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1. Purpose

Imagine a person who needs a short piece of music. She is trying to put together
a video game, a graphics demonstration, or a television advertisement that calls for a tune
of some sort to fill in the background. However, being a programmer, theorist, or ad
executive, composing music is not her strongest point. That is the motivation behind this
project -- to provide a short tune for someone who has only limited musical knowledge.
Although the music currently provided may only be worthy of prototypes and is neither a
substitute for a professional ‘‘tune writer’” nor grand works of art, with further

extensions, such performance may not be completely beyond its scope.

2. Background

Originally an expert systems class project written in Lisp, Sharle! has been
greatly transformed and reshaped, both in language (C++) and structure, since I joined
Professor Tod Machover’s Brain Opera project. The Brain Opera was envisioned to be
an ambitious exhibition and performance of computer based music and graphics,
scheduled to premiere in July of 1996. As a result, a MIDI representation of the music
has become critical. Sharle was at first attached on the lower end to a Macintosh-based
MIDI system written by Ben Denckla and Patrick Pelletier, with input taken from a MIDI
keyboard. However, care has been taken to keep the various interface and decision-
making sections as independent as possible. The current version runs under Window
NT; input is taken from a Windows-based interface, and output (in MIDI) can be sent

either to the local synth or an external device.

"For lack of a better name, I chose a shortened version of "Sharon Apple", the name of a fictional
"character” (from Macross Plus) -- a computer program / entity / singer / performer that became sentient.
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The immediate precursor of this work at the Media Lab was done by Alexander
Rigopulos and was finished in 1994. His system was based on the notion of seeds --
music was defined in terms of a set of parameters such as activity and coloration. The
user was able to affect the outcome of the system by controlling these parameters. The
current system is similar to his work in that respect. However, his system was limited to
rne or two layers (ie. one or two simultaneous, but independent voices) and made
extensive use of looping pre-composed sequences.

Fumiaki Matsumoto’s ‘‘Drum-Boy’’ system attempted to do with rhythms what
Sharle attempts to do with pitches as well. That is, it gave the user a set of high-level
controls that even non-musicians should be able to understand (descriptions like
“‘graceful’”’ and ‘‘mechanical’’). The user would then be able to manipulate these
controls to produce a rhythm to her own liking. The difficulty lies in deciding which
high-level controls are appropriate and how to relate them to lower level descriptions.

Both David Cope and Robert Rowe designed systems that created music by
analysis of other music. While Cope’s system took input from classical compositions,
Rowe looked at live input from a performer. Rowe drew a distinction between
transformative and generative music composition. While his ‘‘Cypher’’ system
contained elements of both, it was primarily a transformative one -- listening to the input
from the user, pushing the input through a series of transformations, and then outputting
something derivative, although not necessarily reminiscent.

I do not believe that there is a clear distinction between transformation and
generation. Enough transformation can produce something as new and as unrecognizable
as generated music. However, generative systems are usually characterized as systems

which do not involve any pre-composed material, using only the most basic elements,
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such as scales, as the building blocks. This purely generative method is what Sharle is
based on; I did not want possible deficiencies in the system to be masked by well
composed sequences or by thinly transformed live input.

One of the challenges faced by many expert system designers is that they are
often met with opposition and skepticism from existing human experts. The designers
find it important to emphasize that they are not trying to replace human beings, but rather
create a tool that is meant to either make the job of the experts less cumbersome or to
help educate would-be experts. Rather than seeking to replace composers, Sharle relies
on them for its knowledge.

It can be seen as a new medium for composition -- just as tapes and CDs became
a new medium for pe;iormers -- or Tcl and Visual Basic creating new directions for
language and library design, instead of replacing old programmers. Because this project
does not espouse any particular music theory, no attempt is made to judge the relative
merits of various compositional approaches. Instead, the design attempts to include any
and all compositional knowledge that can be readily articulated into a concrete rule-like
form (starting with my own, and extendible to that of others,y if they have the time and

desire).

3. Models of Interaction

A *‘real’”” composer knows what music she likes and how to produce it. In a
sense, a radio listener is also composing in his own way. He knows what radio stations
he likes and how to tune into those stations. This project attempts to cover part of the
middle ground between the professional composer and the radio listener. Just as the

piano attempted to facilitate musical performance by restricting the tones that can be
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played, Sharle attempts to do the same for composition / improvisation.

3.1 The instrument Model

In one sense, any interactive system that produces music in real-time can be
called an instrument. Various systems however require different levels of interaction.
Systems that perform live transformations -- relying on constant musical input from the
user -- are true instruments in the sense that a normal instrument requires constant
interaction in order to produce anything interesting. On this criterion, Sharle was not
designed to be a pure instrument. In fact, if the user is changing too many parameters
every second, the results may well resemble a jumble of half-started sentences with little
evidence of continuity. Instead, Sharle operates somewhere between the radio model and

the instrument model.

3.2 The Radio Model

A radio is on the other end of the spectrum. It operates largely independently
from the user; the most important interaction (tuning to different stations) is fixed on a
number of discrete choices. Interaction is measured in terms of minutes and hours -- the
length of songs and radio programs. All output is pre-composed. However, a radio does
allow a certain degree of transformative interaction with controls like volume and treble /
bass.

The radio’s primary parameter is of course frequency. Frequency is a sort of high
level control that allows the listener to choose between various styles of music (and non-
music) -- alternative, hip-nop, top 40, classical, jazz, techno, country, talk-radio, etc.

This project attempts to design an analogous high level interface, but one that also allows
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the user to have more direct say in what music is produced.

While Sharle allows more direct control than the radio, it is also abstracted to a
higher level than the instrument. If the user does not provide any input, it does not stop
and wait. Instead, notes continue to be played, reflecting the current parameters in the
system, and yet the music does not fall into an obvious loop. Typical interaction rates are
geared toward anywhere from once every 10 seconds to once every 10 minutes (or
whenever the user becomes bored). As a compositional tool, this time frame allows the
user to listen for a few moments, judge the desirability of the output, and decide on
additional parameter changes. As entertainment, the user is allowed to engage in other
activity while listening, without the pressure of having to constantly ‘‘babysit’’ the

controls.

3.3 Autonomy

The input to Sharle allows the user to guide the music being composed without
having to deal with actually selecting specific notes and rhythms for the entire
composition. The interface is little more than a way to change various parameters in the
system. Some parameters are continuous (for example, consonance and tempo), while
others discrete (for example, scale).

The primary way the user can influence the music composed is by choosing
higher level characteristics such as scale and tempo. However, an even higher level of
control is possible. By putting together various combinations of scale, rhythm, and other
traits, individual ‘‘songs’’ analogous to those on the radio can be produced. The
parameters that make up these songs can then be mixed together in various degrees (see

section 9.2). There is no notion of one set piece of music that embodies all of the
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generator’s output; instead, the extremes in Sharle’s parameters are designed to enable
manipulation of one ‘‘piece’’ into another entirely different one.

Sharle provides the user with a choice between varying levels of computer
independence. At the highest level, the music generation behaves much like a radio,
allowing the user to engage in other activities while listening, interacting only
occasionally in response to particularly desirable or undesirable music. At the lowest
level, the user is only a few steps up from true composition, deciding everything from

pitch direction to rhythmic structure.

4. Knowledge Base

There are many tools available to researchers in artificial intelligence, from
grammars to neural nets, Markov models and more. However, the most successful
commercial applications have tended to come from the expert systems field. Instead of
attempting to model low-level thought and gather knowledge through pattern
recognition, Sharle was designed with expert system methods (that is, explicit rules that
attempt to summarize higher level thought).

Although originally constructed with TMYCIN, the rules, however, are no longer
written in the traditional "if-then" form. Instead they are various combinations of
equations, random number generators, and algorithmic functions that try to define each
piece of knowledge. C++ has made representation of algorithmic knowledge easier,
however it is at the cost of the simplicity that would have it easier for non-programmers
to extend the knowledge base. The design of a knowledge acquisition meta-language
easily usable by professional composers to articulate their knowledge is a direction for

possible future work.
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The decision making process is based entirely on the rules in the system and the
parameters that the user has given. These parameters are fed into various equations as

variables or cause the system to branch to differing sets of rules.

5. Main Design Issues

This section describes some of the principles that guide the structural and
algorithmic design that will be mentioned in later sections. Many of these involve
tradeoffs and sacrifices that had to be made in order to realize one specification at the
expense of another. In general, decisions have been made to err on the side of prudence

rather than on the side of novelty.

5.1 What is Acceptable?

Accessible is the word often used to describe music that is generally accepted by
the average member of an audience. Though it may not be well loved (‘‘muzak’’,
“‘elevator music’’, etc.), ‘‘accessible’” music is generally not disputed as being music,
while other forms -- minimalism, serialism, certain genres of popular music -- are often
labeled by various sections of the general public as questionable music or even non-
music. Because the target audience in this case is not music aficionados but the general
masses -- to bridge the gap between composers and those with no compositional
experience -- accessibility won out in deciding whether to focus on accessibility or
innovation. As a result, the default tends toward regularity and tonality. However,
Sharle’s parameters are not limited so much as to prevent all deviations from general

‘‘accessibility.”’
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5.2 Unity vs. Variation

The balance between unity and variation is a constant source of push-and-pull
tradeoffs in the generation algorithm -- on the one hand, repetition, predictability, and
expectation play a large role in distinguishing music from the chaos of noise; on the other
hand, variation, change, and the unexpected are vital in preventing boredom and
maintaining interest.

Repetition is the primary tool Sharle uses to unify successive parts of the music.
It establishes something familiar, something a listener will come to expect. When that
expectation is met, the tension is satisfied. However, if it is always met, monotony sets
in. Therefore changes are made continuously, though not too quickly. A number of
parameters allow the user to adjust the tradeoff between unity and variation including
rhythm consistency, change, cohesion, consonance (sections 7.1.5,7.1.8, 7.1.%, and 7.2.1
respectively).

Another of the goals of Sharle’s generation engine is to avoid producing the
overly mechanical or predictable music that automatic computer algorithms can easily
lead to. Much of this is accomplished largely through randomizations specifically

designed to avoid over-repetition in places such as rhythm generation (7.1.1).

5.3 Randomness in Decision Making

Many of Sharle’s decisions rely heavily on randomization. However, the
decisions are not completely random -- in the sense that all possible outcomes have the
same probability. Instead, randomness is one of the methods used in turning continuous
parameters into discrete choices. For example, if choice A has a 90% weight and choice

B has a 10% weight, the decision is made by choosing a random number between | and
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100. Choice B is taken only if the random number was over 90. Although choice A is
heavily favored, it is not guaranteed. Interactions are usually much more involved than
in this example however, often involving multiple random variables.

The use of randomness means that Sharle’s output is not deterministic. The same
situation at a different time will produce something similar, but not an exact duplicate --
somewhat analogous to the creative process -- had I been writing these words the day

before, I would probably have used a different word here or changed a term there.

5.4 Moderation vs. Generality

One of the major tradeoffs in the generation algorithm results from preventing the
generation from ‘‘going wild’’ so that acceptable music is the norm rather than the
exception. Limitations are enforced to prevent extremes; for example, consecutive notes
from a layer (see section 6.4) are never more than an octave apart (8.1.4). One can easily
argue that a great many composers break these limits and still produce ‘‘acceptable’’
music. Although it may exclude great music, enforced moderation is invaluable in

excluding noise as well.

5.5 Simplicity vs. Specificity

Another design issue deals with how much specific control should be given to the
user. Nearly every variable in the generation algorithm can be made into a parameter.
However, presenting the user with too many controls -- both broad and narrow -- can do
more to obscure the effects of the parameters than to help. As a result, parameters like

cohesion (7.1.1) play many different roles in the generation algorithm.
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5.6 Melody vs. Accompaniment

Although the distinction can be easily blurred, Sharle does attempt to distinguish
between melody and harmony in the interest of unity. One layer and its corresponding
line is distinguished from the others as the melody. In order to keep them related to the
melodic layer, the other harmonic layers play a subordinate role with respect to pitch (see

8.1.7) and line repetition (see 6.6).

6. Data Hierarchy

Sharle’s generation engine has just two main parts: (1) deciding what (if any)
notes to start playing at a given moment, and (2) deciding what (if any) notes to stop
playing at a given moment -- corresponding to the MIDI messages of note-on and note-
off.

Inside the generator is a hierarchy of data objects. Each level reflects common
characteristics (such as rhythm or scale) shared by the music in that grouping. At the low
level, the user would be working with the characteristics of individual lines and notes,
while at a higher level, only the characteristics of sections (or ‘‘movements’’) could be

directly affected.

6.1 Note

On the lowest level is the basic note object. It contains all the information needed
to describe and output a note in MIDI:
1. The pitch - a MIDI note number.
2. The volume - represented by one of five values, from very soft to very loud. This is

not a continuous range of values, because, while a difference of 1 in MIDI note
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number is very important, a slight difference in MIDI note velocities is much less
noticeabie.

3. The duration -- a measure of time that depends on the tempo (see section 7.1.4).

4. The instrument - a MIDI program number.
In addition, the time at which the note was started is also stored, so that its

relation in time with respect to other events can be determined.

6.2 Line

The second lowest level in Sharle’s hierarchy is the line object -- simply a list of
notes, stored in the order they were played. Although each line can only generate one
note at a time, there can be many lines active at once. The length of a line is the same as
that of its basic rhythm (see 6.3). In order to se¢ what other lines are doing and to check
higher level parameters, each line object contains access to its parent compound line
(6.5). Each line also contains has access to its layer (6.4) characteristics, to guide note

generation.

6.3 Rhythm

Tangential to the hierarchy, a rhythm object is associated with each line object.
A rhythm is a series of attacks (MIDI note-on events) that are played once for a given
line, then repeated for the next line. While the attacks do not have to be periodic within
the rhythm object itself, periodicity is created by repetition of the rhythm. Anything
related to time and volume in a line’s note generation process is determined by the line’s
raythm object. Besides a list of when attacks should take place and how loud they should

be, a rhythm object also contains:
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1. Timing information that keeps track of which attack was last played and when it was
last played.

2. Tempo information (see 7.1.4).

3. Three parameters used in rhythm generation: density, length, consistency (see 7.1.5-

7.1.7).

6.4 Layer

Another data object tangential to the hierarchy, a layer is analogous to one violin
in an ensemble. The layer object contains the characteristics of the violin player. A line
(6.2) is analogous to the notes that the violin plays for some given segment of time. As
time passes, the violin may be playing new lines, but it’s still the same violin player (ie.
the same layer). The data in the layer object determines how each successive line of that
layer will behave. A layer stores the rhythm information its lines will use as well as the
following parameters: consonance (7.2.1), direction (7.2.2), pitch center (7.2.3), and
instrument (7.2.4). In addition, a layer can also be turned off, causing its lines to produce

no notes.

6.5 Compound Line

For lack of a better term, the list of all the lines (6.2) that are playing
simultaneously is called a compound line. This is the hierarchical level one step above
that of the line. While a layer (6.4) describes lines horizontally (ie. successively, one line
after another), a compound line groups lines vertically (ie. a set of concurrent lines).
Because all its lines are being played simultaneously, the temporal length of a compound

line is the same as that of the lines in its list. Compound lines also have access to higher
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level parameters through their parent stanzas (6.6). The compound line object also keeps
track of whether a cadence (see 8.1.1) is to be played, affecting all the individual lines in

its list.

6.6 Stanza

A stanza is the next level up in the hierarchy. As in poetry, where a stanza is a
small collection of lines, Sharle’s stanza objects are a small collection of compound
lines. Stanzas group compound lines that are closely related. To promote unity,
accompaniment lines are repeated within a stanza; they are only re-generated at the start
of a new stanza. The number of successive compound lines within each stanza depends
on the cohesion parameter (see 7.1.1). In addition, cadences (8.1.1) can only occur on
the last compound line of a stanza -- marking its end. Stanzas also maintain layer data

that is copied into each successive stanza.

6.7 Section

The section is the highest level in Sharle’s current hierarchy. In fact, there is only
one section into which stanzas are stored. Ideally, however, more levels above the
section object would be created, each new level representing more abstract similarities in
the music it encompasses. In a finite project however, the abstraction had to stop
somewhere. As a result of having only one section object, changes to the section
parameters are not saved in a history (see section 8.1.6) of sections, but instead the
changes only replace the current state of the section.

Besides maintaining a list of stanzas, the section object also keeps track of high

level parameters that have impact over all current generation in all layers: the scale
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(7.1.3), key (7.1.2), cohesion (7.1.1), and change (7.1.8) parameters.

7. Parameters

Parameters are the controls on which all of Sharle’s generation engine is based.
However, even without user input to set parameters, the generator can operate well
enough on its own based on default parameter values. The parameters described in this
section are the atomic ones -- they do not affect the values of other parameters (with the
exception of the change parameter, see 7.1.8) and are used to determine lower level
variables not available for control by the user. Sections 9.1 and 9.2 describe the non-

atomic controls.

7.1 General Parameters

General parameters are not specific to any one layer. Instead, when they change,
all layers are affected. Although it is possible to make these parameters specific to
individual layers, the added specificity does not offset the additional complexity (both in

implementation and control) to warrant the raove.

7.1.1 Cohesion

Cohesion is the parameter primarily responsible for governing the unity vs.
variety tradeoff on the line level. When cohesion is high, unity is favored, and when it is
low, variation is favored. This one parameter plays many different roles in Sharle’s
generator. Of course, these various roles can be broken down into more specific

parameters; however, in the interest of simplicity, the roles were united.
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1. Line repetition: When a stanza creates a new melodic line object, cohesion is
consulted. The higher the cohesion, the more likely that a previously played line
will be copied (as opposed to generating a new set of pitches).

2. Line choice: The higher the cohesion, the more likely a recently played line will be
copied (as opposed to one further in the past).

3. Offset: If a previous line is being copied, a low cohesion increases the chance and
amount of a pitch offset. The offset varies the previous line by transposing it up
or down some number of half-steps (however, the pitch is still matched to the
scale according to the consonance parameter, see section 7.2.1).

4. Amount: If a line is being copied, the percentage that is actually copied also increases
with cohesion. Low cohesions cause more of the previous line to be ignored, re-
generating new notes to replace the ignored ones.

5. Rhythm tweaking: To avoid sounding too mechanical (see 5.2), low cohesions also
cause more occasional attacks to be randomly inserted into Sharle’s rhythm
generator output.

6. Stanza length: High cohesions also cause stanzas to be longer, thereby increasing the

number of compound lines which share similar characteristics.

7.1.2 Key

The key parameter is not quite so interesting; it is merely a simple transposition
of pitches. The same tune in different keys adds a little more variety when used in
contrast to other recently played sections. However, this parameter was added mainly for
completeness-of-control’s sake. Key (an absolute parameter) and scale (a relative

parameter) are used together in pitch determination.
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7.1.3 Scale

The scale is the most *‘pre-composed’’ of the parameters. Sharle currently has a
total of six scales -- two versions of a major scale, two versions of a minor scale, and two
versions of pentatonic scales. While these six scales are sufficient to produce a variety of
music, there is no reason why more can not be added. A scale is represented by an object
that contains 12 values corresponding to the 12 half-steps in an octave. Each value
represents a priority: the higher the priority, the more often that tone is played. So, when
‘‘composing’’ a scale, the root / tonic is given highest priority. Sharle uses five different
priority levels. The highest for the root, the lowest for chromatic tones. The middle three
priorities differentiate between frequent, common, and occasional tones. For example,
one version of a major scale looks like this: 042412414243, 12 rankings of tones from 0
to 4. 0 represents the root and has a unique priority ranking. 1 is given to the rest of the
major triad. 2 to most of the other non-chromatic notes, etc. Tones are thus tied to
probabilities that will be used later in combination with the consonance parameter

(section 7.2.1).

7.1.4 Tempo

The tempo parameter is simply a number that determines the length of the atomic
unit of time on which the rhythm generator is based. All events occur only on these
atomic units of time, where there are slots into which potential notes can be placed.
Tempo changes nothing else other than the speed at which notes are produced. Pitch and

relative durations are not affected.
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7.1.5 Rhythm Consistency

The first rhythm generation parameter is consistency. The higher the consistency
is, the more likely successive rhythm attacks will fall at regular intervals. The lower it is,
the time interval between successive notes becomes more irregular. The upper bound on
consistency is (of course) beats that occur exactly after a fixed period. The lower bound
allows intervals between attacks (determined randomly) to range from one atomic unit of
time (determined by tempo, 7.1.4) up to twice the average interval. Consistency also
affects attack volumes, ranging from all medium volumes at top consistency to allowing

an equal chance of light, medium, or heavy volumes for minimum consistency.

7.1.6 Rhythm Density

Density determines the likelihood that an attack will be placed in any given slot.
At maximum density, every slot will be filled with an attack. At minimum density, the
vast majority of available slots for attacks will be left blank. Because the period between
slots is determined by tempo, a fast tempo and low density can have a similar number of
notes per unit of real time as a slow tempo with high density. The difference however is
that density affects number of notes per line, while the tempo parameter affects how
quickly lines are played -- if density is the amount of traffic, tempo is how quickly the
traffic is moving. A high tempo will speed up the generator’s progression through lines

and stanzas, while a high density will not.

7.1.7 Rhythm Length
The length parameter determines the number of available slots per line in which
attacks could be placed. While fast tempos hurry line progression, longer lines slow

down progression -- increasing the length of the road on which the traffic travels.
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Rhythm length and density combine to determine how many actual notes will be played

for a given line.

7.1.8 Change

The change parameter is the rate of self-mutation. Sharle attempts to prevent
boredom by periodically changing existing parameters. As each stanza is finished, Sharle
checks the change parameter to see if it is time for a change. The lower this parameter,
the more likely the generator will just continue on as if nothing happened. The higher it
is, the more likely the current stanza will be ended with a cadence (8.1.1); then a random
set of parameters are changed randomly. The range from which mutated values are
chosen is subject to limits -- determined empirically -- in to prevent extremes in behavior
(5.4). There are a few parameters that are never mutated however: the change parameter
itself (to avoid recursive behavior) and the instrument parameter (because of hardware
differences, see 7.2.4). The number of layers that are actively generating notes is also

not changed, in order to limit the extent of self-mutation.

7.2 Layer Specific Parameters

These parameters affect only one layer each. Each layer carries its own set and is
able to act relatively independently from the other layers based on the layer specific
parameters. Their purpose is to allow each layer to behave as one among many members

of an ensemble -- able to werk independently, but in the end, still tied to the same

purpose.



7.2.1 Consonance

The consonance parameter is closely related to the current scale (7.1.3). If
consonance is high, notes generated tend to be non-chromatic -- bounded above by the
limit of producing only the root note (at various octaves). At low consonance, equality
among notes appears and root notes begin to appear with frequencies similar to
chromatic ones. After each tentative pitch is generated, it is ‘‘rounded’’ to nearest pitch
which has a given scale priority or higher. A high consonance parameter forces that

priority to be high. At very low consonances, priorities are ignored.

7.2.2 Direction

The direction parameter is one of the two primary ways the user can directly
control pitch values. Direction is used as part of the randomized function that determines
the position of a new note relative to the previous note. For a medium direction value,

the new note is just as likely to be higher as lower than the previous one.

7.2.3 Pitch Center

As the second major way the user can change pitch values, the pitch center
parameter affects the overall pitch range from which notes will be generated. While
direction is a relative (and temporal) pitch parameter, pitch center is absolute. As each
line ends, pitch center is consulted to determine the starting point of the next line.
However, to avoid the discontinuity of sudden jumps in pitch, the starting point is chosen
to be a pitch between that of the center and the last note on the previous line. From that
starting point, direction takes over pitch movement until the start of the next line is
reached. This parameter is a MIDI note number -- all else being equal, pitches will tend

to be around this number.
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7.2.4 Instrument

The instrument parameter corresponds merely to a MIDI instrument number.
Thus different layers can be distinguished by different voices. Since the sound produced
by each instrument number depends heavily on the MIDI hardware, Sharle does not
attempt to regulate instrument choice. Like overall volume, control over instrument
choice is entirely up to the user; they are both very straightforward. Each unique number
represents a different instrument, and it is up to the MIDI equipment (or whatever other

interface) to make use of it.

7.2.5 Rhythm Maodification
Sharle was designed with the notion of a primary rhythm (which is determined by

the three non-layer rhythm parameters -- consistency, density, and length; see 7.1.5,

7.1.6, and 7.1.7). All other accompanying rhythms are modifications on the primary

rhythm using the rhythm style parameter and the rhythm style argument parameter.

1. The first style, of course, is playing the unmodified primary rhythm. The argument
parameter is ignored.

2. A second style, places attacks between the attacks of the main rhythm. The argument
determines exactly when -- whether to place attacks at 10%, 50%, or 90%, etc. of
the gap between the successive attacks of the main rhythm.

3. Another purely mathematical style, produces a regular beat. The argument determines
the length of its period.

4. Finally, a fourth modification produces a deterministic pattern that varies with the

main rhythm’s parameters. The additional argument affects its periodicity.
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All these variations share the characteristic that they have the same temporal
length as the primary rhythm, so they can all be cycled without going out of phase. To
avoid overemphasis and to avoid drowning out the main rhythm, the volume of the

variations is made to be lower.

8. Execution

The basic interaction with sharle’s generation engine is described below:
1. What time is it?
2. Ask the generator if there is a new note to play at this time.
a. If so, play the note and repeat step 2.
b. If not, continue on.
3. Ask the generator if there is a new note to stop playing at this time.
a. If so, stop the note and repeat step 3.
b. If not, continue on.
4. Wait for a short unit of time.
5. Return to step 1.

Other than controls to change the generator’s parameters, the only input to the
generator is a measure of thc passage of time. The only outputs are notes to start and
stop. This simplicity helps in portability (section 10) -- steps 2a and 3a (playing and
stopping a note) are purely interface dependent. If instead of playing MIDI, we just want
to print out a score, steps 2a and 3a are all that need to be changed... while the generator

can be left alone.
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8.1 Behavior

This section describes some of the specifics of the engine’s behavior -- involving
practical concerns (like keeping a history and turning notes off), creation and generation
(of rhythm and pitch), and holding the music together (through copying and pitch

matching).

8.1.1 Cadence
Whenever Sharle is about to mutate its parameters (see 7.1.8), a cadence is used
to signify the end of the previous set of parameters -- to give the sense of separation
between sections and to help prepare the listener for parameter change. Cadences only
occur on the last compound line of a stanza. Sharle uses four characteristics to mark a
cadence, all intended to increase the sense of finality.
1. Volume of each attack is increased.
2. The tempo slows, from normal to half the normal tempo by the end of the compound
line.
3. The compound line ends on the root note.
4. An artificial pause in note generation is added after the end of the stanza. The duration
of this delay is dependent upon the current tempo (7.1.4), plus a randomized

factor used to avoid becoming too mechanical (5.2).

8.1.2 Rhythm Generation
Because rhythm is one one of the primary sources of regularity, rhythms are not
constantly being regenerated. Generation is done only when one of the consistency,

density, or length (7.1.5-7.1.7) parameters change. When this happens, a new fixed
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rhythm is randomly generated from the new set of parameters and is reused until the p: .t

time one of these parameters changes.

8.1.3 Durations and Note-off Timing

Durations are less regulated due to the effects of different instrument sounds
(7.2.4). While some instruments have a naturally quick decay time, others have unlimited
sustain. The result is that actual durations heard and technical durations based on note-
on and note-off timing do not always match. The main concern in setting durations and
sending the resultant note-offs has been to prevent sustained instruments from playing
notes that blend together too much, preventing listeners from making out the attacks of
new notes. Durations were therefore chosen so that notes usually end when the next
attack on that layer occurs. Durations can be long enough such that one note from a
previous line lasts into the next line. As a result, looking only at the notes of the current
lines will miss the notes that have crossed line boundaries. Therefore, a list of notes that
are currently on is kept separate from the history of notes that have been played in the

past (see also 8.1.6).

8.1.4 Pitch Generation

After the rhythm generator has determined that an attack must occur (returning a
duration and volume), a pitch must then be found for this note. There are two methods
Sharle uses in creating a new pitch -- pure generation and line copying.

In pure generation, a random step size is picked, favoring small steps and in the
direction determined by the direction parameter (7.2.2). This step size is added to the

previous note and then rounded according to consonance (7.2.1).
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8.1.5 Line Copying

During the copying process, the line being copied is asked for the corresponding
notes. In order to add variety, a possible offset, up or down, is added to each of the notes
(see cohesion, 7.1.1). However, in order to prevent dissonance (which can occur, for
example, after an offset or when copying a line that was generated under a different scale

or key), copied pitches are also rounded based on consonance (7.2.1).

8.1.6 History

In order to make line repetition and variation possible, Sharle records a history of
the music generated so far. However, because computers are not possessed of infinite
memory, Sharle must avoid crashing after executing for extended periods of time (due to
lack of memory). As a result, Sharle periodically ‘‘packs’’ its history o? stanzas by
deleting half of them. However, in order to lessen the lack of long term memory (which
would result if the earlier half is deleted) and to prevent the absence of short term
memory (which results if the recent half is deleted), every other stanza is deleted -- thus
helping to preserve older music a little longer, while still keeping a good deal of younger
music around.

User input always directly replaces the current state of the parameters, but (at
least for stanzas and lower levels in the hierarchy), parameters of previous stanzas, lines,
etc, are safely saved in the history (at least until the next packing). Only the current state
can be ‘‘corrupted’’ by user input. When Sharle’s self-mutation occurs however (as
opposed to asynchronous user input), parameters are only changed when new stanza
objects are created, so no characteristics of the previous stanza object and its components

are lost.
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8.1.7 Priority Matching

Another source of unity (see 5.2) is the matching of scale priorities (7.1.3). When
an accompaniment lire is being played, Sharle looks for the last melodic note that was
played (the last note from the melodic layer). The accompaniment pitch is then rounded
to ore whose priority is similar (although not necessarily identical) to that of the melodic
pitch. However, in order to maintain the dominance of higher priorities, there is a chance
that accompaniment pitches with high priorities will not be rounded tc match a melodic

pitch with lower priority.

8.2 Walk-Through

In this section, an example of the generation of a single typical note is described.
First the current time is given to the section object. The section object checks to see if a
new stanza needs to be created and queries the current stanza object. The current stanza
has not reached the last of its allotted compound lines, so it replies in the negative.
Having no stanza creation to do, the section passes on the time to the current stanza
object.

Similar to the section object, the stanza object starts by checking to see if a new
compound line needs to be created and queries the current compound line. The
compound line object in turn queries each of its line objects. The line objects determine
from their rhythm objects that they are not yet finished. As a result or having no creation
to do either, the stanza passes on the time to the current compound line object.

The compound line asks each of its line objects for a note, starting with the
melodic line. Line copying information (8.1.5) was determined at the start of this

compound line. This line copying information and the time is then passed on into the
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line object.

The line object determines that it has not yet played a note at this time marker and
that the layer that it belongs to is active. The line then obtains rhythm modification data
(7.2.5) from its layer object; the parent compound line informs the line object that the
generator is not in the midst of playing a cadence (8.1.1). This information and the time
are then passed into the layer’s rhythm object -- asking if an attack is to be played.

Because a cadence is not being played, the rhythm object does not modify the
current tempo. The rhythm modification data indicate that the primary rhythm is being
played. The time and the previous attack’s timing data are compared to the sequence of
relative attack times and attack volumes that has been stored in the rhythm object since it
was generated. This indicates that the time for the next attack has been reached. The
previous attack’s timing data is updated. A duration is calculated that will keep this note
playing until the next attack in the sequence (see 8.1.3). The duration data and volume
data are then returned to the line objcct.

Because the line copying information do not indicate any repetition, the line
object generates a new pitch -- a scale priority is calculated from a random number and
the layer object’s consonance value. A pitch distance that favors low numbers is then
calculated from a random value. Another random number and the layer object’s
direction parameter determine that the new pitch should be higher than the last. The
distance is then added to the previous pitch, and the result is rounded to the nearest one
which has the given scale priority or higher.

The rhythm object determines that this is not the last note of the line; therefore,
the pitch is not made more consonant. In addition, since the current line belongs to the

melodic layer, the pitch priority is not matched (8.1.7) to the previous melodic pitch.
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Finally, the note is added to the list of currently active notes and to the history of notes
kept in the line object.

This note is then returned back up the hierarchy, to the compound line, to the
stanza, to the section, and to the top level, where it is sent to the MIDI interface to be

played as audio.

9. Interface Hierarchy

Sharle was designed to operate with varying levels of independence from the
user. At the highest level, the interaction required should be minimal. At the lowest
level, control over a large set of parameters should be given to the user so that generation
can be directly tailored to the user’s preferences.

The set of controls at the highest level is also the simplest, in order to avoid
intimidation. The goal is to allow any first time user to use it. Like a non-pilot sitting
down in front of a cockpit, a first time user that is presented with too many controls may
not know where to start. Timidly changing one low level parameter -- that produces only
a subtle change in the music generation -- may result in the first time user not noticing a
difference at all.

Given only a few controls (such a joystick and buttons for a flight simulation
video game), the user knows exactly what to experiment with. After the user is
comfortable with the high level controls, the next lower level opens up more possibilities,
and by then, the user will hopefully know what to listen for and how the new controls
relate to the old ones. Even just seeing higher level controls without using them can

provide valuable information about which controls have the most effect.
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Sharle’s interface is separated into four levels. The parameters in the top two
levels directly affect the parameters on the bottom two levels. Thus, by looking at just
how the lower level parameters are affected, the user can learn to recreate the effects of

the high level controls.

9.1 Level I -- The Colors

At the highest level, there are four ‘‘radio stations’’ from which the user may
choose, based loosely on four moods -- festive, calm, angry, and sad -- and named after
the colors red, green, violet, and blue respectively. These are four different pre-
‘‘composed’’ settings of the lower level parameters. Although they were chosen to
demonstrate a wide range of what is compositionally possible, these four pre-settings are
in no way exhaustive. There is nothing unique to these controls; they are fully
recreatable using only the lower level controls of levels III and IV -- these controls are
just easier. They are an example of the type of higher level composition that the lower
levels enable.

A fifth control at the top level is the rate of change parameter (7.1.8), which
allows Sharle to become largely autonomous. While the four pre-settings above may
represent the typical sound of four radio stations, listeners would quickly become bored
if the station is always playing the same song over and over. So when listener is bored,
the change parameter can be increased, causing the music to change -- even to styles
similar to other ‘‘radio stations.”” When the listener hears a ‘‘song’’ that is particularly
interesting, this control can be turned down to keep the current music playing a little
longer. The rate of change can also be left at a particular value that suits the length of the

listener’s attention span. This frees the listener to do other things without leaving the
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music generator in stagnation.

9.2 Level II -- Interpolation

At the second highest level, just two sliders were added. However they add much
more control. Each of the four pre-settings in level I represents a point in a space of
many dimensions, each dimension representing one parameter. These sliders interpolate
between the four points, producing a smooth range of intermediate music between the

b4

four discrete ‘‘songs.”’ It is not completely continuous however, because scale is
represented as a discrete parameter. Scale instead varies among a list of predefined
scales.

Among the various parameters, the most conspicuous changes resulting from the
interpolation are probably in scale and tempo -- near red and green are variations of the
major scale, while violet and blue are minor; red and violet are faster than green and
blue. Instruments are also a conspicuous difference between the colors -- whether they
are harsh or smooth, drawn out or terse. Drawn out instruments (winds & strings) were
used for the slower green and blue to fill up the gaps, but they tend to be too
unresponsive to faster speeds. Because each of the four pre-settings has a different

number of layers, Sharle does not interpolate between instruments or the other layer

specific parameters.

9.3 Level 111 -- General Parameters
The third level adds many more degrees of freedom. All the non-layer specific
parameters are now controllable (see section 7.1). Although these controls are all

affected by the level II interpolation sliders, now a change in one of these parameters no
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longer has to be tied to changes in the other parameters. Although these parameters are
more general than those specific to individual layers, the parameters on this level -- like
those on level IV -- are atomic; that is, they are not defined in terms of other parameters

in the way the controls in the top two levels are.

9.4 Level IV -- Layers

The lowest level of the interface effectively adds an infinite number of degrees of
freedom by introducing layers, each layer representing a different independent
instrument. The number of layers is unlimited, although MIDI limits the number of
instruments to 16 in actual practice. Still we can have 100 separate layers of MIDI piano.
Of course, the practical use of too many layers can be limited by both performance speed
and the fact that too many independent and unsynchronized layer rhythms may easily
lead to a messy jumble of notes.

It is only here that the user can choose new instruments. In retrospect, this is not
very user friendly, but nonetheless, keeping all the layer specific characteristics together

keeps organization simple.

10. Ports

Sharle was designed with portability and ease-of-integration into other programs
in mind. The generation engine itself is platform independent. Platform specific
information are limited to the graphical interface, the output of audio, and user input.
Two other instances of Sharle’s generation algorithm exist -- in Java and in the Brain

Opera’s ‘‘Singing Trees.”’
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10.1 Java

Because of the similarity between Java and C++, the language conversion took
surprisingly little time. Input is still similar to the Windows version -- by mouse click.
However, output is limited by Java’'s (current) lack of MIDI capability. As a result,
MIDI output is imitated through the use of a large number of sound files, each file
representing a single note. The primary disadvantage of this method is that output is
completely limited by the number and quality of the sound files. Given the entire MIDI
range of 128 pitches, multiplied by the different volumes desired, and again multiplied
by the number of instrument sounds desired, approximation of MIDI through audio files
becomes extremely difficult.

A separate Java version of Sharle also exists that makes use of a Java MIDI
package written by Michael St. Hippolyte (for Windows). This version allows the Java
applet to have the same controls over MIDI as a Windows application. Currently the two
Java versions of Sharle are located at:
http://theremin.media.mit.edu/cyu/Sharle.html

http://theremin.media.mit.edu/cyu/javamidi/Sharle.html

10.2 Singing Trees

Also written for Windows, the ‘‘Singing Trees’’ makes use of voice input.
Instead of mouse input, users interact by singing into a microphone. A voice analysis
package written by Eric Metois extracts voice characteristics from the user’s input, and
these characteristics are used to recalculate Sharle’s parameters. In this version, not all
of Sharle’s parameters are controllable by the user. Many are set to fixed values in order

to present a more regulated and consistent experience to the user.



-35-

11. Looking Back

If I were an outsider looking in for the first time, I would probably ask myself,
*‘So why does this work? Is there a gimmick?'’ The gimmick is the expert system
gimmick. The computer is expected to learn from the user only in as much as what it can
determine from the set of ‘‘questions’’ posed by the input parameters -- *‘Do you prefer a
0 or a 127?"" It does not start from scratch the way, for example, a neural net might.
Specific knowledge is explicitly written in, and the outcome hinges on the interaction
between the knowledge embodied in the many rules and the user’s input. Decisions are
made randomly, but the rules impose limits on the choices to prevent them from going
too far. Because perfect imitation only leads to an exact replica, imitation is not the
ultimate goal. In a way, creation of something new makes it easier because there is no
set pattern that must be adhered to.

Because the boundary between right and wrong is not absolute in matters of taste,
there have been many ‘‘good enough’’s in the design of the generation engine that I will
criticize. In preventing the rhythms from sounding too mechanical, the random
additional attacks inserted into the rhythm could have been matched by random deletions
as well. Instead, insertion alone was judged to be sufficient in preventing over-
predictability. In playing a cadence at the end of a stanza, other cadence styles could
have been added that give the same sense of an ending -- for example, having the music
trail off at the same tempo until the notes are too soft to be heard. In allowing different
layers to play different rhythms, each layer could have been given its own full set of
rhythm gene~ "on parameters to allow for maximum flexibility in combining rhythms.

Instead. the various modifications were considered flexible enough in creating rhythmic
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contrast. Finally, there is more room for improvement in that instruments can be
classified into groups based on characteristics such as amount of sustain and harshness.

Again, differences in MIDI equipment will pose an obstacle, but it is not insurmountable.

12. Looking Forward

Much of the knowledge contained in the rule base will be simplistic to musicians,
but still the average person often either cannot get easy access to it, or does not care
enough to try. Yet they do listen to the radio, to tapes, and to CDs of performers that
otherwise cannot perform in their living rooms. If made available, a system like Sharle
can heip give everyone a bit of compositional experience without a great deal of effort
and without looking over the shoulder of a composer.

I was asked by a businessman about the application and practicality of computer
music. “‘Is there a market?” was the basic question, ‘‘Do people feel a need ror
compositional experience? There are so many people who go through life without ever

Y

feeling such an urge.”” My response to him was that new technology creates demand.
Before the web, use of the internet was mostly limited to the academic community, but
the better interface and ease of use provided by the web browser suddenly put everyone,
expert and novice alike on the internet. A simulation of flying a jet cannot compare to
the real thing, but for people who may lack either the time or ability to learn to fly... or to
compose music, we can give them a chance to taste some of the creative experience.

That computer music will be available in everyone’s living rooms is not a thing
for the future. It is a thing of the present. Just recently (May 1996), Brian Eno

announced the release of Generative Music 1 for Windows (with SSEYO’s Koan

software) -- an interactive music program with nearly 150 parameters. Although the
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work is still limited to envelopes around twelve distinct pieces and vy to nine hours of
continuous play, the wide availability of fully generative musical software cannot be toc

much further down the road.
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Appendix - User’s Guide

This is a short summary of the Windows version of Sharle.

Startup

On startup, the user is asked if MIDI output should be sent only to the sound card,
or sent via the sound card to an external synth that is assumed to be be attached to the
sound card by a MIDI cable. The generation engine will already be on, using default
parameters to produce the notes for a single layer, using instrument 0.

Level I

The controls described in section 9.1 will be immediately visible. The change
parameter’s slider control defaults to O (no change) on the left and can be increased by
moving it to the right.

Three other buttons also appear. Debug can be ignored. Quit (of course)
terminates the program. Next Level will bring us to the next level, which is...

Level II

Two sliders, one vertical and one horizontal, appear. Moving the horizontal
slider to the right interpolates toward blue and green, to the left toward red and violet.
Moving the vertical slider up interpolates toward red and green, down toward violet and
blue.

Level III

All the parameters are increased by moving their sliders to the right, with two
exceptions. Moving the Tempo slider to the right increases the period length (decreasing
the tempo). The Scale slider has 6 distinct values from left to right -- a major scale, a
more consonant major scale, a more consonant minor scale, a minor scale, a pentatonic
scale, and a more minor sounding pentatonic scale. Although the Key slider ranges from
0 to 127, only the value modulo 12 is significant.

Level IV

The LAYER control shows which layer is being modified by the other controls.
When placed on the far left, all layers are targeted for modification. One step to the right
targets the first layer, two steps to the right targets the second layer, etc. When this slider
control is placed on the far right, a new layer is added.

New layers default to being inactive. Move the Active control to the right to turn
a layer on. The rest of the controls all increase their respective parameters when moved
to the right, except the R. Style slider which has four values from left to right -- a regular
beat, attacks between those of the main rhythm, a periodic pattern, and the mairi rhythm
itself (see 7.2.5).
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