul-

tiprocessor system, the cache hierarchy and network should be co-designed. As core

count increases, assuming similar cache miss rates and thus traffic injection rates, the load

on the network now increases. The theoretical throughput of a k x k mesh is 1/k2 for

broadcasts, reducing from 0.027 flits/node/cycle for 36-cores to 0.01 flits/node/cycle for

100-cores. Even if overall traffic across the entire chip remains constant, say due to less

sharing or larger caches, a 100-node mesh will lead to longer latencies than a 36-node mesh.

Common ways to boost a mesh throughput include multiple meshes, more VCs/buffers

per mesh, or wider channel.

Within the limits of the RTL design, we analyze the scalability of the SCORPIO

architecture by varying core count and number of VCs within the network and NIC,

while keeping the injection rate constant. The design exploration results show that

N 130

7.4. Architecture Analysis

increasing the UO-RESP virtual channels does not yield much performance benefit. But,

the OREQ virtual channels matter since they support the broadcast coherent requests.

Thus, we increase only the OREQ VCs from 4 VCs to 16 VCs (64 cores) and 50 VCs

(100 cores), with 1 buffer per VC. Increasing VCs will stretch the critical path and affect

the operating frequency of the chip. It will also affect area, though with the current

NIC+router taking up just 10 % of tile area, this may not be critical. A much lower

overhead solution for boosting throughput is to go with multiple main networks, which

will double/triple the throughput with no impact on frequency. It is also more efficient

area wise as excess wiring is available on-die.

For at least 64 cores in GEMS full-system simulations, SCORPIO performs better than

LPD and HT despite the broadcast overhead. The 100-core RTL trace-driven simulation

results in Figure 7-14 show that the average network latency increases significantly. Diving

in, we realize that the network is very congested due to injection rates close to saturation

throughput. Increasing the number of VCs helps push throughput closer to the theoretical,

but is ultimately still constrained by the theoretical bandwidth limit of the topology. A

possible solution could be to use multiple main networks, which would not affect the

correctness because of our decoupling of message delivery from ordering approach. Our

trace-driven methodology could have a factor on the results too, as we were only able to

run 20 K cycles for warmup to ensure tractable RTL simulation time; we noticed that L2

caches are under-utilized during the entire RTL simulation runtime, implying caches are

not warmed up, resulting in higher than average miss rates.

An alternative to boosting throughput is to reduce the bandwidth demand. INCF [4]

was proposed to filter redundant snoop requests by embedding small coherence filters

within routers in the network.

1310M

0 132 Chapter 7 - SCORPIO

Table 7-3: Request Categories

Category Data Location Sufficient Permission Trigger Condition

Local Requester cache Yes Load hit and store hit (in Modif y state)

Local Owner Requester cache No Store hit (in Owned state)

Remote Other cache No Load miss and store miss

Memory Memory No Load miss and store miss

12

Local
Request Response Latency (cycle)

-11110 e~o

13 2 30 64 13

Lcal Lo cal L2 Loca NIC w oal Local NIC L~oca L2

Owner Router

14 2 87 26 38 2 13 3 15

Remote LocalL2 Local NIC Network Roal N Loc2

36 "=

is 2 82 27 124 4 11 3 9

Mem Local12 LocalNIC Network MIC Loc

6833

Local NIC Local L2

Figure 7-15: L2 Service Time Breakdown (bames)

7.5 Architectural Characterization of SCORPIO Chip

7.5.1 L2 Service Latency

In Section 7.4.1, we show that the L2 service latency plays an important role of the overall

system performance. Here, we perform the RTL simulations using the same methodology

mentioned in Section 7.4 to quantify the effect of different L2 request types on the average

L2 service latency.

We classify L2 requests into 4 categories (see Table 7-3). We first show the latency

breakdown of each request category for the barnes benchmark traces in Figure 7-15. For

Local requests, as data resides in the local cache, only local L2 contributes to the round-trip

latency with an average latency of 12 cycles, which is the queuing latency and its zero-load

7.5. Architectural Characterization of SCORPIO Chip

latency. For Local owner requests, which only occur on a store-hit in Owned state, even

though the local cache has valid data, it needs to send the request to the network and

wait until the request is globally ordered before upgrading to Modif y state to perform the

store operation. The significant delay in the router and NIC is due to this ordering delay.

For Remote requests, where the valid permission and data is in another cache, the latency

involves the time spent at Local L2 and the following:

* The request travel time through the network, and ordering time at the remote cache

(Local NIC-Network-Remote NIC).

* The processing time to generate the response (Remote L2).

" The response time through the network (Remote NIC-Network-Local NIC).

Memory requests are similar to Remote requests, except that valid permission and data

resides in the main memory, so requests are responded by the memory controller instead.

In addition to the response, the local L2 needs to see its own requests to complete the

transaction which contributes to the forks in the breakdown. For both Remote and

Memory requests, response travel time are faster than that of requests, as requests need

to be ordered at the destination and cannot directly be consumed, which introduces

backpressure and increases network as well as NIC latency, whereas the responses are

unordered and can fully benefit from the low latency network.

Figure 7-16 shows the latency distribution of each request category for barnes. The

Memory requests involve memory access latency and network latency, contributing to the

tail of the distribution. Because the L2 access latency is lower than the memory access

latency, the overall latency for Remote requests is 200 cycles on average. Spatial locality in

the memory traces lead to 81 % hits in the requester cache. So even though the latency

is relatively high for Remote and Memory requests, the average service latency is around

51 cycles, still close to the expected zero-load latency of 23 cycles.

1330M

Chapter 7 - SCORPIO

U Local EL Local Owner 0 Remote U Mem

1000000

100000

Cr 10000

W. 1000

100

E
10

10, .EE.(j& AQ 9p P .

Latency (Cycles)

Figure 7-16: L2 Service Time Histogram (barnes)

7.5.2 Overheads

We evaluate the area and power overheads to identify the practicality of the SCORPIO

NoC. To obtain the power consumption, we perform gate-level simulation' on the post-

synthesis netlist and use the generated vector change dump (VCD) files and Synopsys

PrimeTime PX. To reduce the simulation time and generated VCD size, we use the

trace-driven simulation to obtain the L2 and network power consumption. We attach a

mimicked AHB slave that can respond to memory requests in a couple of cycles, to the

core and run Dhrystone benchmark to exercise the core for power consumption values.

The area overhead breakdown is obtained from layout.

Power: Overall, the aggregated power consumption of SCORPIO is around 28.8 W

(around 3.5 W from leakage power) and the detailed power breakdown of a tile is shown

in Figure 7-17a. The power consumption of a core with Li caches is around 62 % of the

tile power, whereas the L2 cache consumes 18 % and the NIC and router 19 % of tile

power. A notification router costs only a few OR gates; as a result, it consumes less than

1 % of the tile power. Since most of the power is consumed at clocking the pipeline and

state-keeping flip-flops for all components, the breakdown is not sensitive to workload.

5The simulation is run for 2,000,000 cycles at TT corner, 25 'C and with annotated paracitics.

0 134

7.6. Chip Measurements and Lessons Learned 1350

Li Inst Cache NIC+Router NIC+Router L2 Cache L2 Cache Array

L 4 Data Cache 19% RSHR AHB+ACE Ll Inst Cache 10% 46% 2C H R
4% 4% 2% Region Tracker 6%

L2 Cache Li Data Cache 4H
in L 18% [2 Tester 6%Ad

2% AHB+ACE

-wOther Iv 4
Core L2 Cache Array L2 Cache 1% Core L2 Cache Region Tracker
54% 7%Controller Controller L2 Tester

2% 2% 2%

(a) Tile power breakdown (b) Tile area breakdown

Figure 7-17: Tile Overheads

Area: The dimension of the fabricated SCORPIO is 11 x 13 mm 2 . Each memory

controller and each memory interface controller occupies around 5.7 mm2 and 0.5 mm2

respectively. Detailed area breakdown of a tile is shown in Figure 7-17b. Within a tile,

L1 and L2 caches are the major area contributors, taking 46 % of the tile area and the

network interface controller together with router occupying 10 % of the tile area.

7.6 Chip Measurements and Lessons Learned

Unfortunately, the IO of the chip do not function correctly; the outputs are stuck at either

logic 0 or logic 1, and hence the chip functionality cannot be verified. Several checks have

been done to identify the source of the issue. We examined the board design, package

design, as well as the connections and orientation of the board-package interface and

package-chip interface. By using X-ray and IR-imaging, we compare the actual package

layout and connections between the package and chip. On the simulation side, even

though we couldn't simulate the whole chip due to the high simulation time, we extracted

the IO-related portion of the post-layout netlist and simulated in SPICE.

Nevertheless, there are several things that we could have done for improving SCOR-

PIO's performance and for implementing SCORPIO.

Performance: Starting from the L2 cache controller, we opted for simplicity and did

not pipeline it. This leads to delays in processing existing requests while backpressure

the network, preventing the NIC from consuming packets. At the NIC, we omitted

pipelining of the updating of the ESID counter, which throttles its throughput for some

Chapter 7 - SCORPIO

scenarios. We could also have increased buffering beyond the current 4 buffers at the

NIC, which would not have a significant impact on area/power given the current low

overheads. These pipelining and backpressure effects were not captured in our GEMS

model, and hence did not crop up until post-fabrication. Finally, the strict sequential

consistency ordering that SCORPIO maintains also imposes additional ordering delay.

In-network ordering techniques may be incorporated to support relaxed consistency and

is not covered in the scope of this dissertation.

Implementation: During implementation, we first built the tile block with the core,

L2 controller, NIC and router. Then, we stamped the tile 36 times and connected them

together (i.e., two-level hierarchical implementation). However, stamping 36 tiles at once

increases the implementation complexity, which dramatically increases the place-and-

route time from couple of hours to one whole day. A better way is to implement the chip

using hierarchical place-and-route approach with more levels to lower the complexity at

each level; for example, first implement a tile, and then a row of 6 tiles, followed by a

network of 6 rows.

7.7 Related Work

Multicore processors: Table 7-4 includes a comparison of AMD, Intel, Tilera, SUN

multiprocessors with the SCORPIO chip. These relevant efforts were a result of the

continuing challenge of scaling performance while simultaneously managing frequency,

area, and power. When scaling from multi to many cores, the interconnect is a significant

factor. Current industry chips with relatively few cores typically use bus-based, crossbar

or ring fabrics to interconnect the last-level cache, but suffers from poor scalability. Bus

bandwidth saturates with more than 8 to 16 cores on-chip [25], not to mention the

power overhead of signaling across a large die. Crossbars have been adopted as a higher

bandwidth alternative in several multicores [20, 87], but it comes at the cost of a large

area footprint that scales quadratically with core counts, worsened by layout constraints

imposed by long global wires to each core. From the Oracle T5 die photo, the 8-by-9

crossbar has an estimated area of 1.5X core area, hence about 23 mm2 at 28 nm. Rings are

0 136

Table 7-4: Comparison of multicore processors

Clock frequency

Power supply

Power consumption

Lithography

Core count

ISA

LID

Cache L1I

hierarchy L2

L3

Consistency model

Coherency

Interconnect

Intel Core i7 [31]

2 to 3.3 GHz

1.0 V

45 to 130W

22 nm

4 to 8

x86

32 KB private

32 KB private

256 KB private

8 MB shared

Processor

Snoopy

Point-to-Point (QPI)

AMD Opteron [6]

2.1 to 3.6 GHz

1.0 V

115 to 140W

32nm SCI0

4 to 16

x86

16 KB private

64 KB shared among 2 cores

2 MB shared among 2 cores

16 MB shared

Processor

Broadcast-based directory (HT)

Point-to-Point (HyperTransport)

TILE64 [119]

750 MHz

1.0 V

15 to 22 W

90 nm

64

MIPS-derived VLIW

8 KB private

8 KB private

64 KB private

N/A

Relaxed

Directory

5 8 x 8 meshes

Oracle T5 [87]

3.6 GHz

28 nm

16

SPARC

16 KB private

16 KB private

128 KB private

8MB

Relaxed

Directory

8 x 9 crossbar

Intel Xeon E7 [46]

2.1 to 2.7 GHz

1.0 V

130 W

32 nm

6 to 10

x86

32 KB private

32KB private

4 MB shared

18 to 30 MB shared

Processor

Snoopy

Ring

SCORPIO

1 GHz (833 MHz post-layout)

1.1V

28.8 W

45 nm SOI

36

Power

16 KB private

16 KB private

128 KB private

N/A

Sequential consistency

Snoopy

6 x 6 mesh

Chapter 7 - SCORPIO

an alternative that supports ordering, adopted in Intel Xeon E7, with bufferless switches

(called stops) at each hop delivering single-cycle latency per hop at high frequencies and

low area and power. However, scaling to many cores lead to unnecessary delay when

circling many hops around the die.

The Tilera TILE64 [119] is a 64-core chip with 5 packet-switched mesh networks. A

successor of the MIT RAW chip which originally did not support shared memory [110],

TILE64 added directory-based cache coherence, hinting at market support for shared

memory. Compatibility with existing IP is not a concern for startup Tilera, with cache,

directory, memory controllers developed from scratch. Details of its directory protocol

are not released but news releases suggest directory cache overhead and indirection latency

are tackled via trading off sharer tracking fidelity. Intel Single-chip Cloud Computer

(SCC) processor [43] is a 48-core research chip with a mesh network that does not support

shared memory. Each router has a four stage pipeline running at 2 GHz. In comparison,

SCORPIO supports in-network ordering with a single-cycle pipeline leveraging virtual

lookahead bypassing, at 1 GHz.

NoC-only chip prototypes: Swizzle [100] is a self-arbitrating high-radix crossbar

that embeds arbitration within the crossbar to achieve single cycle arbitration. Prior

crossbars require high speedup (crossbar frequency at multiple times core frequency) to

boost bandwidth in the face of poor arbiter matching, leading to high power overhead.

Area remains a problem though, with the 64-by-32 Swizzle crossbar taking up 6.65 mm 2

in 32 nm process [100]. Swizzle acknowledged scalability issues and proposed stopping

at 64-port crossbars, and leveraging these as high-radix routers within NoCs. There are

several other stand-alone NoC prototypes that also explored practical implementations

with timing, power and area consideration, such as the 1 GHz Broadcast NoC [91] that

optimizes for energy, latency and throughput using virtual bypassing and low-swing

signaling for unicast, multicast, and broadcast traffic. Virtual bypassing is leveraged in the

SCORPIO NoC.

0 138

7.8. Summary 1390l

7.8 Summary

The SCORPIO architecture supports global ordering of requests on a mesh network

by decoupling the message delivery from the ordering. With this we are able to address

key coherence scalability concerns. While our 36-core SCORPIO chip is an academic

chip design that can be better optimized in many aspects, we learnt significantly through

this exercise about the intricate interactions between processor, cache, interconnect and

memory design, as well as the practical implementation overheads of the SCORPIO

architecture.

0140 Chapter 7 - SCORPIO

Conclusion

With the advance in CMOS technology, more and more general-purpose and/or application-

specific cores have been added to the same chip. On-chip networks are adopted to support

the communication between these cores. As the number of cores increases, the on-chip

network latency and power become critical for system performance. In this dissertation,

I tackle both the latency and power issues in large NoC. Particularly, I focus on two key

challenges in the realization of low-latency and low-power NoCs:

* The development of NoC design toolchains that can ease and automate the design

of large-scale NoCs integrated with advanced ultra-low-power and ultra-low-latency

techniques to be embedded within many-core chips.

* The design and implementation of chip prototypes with ultra-low-latency and low-

power NoCs for thorough analysis and understanding of the design tradeoffs.

In this chapter, I summarize the main contributions of this dissertation in Section 8.1

and provide future research directions in Section 8.2.

8.1 Dissertation Summary

8.1.1 Development of NoC Design Toolchains

The dissertation begins with DSENT, a NoC timing, power and area evaluation tool,

that enables rapid cross-hierarchical evaluation of opto-electronic NoCs. DSENT is based

Chapter 8 - Conclusion

on development of a technology-portable standard cell library so designs can be flexibly

modeled while maintaining accuracy. It has been validated against SPICE simulations

and shown to be within 20 % accuracy. DSENT provides not only models for electrical

digital circuits but also sophisticated models for emerging attractive integrated photonic

interconnects. Through DSENT, we demonstrate case studies and show that due to

non-data-dependent laser and tuning power, a photonic NoC has poor energy-efficiency at

low traffic load, and how it can be improved by using tuning models provided in DSENT.

In addition, since photonic technology is still in its infancy, DSENT also serves as a useful

tool that can help determine the importance of various parameters. We release DSENT

open-source [30] and DSENT is downloaded over 600 times and cited 200 times till now.

We next identify that a datapath consisting of crossbar and link is a major source

of NoC energy consumption. Low-swing signaling circuits have been demonstrated

to significantly reduce datapath power, but has required custom circuit design in the

past. Here, I propose a low-swing NoC crossbar generator toolchain that enables the

embedding of low-swing TX/RX cells automatically within NoC RTL [17]. Our case

study shows a 50 % energy-per-bit savings for a 5-port mesh router with the generated

datapath.

To tackle the latency issue in large networks, clockless repeated links have been

shown to be able to obviate the need for latching at routers, thus enabling virtual

bypass paths that allow packets to zoom from source to destination cores/NICs without

stopping at intermediate routers. This allows a NoC topology to be customized for

each SoC application so virtual direct connections can be made between communicating

nodes. I propose a NoC synthesis tool flow that takes as input a SoC application with

its communication flows, then synthesizes a NoC configured for the application, and

generates RTL to layout of the NoC [18]. Our results show that, as compared to an

all-to-all topology where every communicating core has a 1-cycle direct link to each

other, the synthesized NoC delivers the average network latency that is slightly higher by

1.5 cycles.

M 142

8.2. Future Research Directions

8.1.2 Design and Implementation of Chip Prototypes

I led the design and implementation of two chips to rigorously investigate the practical

design tradeoffs. The SMART NoC chip was fabricated on 32 nm SOI technology, and

measurements show that it works at 817.1 MHz with HPCmax of 1 and at 548 MHz with

HPCmax of 7, consuming 1.57 to 2.53 W, respectively.

The SCORPIO 36-core processor chip was implemented on 45 nm SOI technology,

and the RTL analysis showed that the chip can attain 1 GHz (833 MHz post-layout) at

28.8 W with the NoC taking up just 10 % of tile area and 19 % of tile power, demonstrating

that low-latency, low-power mesh NoCs can support mainstream snoopy coherence many-

core systems.

8.2 Future Research Directions

The dissertation tackles three aspects of building low-latency and low-power NoCs.

However, the design of SoC or manycore systems is still a rich topic of research. In this

section, we focus on some future research directions that are related to the topics in this

dissertation.

Modeling: Even though DSENT lays out the framework for electrical circuits, it only

provides models for NoC components, which essentially consist of muxes, buffers, and

wires. However, the scope of computer architecture is large and it cannot be expressed

only by these components, which calls for a need of more models for basic building blocks

and methodologies that can precisely translate high-level architectural design concepts

into these building blocks to allow fast evaluation of many more upcoming architecture

proposals.

On-chip Photonics: Optical signaling is attractive due to its potential for light-speed

latency, high bandwidth and ultra-low power. However, limited materials that can be

used on chip constrains the efficiency and performance of optical links, leading to limited

on-chip applications. In addition, using WDM implies the use of ring modulators tied to

specific frequencies, which is highly sensitive to temperature and process variation. How

to effectively resolve or bypass the frequency issue along with reducing the losses of optical

1430M

Chapter 8 - Conclusion

components still require future researches to make WDM links more favorable. Solutions

such as introducing new elements to the commercial processes to allow devices with better

efficiency and using wafer-level integration where optical active components are placed

onto a separate plane can be considered while designing future optical interconnects [128].

Furthermore, while design automation is common for digital circuits, in addition to

research in basic components, high level design automation for optical link design and

optimization is essential for system level integration.

NoC: SMART breaks the on-chip latency barrier imposed by topologies, and shows

ultra-low network latency to deliver packets. However, the design relies on the assumption

of synchronous clocking. Modern manycore systems often incorporate dynamic voltage

and frequency scaling (DVFS) techniques to improve power efficiency, which destroys

the notion of cycle between different cores. A separate frequency and voltage domain

can be dedicated to the network to avoid the problem, but it may not be energy efficient.

Furthermore, systems with heterogeneous cores have gained in importance as a way to

leverage the wealth of transistors on chip. These cores may be irregular in size, resulting

in the need of irregular topologies. How to systematically design a network and router

with SMART support for irregular topologies is an avenue for future research.

N 144

SMART Network Architecture

Targeting Many-core System

Applications

This is joint work with Tushar Krishna [5 9]. Tushar Krishna and I co-designed the SMAR Tcie

architecture. I performed physical implementation and evaluation, while Tushar Krishna

performed system -level performance evaluation.

A.1 Motivation

In this chapter, we present SMARTcyclc, a generalized version of SMART network that

can reconfigure 1-cycle virtual bypass paths on a cycle-to-cycle basis. For simplicity, all

the SMART mentioned in this chapter refer to SMARTCYCIc-

The chapter is organized as follows. Section A.2 defines the router microarchitecture

that SMARTcycle is built upon and terminology for the rest of the chatper. Section A.3

presents SMART for a k-ary 1-Mesh, and Section A.4 extends it to a k-ary 2-Mesh.

Section A.5 summarizes the chapter.

0 146 Appendix A - SMAR Tcye Network Architecture

[cn cxb

--- ------------------------- Asynchronous

0-~-e Repeater

Figure A-i: SMART Router Microarchitecture

BWen. 0 BWena 0 BWena 0BWena 1
BM,.1 0 BM,. bypass BM, 1 bypass BM, 1 0
XBsei Cin->Eout XB,.1 Win->E0ut XB,. Win->Eout XB,., X

Figure A-2: Example of Single-cycle Multi-hop Traversal

A.2 SMART Router and Terminology

For better understanding of this chapter, we show again a SMART router in Figure A-i,

similar to the one described in Chapter 5 except that we construct the SMART router on

top of an 1-cycle router instead of 3-cycle. For simplicity, we only show Corein (C;.)1,

Westia (W;.) and East0 n, (E0 .,) ports. All other input ports are identical to WX;r, and all

other output ports are identical to Eo. Each repeater has to be sized to drive not just
the link, but also the muxes (2:1 bypass and 4:1 Xbar) at the next router, before a new

repeater is encountered.

The three primary components of the design is shown in Figure A-i: (1) Buffer Write

enable (BWena) at the input flip flop which determines if the input signal is latched or not,

(2) Bypass Mux select (BMsei) at the input of the crossbar to choose between the local

buffered flit, and the bypassing flit on the link, and (3) Crossbar select (XB~e1). Figure A-2

shows an example of a multi-hop traversal: a flit from Router RO traverses 3-hops within

C- does not have a bypass path like the other ports because all flits from the NIC have to get buffered at
the first router, before they can create SMART paths, which will be explained later in Section A.3.

A.3. SMART in a k-ary 1-Mesh

Table 1-1: Terminology

Term Meaning

HPC Hops Per Cycle. The number of hops traversed in a cycle by any flit.

HPCmax Maximum number of hops that can be traversed in a cycle by a flit. This is fixed at design time.

SMART-hop Multi-hop path traversed in a Single-cycle via a SMART link. It could be straight, or have turns. The
length of a SMART-hop can vary anywhere from 1-hop to HPCma.

injection router First router on the route. The source NIC injects a flit into the Cin port of this router.

ejection router Last router on the route. This router ejects a flit out of the C,u port to the destination NIC.

start router Router from which any SMART-hop starts. This could be the injection router, or any router along
the route.

inter router Any intermediate router on a SMART-hop.

stop router Router at which any SMART-hop ends. This could be the ejection router or any router along the
route.

turn router Router at a turn (Win/Ein to N.Ut/Sout, or Nin/Sin to WoUt/EoUt) along the route.

local flits Flits buffered at any start router.

bypass flits Flits which are bypassing inter routers.

SMART-hop
Setup Request
(SSR)

premature stop

Prio = Local

Prio = Bypass

SMART1D

SMART_2D

Length (in hops) for a requested SMART-hop. For example, SSR=H indicates a request to stop
H-hops away. Optimization: Additional ejection-bit if requested stop router is ejection router.

A flit is forced to stop before its requested SSR length.

Local flits have higher priority over bypass flits, i.e. Priority a 1/(hopsfrom_start_router).

Bypass flits have higher priority over local flits, i.e. Priority a (hops from startrouter).

Design where routers along the dimension (both X and Y) can be bypassed. Flits need to stop at the
turn router.

Design where routers along the dimension and one turn can be bypassed.

a cycle, till it is latched at R3. The crossbars at R1 and R2 are preset to connect the Win

to E., with their BMsci preset to choose bypass over local. A SMART path can thus be

created by appropriately setting BWena, BMsci, and XBsci at intermediate routers. In the

next two sections, we describe the flow control to preset these signals.

Throughout the rest of the chapter, we will use the terminolgy defined in Table 1-I.

147 N

0 148 Appendix A - SMAR Te Network Arch

SSRs for Wout 1092(1+ HPCmax) c

RO RI R2 R3 R4 . E

Ain .- -en
-------- 00BM sel

... - x SA-L

s ESSR
SSRs for Eout jh jh 3h h = hop *O

Figure A-3: k-ary 1-Mesh with dedicated SSR links.

SSR+SA-GI ST+LT

SSR+SA-G

SSR+SA.

ST+LT

ST+LT

-Time Flit Pipeline

USSR Pipeline

*only required for
Headflits

VS* + BW ST+LT
RC*

VS*+BW
RC* SSR+SA-G ST+LT
SA-L

Figure A-4: SMART Pipeline

A.3 SMART in a k-ary 1-Mesh

We start by demonstrating how SMART works in a k-ary 1-Mesh, shown in Figure A-3.

Each router has 3 ports: West, East and Core2 . As shown earlier in Figure A-1, Est_xb

can be connected either to C;1 _xb or W_._xb. Wi._xb can be driven either by bypass, local

or 0, depending on BMsei.

The design is called SMARTID (since routers can be bypassed only along one

dimension). The design will be extended to a k-ary 2-Mesh to incorporate turns, in

Section A.4. For purposes of illustration, we will assume HPCam to be 3.

itecture

VS* + BW

Routern Rc*

Routern+1

Routern+2

Router,+,

Routern+Hpcmax

t

A.3. SMART in a k-ary 1-Mesh

A.3.1 SMART-hop Setup Request (SSR)

The SMART router pipeline is shown in Figure A-4. A SMART-hop starts from a

start router, where flits are buffered. Unlike the baseline router, Switch Allocation in

SMART occurs over two stages: Switch Allocation Local (SA-L) and Switch Allocation

Global (SA-G). SA-L is identical to the SA stage in the conventional pipeline (described

in Section 2.1.4): every start router chooses a winner for each output port from among

its buffered (local) flits. In the next cycle, instead of the winners directly traversing the

crossbar (ST), they broadcast a SMART-hop setup request (SSR) via dedicated repeated

wires (which are inherently multi-drop3) up to HPCrmax. These dedicated SSR wires are

shown in Figure A-3. These are log2 (1+ HPCmax)-bits wide, and are part of the control

path. The SSR carries the length (in hops) up to which the flit winner wishes to go. For

instance, SSR = 2 indicates a 2-hop path request. Each flit tries to go as close as possible

to its ejection router, hence SSR = min(HPCa, Hr-cmaining)-

During SA-G, all inter routers arbitrate among the SSRs they receive to set the BWena,

BMsci and XBsci signals. The arbiters guarantee that only one flit will be allowed access

to any particular input/output port of the crossbar. In the next cycle (ST + LT), SA-L

winners that also won SA-G at their start routers traverse the crossbar and links up to

multiple hops till they are stopped by BWena at some router. Thus flits spend at least 2

cycles (SA-L and SA-G) at a start router before they can use the switch. Flits can end up

getting prematurely stopped (i.e. before their SSR length) depending on the SA-G results

at different routers.

We illustrate all these with examples. In Figure A-5, Router R2 has FlitA and FlitB

buffered at Cin, and Flitc and FlitD buffered at Win, all requesting Eout. Suppose FlitD

wins SA-L during Cycle-0. In Cycle-1, it sends out SSRD = 2 (i.e. request to stop at R4)

out of E0 ou to Routers R3, R4 and R5. SA-G is performed at each router as the following.

R2: 0-hop away (< SSRD), BM,,i = local, XBscl = Win-xb-+Eout_xb.

2For illustration purposes, we only show C1 ,, Win and Eo, in the figures.

3Wire cap is an order of magnitude higher than gate cap, adding no overhead if all nodes connected to the
wire receive.

1490M

0 150 Appendix A - SMAR Tcyce Network Architecture

4A A I A A~ A~j A

W -.- cy--e 16 F
CycFlit Flit SSRD =

BW.n. 0 BW.na 0 BW.na 0 BW.. 0 BWena. 1 BW.n 0
BM 0 BM1 , 0 BM,.1 local BMe bypass BM".1__ 0 BM. 0

XB i X XBi X XB,. Wjn->Eent XBw. W .- >E..t XBw X X

Figure A-5: SMART Example: No SSR Conflict

....... - L i
FlitE ------- R R R R!

-- Cycle 1 SSREFlitc = 3----------------

Cyce Flit8 FIitD SSRD =
BWena 0 BWen, 0 BW.. 1 B... 0 BW.na 1 BW.n. 0
BM3.1 1 BM*1 bypass BM,.I local BM,., bypass BM, 0 BMi 0

X~i i->c X~ W1>E: XB,.i Wi.->-E.t XB,.w Wi.->Emdr XBe X XB.01 X

Figure A-6: SMART Example: SSR Conflict with Prio=Local

" R3: 1-hop away (< SSRD), BMsel = bypass, XBsel = W;__xb+Eoutxb.

" R4: 2-hops away (= SSRD), BWena - high.

" R5: 3-hops away (> SSRD), SSRD is ignored.

In Cycle-2, FlitD traverses the crossbars and links at R2 and R3, and is stopped and

buffered at R4.

What happens if there are competing SSRs? In the same example, suppose RO also

wants to send FlitE 3-hops away to R3, as shown in Figure A-6. In Cycle-1, R2 sends out

SSRD as before, and in addition RO sends SSRE = 3 out of Eou, to R1, R2 and R3. Now at

R2 there is a conflict between SSRD and SSRE for the W;._xb and Eoutxb ports of the

crossbar. SA-G priority decides which SSR wins the crossbar. More details about priority

will be discussed later in Section A.3.2. For now, let us assume Prio=Local (which is

defined in Table 1-1) so FlitE loses to FlitD. The values of BWena, BMsei and XBseI at each

router for this priority are shown in Figure A-6. In Cycle-2, FlitE traverses the crossbar

and link at RO and R1, but is stopped and buffered at R2. FlitD traverses the crossbars

A.3. SMART in a k-ary 1-Mesh

A
4

RRJ]A RR2li 1 i
F -itE ...---- - _.....

*Cyclel S SRE-3-

........ Cycle..... .~1 --- -- ----- ---- ------...........

Flite FIitD SSR =2
BWenA 0 BW 0 BW.n 0 8W.,. 1 BW., 0 BWon 0
BM.. 1 0 BM,. bypass BM.. bypass _J BM,. C BM.. 0 BM,. 0
XB 51 C1,->E,, XBkI W1,->E,,e XB5. W1,->E,, X, XB, X 85 1 X

Figure A-7: SMART Example: SSR Conflict with Prio=Bypass

and links at R2 and R3 and is stopped and buffered at R4. FlitE now goes through BW

and SA-L at R2 before it can send a new SSR and continue its network traversal. A free
VC/buffer is guaranteed to exist whenever a flit is made to stop (see Section A.3.4).

A.3.2 Switch Allocation Global: Priority

Figure A-7 shows the previous example with Prio=Bypass instead of Prio=Local. This

time, in Cycle-2, FlitE traverses all the way from RO to R3, while FlitD is stalled.

Do all routers need to enforce the same priority? Yes. This guarantees that all

routers will arrive at the same consensus about which SSRs win and lose. This is required

for correctness. In the example discussed earlier in Figure A-6 and A-7, BWen at R3 was

low with Prio=Local, and high with Prio=Bypass. Suppose R2 performs Prio-=Bypass,

but R3 performs Prio =FLocal, FlitE will end up going from RO to R4, instead of stopping

at R3. This is not just a misrouting issue, but also a signal integrity issue because HPC.

is 3, but the flit was forced to go up to 4 hops in a cycle, and will not be able to reach

the clock edge in time. Note that enforcing the same priority is only necessary for SA-G,

which corresponds to the global arbitration among SA-L winners at every router. During

SA-L, however, different routers/ports can still choose to use different arbiters (round

robin, queueing, priority) depending on the desired QoS/ordering mechanism.

Can a flit arrive at a router, even though the router is not expecting it (i.e. false

positive 4)? No. All flits that arrive at a router are expected, and will stop/bypass based

DThe result of SA-G (BWen, BM,i and XBsei) at a router is a prediction for the null hypothesis: a flit will
arrive the next cycle, and stop/bypass.

151 M

Appendix A - SMAR Tycie Network Architecture

on the success of their SSR in the previous cycle. This is guaranteed since all routers

enforce the same SA-G priority.

Can a flit not arrive at a router, even though the router is expecting it (i.e. false

negative)? Yes. It is possible for the router to be setup for stop/bypass for some flit, but

no flit arrives. This can happen if that flit is forced to prematurely stop earlier due to

some SSR interaction at prior inter routers that the current router is not aware of. For

example, suppose a local flit at Win at R1 wants to eject out of C0 ,t. A flit from RO will

prematurely stop at Ri's Win port if Prio=Local is implemented. However, R2 will still

be expecting the flit from RO to arrive'. Unlike false positives, this is not a correctness

issue but just a performance (throughput) issue, since some links go idle which could

have potentially been used by other flits if more global information were available.

A.3.3 Ordering

In SMART, any flit can be prematurely stopped based on the interaction of SSRs that

cycle. We need to ensure that this does not result in re-ordering between (a) flits of the

same packet, or (b) flits from the same source (if point-to-point ordering is required in

the coherence protocol).

The first constraint is in routing (relevant to 2D topologies). Multi-flit packets, and

point-to-point ordered virtual networks should only use deterministic routes, to ensure

that prematurely buffered flits do not end up choosing alternate routes, while bypassing

flits continue on the old route.

The second constraint is in SA-G priority. Every input port has a bit to track if there

is a prematurely stopped flit among its buffered flits. When an SSR is received at an input

port, and there is either (a) a prematurely buffered Head/Body flit, or (b) a prematurely

buffered flit within a point-to-point ordered virtual network, the incoming flit is stopped.

sThe valid-bit from the flit is thus used in addition to BWna when deciding whether to buffer.

0 152

A.3. SMART in a k-ary 1-Mesh

A.3.4 Guaranteeing Free VC/buffers at Stop Routers

In a conventional network, a router's output port tracks the IDs of all free VCs at

the neighbor's input port. A buffered Head flit chooses a free VCid for its next router

(neighbor), before it leaves the router. The neighbor signals back when that VCid becomes

free. In a SMART network, the challenge is that the next router could be any router that

can be reached within a cycle. A flit at a start router choosing the VCid before it leaves

will not work because (a) it is not guaranteed to reach its presumed next router, and (b)

multiple flits at different start routers might end up choosing the same VCid. Instead, we

let the VC selection occur at the stop router. Every SMART router receives 1-bit from

each neighbor to signal if at least one VC is free6 . During SA-G, if an SSR requests an

output port where there is no free VC, BWena is made high and the corresponding flit is

buffered. This solution does not add any extra multi-hop wires for VC signaling. The

signaling is still between neighbors. Moreover, it ensures that a Head flit comes into a

router's input port only if that input port has free VCs, else the flit is stopped at the

previous router.

However, this solution is conservative because a flit will be stopped prematurely if the

neighbor's input port does not have free VCs, even if there was no competing SSR at the

neighbor and the flit would have bypassed it without having to stop.

How do Body/Tail flits identify which VC to go to at the stop router? Using

their injection router id. Every input port maintains a table to map a VCid to an injection

router id'. Whenever the Head flit is allocated a VC, this table is updated. The injection

router id entry is cleared when the Tail arrives. The VC is freed when the Tail leaves. We

implement private buffers per VC, with depth equal to the maximum number of flits in

the packet (i.e. virtual cut-through), to ensure that the Body/Tail will always have a free

buffer in its VC'.

6 1f the router has multiple virtual networks (vnets) for the coherence protocol, we need a 1-bit free VC
signal from the neighbors for each vnet. The SSR also needs to carry the vnet number, so that the inter
routers can know which vnet's free VC signal to look at.

7The table size equals the number of multi-flit VCs at that input port.

'Extending this design to fewer buffers than the number of flits in a packet would involve more signaling,
and is left for future work.

1530M

Appendix A - SMAR TgCe Network Architecture

What if two Body/Tail flits with same injection router id arrive at a router? We

guarantee that this will never occur by forcing all flits of a packet to leave from an output

port of a router, before flits from another packet can leave from that output port (i.e.

virtual cut-through). This guarantees a unique mapping from injection router id to VCid

in the table at every router's input port.

What if a Head bypasses, but Body/Tail is prematurely stopped? The Body/Tail

still needs to identify a VCid to get buffered in. To ensure that it does have a VC, we

make the Head flit reserve a VC not just at its stop router, but also at all its inter routers,

even though it does not stop there. This is done from the valid, type and injection router

fields of the bypassing flit. The Tail flit frees the VCs at all the inter routers. Thus, for

multi-flit packets, VCs are reserved at all routers, just like the baseline. But the advantage

of SMART is that VCs are reserved and freed at multiple routers within the same cycle,

thus reducing the buffer turnaround time.

A.3.5 Additional Optimizations

We add additional optimizations to SMART to push it towards an ideal 1-cycle network

(or Dedicated network described in Section 5.5).

Bypassing the ejection router: So far we have assumed that a flit starting at an

injection router traverses one (or more) SMART-hops till the ejection router, where it

gets buffered and requests for the C0 ut port. We add an extra ejection-bit in the SSR to

indicate if the requested stop router corresponds to the ejection router for the packet, and

not any intermediate router on the route. If a router receives an SSR from H-hops away

with value H (i.e. request to stop there), H < HPCmax, and the ejection-bit is high, it

arbitrates for C0 ut port during SA-G. If it loses, BWena is made high.

Bypassing SA-L at low load: We add low-load bypassing [27] to the SMART router.

If a flit comes into a router with an empty input port and no SA-L winner for its output

port for that cycle, it sends SSRs directly, in parallel to getting buffered, without having

to go through SA-L. This reduces T, at lightly-loaded start routers to 2, instead of 3, as

shown in Figure A-4 for Router, i. Multi-hop traversals within a single-cycle meanwhile

happen at all loads.

0 154

A.4. SMART in a k-ary 2-Mesh

A.3.6 Summary

In summary, a SMART NoC works as follows:

" Buffered flits at injection/start routers arbitrate locally to choose input/output port

winners during SA-L.

* SA-L winners broadcast SSRs along their chosen routes, and each router arbitrates

among these SSRs during SA-G.

" SA-G winners traverse multiple crossbars and links asynchronously within a cycle,

till they are explicitly stopped and buffered at some router along their route.

In a SMART_1D design with both ejection and no-load bypass enabled, if HPCmax

is larger than the maximum hops in any route, a flit will only spend 2 cycles in the

entire network in the best case (1-cycle for SSR and 1-cycle for ST+LT all the way to the

destination NIC).

A.4 SMART in a k-ary 2-Mesh

We demonstrate how SMART works in a k-ary 2-Mesh. Each router has 5 ports: West,

East, North, South and Core.

A.4.1 Bypassing routers along dimension

We start with a design where we do not allow bypass at turns, i.e. all flits have to stop at

their turn routers. We re-use SMART_1D described for a k-ary 1-Mesh in a k-ary 2-Mesh.

The extra router ports only increase the complexity of the SA-L stage, since there are

multiple local contenders for each output port. Once each router chooses SA-L winners,

SA-G remains identical to the description in Section A.3. 1. The Eout, WOU0 Nut and Sout

ports have dedicated SSR wires going out till HPCmax along that dimension. Each input

port of the router can receive only one SSR from a router that is H-hops away. The

SSR requests a stop, or a bypass along that dimension. Flits with turning routes perform

their traversal one-dimension at a time, trying to bypass as many routers as possible, and

stopping at the turn routers.

1550M

Appendix A - SMAR Tcyce Network Architecture

--- +O-SSR Only 1 of these
SSRs (from Ed)

will be valid

F-7
to routers

start router
inter routers

Figure A-8: k-ary 2-Mesh with SSR Wires From Shaded Start Router

A.4.2 Bypassing routers at turns

In a k-ary 2-Mesh topology, all routers within a HPCma neighborhood can be reached

within a cycle, as shown in Figure A-8 by the shaded diamond. We now describe

SMART_2D which allows flits to bypass both the routers along a dimension and the

turn router(s). We add dedicated SSR links for each possible XY/YX path from every

router to its HPCma neighbors. Figure A-8 shows that the Eut port has 5 SSR links, in

comparison to only one in the SMART_1D design. During the routing stage, the flit

chooses one of these possible paths. During the SA-G stage, the router broadcasts one SSR

out of each output port, on one of these possible paths. We allow only one turn within

each HPCmaX quadrant to simplify the SSR signaling.

SA-G Priority:

In the SMART_2D design, there can be more than one SSR from H-hops away,

as shown in the example in Figure A-9 for router Rj. Rj needs a specific policy to

choose between these requests, to avoid sending false positives on the way forward to

Rk. Section A.3.2 discussed that false positives can result in misrouted flits or flits trying

to bypass beyond HPCm.X, thus breaking the system. To arbitrate between SSRs from

routers that are the same number of hops away, we choose Straight > Left Turn >

Right Turn. For the inter router Rj in Figure A-9, the SSR from Rm will have higher

priority (1_0) over the one from R (1_1) for the Nut port, as it is going straight, based

0 156

A.5. Summary

Rk

Nout

start r u

Two SSRs from 1-hop
requesting Nout at R,

Figure A-9: Conflict Between Two SSRs for Nout Port

SSR Priority = hop turn (0 >1 > 2 ...) SSR Priority = hop turn (O >1 > 2... -
N/ut inter router

inter router sin

KE~ U U -l K K--- U- U U __-.1
art start

roter 7 .j ro ters

(a) Fixed Priority at N0st port of inter router. (b) Fixed Priority at Sin port of inter router.

Figure A-10: SMART_2D SA-G priorities

on Figure A-10a. Similarly at Rk, the SSR from Rm will have higher priority (2_0) over

the one from R, (2_1) for the Si port, based on Figure A-10b. Thus both routers R and

Rk will unambiguously prioritize the flit from Rm to use the links, while the flit from Rn

will stop at Router Rj. Any priority scheme will work as long as every router enforces

the same priority.

A.5 Summary

In this chapter, we present SMARTcycie, a flavor of SMART network that is able to

reconfigure virtual bypass paths every cycle to lower the network latency for applications

with unpredictable traffic or near all-to-all traffic flows.

157 N

U 158 Appendix A - SMAR Tcycie Network Architecture

Bibliography

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino.
"SPIN: A Scalable, Packet Switched, On-Chip Micro-Network". In: Conf on
Design, Automation and Test in Europe (DATE). 2003 (cit. on p. 61).

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. "An evaluation of di-
rectory schemes for cache coherence". In: Int'l Symp. on Computer Architecture
(ISCA). 1988 (cit. on p. 124).

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. "GARNET: A detailed on-chip
network model inside a full-system simulator". In: Int'l Symp. on Performance
Analysis of Systems and Software (ISPA SS). 2009 (cit. on pp. 20, 34, 124).

[4] N. Agarwal, L.-S. Peh, and N. K. Jha. "In-Network Coherence Filtering: Snoopy
Coherence without Broadcasts". In: Int'l Symp. on Microarchitecture (MICRO).
2009 (cit. on p. 131).

[5] N. Agarwal, L.-S. Peh, and N. K. Jha. "In-Network Snoop Ordering (INSO):
Snoopy Coherence on Unordered Interconnects". In: Int'l Symp. on High Perfor-
mance Computer Architecture (HPCA). 2009 (cit. on p. 17).

[6] AMD Opteron 6200 Series Processors. URL: https: //www. amd. com/Documents/
Opteron_6000_QRG. pdf (cit. on p. 137).

[7] ARM AMBA. URL: https : / / www. arm . com / products / system - ip / amba -
spe c if icat ions .php (cit. on pp. 44, 10 7).

[8] J. Balfour and W. J. Dally. "Design Tradeoffs for Tiled CMP On-Chip Networks".
In: Int'l Conf on Supercomputing (ICS). 2006 (cit. on p. 21).

[9] N. Banerjee, P. Vellanki, and K. S. Chatha. "A Power and Performance Model
for Network-on-Chip Architectures". In: Conf on Design, Automation and Test in
Europe (DA TE). 2004 (cit. on p. 21).

Bibliography

[10] S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanovi6, and K. Asanovi6.
"Re-architecting DRAM memory systems with monolithically integrated silicon
photonics". In: Int'l Symp. on Computer Architecture (ISCA). 2010 (cit. on pp. 14,
19).

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. "The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications". In: Int'l Conf on Parallel Architecture
Compilation Techniques (PACT). 2008 (cit. on p. 125).

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. "The gem5 simulator". In: Computer Architecture
News 39 (2 2011), pp. 1-7 (cit. on pp. 34, 41).

[13] N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber,
and J. H. Ahn. "The role of optics in future high radix switch design". In: Int'l
Symp. on Computer Architecture (ISCA). 2011 (cit. on p. 35).

[14] W. Bogaerts, D. V. Thourhout, and R. Baets. "Fabrication of uniform photonic
devices using 193nm optical lithography in silicon-on-insulator". In: European
Conf on Integrated Optics (ECIO). 2008 (cit. on p. 31).

[15] CACTI6.5. URL: http: //www. hpl. hp. com/research/cacti (cit. on p. 2 7).

[16] J. Chan, G. Hendry, A. Biberman, K. Bergman, and L. P. Carloni. "PhoenixSim:
a simulator for physical-layer analysis of chip-scale photonic interconnection
networks". In: Conf on Design, Automation and Test in Europe (DATE). 2010
(cit. on p. 21).

[17] C.-H. 0. Chen, S. Park, T. Krishna, and L.-S. Peh. "A Low-Swing Crossbar and
Link Generator for Low-Power Networks-on-Chip". In: Int'l Conf on Computer
Aided Design (ICCAD). 2011 (cit. on pp. iii, 4, 45, 142).

[18] C.-H. 0. Chen, S. Park, T. Krishna, S. Subramanian, A. Chandrakasan, and L.-S.
Peh. "SMART: A Single-Cycle Reconfigurable NoC for SoC Applications". In:
Conf on Design, Automation and Test in Europe (DATE). 2013 (cit. on pp. iii, 4,
142).

[19] C.-H. 0. Chen, S. Park, S. Subramanian, T. Krishna, W.-C. K. Bhavya K. Daya,
B. Wilkerson, J. Arends, A. P. Chandrakasan, and L.-S. Peh. "SCORPIO: 36-
core Shared Memory Processor Demonstrating Snoopy Coherence on a Mesh
Interconnect". In: Symp. on High Performance Chips. 2014 (cit. on pp. iv, 5).

[20] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Sneger, Y. Sugawara, S. Kumar,
V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker. "The IBM
Blue Gene/Q Interconnection Fabric". In: IEEE Micro 32.1 (2012), pp. 32-43
(cit. on p. 136).

[21] L. Chen, L. Zhao, R. Wang, and T. M. Pinkston. "MP3: Minimizing perfor-
mance penalty for power-gating of Clos network-on-chip". In: Int'l Symp. on High
Performance Computer A rchitecture (HPCA). 2014 (cit. on p. 41).

0 160

Bibliography

[22] A. A. Chien. "A Cost and Speed Model for k-any n-cube Wormhole Routers". In:
Symp. on High Performance Interconnects. 1993 (cit. on p. 20).

[23] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi. "Phastlane: a rapid transit
optical routing network". In: Int'l Symp. on Computer Architecture (ISCA). 2009
(cit. on p. 15).

[24] P. Conway and B. Hughes. "The AMD Opteron Northbridge Architecture". In:
IEEE Micro 27 (2007), pp. 10-21 (cit. on p. 124).

[25] D. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, 1999 (cit. on p. 136).

[26] M. Dall'Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini. "xpipes:
a Latency Insensitive Parameterized Network-on-chip Architecture For Multi-
Processor SoCs". In: Int'l Conf on Computer Design (ICCD). 2003 (cit. on p. 44).

[27] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, 2004 (cit. on pp. 9, 15, 59, 62, 68, 73, 154).

[28] B. K. Daya, C.-H. 0. Chen, S. Subramanian, W.-C. Kwon, S. Park, T. Krishna,
J. Holt, A. P. Chandrakasan, and L.-S. Peh. "SCORPIO: A 36-Core Research Chip
Demonstrating Snoopy Coherence on a Scalable Mesh NoC with In-Network
Ordering". In: Int'l Symp. on Computer Architecture (ISCA). 2014 (cit. on pp. Iv, ,
105).

[29] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, X. Zheng, G. Li, K.
Raj, A. V. Krishnamoorthy, and M. Asghari. "High Speed Silicon Microring Mod-
ulator Based on Carrier Depletion". In: National Fiber Optic Engineers Conference
(NFOEC). 2010 (cit. on p. 33).

[30] DSENTDownload Link. URL: http: //www. rle. mit . edu/isg/technology.
htm (cit. on pp. 41, 142).

[31] First the tick, now the tock: Next generation Intel microarchitecture (Nehalem).
URL: http : / / www . intel . com / content / dam / doc / white - paper / intel -
microarchitecture-white-paper.pdf (cit. on p. 137).

[32] M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovi6. "A Monolithically-Integrated
Optical Receiver in Standard 45-nm SOI". In: European Solid-State Circuits Confer-
ence (ISSCIRC). 2011 (cit. on pp. 15, 33).

[33] M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovi6. "Addressing Link-Level
Design Tradeoffs for Integrated Photonic Interconnects". In: Custom Integrated
Circuits Conference (CICC). 2011 (cit. on pp. 14, 29-31, 35).

[34] R. Golshan and B. Haroun. "A novel reduced swing CMOS BUS interface circuit
for high speed low power VLSI systems". In: Int'l Symp. on Circuits and Systems
(ISCA S). 1994 (cit. on p. 13).

[35] K. Goossens, J. Dielissen, and A. Radulescu. "/Ethereal Network on Chip: Con-
cepts, Architectures, and Implementations". In: Design & Test of Computers 22.5
(2005), pp. 414-421 (cit. on pp. 61, 62).

1610M

Bibliography

[36] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W. Keckler,
and D. Burger. "On-chip interconnection networks of the TRIPS chip". In: IEEE
Micro 27.5 (2007), pp. 41-50 (cit. on pp. 10, 106).

[37] R. Gupta, B. Tutuianu, and L. T. Pileggi. "The Elmore delay as a bound for
RC trees with generalized input signals". In: Trans. on Computer-A ided Design of
Integrated Circuits and Systems (TCAD) 16.1 (1997), pp. 95-104 (cit. on p. 26).

[38] H. Hatamkhani, K.-L. J. Wong, R. Drost, and C.-K. K. Yang. "A 10-mW 3.6-Gbps
I/O transmitter". In: Symp. on VLSI Circuits. 2003 (cit. on p. 30).

[39] G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L. Carloni, N. Bliss, and K.
Bergman. "Circuit-Switched Memory Access in Photonic Interconnection Net-
works for High-Performance Embedded Computing". In: Int'l Conf on Supercom-
puting (ICS). 2010 (cit. on p. 15).

[40] M. Hiraki, H. Kojima, H. Misawa, T. Akazawa, and Y. Hatano. "Data-Dependent
Logic Swing Internal Bus Architecture for Ultralow-Power LSIs". In: Journal of
Solid-State Circuits (JSSC) (1995), pp. 397-402 (cit. on p. 13).

[41] R. Ho, T. Ono, F. Liu, R. Hopkins, A. Chow, J. Schauer, and R. Drost. "High-
Speed and Low-Energy Capacitive-Driven On-Chip Wires". In: Int'l Solid-State
Circuits Conference (ISSCC) (2007) (cit. on pp. 13, 61).

[42] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. "A 5-GHz mesh
interconnect for a teraflops processor". In: IEEE Micro 27.5 (2007), pp. 51-61
(cit. on pp. 1O, 16, 43).

[43] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.
Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,
M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D.
Wijngaart, and T. Mattson. "A 48-Core IA-32 message-passing processor with
DVFS in 45 nm CMOS". In: Int'l Solid-State Circuits Conference (ISSCC). 2010
(cit. on pp. 10, 16, 106, 138).

[44] IBM CoreConnect. URL: http: //www. xilinx. com/products/intellectual-
property/dr_pcentral_ coreconnect . html (cit. on p. 44).

[45] Intel Hybrid Silicon Laser. URL: http: //www. intel. com/ content /dam/www/
public/us/en/documents/technology-briefs/intel- labs-hybrid-
silicon-laser-uses-paper. pdf (cit. on p. 14).

[46] Intel Xeon Processor E7Family. URL: http: //www. intel. com/content/www/us/
en/processors/xeon/xeon-processor-e7-f amily.html (cit. on p. 137).

[47] International Technology Roadmap for Semiconductors (ITRS). URL: http: / /www.
itrs2. net (cit. on p. 25).

[48] C. Jackson and S. J. Hollis. "Skip-links: A Dynamically Reconfiguring Topology
for Energy-efficient NoCs". In: Int'l Symp. on System on Chip (So C). 2010 (cit. on
pp. 16, 62).

N 162

Bibliography

[49] D. R. Johnson, M. R. Johnson, J. H. Kelm, W. Tuohy, S. S. Lumetta, and S. J.
Patel. "Rigel: A 1,024-Core Single-Chip Accelerator Architecture". In: IEEE Micro
31.4 (2011), pp. 30-41 (cit. on p. 105).

[50] A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Sto-
janovi6. "Silicon-Photonic Clos Networks for Global On-Chip Communication".
In: Int'l Symp. on Networks-on-Chip (NOCS). 2009 (cit. on pp. 15, 19, 31, 34).

[51] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. "ORION 2.0: A Fast and Accurate
NoC Power and Area Model for Early-Stage Design Space Exploration". In: Conf
on Design, Automation and Test in Europe (DATE). 2009 (cit. on pp. 21, 32).

[52] F. Karim, A. Nguyen, and S. Dey. "An Interconnect Architecture for Networking
Systems on Chips". In: IEEE Micro 22.5 (2002), pp. 36-45 (cit. on p. 61).

[53] A. Khakifirooz and D. A. Antoniadis. "MOSFET Performance Scaling - Part
II: Future Directions". In: Trans. on Electron Devices 55.6 (2008), pp. 1401-1408
(cit. on p. 25).

[54] A. Khakifirooz, 0. M. Nayfeh, and D. Antoniadis. "A Simple Semiempirical
Short-Channel MOSFET Current-Voltage Model Continuous Across All Regions
of Operation and Employing Only Physical Parameters". In: Trans. on Electron
Devices 56.8 (2009), pp. 1674-1680 (cit. on p. 25).

[55] B. Kim and V. Stojanovi6. "A 4Gb/s/ch 356fJ/b 10mm Equalized On-chip Inter-
connect with Nonlinear Charge-Injecting Transmit Filter and Transimpedance
Receiver in 90nm CMOS". In: Int'l Solid-State Circuits Conference (ISSCC). 2009
(cit. on pp. 13, 44, 61).

[56] J. Y. Kim, J. Park, S. Lee, M. Kim, J. Oh, and H. J. Yoo. "A 118.4 GB/s Multi-
Casting Network-on-Chip With Hierarchical Star-Ring Combined Topology for
Real-Time Object Recognition". In: Journal of Solid-State Circuits (JSSC) 45.7
(2010), pp. 1399-1409 (cit. on p. 61).

[57] P. Koka, M. 0. McCracken, H. Schwetman, C.-H. 0. Chen, X. Zheng, R. Ho,
K. Raj, and A. V. Krishnamoorthy. "A micro-architectural analysis of switched
photonic multi-chip interconnects". In: Int'l Symp. on Computer Architecture
(ISCA). 2012 (cit. on p. 41).

[58] T. Krishna, A. Kumar, L. S. Peh, J. Postman, P. Chiang, and M. Erez. "Express
Virtual Channels with Capacitively Driven Global Links". In: IEEE Micro 29.4
(2009), pp. 48-61 (cit. on p. 15).

[59] T. Krishna, C.-H. 0. Chen, W. C. Kwon, and L.-S. Peh. "Breaking the On-Chip
Latency Barrier Using SMART". In: Int'l Symp. on High Performance Computer
A rchitecture (HPCA). 2013 (cit. on pp. 41, 145).

[60] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L. S. Peh. "NoC with Near-Ideal
Express Virtual Channels Using Global-Line Communication". In: Symp. on High
Performance Interconnects. 2008 (cit. on p. 61).

1630M

Bibliography

[61] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt. "Towards the ideal
on-chip fabric for 1-to-many and many-to-1 communication". In: Int'l Symp. on
Microarchitecture (MICRO). 2011 (cit. on p. 15).

[62] T. Krishna, J. Postman, C. Edmonds, L.-S. Peh, and P. Chiang. "SWIFT: A SWing-
reduced Interconnect For a Token-based Network-on-Chip in 90nm CMOS". In:
Int'l Conf on Computer Design (ICCD). 2010 (cit. on pp. 15, 16, 44, 59, 112).

[63] A. Kumar, P. Kunduz, A. P. Singhx, L. S. Pehy, and N. K. Jhay. "A 4.6Tbits/s
3.6GHz Single-cycle NoC Router with a Novel Switch Allocator in 65nm CMOS".
In: Int'l Conf on Computer Design (ICCD). 2007 (cit. on pp. 12, 15).

[64] A. Kumar, L. S. Peh, and N. K. Jha. "Token Flow Control". In: Int'l Symp. on
Microarchitecture (MICRO). 2008 (cit. on p. 15).

[65] G. Kurian, 0. Khan, and S. Devadas. "The locality-aware adaptive cache coherence
protocol". In: Int'l Symp. on Computer A rchitecture (ISCA). 2013 (cit. on p. 41).

[66] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimerling,
and A. Agarwal. "ATAC: A 1000-Core Cache-Coherent Processor with On-Chip
Optical Network". In: Int'l Conf on Parallel Architecture Compilation Techniques
(PACT). 2010 (cit. on pp. 14, 15, 19, 105).

[67] G. Kurian, C. Sun, C. H. 0. Chen, J. E. Miller, J. Michel, L. Wei, D. A. An-
toniadis, L. S. Peh, L. Kimerling, V. Stojanovic, and A. Agarwal. "Cross-layer
Energy and Performance Evaluation of a Nanophotonic Manycore Processor Sys-
tem using Real Application Workloads". In: Int'l Parallel & Distributed Processing
Symposium. 2012 (cit. on pp. 20, 41).

[68] E. Kyriakis-Bitzaros and S. S. Nikolaidis. "Design of low power CMOS drivers
based on charge recycling". In: Int'l Symp. on Circuits and Systems (ISCA S). 1997
(cit. on p. 13).

[69] K. Lee, S.-J. Lee, S.-E. Kim, H.-M. Choi, D. Kim, S. Kim, M.-W. Lee, and H.-J.
Yoo. "A 51mW 1.6GHz On-Chip Network for Low-Power Heterogeneous SoC
Platform". In: Int'l Solid-State Circuits Conference (ISSCC). 2004 (cit. on p. 43).

[70] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
"McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multi-
core and Manycore Architectures". In: Int'l Symp. on Microarchitecture (MICRO).
2009 (cit. on pp. 6, 27).

[71] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel. "Ge-on-Si
laser operating at room temperature". In: Optics Letters 35.5 (2010), pp. 679-681
(cit. on p. 14).

[72] R. Marculescu, D. Marculescu, and M. Pedram. "Probabilistic modeling of depen-
dencies during switching activity analysis". In: Trans. on Computer-A ided Design of
Integrated Circuits and Systems (TCAD) 17.2 (1998), pp. 73-83 (cit. on p. 28).

[73] M. M. Martin, M. D. Hill, and D. A. Wood. "Timestamp Snooping: An Approach
for Extending SMPs". In: Int'l Conf on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 2000 (cit. on p. 17).

0 164

Bibliography 165 N

[74] M. M. Martin, M. D. Hill, and D. A. Wood. "Token Coherence: Decoupling
Performance and Correctness". In: Int'l Symp. on Computer Architecture (ISCA).
2003 (cit. on p. 16).

[75] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. "Multifacet's Gen-
eral Execution-driven Multiprocessor Simulator (GEMS) Toolset". In: Computer
A rchitecture News (2005) (cit. on p. 124).

[76] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga. "Prediction router:
Yet another low latency on-chip router architecture". In: Int'l Symp. on High
Performance Computer A rchitecture (HPCA). 2009 (cit. on p. 15).

[77] E. Mensink, E. Mensink, D. Schinkel, E. Klumperink, E. van Tuijl, and B. Nauta.
"A 0.28pJ/b 2Gb/s/ch Transceiver in 90nm CMOS for 10mm On-chip inter-
connects". In: Int'l Solid-State Circuits Conference (ISSCC) (2007) (cit. on pp. 13,
61).

[78] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann, C. Celio, J. Eastep,
and A. Agarwal. "Graphite: A Distributed Parallel Simulator for Multicores".
In: Int'l Symp. on High Performance Computer A rchitecture (HPCA). 2010 (cit. on
pp. 20, 125).

[79] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad. "Application-Aware Topology
Reconfiguration for On-Chip Networks". In: Trans. on Very Large Scale Integration
(VLSI) Systems 19.11 (2011), pp. 2010-2022 (cit. on pp. 16, 62).

[80] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad. "Virtual Point-to-Point Con-
nections for NoCs". In: IEEE Trans. on CAD of Integrated Circuits and Systems
29.6 (2010), pp. 855-868 (cit. on pp. 16, 62, 72).

[81] A. Moshovos. "RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based
Coherence". In: Int'l Symp. on Computer Architecture (ISCA). 2005 (cit. on p. 11 8).

[82] R. Mullins, A. West, and S. Moore. "Low-Latency Virtual-Channel Routers for
On-Chip Networks". In: Int'l Symp. on Computer Architecture (ISCA). 2004 (cit.
on p. 15).

[83] S. Murali and G. De Micheli. "Bandwidth-constrained mapping of cores onto
NoC architectures". In: Conf on Design, Automation and Test in Europe (DATE).
2004 (cit. on p. 67).

[84] M. H. Na, E. J. Nowak, W. Haensch, and J. Cai. "The effective drive current in
CMOS inverters". In: Int'l Electron Devices Meeting (IEDM). 2002 (cit. on p. 24).

[85] NCSU FreePDK45. URL: http: //www . eda . ncsu. edu/wiki /FreePDK (cit. on
p. 25).

[86] C. Nitta, M. Farrens, and V. Akella. "Addressing System-Level Trimming Issues in
On-Chip Nanophotonic Networks". In: Int'l Symp. on High Performance Computer
A rchitecture (HPCA). 2011 (cit. on p. 3 1).

Bibliography

[87] Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC T5-JB Server A rchi-
tecture. URL: http: //www. oracle . com/technetwork/server- storage/sun-
sparc- enterprise/ documentation/ o13- 024- sparc- t5- architecture -
1920540. pdf (cit. on pp. 136, 137).

[88] J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popovid, H. Li, J. Sun, T. Bonifield,
R. Hollingsworth, F. X. Krtner, H. I. Smith, V. Stojanovid, and R. J. Ram.
"Nanophotonic integration in state-of-the-art CMOS foundries". In: Optical Express
19.3 (2011), pp. 2335-2346 (cit. on p. 31).

[89] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary. "Firefly: Illu-
minating On-Chip Networks with Nanophotonics". In: Int'l Symp. on Computer
A rchitecture (ISCA). 2009 (cit. on pp. 14, 15, 19).

[90] S. Park. "Towards Low-Power yet High-Performance Networks-on-Chip". PhD
thesis. Massachusetts Institute of Technology (cit. on pp. 64, 65).

[91] S. Park, T. Krishna, C.-H. 0. Chen, B. K. Daya, A. P. Chandrakasan, and L.-S.
Peh. "Approaching the theoretical limits of a mesh NoC with a 16-node chip
prototype in 45nm SOI". In: Design Automation Conference (DAC). 2012 (cit. on
pp. 15, 16, 51, 106, 112, 113, 138).

[92] G. Passas, M. Katevenis, and D. Pnevmatikatos. "A 128 x 128 x 24 Gb/s Crossbar
Interconnecting 128 Tiles in a Single Hop and Occupying 6% of Their Area". In:
Int'l Symp. on Networks-on-Chip (NOCS). 2010 (cit. on p. 61).

[93] L.-S. Peh and W. J. Dally. "A Delay Model and Speculative Architecture for
Pipelined Routers". In: Int'l Symp. on High Performance Computer Architecture
(HPCA). 2001 (cit. on pp. 20, 27).

[94] L.-S. Peh and N. E. Jerger. On-Chip Networks. Morgan and Claypool, 2009 (cit. on
p. 9).

[95] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox,
P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J.
Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D. L. Stasiak,
M. Suzuoki, 0. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa.
"Overview of the Architecture, Circuit Design, and Physical Implementation of
a First-Generation Cell Processor". In: Journal of Solid-State Circuits (JSSC) 41.1
(2006), pp. 179-196 (cit. on p. 25).

[96] C. Pollock and M. Lipson. Integrated Optics. Springer, 2003 (cit. on p. 14).

[97] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective, second edition. Prentice Hall, 2003 (cit. on pp. 13, 26).

[98] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler,
and C. R. Moore. "Exploiting ILP, TLP, and DLP with the polymorphous TRIPS
architecture". In: Int'l Symp. on Computer Architecture (ISCA). June 2003 (cit. on
p. 43).

0 166

Bibliography

[99] D. Schinkel, E. Mensink, E. Klumperink, A. van Tuijl, and B. Nauta. "Low-
Power, High-Speed Transceivers for Network-on-Chip Communication". In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 17.1 (Jan. 2009), pp. 12-
21 (cit. on p. 44).

[100] K. Sewell. "Scaling High-Performance Interconnect Architectures to Many-Core
Systems". PhD thesis. University of Michigan (cit. on p. 138).

[101] M. A. Shalan, E. S. Shin, and V. J. M. III. "DX-GT: Memory Management and
Crossbar Switch Generator for Multiprocessor System-on-a-Chip". In: Workshop
on Synthesis And System Integration of Mixed Information technologies. 2003 (cit. on
p. 44).

[102] M. Sinha and W. Burleson. "Current-sensing for crossbars". In: Int'l A SIC/SOC
Conference. 2001 (cit. on p. 44).

[103] R. Sredojevid and V. Stojanovid. "Optimization-based framework for simultaneous
circuit-and-system design-space exploration: A high-speed link example". In: 2008
(cit. on p. 44).

[104] STBus Communication System: Concepts And Definitions. URL: http: //www. st.
com/content/ccc/resource/technical/document/user _manual/39/81/
fa/c8/2e/4d/41/f5/CD0176920.pdf/files/CD00176920.pdf/jcr:

content /translations/en .CD00176920 .pdf (cit. on p. 44).

[105] M. B. Stensgaard and J. Spars0. "ReNoC: A Network-on-Chip Architecture with
Reconfigurable Topology". In: Int'l Symp. on Networks-on-Chip (NOCS). 2008
(cit. on pp. 16, 62).

[106] K. Strauss, X. Shen, and J. Torrellas. "Uncorq: Unconstrained Snoop Request
Delivery in Embedded-Ring Multiprocessors". In: Int'l Symp. on Microarchitecture
(MICRO). 2007 (cit. on p. 16).

[107] M. B. Stuart, M. B. Stensgaard, and J. Spars0. "Synthesis of Topology Configura-
tions and Deadlock Free Routing Algorithms for ReNoC-based Systems-on-Chip".
In: Int'l Conf on Hardware/Software Codesign and System. 2009 (cit. on pp. 16,
62).

[108] C. Sun, C. H. 0. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S. Peh,
and V. Stojanovi6. "DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic Networks-on-Chip Modeling". In: Int'l Symp. on
Networks-on-Chip (NOCS). 2012 (cit. on pp. 11i, 4, 19).

[109] D. Taillaert, P. Bienstman, and R. Baets. "Compact efficient broadband grat-
ing coupler for silicon-on-insulator waveguides". In: Optics Letters 29.23 (2004),
pp. 2749-2751 (cit. on p. 14).

[110] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
mann, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V.
Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. "The RAW microproces-
sor: A computational fabric for software circuits and general-purpose programs".
In: IEEE Micro 22.2 (2002), pp. 25-35 (cit. on pp. 10, 106, 138).

167 N

Bibliography

[111] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoff-
mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M.
Frank, S. Amarasinghe, and A. Agarwal. "Evaluation of the Raw Microprocessor:
An Exposed-Wire-Delay Architecture for ILP and Streams". In: Int'l Symp. on
Computer Architecture (ISCA). 2004 (cit. on p. 43).

[112] S. Vangal, N. Borkar, and A. Alvandpour. "A Six-Port 57 GB/s Double-Pumped
Nonblocking Router Core". In: Symp. on VLSI Circuits. 2005 (cit. on p. 43).

[113] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino,
A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn. "Corona: System impli-
cations of emerging nano-photonic technology". In: Int'l Symp. on Computer
A rchitecture (ISCA). 2008 (cit. on pp. 14, 15, 19).

[114] H. Wang, L.-S. Peh, and S. Malik. "Power-driven Design of Router Microarchitec-
tures in On-chip Networks". In: Int'l Symp. on Microarchitecture (MICRO). 2003
(cit. on p. 43).

[115] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. "Orion: A Power-Performance
Simulator for Interconnection Networks". In: Int'l Symp. on Microarchitecture
(MICRO). 2002 (cit. on p. 21).

[116] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha, G. Riley,
W. Song, H. Xiao, P. Xu, and S. Yalamanchili. "Manifold: A parallel simulation
framework for multicore systems". In: Int'l Symp. on Performance Analysis of
Systems and Software (ISPA SS). 2014 (cit. on p. 41).

[117] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong, and
T. Sherwood. "SurfNoC: a low latency and provably non-interfering approach to
secure networks-on-chip". In: Int'l Symp. on Computer Architecture (ISCA). 2013
(cit. on p. 41).

[118] L. Wei, F. Boeuf, T. Skotnicki, and H. .-.- S. P. Wong. "Parasitic Capacitances: Ana-
lytical Models and Impact on Circuit-Level Performance". In: Trans. on Electron
Devices 58.5 (2011), pp. 1361-1370 (cit. on p. 25).

[119] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-
tina, C.-C. Miao, J. F. Brown III, and A. Agarwal. "On-Chip Interconnection
Architecture of the Tile Processor". In: IEEE Micro 27.5 (2007), pp. 15-31 (cit. on
pp. 10, 137, 138).

[120] P. Wijetunga. "High-performance crossbar design for system-on-chip". In: Int'l
System-on-Chipfor Real-Time Application. 2003 (cit. on p. 44).

[121] WindRiverSimicS. URL: http: //www. windriver. com/products/simics (cit.
on p. 124).

[122] D. Wingard. "MicroNetwork-Based Integration for SoCs". In: Design Automation
Conference (DAC). 2001 (cit. on p. 44).

[123] N.-S. Woo. "High Performance SOC for mobile applications". In: Asian Solid-State
Circuits Conference (A SSCC). 2010 (cit. on p. 61).

0 168

Bibliography

[124] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. "The SPLASH-2
Programs: Characterization and Methodological Considerations". In: Int'l Symp.
on Computer Architecture(ISCA). 1995 (cit. on p. 125).

[125] H. Yamauchi, H. Akamatsu, and T. Fujita. "An Asymptotically Zero Power
Charge-Recycling Bus Architecture for Battery-Operated Ultrahigh Data Rate
ULSIs". In: Journal of Solid-State Circuits (SSC) 30 (1995), pp. 423-431 (cit. on
p. 13).

[126] B.-D. Yang and L.-S. Kim. "High-Speed and Low-Swing On-Chip Bus Interface
Using Threshold Voltage Swing Driver and Dual Sense Amplifier Receiver". In:
European Solid-State Circuits Conference (ISSCIRC). 2000 (cit. on p. 13).

[127] H. Zhang, V. George, and J. M. Rabaey. "Low-Swing On-Chip Signaling Tech-
niques: Effectiveness and Robustness". In: Trans. on Very Large Scale Integration
(VLSI) Systems 8.3 (2000), pp. 264-272 (cit. on p. 13).

[128] W. Zhang, Zhang, Li, W. Bing, Z. Zhu, K. Lee, J. Michel, S.-J. Chua, and L.-S. Peh.
"Ultralow Power Light-Emitting Diode Enabled On-Chip Optical Communication
Designed in the III-Nitride and Silicon CMOS Process Integrated Platform". In:
Design & Test of Computers 31.5 (2014), pp. 36-45 (cit. on p. 144).

1690M

