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Abstract

Distant metastases, which result in >90% of cancer related deaths, is enabled by hematogenous
dissemination of tumor cells via the circulation. In particular, tumor cell extravasation is thought to be an
essential and potential rate-limiting step, as most metastases are found in the extravascular space rather
than intraluminal at distant organs. However, mechanistic insights into the cellular and molecular players
during extravasation are limited due to technical challenges in observing real-time events in vivo.
Increased understanding of the extravasation cascade is critical in uncovering new opportunities for
therapeutic intervention during early metastatic dissemination.

In this thesis, we develop an in vitro model of the human microcirculation with the capability to
recapitulate several discrete steps of hematogenous dissemination, including tumor cell circulatory
transport, arrest, and transendothelial migration. The microdevice features self-organized human
microvascular networks through which tumor cells can be perfused and tracked over time via standard
confocal microscopy. In addition to improved throughput for parametric studies, robust and rapid scoring
of extravascular cells combined with high spatio-resolution imaging for deciphering cell morphological
dynamics can be easily achieved due to excellent optical accessibility.

To demonstrate the ability to obtain novel biological insights, we apply the assay to decipher the
roles of tumor integrins in modulating extravasation. In particular, we deplete integrin beta-1 in tumor
cells and isolate the specific defects in the extravasation cascade. Dynamic imaging revealed that pl-
depleted cells lacked the ability to sustain protrusions into the subendothelial matrix in contrast to control
cells. Specifically, adhesion via a3pl and a6p1 to subendothelial laminin was a critical prerequisite for
successful transmigration, as well as basement membrane breaching. Combined with validation from in
vivo metastasis assays, we find that tumor beta-1 integrin is a critical mediator of extravasation and
metastases formation.

Furthermore, we demonstrate the potential of our assay to recapitulate the complexities of the
host microenvironment via modular addition of non-cancer host cells. Specifically, we explore the
interactions of circulating human neutrophils with tumor cells and demonstrate that their interactions can
exert pro-extravasation effects through neutrophil-derived IL-8. Through high spatio-temporal resolution
imaging, we further identify novel mechanisms through which neutrophils are sequestered and confined at
the vicinity of trapped tumor cells during flow conditions, and how the spatial localization of their
secreted factors can act to facilitate tumor transmigration.
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Chapter 1

Background and Motivation

1.1 The metastatic cascade

Cancer metastasis, the spread of cancer cells from a primary tumor site to a secondary organ,

accounts for 90% of deaths among cancer patients1 . In order for cancer cells to transmigrate and colonize

a distal organ, they must overcome several barriers in a series of steps termed the "metastatic cascade" 1 .

Tumor cells of epithelial origin at the primary site undergo an epithelial-to-mesenchymal transition 2

(EMT), acquiring the capability to invade and migrate through the tumor basement membrane, as well as

the stromal matrix surrounding the epithelial tissues. This enhanced migratory ability allows cancer cells

to spread throughout the primary tumor site, and can be further promoted by chemical (growth factors),

cellular (tumor-associated stromal cells), and mechanical (interstitial flow) cues within the tumor

microenvironment3 . The growth of the tumor can also initiate angiogenesis, allowing blood vessels to

extend into the tumor tissues4 . Besides supplying cancer cells with nutrients, these tumor-associated blood

vessels also provide cancer cells with a route of escape from the primary tumor. Once a migrating cancer

cell come into contact with a blood vessel or lymphatic, it can transmigrate through the endothelial wall

and enter the circulation in a process called intravasation. In the blood stream, these circulating tumor

cells can travel to the secondary site, and exit the blood vessel by extravasation. These extravasated

cancer cells can recolonize the secondary site'. Taken together, cancer metastasis is a complex process

that involves a series of distinct steps (Figure 1).

Recognizing the complexity of this process and the corresponding challenges associated with

studying them in vivo, it is perhaps not surprising that a full understanding of the critical mechanistic

details of metastatic disease is lacking. For similar reasons, there is a marked absence of drugs available

to treat metastatic cancer by inhibiting one or more of the steps of the metastatic cascade. These key

shortcomings have led in recent years to a rapid expansion of new in vitro technologies, especially in the

field of microfluidics, to study metastasis and to create assays with the potential to screen for drugs with

therapeutic value.
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1.2 Tumor cell extravasation cascade

Extravasation, the first step of seeding metastases, involves a cascade of events consisting of (1)

tumor cell arrest and formation of stable adhesions (2) transmigration through a tight endothelial barrier,

and (3) subsequent invasion into the surrounding subendothelial basement membrane and matrix (Figure

1). There have been two general hypotheses regarding the mode of arrest of circulating tumor cells

(CTCs) in a blood vessel: mechanical trapping of cells and/or active preferential adhesion of the tumor

cell onto the endothelium in a distant organ. James Ewing proposed that metastasis at distant organs is

dictated by the anatomy of the blood and lymphatic vessels and blood circulatory paths between primary

and secondary tumor sites 5. CTCs, due to their relatively large size (-15-20 microns in diameter), may

become physically trapped in the microcirculation, become activated, and eventually transmigrate 6.

However, Steven Paget's "seed and soil" hypothesis suggests that there exist interactions between

different tumor cell types and specific organ microenvironments that guide their metastatic spread. The

vasculature of such organs may be primed with surface receptors/molecules or secrete chemokines that

cause specific tumor cell types to preferentially "home and seed" at that particular tissue environment.

7This is supported by the observation that breast cancer cells frequently metastasize to the bone .

Although two distinct phenomena have been described, is it clear now that the two theories may not be

mutually exclusive; in fact, it has been suggested that tissue/organ tropism can be influenced both by

physical trapping and interactions between "seed cells" and "receptive soils" 8.

Although the mechanisms of tumor cell intravasation have been widely studied, the precise cellular

interactions and molecular alterations associated with extravasation are poorly understood. Single tumor

cell extravasation events are challenging to capture in real-time and high definition in vivo partly due to

the optical inaccessibility of visceral organs; thus, most data are gathered endpoint assays that indirectly

observe tumor cells via quantification of secondary tumor formationl0 "'. Furthermore, in vivo models are

limited in their ability to isolate discrete steps in the extravasation cascade, rendering it difficult at times

to fully understand the mechanistic details of the extravasation process.
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Figure 1. The metastatic cascade and extravasation. Cells from the primary tumor invade into the surrounding tumor

stroma and eventually access the microcirculation via intravasation. Circulating tumor cells can then travel to a distant site,

extravasate, and proliferate to form a secondary metastases. Extravasation (dotted box inset) involves a cascade of events starting

with tumor cell arrest due to adhesion or size limitation, followed by transendothelial migration and migration into the

perivascular matrix. Figures adapted from ' .

1.3 In vitro models of the metastatic cascade

Although no in vitro model can fully replicate the complexity of the in vivo metastatic milieu,

considerable effort has been devoted to the development of more sophisticated in vitro technologies to

facilitate our understanding of tumor cell invasion, migration, and interactions with the vasculature.

Conventional cell culture assays including petri dishes and Transwell/Boyden chambers have proven to

be pivotal in enhancing our understanding of cellular interactions in metastasis by recreating discrete

events in a complex cascade and offering tight control of certain critical experimental parameters.

However, there remain several needs that most traditional in vitro assays cannot yet satisfy. These include

the recapitulation of spatial and temporal chemokine gradients, mechanical stresses, and relevant spatial

organization of multiple cell types.

Microfluidics has made great strides in the field of cell biology, allowing scientists to fabricate

sophisticated 3D models feature highly controlled microenvironments. Devices can easily accommodate
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different cell types which can be arranged in physiologically relevant configurations to mimic the in vivo

tumor microenvironment". Chemokine gradients and mechanical forces such as interstitial fluid pressure

on tumor cells or shear stresses on endothelial cells can be readily applied, controlled and quantified 15.

Cells can be embedded and cultured in 3D ECM hydrogels that mimic the in vivo cell migration scenario,

but still be amenable to high resolution imaging as the small volume and/or thickness of cell culture

chambers generally provide excellent optical clarity ". High spatio-temporal resolution imaging in

experimental metastasis assays is important as it enables characterization of the morphological details

during tumor cell invasion and migration, and endothelial cells during transendothelial migration. As

such, microfluidic technologies have emerged as a promising approach to develop intricate in vitro cancer

models and recapitulate the different steps in the metastatic cascade.

In vitro assays to study extravasation

The most commonly used and accepted in vitro model to study tumor-endothelial interactions in

the context of metastasis is the Boyden chamber/Transwell assay, which provide a relatively simple and

high throughput method for parametric cell migration studies, and overcome some limitations of in vivo

experiments by increasing throughput, ease of quantification of transmigration events and the ability to

employ human cell culture '. Generally, an endothelial cell layer is grown to confluence on a porous

membrane insert and tumor cells are seeded on top of the layer and allowed to transmigrate. The number

of cells transmigrated can then be quantified by collecting the cells on the underside of the membrane.

More recently, similar assays incorporating a 3D ECM matrix beneath the endothelial monolayer have

increased the physiological relevance by recapitulating the subendothelial ECM into which tumor cells

transmigrate 1. A subluminal-to-luminal transendothelial migration assay has also been developed to

model intravasation, which features a thin layer of ECM on the bottom of a Transwell filter with layer of

endothelial cells seeded onto this basement membrane-like matrix 18. However, "top-down" assays where

the endothelium and matrix and layered on top of each other in the x-y plane usually do not allow for real

time and high resolution monitoring of tumor cell morphological dynamics during transmigration.

Recently, microfluidic cell culture platforms have emerged to address the need for greater

resolution, higher throughput, control of the cellular microenvironment and enhanced physiological

relevance compared to traditional cell culture methods. Much effort has also been devoted to the design of

microfluidic assays for observing the early stage of metastatic seeding. Methods of engineering

vasculature can be applied in this scenario, including self-organized formation of microvascular networks

4



and endothelial monolayer formation on hydrogel surfaces or porous membranes (Figure 2). Recently,

the Takayama group described a microfluidic chip consisting of two chambers separated by a thin

membrane onto which an endothelial monolayer is cultured1 9. The design resembles a traditional

Transwell assay but with the added advantages of microfluidic systems including high resolution imaging

and application of relevant fluid shear stresses. Tumor cell adhesion and arrest on the endothelium can be

observed dynamically and in high resolution and it was demonstrated that breast cancer cell receptors

CXCR4 and CXCR7 are involved in the adhesion of tumor cells to the endothelium. Similarly, Shin et al

developed a microfluidic platform to recapitulate the metastatic cascade on a single chip, beginning with

intravasation followed by arrest and adhesion on an endothelial monolayer. It was demonstrated that E-

selectin expression and shear stress values dictated the adhesion of colon cancer cells onto the

endothelium 20 . These types of "top-down" devices are particularly amenable to visualizing the

morphological dynamics of the endothelium (e.g. endothelial junction behaviors).

In a different approach, microfluidic devices consisting of microchannels connected by 3D ECM

hydrogels, tumor cells are seeded in one channel, arrest onto and extravasate across an endothelial cell

(EC) monolayer oriented perpendicular to the image plane and migrate into a collagen gel. Using a

system of this design, tumor cell transmigration events were shown to occur in the first 24 hours and were

accompanied with an increase in endothelial monolayer permeability ". A similar type of microfluidic

device was designed by Zhang et al, where one main endothelialized channel is connected vertically with

5 separated matrix-filled channels. HUVECs are grown to confluence on the hydrogels at the ends of the

matrix channels and tumor aggregates are seeded into the endothelial channel where extravasation events

can be observed 22. In another study, a "multi-stepped" device is designed where tumor cells must first

deform past 10-micron gaps between PDMS posts, which mimics the narrow capillaries through which

tumor cells traverse in the circulation2
1. A portion of these deformed cells are then collected and

transferred to a "transmigration chamber" consisting of an endothelialized channel connected to Matrigel

filled channels, similar to that described in Zhang et a1 2 2 . These types of monolayer-based assays are

particularly amenable to imaging of tumor cell morphological dynamics, as migration occurs in the plane

of view; however the details of the endothelium during transmigration are compromised (such as

morphological dynamics of endothelial junctions). Moreover, there is the capability to incorporate

chemical gradients orthogonal to the endothelial barrier, which may be useful to test hypotheses involving

the dependence of transmigration on chemotactic agents. However, in these assays, the number of

observable transmigration events is often limited due to the small surface areas between posts (required to

prevent gel bursting), frequent sprouting of ECs into the gel, as well as difficulties in ensuring a

continuous monolayer at the junction of PDMS posts and the hydrogel surface. Confirming the barrier

5



integrity at each of these focal points via immunofluorescence or diffusive permeability measurements

would be laborious but an essential step if the assay were to be used for extravasation. Other challenges

with monolayer-based assay include the artifactual dependence of transmigration rates on the degree of

endothelial confluency and geometrical over-simplification as extravasation occurs in complex 3D ptVNs

with vessel segments of 5-30 Itm in diameter instead of >100 tm 24 or an "infinite" flat plane of

endothelial cells 21,'. Additionally, in many monolayer systems (especially Transwell filters), nearly all

tumor cells seeded at t=0 will translocate across a monolayer over a 24-48 hour time frame. When

compared to much lower extravasation rates of 40-60% at 24 hours that are typically found in mouse26,27

and zebrafish 28 models for a variety of cell lines, this suggests that endothelial monolayers exhibit much

greater permissiveness to tumor cells compared to in vivo microvasculature. We note however, that this

value can vary widely depending on the cell type and in vivo model used. Lastly, while monolayer assays

have adequately modeled many microvascular behaviors, they do not readily allow simultaneous

application of lumenal flow with a 3D tubular organization.

A CFwBC 3Dve2Dtpiw
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Figure 2. Microfluidic models of extravasation. (A) An extravasation model featuring an endothelial monolayer on top of a

porous membrane sandwiched between two microchannels. The endothelium can be subject to physiologically relevant shear

stresses while tumor cells are allowed to transmigrate from the top to the bottom microchannel (reproduced with permission from

29). (B) Tumor cells can be observed to transmigrate across a confluent endothelial monolayer and into the 5 matrigel-filled

microchannels connected perpendicular to the endothelial channel (reproduced with permission from 22). (C) An endothelial

monolayer is grown to confluence on the side of a gel-region to mimic the vascular barrier. Tumor cells are seeded in the

"lumen" and extravasation events can be observed in the x-y plane of view (Reproduced with permission from 21)
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1.4 In vivo models of extravasation

Current in vivo and ex vivo models for visualizing extravasation include mouse 30-34 zebrafish 31

36-38
and chorioallantoic membrane (CAM) assays -. While murine models remain the gold standard for

recapitulating metastatic seeding, the organs in which tumor cells arrest are generally not very optically

accessible to allow live single cell imaging, rendering it difficult to assess extravasation rates; these are

more suitable for end point ex vivo analyses33,34. CAM and zebrafish assays have previously been

demonstrated to be much more optically accessible partly due the "planar" nature of the capillary beds,

allowing intravascular and extravasated cells to be more clearly differentiated. However, the ability to

resolve the dynamics of tumor cell protrusion kinetics with a large number of data points is still limited,

likely due to the technical challenges associated with tumor cell injection and live imaging in intact

organisms. Quantification of extravasation events in murine systems is often subjective due to the

tortuosity of in vivo vasculature and tissue processing, and precise measurements relies on high resolution

imaging (60X), greatly increasing data collection times, and are generally unsuitable for highly

parametric studies. One heavily employed method to score extravasation is by counting how many tumor

cells are retained in the lung after a certain time post-injection, with the assumption that extravasated cells

will remain detectable while non-extravasated cells are lost due to shear or immune factors. However,

recent analysis of mouse lung tissues fixed at 24 and 48 hours reveal a non-negligible proportion of

"retained" tumor cells to be intravascular, so these assumptions are questionable 27. Furthermore, all of

the above systems feature non-human host cells, which may be problematic if specific human tumor-

human host cell interactions are not conserved, particularly in the case of various types of immune cells.

Lastly, intravenous injection of tumor cells in most of these systems often require significant technical

expertise, which can limit the number of qualified users and even compromise the reproducibility of

results. Moreover, procedures such as intra-cardiac injection of tumor cells often result in very few

number of tumor cells found in the sites of dissemination, rendering it difficult to gather sufficient amount

of data points.

1.5 Motivations for employing microfluidics

Despite the challenges still associated with in vitro transmigration assay, there remains untapped

potential for applying microfluidic technologies to study tumor-endothelial interactions. In combination

with gold-standard in vivo methodologies, microfluidics are well-poised to address the following needs in

an extravasation assay which are challenging to achieve in vivo (Figure 3):

7



e Isolation and discretization of specific steps in the intravasation and extravasation cascade

(adhesion, transendothelial migration, basement membrane breaching) to facilitate understanding

of the mechanism of action of different cellular proteins or drugs

e Ability to recapitulate physiologically relevant spatial patterning and organization of multiple cell

types at the metastatic site

e Facilitates 3D cell culture in ECM or ECM-like hydrogels

e High spatial resolution imaging of tumor-endothelial interactions during intravasation and

extravasation via conventional microscopy techniques

e Facilitates real-time visualization transmigration events, allowing close observation of the

dynamics of the endothelium and tumor cells

e Allows for highly controlled and tunable microenvironments, such as precise application of

relevant spatio-temporal chemical gradients, mechanical stresses, and complex interactions

between different cell types 14'39.

e Relatively lower cost and higher throughput than conventional in vivo model

- Relatively lower reagent volume compared to conventional in vitro cell culture methods

Traditional in vitro Microfluidic models In vivo models
models

2D 3D Zebrafish Mouse

Human
clinical trial

Advantages of microfluidic models over:

Traditional In vitro

-Ability to directly perfuse
vascularized structures

Traditional In vitro and in
vivo models

-Increased control of
microenvironment
-improved imaging capabilities
-Fewer cells and less drug
needed

In vivo models

-Use of cells exclusively
of human origin

Trdbs In Cancer

Figure 3. Overview of the various types of extravasation models and the potential advantages microfluidic platforms compared

to traditional in vitro models and in vivo models. Figure adapted from 40 .
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1.6 Thesis aims and overview

Overview

Despite the fact that metastasis is the leading cause of cancer related deaths, many of the

biological mechanisms that drive this key process remain poorly understood. In particular, tumor cell

extravasation is thought to be an essential and potential rate-limiting step, as most metastases are found in

the extravascular space rather than intraluminal at distant organs. Extravasation is made possible by a

complex orchestration of various cell-cell adhesion, cell-matrix adhesion and biochemical signaling

events. Additionally, it is know widely believed that extravasation events can be modulated by non-

cancer host cells, such as circulating platelets, leukocytes and various stromal cells (Figure 4).

It is not surprising that the complexity of these processes opens many questions regarding the role

and importance of both individual and combinations of factors that modulate extravasation. Addressing

these questions can be greatly facilitated by in vitro technologies that enable (1) visualization of single

tumor cell extravasation dynamics at high spatiotemporal resolution combined with (2) rapid, highly

parametric and robust quantitation of extravasation events. When combined with gold-standard in vivo

models, a deeper understanding of extravasation can be achieved and potentially contribute to improved

methods for screening of possible therapeutic agents targeted at the extravasation step.

Thus the goals of this thesis are:

1) Engineer a micro-scale model of the extravasation microenvironment that closely mimics the in

vivo scenario, while achieving both high throughput-screening capabilities combined with high

spatio-temporal resolution visualization of cell morphology and motility.

2) Apply assay to obtain novel insights into the identities and spatio-temporal organization of

cellular and molecular players involved in various cell-cell/cell- matrix interactions in the

extravasation microenvironment, which are otherwise challenging to obtain in vivo. Understand

how these interactions modulate extravasation.



Thesis aims

In Chapter 2, we describe the development of a microfluidic-based assay to recapitulate the

extravasation microenvironment and characterize the vascular function and extravasation dynamics. The

validity, sensitivity and throughput of the platform is demonstrated via identification of various factors

that modulate extravasation rates.

In Chapter 3, we employ our extravasation assay to decipher, in high spatial resolution, the roles

of tumor integrin beta-I in modulating the extravasation process. Integrins are established as regulators of

numerous tumor cell functions including adhesion, migration, invasion, proliferation and survival 41.

However, the precise steps in the extravasation cascade mediated by beta-I remain unclear, partly due to

challenges in observing these events in vivo. We demonstrate the ability of our assay to isolate the

specific defects in the extravasation cascade associated with beta-I depletion and identify novel insights

into its roles in in tumor-endothelial adhesion, transendothelial migration, and basement membrane (BM)

anchorage. Combined with validation from in vivo metastasis assays, we show that tumor beta-I integrin

is a critical mediator of extravasation and metastases formation.

In Chapter 4, we apply our platform to recapitulate and decipher the interactions between tumor

cells and circulating neutrophils, and mechanisms through which this modulates tumor cell extravasation.

It is widely believed that the metastatic potential of disseminated tumor cells can be modulated by both

cooperative and antagonistic interactions between host microenvironment and tumor cells . In particular,

tumor cells encounter a variety of blood cells throughout their transit in the circulation, such as

neutrophils, the pre-dominant circulating granulocyte in humans. To explore this, we first modify our

platform to enhance throughput and robustness and apply it to demonstrate that neutrophils can exert pro-

extravasation effects through the neutrophil secreted factor, IL-8. Through high spatio-temporal

resolution imaging, we further identify novel mechanisms through which neutrophils are sequestered and

confined at the vicinity of trapped tumor cells, and how the spatial localization of their secreted factors

can act to facilitate tumor transmigration.

10
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Figure 4. Tumor cell extravasation is a complex orchestration of various cell-adhesion and biochemical signaling events.

Furthermore, there may exist cooperative interactions between non-cancer host cells and tumor cells which further dictate the

extravasation cascade.
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Chapter 2

Development of microfluidic assays for visualization and

quantitation of tumor cell extravasation dynamics*

2.1 Introduction

Extravasation involves a cascade of events consisting of (1) tumor cell arrest on the endothelium

resulting in the formation of dynamic contacts that give rise to significant cytoskeletal changes, and (2)

tumor cell transendothelial migration (TEM) and subsequent invasion into the surrounding matrix4 3 .

Although the mechanisms of intravasation have been widely studied, the precise cellular interactions and

molecular alterations associated with extravasation are poorly understood. In fact, most data are gathered

from low-resolution in vivo studies and endpoint assays that indirectly observe tumor cells via

quantification of secondary tumor formation in existing animal models As such, direct observation of

tumor cell arrest on and subsequent migration across an endothelium in a precisely controlled and

physiologically relevant microenvironment would provide important insight into extravasation

mechanisms.

Currently, in vitro models such as the Boyden chamber-Transwell assays provide a relatively

simple and high throughput method for parametric cell migration studies, yet do not allow monitoring of

the entire process of extravasation and are limited in their physiological relevance44'45 . Conversely, in vivo

models of extravasation such as rat-tail vein injection of tumor cells mostly do not allow for high-

resolution visualization of extravasation events. More recently, intravital microscopy performed on

optically transparent transgenic zebrafish has enabled high spatial and temporal resolution imaging35;

however, as with most in vivo platforms, the ability to perform parametric studies is restricted. Recently,

microfluidic technologies have been developed to enable high resolution and dynamic study of both

tumor cell intravasation and extravasation21 ,46. In the latter, devices consist of microchannels connected

by 3D ECM hydrogels, where tumor cells are seeded in one channel, arrest onto and extravasate across an

endothelial cell (EC) monolayer and into a hydrogel. However, the use of polydimethylsiloxane (PDMS)

* Sections of this chapter have been published previously. See Reference 89. 12



posts to contain the gel often prevents the formation of a continuous, low-permeable EC monolayer. It is

also difficult to predict how changes in stiffness between the PDMS and gel affect extravasation

mechanisms. Furthermore, most studies of extravasation or TEM across planar EC monolayers are limited

in their physiological relevance.

3D microvascular networks (pVNs) have been widely explored in vitro and are particularly

amenable to the study of vascular biology and modeling of disease in a more physiologically relevant

configuration than endothelial lined tubes or monolayers. pVNs can be formed from self-organized,

physiologically relevant vascularization processes, including sprouting angiogenesis and vasculogenesis.

Recently, several groups have developed microfluidic platforms capable of generating perfusable 3D

VNs47-49 . While no in vitro system can fully recapitulate the complexity of an in vivo situation, such

vasculature have the potential to more closely model the in vivo tumor cell extravasation environment.

In this chapter, present the development of a microfluidic platform for the modeling of the entire

process of extravasation from within in vitro ptVNs assembled via vasculogenesis. Our platform offers

key advantages over existing in vitro extravasation models by enabling all of the following: (1) high

temporal and spatial resolution of extravasation events, (2) the ability to perform parametric studies in a

tightly controlled and high throughput microenvironment and (3) increased physiological relevance

compared to 2D and 3D planar monolayer models. We employ our model to demonstrate the effect of

inflammatory cytokine stimulation on endothelial barrier function and TEM efficiency, and the positive

correlation between metastatic potentials of different tumor cell lines and their extravasation capabilities.

We demonstrate high spatiotemporal visualization of the sequential steps of extravasation from in vitro

pVNs, and observe the TEM patterns of different tumor cell subpopulations including mechanically

entrapped cells, single arrested tumor cells and cell clusters. Findings from our platform result in a deeper

understanding of tumor cell extravasation mechanisms and demonstrate our assay's potential to be

employed for the discovery of factors that could inhibit this crucial step in metastasis.

2.2 Assay design

Recapitulation and study of the critical steps in early metastatic seeding requires a system with

several capabilities: 1) a microvascular network with dimensions and barrier functions comparable to the

human microcirculation, 2) the ability to perfuse circulating tumor cells into the network with the option

to maintain intravascular flow for the remaining duration of the experiment, and 3) imaging of

extravasation events with high spatiotemporal resolution. To meet these requirements, we have developed

a simple, easy to use in vitro microfluidic-based assay featuring perfusable piVNs. The user can achieve
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rapid and robust quantitation of tumor cell extravasation efficiency, and if required, perform higher

spatiotemporal resolution imaging of the morphological dynamics of tumor and endothelial cells during

transmigration. The assay consists of 5 key sequential elements: (1) device fabrication and sterilization,

(2) injection of endothelial and fibroblast cell-laden fibrin gels, (3) device culture until formation of a

mature perfusable pVN, (4) perfusion of tumor cells, (5) live tracking of tumor cell extravasation and

proliferation events and data analysis.

Formation of in vitro yVNs in microfluidic devices

The device builds upon the microfluidic gel chamber designs previously published in our lab50 . It

features three hydrogel regions (each 800 Rm wide x 1300 jim long x 110 [tm high) each separated by

media channels that allow delivery and exchange of soluble factors and small particles. Upright micro-

posts separated by 100 [im delineate the boundaries of each gel region, simultaneously allowing surface

tension-assisted filling of cell-laden hydrogels and paracrine interactions between endothelial cells and

flanking fibroblasts. Human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (FBs)

suspended in fibrin gels are injected into the central region and side regions, respectively (Figure 5).

Once seeded, single HUVECs elongate, form vacuoles and connect with neighboring cells to form patent

lumens ranging from 8 to 96 gm in diameter within 4-5 days (Figure 6). Paracrine signaling from stromal

cells in the flanking gel regions help to prevent the premature regression of [tVNs (compared to HUVEC

mono-culture) 1 , such that the characterization of extravasation events is not affected by changes in

network morphology. Vessels are relatively quiescent, with individual vessel diameters increasing by

5.1+4.7% from days 4 to 5, and 5.7+5.4% from days 5 to 6. Similarly, the normalized number of vessel

branches exhibited no statistically significant changes, indicating minimal EC remodeling and apoptosis.

The number of devices seeded per experiment is up to the discretion of the user - we have robustly shown

that 24 independent devices can be seeded in one sitting without compromising cell viability. While it is

possible for human microvascular endothelial cells (HMVECs) to be used instead of HUVECs, we have

observed that the current protocol with HMVECs yields significantly less perfusable and interconnected

vascular networks. Further optimization of initial ECM composition and exogenous growth factors is

required if HMVEC culture is desired.

Microfluidic devices were fabricated via standard soft lithography as described previously 5 .

Fibrinogen solution was prepared by reconstituting 5 mg/mL or 10 mg/mL of bovine fibrinogen (Sigma,

MO) in PBS and dissolving the mixture in a 37*C water bath for 2 h. The solution was then filtered using

a 0.2 im filter and stored at 4'C. Human umbilical vein endothelial cells (HUVECs) (Lonza, MA) were
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cultured in supplemented endothelial growth medium (EGM-2, Lonza) and grown to passage 5 before

they were trypsinized and resuspended at a concentration of 8 million cells/mL in a solution of EGM with

0.1 5U/mL GM-6001 (PeproTech, NJ) and thrombin (0.5 U/mL, Sigma). The cell suspension was then

mixed in a 1:1 ratio with 20 pL of 5mg/mL fibrinogen to achieve a final concentration of 4 million

cells/mL and immediately injected into the HUVEC gel channel. Normal lung fibroblasts (NHLFs)

(Lonza, MA) cultured in supplemented FGM (Sigma, MO) until passage 5 were similarly dissociated and

suspended with the 10 mg/mL fibrinogen solution to reach a final cell density of 9 million cells/mL, and

was injected into the NHLF channel. Devices were placed in a humidity box at room temperature and gels

were allowed to cure for 20 minutes before filling the media channels with supplemented EGM. Media

was replenished every 24 h for the duration of the culture. All cells were maintained in a humidified

incubator at 37*C and 5% CO2.

A 1
Wafer with PDMS curing Inlet and outlet

microfeatures and punching Plasma bonding
detachment

E

Wait 24 hours for
hydrophobicity

recovery

C
gel injection

HUVEC + thrombin fibrin

FB +thrombin fibrinj

LEG MU Lnt

M ~ EGM-2MVV injection

Polymerization in
humidified chamber

for 15 min

Culture for 4 days
at 37C and 5% C02

Figure 5. Schematic of assay and cell seeding protocol. (A) SU-8 wafers with micro features are fabricated (design given in

Supplementary Materials) and PDMS devices are made via standard lithography techniques. Inlet and outlet holes are cored and

PDMS channels are bonded to no. 1 coverslips. (B) Photograph of finished microdevice prior to cell seeding. (C) HUVECs and

FBs are suspended in fibrin gel and are microinjected into separate gel regions. Upon gel polymerization, media channels are are

filled with EGM-2MV growth media and incubated for 4 days to allow for lumen formation.
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Tumor cell perfusion

Vasculogenesis-like tube formation in 3D hydrogels has long been demonstrated in a variety of

assays, including gel droplets and endothelial cell spheroids 12,13. However, while micro-vessels form,

most systems remain un-perfusable to small particles due to the lack of accessible entry points into the

vasculature. In our assay, the device is designed such that the ItVNs form open lumens that connect with

the media channels via the gel between micro posts, after 4-5 days of culture (Figure 6B). Similar designs

in microfluidics have been robustly employed to allow vascular network formation followed by perfusion

to study endothelial barrier function7 '4 9' 54. In this set-up, tumor cells suspended in medium can be

perfused into iVNs by applying a hydrostatic pressure drop (- 5mm H2 0) across the HUVEC gel region,

which results in physiologically relevant fluid shear stresses (- Pa). During 10 minutes of perfusion via a

hydrostatic pressure drop, both single and aggregates of tumor cells physically lodge and/or adhere to the

endothelium in the microvessels (Figure 6C). At times, single tumor cells lodge and dislodge multiple

times throughout the network before permanently arresting, similar to in vivo observations 42. In the case

of tumor cells with diameters of-15-20 Rm, >80% of tumor cells arrested in the networks are physically

lodged, rather than purely adhered. The number of arrested tumor cells per device generally ranges

between 40 to 100 cells. This depends on several factors including average vessel diameter, tumor cell

diameter, duration of perfusion and degree of perfusability of the VN.
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Figure 6. Vessel formation and tumor cell perfusion procedure. (A) Single HUVECS elongate, form vacuoles and

subsequently self-assemble into interconnected lumenized vascular networks over the course of 4 days. (B) Triangular PDMS

micro posts spaced 100 [tm apart allow cell-laden fibrin gels to be spatially contained, but also serve as a connection between the

cells and media sources. Uniquely, lumens form openings which connect the microvascular network to the media ports, allowing

tumor cells to be perfused via a hydrostatic pressure drop. (C) Flowing tumor cells become physically trapped in networks due to

size restriction. Trapped tumor cells (TC) can be clearly identified via phase contrast and fluorescent microscopy. Scale bars =

100 [tm.

Briefly, MDA-MB-231, HT-1080 (from Dr. Frank Gertler, MIT) cultured in DMEM (Sigma,

MO) supplemented with 10% FBS and 1% Pen-Strep (Invitrogen, CA), and MCF-IOA cells (from the

Brugge Lab) were trypsinized and resuspended at a final concentration of 0.4 M cells/mL in EGM. Media

from the reservoirs of the two channels flanking the HUVEC channel were aspirated and 40 [tL of the

tumor cell suspension was introduced into one of the reservoirs of the central media channel. This creates

a pressure drop of 5.2 mmH20 across the vascular network, drawing the tumor cells into the vasculature,

and corresponds to estimated shear stress values in the range of ~1 Pa during cell seeding, comparable to
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the range of wall shear stresses found in venular microvessels, (< 1 Pa)55 . Devices were placed in an

incubator immediately after seeding and left to equilibrate for 30 min, after which devices were washed

by applying fresh media via a pressure drop in the same direction as the tumor cell seeding to remove any

non-adherent cells.

Cells were seeded at a density low enough to prevent clogging of the lumen openings and be

reflective of the low cell density in vivo 5, yet high enough to observe at least one extravasation event per

region of interest (ROI). After varying tumor seeding densities, we selected 0.4 million MDA-MB-231

cells/mL, which produced an average of 21.2 +8.7 tumor cells per ROI (24 ROIs over 3 devices). This

corresponds to an estimated 0.63 million cells/mL of vascular volume.

Quantification of extravasation efficiency and live tracking of extravasation kinetics

To quantify extravasation events, HUVECs were imaged live or fixed at the final time point to

visualize the position of the tumor cell relative to the endothelial barrier. Confocal images were obtained

each microvascular bed at 20X magnification and assessed in Imaris Bitplane or ImageJ using the built-in

functions for "orthogonal views." Cells are scored as extravasated if the entire tumor cell body is found

outside of the lumen. These can be clearly differentiated from mid-transmigrating and fully intravascular

cells. The thin height of the hydrogel region causes pVNs to be confined largely to a single plane, greatly

increasing the speed of imaging and enabling robust extravasation scoring (Figure 7). Tumor cells are

typically found to initiate the extravasation cascade within 2 to 6 h p.i., and a fraction of these can

complete transmigration anywhere between 4 to 48 hours depending on the tumor cell type and/or

treatments applied. If desired, the user can impose constant flow of media through the pVNs to simulate

the flow condition in vivo, throughout the entire extravasation process. This can be achieved via

hydrostatic pressures generated from integrated reservoirs (typically for <6 hours before significant

equilibration), or syringe pumps. Extravasation efficiency can be assessed over time via live confocal

microscopy in situ. At 20X magnification, imaging of an entire device typically takes 6 to 8 minutes,

depending on the optimal imaging configurations and number of regions of interest. Images are later

reconstructed in 3D using standard software packages such as Imaris Bitplane (Belfast, UK) for analysis.
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Figure 7. Scoring and quantification of extravasation efficiency. (A) Confocal projection of a representative region of tumor

perfused (red) microvascular network (green) at 20X. Tumor cells can be robustly scored as intravascular, mid-transmigrating, or

fully transmigrated by reconstructing the cross section at 20X (scale bar = 10 km).

If desired, kinetic data from single or clusters of extravasating cells can be quantified in a moderate

throughput manner via time-lapse imaging. The user can observe detailed morphological dynamics such

as the time to initial endothelial penetration, and speed of translocation across the vascular wall.

Generally, a magnification of~20X is sufficient to visualize these details, with time intervals as small as

5 minutes, depending on the number of cells to be imaged. Such imaging is facilitated by the short

distance (between 170 to 210 tm) between the outer bottom surface of the device and the plane of the

[tVNs. In addition, temporal and spatial organization of intracellular or extracellular proteins can be

resolved, provided that proteins of interest are fluorescently labeled prior to imaging. Depending on the

desired level of discrimination between discrete elements, imaging of some cellular proteins (e.g. F-actin,

VE-cadherin, focal adhesion proteins) may require higher magnification (>30X), at the cost of increased

imaging duration.
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2.3 Biological characterization of engineered microvasculature and tumor cell extravasation events

Characterization of endothelial barrier function

To confirm the integrity of the endothelial barrier, staining of the networks at 96 h with anti-VE-

cadherin showed the presence of continuous cell-cell junctions spanning the entire circumference of the

lumen (Figure 8). To assess EC barrier function quantitatively, we employ the method used to quantify

vessel permeability based on that described previously57 . Briefly, background fluorescence images of the

vascular network were obtained (b). The media in all reservoirs were aspirated and the three reservoirs on

one side were injected with 45 [tL of 10 pM 70 kDa MW Texas red dextran solution (Invitrogen, CA)

simultaneously. Devices were placed in an incubator for 20 min, and then transferred to the microscope

environmental chamber for another 10 min, to account for time required for dextran diffusion into the

vessels and recovery from agitation during transfer. Once equilibrium was established (i.e. intensity inside

the vessels remained constant), fluorescent images were captured every 5 min for 60 min. The

permeability coefficient was calculated by obtaining the average intensity in a measuring window

containing both the vessel segment and surrounding gel, at the initial and final time points. Individual

sections of the vessel network of length -80 [tm each (2 sections/ROI, 4 ROI/device, n=3) were selected

for analysis. The length of each section varied slightly, in order to capture a segment that was relatively

uniform in diameter. Care was taken to select vessel segments in the central region of the channel, which

was far enough from the media-gel boundary. Permeability coefficients were computed as:

1 (Ij'-I\ d

li - IAt 4

where I, I and Ih are the initial, final and background average intensities, At is the time between the two

captured images, and d is the average diameter of the vessel segment. All imaging was performed using a

confocal microscope (Olympus, Japan).

A ' B

Figure 8. Characterization of microvascular networks. (A) Visualization of VE-cadherin (red) at 60X reveals continuous cell-

cell junctions. (B) Collagen IV basement membrane deposition (green) around the lumen (red) and in the perivascular space

suggests vessel maturation. (C) Perfusion of vessels with 70 kDa dextran reveals patent lumens void of local leaks. Scale bars are

20 rm.
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Perfusion of the vasculature with 70 kDa dextran revealed patent lumens that were void of local

leaks (Figure 8C) and exhibited a diffusive permeability of (8.92+ 1.47) X 10-7 cm/s (n=24 vessel

segments over 3 devices) at 96 h after HUVEC seeding. These values were comparable to that of in vivo

venules 58and similar to existing in vitro uVN platforms produced via angiogenic sprouting49 suggesting a

strong and more physiologically relevant barrier compared to those reported in in vitro EC

monolayers 2 1,4 6,57. Moreover, the relative quiescence of these microvessels allows us to justify the

decoupling of vessel remodeling and extravasation occurring within the time frame in which the events

are studied.

Characterization ofperivascular basement membrane proteins

Immunostaining revealed that the abluminal sides of microvessels were positive for basement

membrane proteins collagen IV, laminin, and fibronectin (Figure 9), further confirming the level of

maturity and physiological relevance of the vasculature. It is important to note one key advantage of our

micro devices is the low volume of reagents required (<30 [tl) of diluted antibody solutions per device,

rendering it a much more economical choice, especially when a large number of proteins or samples are

involved and/or when antibodies are particularly costly or rare. High spatial resolution can be achieved -

in particular, staining for basement membrane proteins such as collagen IV and laminin allows precise

localization of the tumor cells at various stages of extravasation. The ability to generate these data may be

valuable, as it has recently been found that protease-localizing invadopodia can mediate extravasation,

suggesting that basement membrane degradation may be required for complete transmigration.

Collagen IV

B CollagenLann

Laminin

Figure 9. Interaction with the endothelial basement membrane. (A) In vitro endothelial networks deposit a layer of collagen

IV and laminin on the abluminal side, constituting the vascular basement membrane (BM). (B) Fixed immunostaining at various

time points for collagen IV and laminin reveal the close association of extravasating tumor cells to the basement membrane,

suggesting that tumor-BM interactions are involved in the transmigration process. Scale bars are 10 tm.
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2.4 Characterization of extravasation rates, kinetics and cell morphological dynamics

Extravasation rates

In untreated microvascular HUVEC networks (RFP transfected, Angioprotemie), we quantified

an MDA-MB-231 extravasation efficiency of 12.3+3.4% after 6 h and 23.6+4.5% after 24 h.

Extravasation could be observed as early as 30 min after tumor cell introduction into the vasculature,

while the number of extravasated cells plateaued at around 24 h, with no significant difference in the

number of extravasated cells at 48 h (p=0.298). The average number of tumor cells found in each ROI

exhibited a slight yet insignificant (p=0.37) increase between 0 h and 24 h. These results suggest that

most extravasation events occur in the first 24 h, which is similar to the time scales witnessed in vivo2 7

and in other in vitro platforms 21 . Cell viability was 95.2+3.7% at 24 h, suggesting that the adhered yet

non-migratory and/or circular cells were likely not due to tumor cell apoptosis. Lastly, 10 ptm fluorescent

beads introduced into the vasculature were lodged but never extravasated, confirming that extravasation

from within the vessels is not a passive process inherent to the platform.

Tumor cell morphology during TEM

Analysis of a sequence of images of a transmigrating MDA-MB-231 cell revealed that (1)

transmigrating tumor cells first penetrate the EC barrier by extending thin fillipodial protrusions (<1 [tm in

width) into the subendothelial matrix, (2) protrusions continue to increase and branch out while the

remaining body on the apical side of the lumen maintains its sphericity (3), the spherical body decreases

in diameter as more of the cell and the nucleus clears the barrier (4), the tumor cell undergoes significant

shape changes as it adopts a final spread morphology upon exiting the lumen (Figure 10). Interestingly,

during mid-transmigration, the remaining portion of the cell body on the apical side remains spherical,

even after transmigration of the nucleus, suggesting that the sphericity is not due to that of the nucleus.

Furthermore, live nuclear staining at 40X reveals that transmigration of the nucleus occurs within a

relatively short time frame (-15 min) compared to the total time required for complete tumor cell TEM.

Microscopy at 90X revealed a thin segment of the tumor cell joining the two parts of the cell body on

each side of the lumen, suggesting that TEM of most of the cell body occurs via extrusion through a gap

of sub nuclear dimensions.
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Figure 10. Visualization of extravasation dynamics. High-resolution time-lapse confocal microscopy (40X) of an

extravasating entrapped MDA-MB-231 (green). Lumens were labeled with a far-red plasma membrane stain (purple). Tumor

cells transmigrate through the endothelium and into the 3D matrix over a period of 4 h. The white arrow at 3:30 h indicates the

location of a vessel opening at the site of tumor cell TEM.

In addition to dynamic tracking of extravasation rates, time-lapse microscopy (at 20X or 30X)

allows the collection of other insightful kinetic data such as the time to initiation of tumor cell protrusions

and the total time required for complete translocation past the EC barrier. Assessment of images at each

time point via Imaris Bitplane allows the categorization of each individual tumor cell as intravascular,

protruding or fully extravasated (Figure 11A). For instance, when time lapses of MDA-MB-231 and

MDA-MB-231 incubated with anti-VE-cadherin were compared, the endpoint extravasation rates at I1

hours post-injection were greater with anti-VE-cadherin treatment. When data from earlier time points

was analyzed, it revealed that TC protrusions were initiated at earlier times and formed at a faster rate.

When MDA-MB-231 were compared with its highly metastatic variant LM2, not only were extravasation

rates significantly lower at II hours, events appear to plateau while non-extravasating LM2 cells
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continued to initiate protrusions (Figure IB). Such kinetic morphological data can valuable as clues into

the mechanisms at which cells arrive at their endpoint extravasated state. For instance, depending on the

experimental condition, faster protrusion rate can possibly indicate a more permissive endothelium or

increased ability for the tumor cell to initiate adhesion to the subendothelial ECM. Thus, insightful

information may be lost if only end-point measurements are made.
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Figure II. Tracking and quantification of extravasation kinetics. (A) Time lapse sequence of a trapped tumor cell

extravasating from a lumen and subsequently undergoing cell division over 24 hours (scale bar = 10 [rm). (B) Kinetics of the

speed of tumor protrusion formation and time for total transmigration can be readily quantified by following single cells. Sample

data of the percentage of tumor cells in either a "protrusive" state (blue) or "fully transmigrated" state (red) is calculated for

MDA-MB-231 with and without the presence of a VE-cadherin antibody to enhance endothelial permissiveness, and LM2 cells

(highly metastatic variant of MDA-MB-231). Each graph represents data from I device (between 80 to 160 tumor cells per

device).

Endothelial barrier during TEM

Live time-lapse microscopy at 40X did not reveal a discernable gap in the endothelial plasma

membrane at the site of transmigration, suggesting that the area through which tumor cell protrusions

penetrate is relatively small, and likely paracellular rather than transcellular. A definitive opening in the

barrier was only observed near the end of the extravasation events, which was presumably larger to allow

the transmigration of the nucleus. This was confirmed via higher resolution imaging at 60X of endothelial

F-actin, which revealed small gaps (~2 pm) in the endothelial barrier during the initial stages of

24



transmigration (Figure 12). Gaps then gradually increased in size to form holes ~8-10 prm in diameter.

Furthermore, live imaging of endothelial VE-cadherin during the process of transmigration confirmed that

tumor cells protrusions initiate at the cell junctions and that the disrupted junction "re-seals" after

completion of tumor extravasation (Figure 12). Perfusion of the live vessels with 70-kDa dextran also

revealed no apparent leaks at the sites of complete TEM.

A

A

Disruption
B<

Figure 12. Endothelial disruption and re-sealing during tumor TEM. Time lapse sequence depicting the dynamics of(A)

endothelial VE-cadherin (arrow depicts junctional disruption) and (B) endothelial F-actin (arrow depicts EC disruption)

throughout an extravasation event.

Tracking tumor cell proliferation and early micrometastasis formation

Lastly, the assay can potentially be used to study early micrometastases formation via prolonged

culture of microdevices (e.g. >24 hours). We have found that [tVNs can remain relatively stable between

days 1-6 post tumor cell seeding, such that the morphological changes of the [tVNs (i.e. vessel diameter,

interconnectivity) are small enough that the same vessel segments can be recognized and tracked as

culture progresses 5 ". This is partly due to paracrine factors secreted by supporting FBs which enhance

[tVN stability compared to HUVEC monoculture, where vessel regression can be evident as little as 3

days post endothelial seedin g . Tumor cells can also be tracked after extravasation by continued culture

of the endothelial-tumor cell system for periods up to 5-6 days post tumor seeding (Figure 13). Via time-

lapse microscopy or time point imaging, the number of tumor cells can be quantified when tumor cell

nuclei are labeled with fluorescent tags (e.g, mCherry H2B) or when the tumor cell cytoplasm is labeled

with nuclear excluded markers. Cell nuclei can be counted with conventional imaging software such as
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lrnageJ or Imaris Bitplane (Belfast, UK) to assess the level of tumor cell proliferation in both extravasated

and intravascular subpopulations.
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Figure 13. Tracking tumor cell proliferation and early micrometastases formation. (A) Time lapse of single extravasated

LM2 (breast) and A375-MA2 (melanoma) cells proliferating in close association to the abluminal side of the lumen over 4 days

(B) Example of an A375-MA2 micrometastases after 10 days of culture. (C) Quantification of the average fold increase in initial

cell number at the cell -cluster" over 6 days.

2.5 Identification of factors that modulate tumor cell extravasation rate

Endothelial barrier function is correlated wit/i TEM efficiency

Although progress has been made in identifying critical regulators of endothelial-tumor

interactions in the context of intravasation''60 it remains unclear whether impaired barrier function is a

necessary precursor to TEM in extravasation. Physiological conditions which affect vascular permeability

include inflammation, which can play a mediating role in cancer progression and metastasis1 . For

instance, elevated levels of pro-inflammatory cytokines including IL-IB, TNF-a and IL-6 have been

found in the circulation of cancer patients, and may upregulate the expression of adhesion molecules on

the endothelium or in target organs 6 1. Here, we investigated the response endothelial barrier function and

tumor cell TEM rates to TNF-ca. HUVECs were stimulated with 2, 5 or 10 ng/mL of TNF-a (R&D

systems, MI), at 96 h after endothelial seeding, for 12 h. To ensure that the results observed were not due

to the direct modulation of TNF-a on tumor cell migration, devices were washed and incubated in normal
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media for 30 min prior to tumor cell seeding. Treatment of pVNs with 2 ng/mL TNF-a for 12 h resulted

in a 2.1-fold increase in HUVEC permeability ((18.4 1.1) x10-7 cm/s compared to (8.68 0.6) x10-7

cm/s) to 70 kDa dextran, with no significant difference in cell viability. Stimulation with 10 ng/mL TNF-

a led to a 4.6-fold increase in permeability ((41.5 7.21) x10-7 cm/s). The high standard deviation in the

10 ng/mL treatment was investigated; upon closer inspection, we observed what appeared to be focal

leaks, and cell viability was found to be significantly lower compared to the control, indicating that such a

high concentration of TNF-a led to endothelial cell-death induced ruptures in the lumen. Consistent with

this, in TNF-a stimulated (2 ng/mL) HUVECs, tumor cell TEM rates increased 2.3-fold (32.3 5.1%

compared to 13.1 2.12%) (Figure 14). The positive correlations observed between extravasation rates

and vessel permeability have also been observed in in vivo rat tail-vein and transparent zebrafish 2 8 models

subject to VEGF overexpressing tumor cells, which induced endothelial barrier disruption. Combined

with our results, it is likely impaired endothelial function may enhance transendothelial migration

dynamics.
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Figure 14. The effect of TNF-a on barrier function and TEM. (A) Graded response of vessel permeability to TNF-a

perturbation. (B) High concentrations of TNF-a (10 ng/mL) results in cell-death induced ruptures and focal leaks (red arrow)

seen by 70 kDa dextran (white). (C) Effect of TNF-a stimulation on TEM efficiency of MDA-MB-321. Data is represented as

mean + SD, with 9 total devices over 3 experiments for each condition. Statistical significance was tested with one-way ANOVA

and Tukey's Test (*p<0.05). Scale bars are 20 prm.

Tumor cell metastatic potential correlates with extravasation capabilities

Although the metastatic potentials of different tumor cell lines are well characterized in various in

vivo models 2 8 ,62 the dependence of extravasation efficiency on metastatic abilities remains unclear. Koop

et al demonstrated similar extravasation kinetics of highly metastatic PAP2, non-metastatic NIH3T3 and

primary fibroblast cells from mouse embryos, suggesting that extravasation is independent of metastatic

potential in chick CAM models 8. Contrarily, Stoletov et al showed a clear positive correlation between

the metastatic potentials of different tumor cell lines and their extravasation abilities (HT1080>MDA-

MB-231>MDA-MB-435) in an in vivo zebrafish model 28. In our model with untreated HUVECs, we
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tested several tumor cell lines with varying origins, and observed that the extravasation potential can be a

function of tumor cell type, a behavior which may be interdependent with endothelial barrier function.

Highly invasive breast cancer cell lines MDA-MB-231, SUM-159 or prostate PC-3 exhibited TEM rates

of 25-35% 6 h after tumor cell seeding, while the non-metastatic normal epithelial cell line MCF-IOA

exhibited -6% extravasation rate. In order to determine whether these differences could be due to the

varying tumor tissue origins of the cell lines, we compared the extravasation rates of MDA-MB-231

versus LM2 (the highly metastatic variant of adenosarcoma MDA-MB-23 1), and A-375 versus MA2

(highly metastatic variant of melanoma A-375). In both cases, highly metastatic variants of the same cell

line resulted in significantly higher transmigration rates (Figure 15). These results indicate that human

tumor cells exhibiting different tumor origins or metastatic potentials exit the vascular system with

different efficiencies and that our platform possesses the sensitivity to detect such variations.
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Figure 15. Examples of extravasation efficiencies of a panel of tumor cell lines with varying extravasation potentials at 6 hours

post-injection into in vitro microvascular networks.

Different tumor cell subpopulations within the same device exhibit different TEM capabilities

We are able to observe arrested cells on the endothelium that are either mechanically trapped, or

adhered and non-trapped. Non-trapped cells remained adhered onto the luminal side of the endothelium in

vessels with diameters larger than that of the tumor cell, even after vessel perfusion. This suggests the

presence of purely adhesive interactions with the endothelium in contrast to cells lodged mechanically in

narrow constrictions. Analysis of each subpopulation revealed that trapped cells exhibited a significantly

higher rate of TEM (47.8 4.67%) compared to arrested non-trapped cells (9.8+3.3%) (Figure 16 A-C).

This may be attributed to the fact that lodged cells have access to more adhesion sites on the endothelium,

as the area of TC-EC contact is greater.
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Figure 16. TEM efficiencies of different tumor cell subpopulations. (A) Non-trapped adhered tumor cell at 30 min and 4 h

after seeding. (B) Entrapped tumor cell at 30 min and 4 h after seeding. (C) TEM efficiency of adhered non-trapped and trapped

subpopulations. (D) Frequency of various tumor cluster sizes found lodged in microvascular networks (over 5 devices). (E)

Extravasation efficiencies of tumor cells within each cluster size subpopulation. Data are represented as mean + SD, with 9 total

devices over 3 independent experiments for each condition. Statistical significance was tested with one-way ANOVA and

Tukey's Test (*p<0.00 ). All scale bars are 20 pm.

Tumor cell clusters are of particular interest because it has been suggested that CTCs that travel

in clusters exhibit a higher survival rate, either from shear stress protection, and/or localized increase

concentration of secreted factors that facilitate TEM. Using our assay, we are able to visualize TEM

events of both single tumor cells and a heterogeneous distribution of tumor cell clusters ranging from 2-6

tumor cells (Figure 16 D-E). Interestingly, we find that an increase in tumor cell cluster size roughly

correlates with an increase in the percentage of cells extravasated in the same subpopulation. This may be

attributed to several mechanisms including, but not limited to (1) an increase in the local concentration of

tumor-secreted biochemical factors that regulate endothelial permeability, (2) access to the subendothelial

matrix provided by a previously transmigrated cell, and (3) the inability to repair the endothelial damage

before the transmigration of another tumor cell in the cluster. In particular, tumor paracrine factors can

contribute to increased TEM efficiency via the modulation of endothelial permeability, such as

impairment of the endothelial barrier function by tumor secreted VEGF6. Together, our data suggests that
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beyond "macro scale" properties such as tumor cell metastatic potential and endothelial barrier function

which can be modulated between independent devices, there exists heterogeneities in extravasation

potentials even within the same condition, depending on physical and spatial parameters such method of

arrest and separation distances between tumor cells themselves.

2.6 Advantages and limitations of on-chip microvasculature extravasation assay

The key advantageous features of this device can be summarized as follows: (1) Arrest of tumor cells and

extravasation from small diameter (ranging from 8-70 micron) vessels represents greater physiological

relevance than conventional monolayer based assays. (2) Human cells (endothelial, tumor, stromal,

immune) can be exclusively used in this model, decreasing the uncertainty of "species incompatibility."

(3) Tumor cells interact and invade past a HUVEC -deposited basement membrane and into 3D ECM, all

of which can be visualized in considerable detail via standard immunofluorescent techniques. (4)

Extravasated or mid-extravasating cells are clearly distinct from intravascular cells and extravasation

efficiency can be evaluated at lower power magnifications (20X), enabling both greater speed of data

acquisition and robustness of extravasation scoring. (5) Regions of interest with tumor cells are easily

identified due to the fact that the pVN lie largely in the same plane of focus. (6) This feature also enables

tumor/endothelial cell morphological dynamics to be resolved with relatively high spatiotemporal

resolution and throughput (-30 cells per time-lapse at 30X-60X, taken at 10 minutes intervals) due to the

applicability of high magnification objectives (which have shorter working distances). This provides

novel metrics on extravasation kinetics such as protrusion initiation rate and speed of complete

transmigration. (7) The technical expertise required to form microvascular networks is low compared to

techniques such as pin pull-out, sacrificial gels or 3D scaffold printing techniques. (8) Tumor cell

injection into pVNs only requires basic pipetting maneuvers instead of acquired animal intravenous

injection skills. (9) The material cost of each device is low (<$0.40 per device) compared to most in vivo

alternatives, and is easily fabricated via standard soft lithography techniques that are now prevalent

amongst most bioengineering laboratories. (10) Required reagent volumes and cell numbers can be orders

of magnitude lower than most other extravasation assays (< 4000 tumor cells/device and <80 JAL of

media/device) due to miniaturized features and low dead volume, greatly reducing costs associated with

expensive or rare cells (e.g. CTCs), drugs, or antibodies.

One of the limitations is the general inability of in vitro systems to fully recapitulate the in vivo

scenario. In reality, the early metastatic seeding and extravasation microenvironment is characterized by a

range of host cells and factors such as platelets and leukocytes, with which tumor cells have been found to
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interact during transit in vivo 42,63,64. However, the devices are flexible enough to accommodate increased

complexity of the microenvironment in order to achieve greater realism. For instance, tumor-immune cell

interactions can be studied via isolation of platelets or leukocytes from whole human blood followed by

perfusion in conjunction with tumor cells, which we demonstrate in Chapter 4. In fact, the reductionist

nature of such an in vitro system can be highly beneficial when one is required to parse out specific

interactions independent of the effect of other cell types; this would be more difficult in vivo as it requires

either complete ablation or loss of function of endogenous cells. Another limitation is that while soft

lithography techniques are widespread amongst bioengineering labs, there are fewer biology/cancer

research labs that preform soft lithography on a routine basis. However, protocols of PDMS-based device

fabrication are now well established and robust, and only require several pieces of easily accessible

equipment such as a degasser, 80'C oven and plasma etcher. The photo-mask of the device design is

accessible through this article (Supplementary Materials) and fabrication of molds can be easily

outsourced to specialized SU-8 fabrication companies (e.g. FlowGEM, etc.) if in-house fabrication is not

available.

2.7 Conclusions

We have presented a microfluidic extravasation assay consisting of self-organized perfusable 3D

vasculature that allows for the study of tumor extravasation from within in vitro [VNs. We demonstrate

the effect of inflammatory cytokine stimulation on endothelial barrier function and TEM efficiency, and

the positive correlation between metastatic potentials of different cell lines and their extravasation

capabilities. We characterize the morphological dynamics of tumor cell and endotheliail cells during

extravasation in high spatiotemporal resolution from within in vitro pNNs, and observe the TEM patterns

of different tumor cell subpopulations, including mechanically trapped tumor cells, single adhered cells

and tumor clusters. The ability to enable high-throughput parametric studies in a tightly controlled

environment coupled with increased physiological relevance compared to 2D and 3D planar monolayer

models will give rise to new insights regarding the complex endothelial-tumor cell interactions in

extravasation and facilitate the identification of factors to target this crucial step in cancer metastasis.
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Chapter 3

Dynamic roles of tumor integrins in tumor-endothelial-ECM

interactions during extravasation*

3.1 Introduction

Tumor cell extravasation is thought to be a complex series of cell-cell and cell-matrix interactions is

thought to involve integrins, the family of heterodimeric transmembrane receptors that mediate cellular

interactions with the extracellular matrix (ECM). Integrins are widely known to regulate a variety of

tumor cell functions including adhesion, migration, invasion, proliferation and survival 41. In particular,

the 11 subunit forms heterodimers with at least 18 different alpha subunits, and has been shown to bind

via its extracellular domain to a substantial number of ECM proteins, and via its intracellular domain to

recruit many signaling and cytoskeletal proteins 65. In the context of cancer, P is up-regulated in highly

invasive breast carcinoma cells in vivo 66,67 and plays crucial roles in the context of primary tumor

formation and metastasis in breast, ovarian, pancreas and skin cancers 10,68-81. Further in vitro studies

report that P strongly mediates adhesion of pancreatic and ovarian cancer cells to matrix proteins

including collagen 1, collagen IV, fibronectin and laminin on 2D substrates 10,82, and promotes the

degradation of gelatin at the whole cell level and localizes at invadopodia 3. In addition to its effects on

adhesion, knockdown of P inhibits cell migration and proliferation on numerous ECM substrates 10,84

Collectively, these studies suggest the importance of P in mediating growth and migration in the primary

tumor stroma.

The precise roles of 1 during tumor cell extravasation, however, are less explored. Although the

molecular players in extravasation (e.g. ECM molecules, endothelium) are likely similar to those in

invasion and intravasation, the mechanics and sequence of the cell-cell and cell-matrix interactions are

different. Furthermore, the roles and degree of requirement of specific adhesion molecules may differ

*Sections of this chapter have been published previously. See Reference 26. 32



depending on the context of the migration event. Thus, results obtained in these contexts may not directly

translate to extravasation. In terms of metastasis, it has been shown that inhibition of P1 significantly

reduces seeding and formation of metastatic foci after several weeks, suggesting a possible defect in a

preceding step of the metastatic cascade, such as extravasation '0,70,78,80,85,86. However, except for a study

by Stoletov et al, which demonstrated the necessity of P for TEM in a zebrafish model, to our knowledge

no other groups have explored in depth the role of P and the associated alpha subunits in distinct steps of

extravasation. 2 8 Furthermore, it remains unclear whether the defects lie in adhesion, tumor-endothelial

interactions, ECM/BM interactions or even post-extravasation proliferation and survival. This is often

difficult to dissect due to relatively low throughput and low spatio-temporal resolution of single cell TEM

events in most in vivo assays.

In this Chapter, we employ the microfluidic vasculature model developed in Chapter 2 to probe the

role of integrins during extravasation. We demonstrate that, with the help of other conventional in vitro

methods, we can successfully isolate and recapitulate the sequential steps in the extravasation cascade.

Much is currently known about the cell adhesion molecules and proteases required by cancer cells to

invade their microenvironment, but whether these same players are required for tumor cell extravasation

are unclear. First, we find that 11 expression in human tumor cells lines is necessary for efficient TEM in

an in vitro model of human microvasculature. High-resolution imaging further reveals the requirement of

activated P integrin for protrusion maintenance via engagement with the sub endothelial ECM, which

enables recruitment of F-actin to the protrusion tip, followed by translocation of the cell past the

endothelial layer, likely via acto-myosin contractility. Specifically, adhesion onto vascular laminin via

31 and a6131 integrins is involved in this process. Additionally, after clearing the endothelial barrier,

p1 is required for invasion past the BM. Finally, we show that 11 depletion reduces extravasation in vivo

and inhibits metastatic colonization, suggesting that the cumulative defects in the extravasation cascade

due to P31 depletion ultimately impairs metastasis formation.

3.2 Methods for investigating the role of beta-1 integrin during extravasation

Cell culture

GFP or RFP expressing human umbilical vein endothelial cells (HUVECs) (Angioprotemie) were

cultured in EGM-2MV medium (Lonza) and used at passage 4. Normal human lung fibroblasts (NHLF)

(Lonza) were cultured in complete FGM (Lonza) and used between passages 4 to 8. MDA-MB-23 1, A-

375 MA2 and 4T1 cells (parental, control and stable knockdowns) were cultured in DMEM supplemented

with 10% FBS and 1% penicillin/streptomycin and 1% L-glutamate while SUM] 59 cells were cultured in
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Ham F12 supplemented with 5% FBS, 1% penicillin/streptomycin, 5 pg/ml insulin, 1 pg/ml

Hydrocortisone, and 20ng/ml EGF. All cells were incubated at 5% CO 2 at 37*C.

DNA constructs, RNA interference and transfection

To generate miR30-based shRNAs targeting human and mouse integrins, 97-bp shRNAs were

designed (Supplemental Table 1), synthesized (IDT, Coralville, Iowa) and PCR amplified to add Xhol

and EcoRI sites. shRNAs were then cloned into barcoded versions of the MSCV-ZSG-2A-Puro-miR30

vector 87 using standard molecular biology techniques. Packaging of retrovirus and transduction of cells

was done as described previously '. Efficient knockdown was then confirmed using western blotting,

qPCR or flow cytometry as described below. Antibodies for immunoblots include integrin fl1 (MEM

101-A, Abcam), fl3 (Cell Signaling), GAPDH (Cell Signaling) and beta-actin (Millipore). For mouse cell

lines, rabbit polyclonal anti-mouse integrin 3, anti-mouse integrin aV (BD Pharmigen), and mouse anti-

GAPDH (Millipore) were used. Quantitative PCR (qPCR) was performed for integrin lI as described

previously 87 using the MyiQ real-time PCR detection system (Bio-Rad). Flow cytometry was performed

using the following primary antibodies: biotin conjugated anti-human f 1 integrin (P5D 1, Abcam), biotin-

conjugated anti-mouse integrins aV, 11, P2, P3 (BD Pharmigen), or unconjugated rat anti-mouse integrin

al, a2, a4, a6, a8, P4 (BD Pharmigen). Secondary antibodies were either Streptavidin-APC, or APC-

conjugated anti-Rat IgG.

For siRNA-mediated knockdown of a3, a6 and fl4 integrins, cells were plated on six well plates

and transfected with 25 pmol of a3, a6 or /34 integrin Silencer Select siRNA (Thermo Fischer) using

Lipofectamine RNAiMax reagent (treated twice over 48 h) before trypsinization and perfusion into

microvascular networks. Knockdown was confirmed via western blotting using antibodies for c3

(Thermo Scientific), a6 (Cell Signaling) and fl4 (Cell Signaling). For visualization F-actin in

transmigrating tumor cells, MDA-MB-231 were transduced with LifeAct mCherry (Ibidi) via standard

lentiviral techniques.

Blocking of integrins, MMPs and ECM protein binding

For functional blocking of individual alpha subunits, azide-free antibodies for a (FB 12), a2

(P1E6), a3 (PI B5), a4 (P4C2), a5 (P1D6), /34 (ASC-6), #1 (P4C10) and associated IgG or IgG3 controls

from Millipore, and a6 (GoH3) and IgG2a from Santa Cruz were incubated at 5ug/mL with tumor cells

suspended in serum free DMEM at 0.5 million cells/mL for 30 min, prior to perfusion into microvascular

devices. For neutralization of MMPs, anti-MTI-MMP catalytic domain (LEM-2/63.1, Abcam) and anti-

MMP-9 (IM09-L, Calbiochem) were incubated at 15 [tg/mL with tumor cells suspended in serum free
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DMEM at 0.5 million cells/mL for 30 min prior to perfusion. To block laminin function, anti-laminin

alpha 3 chain (P3H9-2, R&D Systems) or IgG, at 10 [tg/mL in EGM was perfused into the microvascular

devices 10 minutes prior to tumor perfusion.

Immunofluorescence and imaging analysis

Devices were fixed and immunostained as previously described 9 . Primary antibodies used

include human CD31, vinculin at 1:100 (Sigma Aldrich), Tks-5 at 1:50 (Santa Cruz), human collagen IV,

laminin, fibronectin, or P1 integrin activated conformation (clone 12G10) at 1:100 (from Abcam). Lungs

were processed and stained as previously described 27. Briefly, lobes were cut into smaller pieces and

blocked for 1 h (10% goat serum and 0.3% Triton-X), followed by incubation in mouse anti-CD 31 (BD

Biosciences) at 1:100 overnight at 4*C. Lungs were washed in wash buffer and incubated in secondary

antibody (Alexa Fluor 568 goat anti-rat, Invitrogen) at 1:500 overnight at 4'C.

Microfluidics-based vertical endothelial monolayer extravasation assay

In some experiments, a microfluidic device featuring an endothelial monolayer is used instead of the

microvascular network assay presented in Chapter 2. Using the exact same PDMS device, a single lumen

is modeled by forming a confluent monolayer on the hydrogel and micro-post surfaces (SI Fig. IA), as

described previously . Tumor cells at 0.1 million cells/mL were perfused into one media channel and

tilted at a 90-degree angle at 37'C for 30 min in a humidified chamber, and transferred to a confocal

microscope (Olympus FV000) for observation.

Adhesion assay

To test the degree of tumor-endothelial adhesion without the added factor of physical trapping,

rectangular PDMS micro-channels were fabricated (0.3 cm wide by 110 ptm high by 5 cm long). Three

inlet holes were punched (two on both ends and one in the middle). HUVECs (2 million cells/mL) were

seeded into micro-channels. At the formation of a confluent monolayer, tumor cells at I million cells/mL

in serum-free endothelial basal medium (EBM) were perfused from the outer inlet port (while keeping the

center port plugged) and allowed to settle and adhere 10, 30 or 60 min. EBM is then perfused into the

middle port via a syringe pump to obtain a shear rate of 5 dynes/cm 2 for 15 min, after which tumor cells

are recounted.
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In vivo mouse extravasation assay

One hundred microliters of cell suspension in PBS (0.5 million cells) were injected via lateral tail

vein of female NOD/SCID/gamma mice. Mice were euthanized and lungs were collected after inflation

with 4% formaldehyde, 0.3% Triton X-100 at 3, 16 and 24 h.

In vivo metastasis assay

miR-30 based shRNAs targeting each integrin subunit were designed and cloned into uniquely

barcoded versions of the MSCV-ZSG-2A-Puro-miR30 vector 87 as described above, and then used to

stably transduce 4T1 cells. Once integrin knockdown was confirmed via FACs, individual 4T1 cell

populations were mixed in equal numbers and injected into the lateral tail veins of mice. Lungs were

isolated for analysis after 17 days. A starting population was also collected at the time the mixed cell

populations were injected and was used for normalization of subsequent samples. Luminex-based analysis

of metastasis burden was performed as described previously 7.

Quantification of extravasation and statistics

In all in vitro experiments (unless otherwise indicated), the average TEM efficiency is the

average of the mean of 3 devices per condition and 3 independent experiments (total 9 devices).

"Extravasated" cells are scored as ones that have completely cleared the endothelial barrier. The value of

each device was calculated as an average of 6 fields of view (microvascular networks) or 10 fields of

view (monolayer device). Statistical analysis was performed with SigmaPlot using Student's two-tailed t-

test when comparing two conditions, or ANOVA with Tukey's post-hoc analysis when applicable. Unless

otherwise indicated, "n" represents one independent experiment with at least 3 devices per condition.

3.3 11 integrins are required for efficient transendothelial migration from in vitro microvascular

networks and in vivo mouse lung extravasation assays

We stably expressed shRNAs targeting either control firefly luciferase (control) or integrin P1
(fl]KD) in human metastatic human breast cancer (MDA-MB-231, SUM-159), highly metastatic human

melanoma (A-375 MA2) and mouse mammary carcinoma (4T1) cell lines (Figure 17 B). Cells were

perfused into in vitro microvascular networks and TEM events were tracked via live confocal

microscopy. Reduction of Pl via shRNA and blocking antibodies in MDA-MB-231 significantly

abrogated TEM in microdevices at 6 h, while knockdown of P3 integrin had no significant effects,

indicating that the observed attenuation of TEM may be specific to 1 (Fig 17 C). The p11-4 shRNA, with
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an intermediate level of knockdown (66% mRNA inhibition), exhibited an intermediate TEM rate at 6 h,

suggesting a graded response with decreasing P expression. Longer-term kinetics of transmigration were

tested in all cell lines revealing that the decrease in TEM is likely not cell line specific. Furthermore,

TEM rates reach a plateau at ~ 12 h in all conditions (Figure 17 E), indicating that the defects in

transmigration are not simply due to a delay in the progression of extravasation. Additionally,

proliferation assays reveal no significant differences between control and 031 KD cells in the span of 48 h,

thus the number of TEM events is likely not influenced by differences in cell proliferation throughout the

duration of the assay.

To validate our findings in an in vivo context, MDA-MB-231 control and 0 1 KD cells were

injected into Nod/Scid/gamma mice via the lateral tail vein. Close inspection via confocal microscopy and

3D rendering at 60X allowed visualization of individual tumor cells near the tissue surface (Figure 17 F).

Tumor cells surrounded by a continuous and distinct border of CD31 staining were scored as

intravascular, while all other cells were counted as transmigrated, even if partly surrounded by vascular

staining. Both control and PfKD cells were mainly contained within blood vessels at 3 h post injection.

At 16 h there was a significant (-5 fold) difference in the number of transmigrated control cells versus

f1KD, with the difference increasing at 24 h (Figure 17 G).

Combined, these results confirm that tumor integrin P is essential for TEM. However, the role of

s1 in other distinct steps of extravasation both preceding and subsequent to TEM remains unclear. These

steps include tumor-endothelial adhesion, tumor cell protrusion initiation and formation into the sub-

endothelial matrix, interaction with the endothelial BM, and migration through the parenchyma. Due to

the challenges associated high resolution and dynamic imaging in vivo, we capitalized on the unique

capabilities of our in vitro microvasculature assay.
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Figure 17. Knockdown of 3 1 integrin inhibits tumor-cell transendothelial migration in in vitro microvascular networks

and in vivo extravasation assays. (A) Schematic of device presented in Chapter 2. Representative fluorescence image of a single

field of view of the device at 20X (HUVEC LifeAct; green, MDA-MB 231; red, scale bar = 100 prm). (B) Western blot of 3 1

and [ 3 integrin expression after suppression via shRNA (C=control shRNA targeting firefly luciferase). (C) Effect of [ 1 and

( 3 knockdowns and integrin function-blocking antibodies on the TEM efficiency of MDA-MB 231 in in vitro microvascular
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networks at 6 hours (***p<0.00 1). (D) Representative field of views (20X) of live microvascular networks at 12 hr after seeding

of control or / 1 KD MDA-MB-231 cells (HUVEC; red, MDA-MB 231; green). Asterisks indicate fully transmigrated cells

(scale bar = 100 pm). Immunostaining for CD31 show distinctions between transmigrated and non-transmigrated cells (scale bar

= 20 im). (E) Differences in kinetics of TEM between 3 1 KD and control shRNA cells were assessed for MDA-MB-23 1, A375

MA2, SUM-159 and 4T 1 cells lines. Fraction transmigrated in human microvascular network devices is determined at the same

field of view for time points of 0, 6, 12 and 24 hr (n=3, **p<0.01, ***p<0.001, bars represent mean +/- SEM). (F)

Immunostaining for CD31 (red) in mouse lungs 24 hours after injection of 0.5 million MDA-MB 231 control or 8 1 KD cells

(green). Asterisks indicate cells scored as transmigrated (scale bars = 20 pm). Cells in white dotted boxes are zoomed in to

indicate examples of intravascular and extravascular cells. (G) Percentage of transmigrated control and / 1 KD MDA-MB 231

cells in mice lungs 3hr, 16 hr and 24 hr after tail vein injection (n=8 mice per condition at 3 hr and 24 hr, 4 mice per condition at

16 hr, 100 randomly selected tumor cells analyzed per mouse) (**p<0.001, bars represent mean +/- SEM).

3.4 $1 integrin does not mediate adhesion to endothelium but adhesion to sub-endothelial matrix,

under flow conditions

We further investigated whether P integrin plays a role in heterotypic endothelial-tumor adhesion, a

possible precursor to TEM. It is believed that since tumor cells that are rapidly cleared from the

circulation in vivo, cells that quickly arrest in the vasculature and extravasate may have a selective

advantage toward establishing new colonies 30'86.

To isolate the effect of adhesion, tumor cells were seeded into endothelial-lined chambers and

allowed to settle and adhere for 10, 30 or 60 min. This is followed by continuous perfusion of media for

15 min at 5 dynes/cm 2. With 30 or 60 min of settling time, more control cells remained adherent than

1IKD cells post-perfusion, with the greatest difference being at 60 min (Figure 18B). In contrast, 10 min

of settling time resulted in no significant differences. Upon closer inspection, more than half of all

adherent cells in 30 or 60 min control samples had gained access to the subendothelial ECM, as identified

by short (1-4 [tm) tumor cell protrusions extending past the plane of the endothelium (Figure 18A). In

contrast, the few adherent P lKD cells did not exhibit protrusions. This suggests that P mediates adhesion

to the underlying matrix, rather than the endothelium, thereby providing the force necessary to resist

detachment under flow. We also note that adherent cells at the 10 min time point do not exhibit

discernable protrusions, suggesting that early tumor-endothelial adhesion exists, but is likely mediated by

other adhesion molecules such as selectins (CD62) or glycoproteins like CD44 2 , rather than integrins.

In vivo, we observed similar numbers of control and 01lKD cells in lungs at early time points (3

and 16 h post-injection) and only a slight difference at 24 h (Figure 18C). This lack of P dependence
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compared to in vitro findings could be due to a tendency for physical trapping to dominate over adherence

in vivo, since narrow capillaries are not recapitulated in the in vitro flow channel. That is, while we find

that P I can mediate adhesion under flow due to subendothelial matrix anchorage, physical trapping of

cells may be the rate-controlling factor in retention in vivo.
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Figure 18. Analysis of adhesion rate in an endothelial monolayer microfluidic flow assay. (A) Confocal imaging of

remaining adhered control or P I KD MDA-MB-231 on a confluent endothelium after 15 minutes of flow (0.5 dynes/cm 2 shear

stress, scale bar- 100 pm). Cells were allowed to settle on the endothelium for 10, 30 or 60 min prior to perfusion. Confocal

stacks of individual tumor cells (in white dotted boxes) relative to the endothelium are shown (CD3 1: white, scale bar--10 ptm).

(B) Quantification of the percentage of adhered control or pl3 KD MDA-MB-231 and the percentage of adhered cells which have

formed protrusions across the endothelium into the subendothelial matrix, after 10, 30 or 60 min of tumor cell settling. (C)

Numbers of tumor cells in the lung of mice at 3 hr, 16 hr and 24 hr after tail-vein injection of control or P I KD MDA-MB-231

cells in NOD/SCID/y mice. Each point represents the mean +/- SEM of cells/field of view (FOV) (lOX) (n=7 mice per condition)

(*p<0.05).

3.5 Activated I1 and actin-rich protrusion formation precede and are required for complete

transmigration

Previously, it has been suggested that tumor cells form invadopodia-type processes past the

endothelium 36'90 and that abrogating these structures prevents extravasation in chick chorioallantoic

membrane assays (CA M)36 . Thus, we sought to understand the role of P I in protrusion formation and
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endothelial barrier breaching. We employ an alternate "vertical monolayer device" consisting of

microchannels connected by 3D ECM hydrogels, where tumor cells are seeded in one channel, arrest onto

and extravasate across an endothelial monolayer into a fibrin-type 1 collagen matrix 21,46. In this assay,

migration across and through the monolayer and subendothelial matrix occurs in the plane of view; thus,

protrusion formation and dynamics during extravasation can be observed in high detail. Time-lapse

confocal images taken over 6 h reveal that transmigrating control cells extend numerous thin filipodial-

like protrusions past a gap in the endothelial barrier as early as 20 min post-perfusion (Figure 19A). In

contrast, P3IKD cells remained largely spherical and lacked protrusions in nearly all cells sampled (Figure

19B). Surprisingly, while 0 1 KD tumor cells do not transmigrate, there is still discernable endothelial gap

formation at the site of tumor arrest, suggesting that P1I does not significantly hinder the ability for

endothelial disruption.

Immunostaining for the active conformation of P showed localized punctates at the tips of the

protrusions extending into the sub-endothelial matrix in transmigrating control cells only (Figure 19C),

suggesting that PI mediated protrusion formation and ECM engagement is required for complete TEM.

Dynamic tracking of tumor cell protrusions embedded in 3D collagen I -fibrin mixed matrices reveal that

control cells quickly extend protrusions that often persist (>30 min), and subsequently take on an

elongated morphology. In contrast, P IKD cells exhibit small, short-lived transient protrusions and

typically retain a more spherical shape. Thus, it is likely that p 1 is not required for protrusion initiation,

but for protrusion stabilization via 31 mediated anchorage onto vascular BM, which is supported by

previous findings, in a 2D context83 . Furthermore, live imaging of tumor F-actin during TEM reveals

actin-rich punctates at the tips of protrusions extending past the endothelium (Figure 19D). At times,

these actin-rich protrusions are also diffusely marked by the focal adhesion protein vinculin (Figure

19E), which is generally diffuse in tumor cells embedded in 3D collagen gels (data not shown). There has

recently been growing evidence that integrins play important roles in invadopodia formation and function,

in particular avP3 and f1 integrins; however, whether invadopodia form during extravasation is unclear.

Indeed, immunofluorescent imaging showed Tks5 punctates specifically in protrusions, suggesting the

presence of functional and degradatory invadopodia during TEM (Figure 19F). Together our results

suggest that P mediates tumor cell protrusion stabilization by facilitating anchorage vascular BM,

followed by recruitment of actin and possibly focal adhesion proteins, at the protruding-edge. Subsequent

actomyosin-mediated contractions then likely pull the remaining cell body past the endothelium.
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Figure 19. (A) Time-lapse confocal microscopy of representative transmigrating control and [3 1-5 KD cells (single plane) over a

period of 6 hours (HUVEC cell tracker; red, MDA-MB 231; green, scale bar=15 pm). Arrow indicates the formation of initial

protrusions into the subendothelial matrix in control cells. (C) Differences between control and [3 1-5 KD cells in the frequency

of protrusion formation in single cells during TEM at 3 hours (55 intercalated cells over 3 devices per condition were chosen

randomly and scored). Protrusion number (that was definable at 30X magnification) was quantified via 3D reconstructions of

single transmigrating cells. (D) Immunostaining with an antibody against the activated conformation of [3 1 integrin (clone

12G 10, white) in microvascular networks (green) (scale bar = 10 pm). Arrows indicate localization at protrusion tips. (E) Time-

lapse imaging depicting spatial organization of tumor F-actin (red) during TEM in microvascular network devices. Arrows

indicates areas in protrusions where F-actin appears as punctates (scalc bar = 10 [rm). (F-G) Immunostaining of vinculin and Tks-

5 in tumor cells during mid-transmigration past the endothelium. Arrows indicate localization of indicated proteins at the

protrusion tips (scale bars = 10 pm).
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3.6 p1 integrins mediate invasion across the basement membrane

Upon closer inspection of fixed images in both microvascular network and monolayer assays,

fully transmigrated cells were observed in 3 distinct "positions" relative to the endothelium: (1) directly

adjacent to the abluminal surface, (2) adjacent but elongated perpendicular to the lumen, and (3) migrated

away from the abluminal surface. At 4 h control cells were found in all three positions while of the few

(<6%) PIKD cells that had transmigrated, almost all were exclusively confined to "position 1" (Figure

20A). Not only were transmigration distances significantly reduced in knockdown cells, few protrusions

were observed, consistent with their rounded and non-protrusive morphology (Figure 20B).

Since P1 KDs are unable to migrate away from the endothelium, we hypothesized that tumor cells

were unable to invade past the endothelium BM, due to the inability to attach to and/or degrade it. During

the formation of microvasculature, endothelial cells forming the in vitro microvessels deposit a

continuous layer of BM proteins including collagen IV, laminin and fibronectin similar to in vivo

vasculature (see Chapter 2). Staining for laminin revealed tumor cells in four "states" relative to the BM

and endothelium: (1) breaching the endothelium but not the BM, (2) fully transmigrated but intercalated

between the endothelium and BM, (3) breaching the BM, and (4) completely cleared of endothelium and

BM (Figure 20C). At 2 h, out of the subpopulation of transendothelial migrating cells, both control and

PfIKD cells were mostly found in state (1). Subsequently, at 9 h, most transmigrating control cells were in

states (3) and (4), breaching both the endothelium and laminin (Figure 20D). This suggests that the

formation of stable protrusions requires sequentially adhesive interactions with the underlying BM,

followed by degradation and invasion past it. Conversely, nearly all transmigrating P IKD cells remained

in state (1).
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Figure 20. 3 1 integrins mediate invasion past the basement membrane. (A) Representative cross sections of lumens in

microvascular devices (scale bars = 10 pm) depicting the 3 distinct states in which a transmigrated tumor cell can be found

relative to the endothelium after 6 hours (Position 1: directly adjacent to abluminal surface, Position 2: adjacent and elongated

normal to vessel wall, Position 3: migrated away from the endothelium) (scale bars = 10 prm). Quantification of the number of

fully transmigrated 3 1 KD or control cells found in each "state" (50 cells analyzed per condition). (B) Quantification of the

migration distance of extravasated tumor cells away from the endothelium. Distance is defined as the shortest length between the

endothelium (at the point where transmigration occurred) and the nearest point on the transmigrated tumor cell body. Elongation

length of the same transmigrated tumor cells is defined as the maximum length of the cell normal (perpendicular) to the vessel

wall at the point of transmigration (n=50 transmigrated cells per condition, ***p<0.001, bars represent mean +/- standard

deviation). (C) Representative immunofluorescence staining depicting the possible position of transmigrated tumor cells relative

to the sub-endothelial laminin layer (LN: white, HUVEC LifeAct: green, MDA-MB 231: red, scale bars=10 pm). State 1:

breached ECs but not laminin, State 2: fully transmigrated but no breaching of laminin, State 3: simultaneously breaching EC and

laminin layer, State 4: fully breached EC and laminin layers. (D) Percentage of total fully transmigrated control or total [ 1-5 KD

cells that are found in states I to 4 relative to the laminin layer (n=2 experiments, 4 devices per condition).
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Due to the inability of p 1KD cells to invade past the BM, we hypothesized that MMPs are

required to digest BM proteins, and that P IKD cells may exhibit a defect in MMP activity. We tested the

effect of anti-MT1-MMP and anti-MMP-9 (two major MMPs implicated in BM degradation) on TEM

efficiency in microvascular networks at 6 h. Both anti-MT1-MMP and anti-MMP-9 slightly reduce TEM

efficiency (p=0.046 and p=0.089, respectively) (although not comparable to knocking down P31 integrins)

suggesting that initial crossing of the EC barrier is only weakly dependent on these proteases (Figure 21).

Further immunostaining for laminin on the same devices revealed that transmigrating cells treated with

either anti-MT1-MMP or anti-MMP-9 were both less likely to breach the laminin layer upon exiting the

endothelium (p=0.026 and p=0.008, respectively). Together, this suggests that MTI-MMP and MMP-9

are involved in matrix degradation once the cell has transmigrated, while playing a smaller role in the

initial crossing of the endothelium. However, when MMP secretion levels were tested via an MMP

antibody array, no discernable differences were found between P IKD and control shRNA MDA-MB-231

in secreted levels of MMP-1, 2, 3, 8, 9, 10 and TIMP-1, 2, and 4. Further testing of MMP-9 and MMP-2

levels via zymography also revealed no differences (data not shown). Despite these results, we cannot

completely rule out the possibility of (31 KD-induced defects in MMP localization and/or activation in the

specific context of TEM, since conventional conditioned medium collection techniques (cells mono-

cultured on a 2-D culture dish) do not recapitulate the specific context of TEM and MMP localization.
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Figure 21. The effect of anti-MT1-MMP and anti-MMP-9 on transendothelial migration rate and efficiency of breaching the

laminin layer, in microvascular networks (n=3, *p<0.05, **p<0.0 ).

3.7 Transendothelial migration is mediated by a3p1 and a6P1 integrins via interactions with sub-

endothelial laminin

Our results suggest that TEM is facilitated by the formation of activated P(I and actin-rich

protrusions, which then form stable adhesions onto the subendothelial matrix, and likely followed by

contraction at the protruding edge. Because we demonstrated that tumor cell protrusions associate closely
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with the BM during the initial hours of TEM, we hypothesized that the defects induced by 1 1 depletion

are partly due to the inability of protrusions to bind to specific underlying BM proteins. To determine

which alpha subunits and corresponding ECM ligands are important for TEM, we first employed function

blocking antibodies for integrins a 1, 2, 3, 4, 5, 6, v, P and P4 to tumor cells prior to, and during the in

vitro microvasculature assay. Reduction of integrin(s) function was verified via adhesion assays to

collagen I, collagen IV, fibronection and laminin. At 6 h post tumor cell seeding, TEM efficiencies for

most individually blocked alpha subunits (a 1, 2, 3, 4 and 5) and P4 were not significantly different,

while there were slight attenuations when a6 and av were blocked, and when av/a5 and al/a2 were co-

blocked (Figure 22A). The most striking decrease occurred when laminin-binding integrins a3 and a6

were co-blocked (p=0.0059), indicating that adhesion to subendothelial laminin is critical for efficient

TEM. To further confirm our results, we silenced a3 and a6 via siRNA (Figure 22B) and carried out

longer-term (-24 h) kinetics experiments. At 24 h post tumor seeding, co-silencing of a3 and Cr6

continues to yield a significantly lower TEM rate compared to silencing 3 or a6 alone (Figure 22C).

Furthermore, silencing of P4 integrin did not result in significant changes in TEM over 24 h, indicating

that ct61, and not a6p4 (which also bind to laminin), is likely at play.
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Figure 22. Transendothelial migration is mediated by a3pl and a6pl integrins via interactions with laminin. (A)

Percentage transendothelial migration in microvascular network devices at 6 hours when tumor cells are treated with function-

blocking antibodies for various a and p subunits (n=3 experiments, 3 devices per condition, *p<0.05 , **p<0.01, ***p<0.001,

bars represent mean +/- SEM). (B) Western blot analysis of alpha 3 and alpha 6-integrin individual knockdowns and co-

knockdowns in MDA-MB-231 via siRNA. (C) Kinetics of TEM in microvascular networks following the same regions at 0, 6, 12

and 24 hr after tumor cell seeding.
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Dynamic tracking of TEM on individual tumor cells revealed that the time required to reach a

state of discernable stable protrusion formation past the endothelium was longer in a3/a6 co-knockdown

cells compared to controls (Figure 23A). Furthermore, blocking of microvascular devices with anti-

laminin antibodies prior to tumor cell perfusion resulted in a significantly lower percentage of cells

exhibiting protrusions at early time points of I and 4 h, strongly suggesting that the ability to adhere to

BM laminin is important in the specific context of extravasation (Figure 23B). However, while co-

blocking a3 and a6 significantly decreases TEM efficiency, it does not reach the levels associated with

blocking P I. Combined with the finding that blocking of most individual alpha subunits only yields small

or insignificant changes, it is highly likely that multiple alpha subunits function simultaneously to

facilitate TEM.
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Figure 23. Dependence of tumor cell protrusion rates on adhesion to laminin. (A) The average time required for initial

protrusion formation in control siRNA or a3/a6 co-knockdown MDA-MB-231 (n=50 cells/condition, p=0.013). (B) Percentage

of MDA-MB-231 forming protrusions past the endothelium (in microvascular networks assay) at 1 and 4 hours when

microvessels were treated with anti-laminin antibodies immediately prior to tumor cell perfusion (n=3, **p<0.0 ).

3.8 P1 integrin is required for metastatic colony formation in vivo

Our results show that loss of p31 integrins significantly impairs tumor cell extravasation by

influencing multiple processes during extravasation, which is widely believed to be a rate-limiting step in

metastatic colonization of distant organs. Therefore, we tested whether P I knockdown impairs metastatic

colonization. Since several cell types in the immune system are known to influence metastatic

colonization 42,91, we performed these experiments using the highly metastatic mouse mammary carcinoma

cell line 4T1 which is syngeneic in Balb/C mice. These 4T1 PIlKDs were confirmed to impair

extravasation in our microvascular network assay (Figure 17 F-G).

To test the effect of knocking down individual integrin subunits, we utilized a previously

developed a Luminex-based, multiplexed assay for metastatic colonization (Figure 24A), as described
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previously7 . 4T1 cells stably expressing uniquely DNA-barcoded vectors with shRNAs targeting each

integrin subunit were individually generated and efficient knockdown of each integrin subunit was

confirmed by flow cytometry. Cells expressing shRNAs targeting P were significantly reduced in the

lungs relative to control shRNAs (Figure 24B), indicating the loss of 1 significantly impairs metastatic

colonization. In contrast, targeting other beta subunits or individual alpha subunits did not significantly

reduced in the lungs relative to control shRNAs, suggesting that the functions of individual alpha subunits

are dispensable for metastatic colonization. This finding is strongly correlated with the earlier results

presented, showing that blocking of individual alphas and other beta subunits does not significantly

impair TEM in in vitro microvasculature. Together these findings suggest that the ability to successfully

extravasate is strongly correlated with the ability to form metastasis, and that 13 integrin is required for

metastatic formation.
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Figure 24. Knockdown of 8 1 integrin in 4T1 cells inhibits metastatic colonization.

(A) Schematic of our Luminex-based approach for multiplexing tail vein metastasis assays (see Methods). 4T1 cells were stably

transduced with uniquely barcoded (BC) vectors expressing miR30-based shRNAs targeting one integrin subunit per cell

population, and knock down was confirmed by flow cytometry (see Table 1). Uniquely barcoded 4T I integrin knockdown cell

populations were then mixed in equal numbers and injected into the tail veins of syngeneic Balb/C mice. After 17 days, Genomic

DNA was isolated from the metastasis-containing lungs, and the relative amount of each barcode (i.e. the relative number cells

expressing each shRNA) was quantified using streptavidin-conjugated APC (Strep-APC) and the Luminex FlexMap 3D system.

(B) Luminex-based quantification of the relative metastatic burden of each 4T 1 integrin knockdown cell population. Graphs

show the relative signal + S.E.M. from each shRNA relative to the signal for that shRNA in the starting mixed population (n=10

mice / mix analyzed in duplicate).
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3.9 Discussion

Tumor cell extravasation is a key step during cancer metastasis, yet the precise mechanisms that

regulate this process remain unclear. This is partly due to the difficulty of most in vivo assays in isolating

the effect of different perturbations on discrete steps during extravasation. Furthermore, in vivo models

are often hindered by relatively low spatio-temporal resolution of extravasation events and the tortuosity

of in vivo vasculature presents challenges in scoring extravascular and intravascular cells, rendering the

analysis subjective. To address this need, we have recently developed in vitro microvascular platforms

capable of observing multiple steps of the extravasation cascade as well as tumor cell morphological

dynamics in high detail. Uniquely, vessels largely lie in the same plane of view and distances between the

cells and microscope objective is <300 microns. The assay also recapitulates tumor cell arrest via trapping

in small capillaries, which is generally not achievable in other in vitro platforms of extravasation. Thus,

despite the essential role that in vivo extravasation models play in recapitulating physiological conditions,

the in vitro assays used in this study are more suitable for discerning the spatial organization of tumor-

endothelial cell interactions. Using our assays, we are able to pinpoint the distinct roles of tumor P 

integrin in tumor-endothelial and tumor-BM interactions during extravasation. First, P1 integrin is

activated at the tip of leading protrusions penetrating the endothelium, allowing adhesion to

subendothelial ECM, in particular, BM laminin via a311 and a631 integrins. Engagement of these

integrins with their ligand allows stabilization and growth of these protrusions, which is followed by

recruitment of F-actin at the protruding edge. This then enables the cell to translocate by pulling itself past

the gap formed in the endothelium (Figure 25).
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Proposed molecular players in tumor transendothelial migration
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Figure 25. Proposed molecular players involved in tumor transendothelial migration.

Extracellular engagement: activation of 3 1 integrin facilitates protrusion maintenance past retracted endothelium, via

engagement to subendothelial ECM. Specifically, integrins a3pl and a601 are both required for adhesion to vascular basement

membrane laminin. Intracellular engagement: 3 lintegrin-rich extracellular adhesions maintain protrusions, allowing focal

adhesion proteins (e.g. vinculin) and F-actin to be recruited to the tips of protrusions, resulting in transmigration via acto-myosin

contraction at the protruding edge.

The lack of discemable tumor cell protrusions during transmigration in p1 KD cells suggests that

the extension of cytoplasmic projections is required for complete extravasation. Cells transmigrating in

our microvascular networks exhibit invadopodial-like extensions into the sub endothelial matrix during

transmigration. Furthermore, these protrusions are marked by co-localized punctate regions of F-actin,

activated P 1 integrin, vinculin and Tks5 at the tips of the protrusion. In contrast, these proteins are only

weakly diffuse in the intravascular portion of transmigrating cells, as well as in non-transmigrating cells.

In support of this, it has been shown that invadopodia formation is associated with PI and P3 integrins 92,

and that pharmacological inhibition of invadopodia maturation (Tks5) and function (Tks4) results in an

abrogation of extravasation in CAM models and metastatic colony formation in vivo 36.

During the initial stages of TEM (20 min to 1 h) tumor cells begin by extending small actin rich

protrusions (~1-3 tm deep) into the extravascular space. Combined with the observation that these initial

protrusions do not breach but rather associate closely with the subendothelial BM, we hypothesized that

PI integrins facilitate the engagement of these protrusions to specific underlying BM proteins via specific

alpha integrin subunits. In support of this, in vivo studies have shown that tumor cells extend processes
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past the endothelium, contacting the basal lamina 31'31'60. The integrin profile of MDA-MB-231 has

previously been characterized and shown to express a variety of alpha subunits (including aI to a6 and v)

93, however whether all or only a specific subset of these are required in extravasation is unclear.

Numerous studies have demonstrated the importance of various alpha integrins in the context of 3D

invasion and contribution to metastatic formation70 ,74 ,77,8 I,82,86,94. However, while similar ECM

components may be present in both the primary site and extravasation microenvironments, their spatial

distributions and abundance may differ. Additionally, the necessity of engagement to specific ECM

components may also differ depending on the context of migration. Using our assays, we find that co-

knockdown of a3 and a6 integrins results in the most significant defect in TEM, indicating that adhesion

to BM laminin is required in the context of TEM, and likely facilitates maintenance of tumor cell

projections past the endothelium. In fact, it has been found that the ability to adhere onto vascular laminin

may involved in the extravasation step, which is suggested by the requirement of a3pl for adhesion to

exposed regions of pulmonary vascular LN-5 and subsequent metastatic foci formation in a mouse model

86. In support of this, our dynamic imaging reveals co-blocking a3 and a6 integrins results in a slower

rate of protrusion formation into the subendothelial matrix. In an in vivo context, it may be advantageous

for tumor cells to form stable anchorage into the matrix faster, in order to gain better chances of escaping

the hostile intravascular environment. In contrast, blocking integrin receptors cav and ct5 for fibronection

do not yield significant results, despite the fact that fibronectin is present on the abluminal surface of the

vessels. This further suggests that the inability to adhere to laminin cannot be fully compensated via

adhesion to other available ECMs during extravasation.

The BM scaffold is a tight covalently cross-linked mesh formed by laminin and type IV collagen

that is bridged by nidogens on which other components are bound. It seems highly unlikely that a cell

could squeeze through pores on the order of 50 nm; however, tumor cells constantly migrate across

basement membranes 95. Thus, the process has long been thought to require local degradation of the BM

with matrix metalloproteinases (especially MT- MMPs), which may be recruited via integrin engagement

to the ECM. These proteases are well characterized in the context of invasion, but whether the same

factors are involved in vascular BM invasion are largely unclear. Because we observe the inability of

P IKDs to migrate away from the endothelium post-transmigration, we hypothesized that P1 mediates the

localization and production of MMPs that are required to degrade the vascular BM. In support of this

hypothesis, studies show that fl1 is required for invadopodia formation and matrix degradation in both 2D

and 3D ECM scenarios 9 6' 97 83. Indeed, immunostaining of laminin in our devices revealed that while

control cells begin to breach the laminin layer within the first 6 to 9 h of TEM, few transmigrating P IKD

cells were able to invade the laminin layer, remaining trapped between the endothelium and BM.
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Furthermore, blocking of MMP-9 and MT 1 -MMP pheno-copied this behavior, suggesting that

localization and activation of MMPs are involved in BM breaching.

In vivo metastasis assays show a clear role of P in dissemination 10'70,7,'78,80,85'86; however,

whether and how the defects lie in extravasation or even post-extravasation micro-metastatic growth

remained unclear. In this Chapter, we demonstrate that the tumor 11 subunit is an indispensible player in

the tumor cell extravasation cascade, and that its depletion contributes to an overall decrease in formation

of metastases in vivo. Using the high-resolution in vitro extravasation assay developed in Chapter 2, we

find that tumor cells first send activated p 1-rich protrusions past the endothelium, which engages with

subendothelial matrix, in particular laminin, via a31p1 and a6p I integrins. This is followed by protrusion

stabilization, F-actin recruitment, translocation of the tumor cell into the parenchyma, and subsequently,

p1-mediated invasion past the vascular basement membrane.
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Chapter 4

Tumor-host cell interactions and modulation of tumor cell

extravasation

4.1 Introduction

The metastatic potential of tumor cells has been shown to be significantly modulated by the host

microenvironmental conditions and host cells, such macrophages and fibroblasts at the primary tumor

site. Similarly, during hematogenous dissemination, circulating tumor cells encounter a variety of host

cells such as platelets and bone marrow-derived cells (BMDCs) at distant metastatic sites. In fact, it is

now widely believed that the metastatic potential of disseminated tumor cells can be modulated by both

cooperative and antagonistic interactions between host microenvironment and tumor cells . However,

tumor-host cell interactions during the steps of circulatory transit, arrest and extravasation are less

understood due to the technical challenges associated with imaging, isolation and analysis of single

disseminated tumor cells at secondary sites. In this Chapter, we increase the complexity of the device

presented in Chapter 2 and apply it to probe the dynamic interactions between non-cancer host cells and

tumor cells in the circulation. Our assay allows the observation of host cell interactions during

extravasation with high spatio-temporal resolution, revealing details that are challenging to resolve in

vivo. In a modular fashion, we first focus on the role of a single class of host immune cells, neutrophils,

the pre-dominant circulating granulocyte in humans.

Currently, the roles of neutrophils in metastatic seeding are controversial. Clinical studies have

shown that in cancer patients, neutrophilia often predicts worsened metastasis-specific survival98 . In

support of this, experimental mouse models reveal that neutrophils can enhance metastatic foci formation,

as seen by the decrease in metastatic burden upon their depletion via anti-Ly6G 27,99101 or increase when

exogenous human neutrophils are added 14 . Various mechanisms have been proposed for this pro-

metastatic effect, such as the increase in tumor cell retention in the vasculature via tumor-neutrophil



adhesions through integrins10 2. Neutrophil derived factors have also been implicated, such as LT134 which

enhances colonization by selectively expanding the sub-pool of cancer cells with high tumorigenic

potential99 . Conversely, neutrophils have been shown to accumulate in the pre-metastatic lung and inhibit

metastatic seeding by generating H202, an effect that is mediated by tumor secreted CCL2104 1 5 . Thus,

neutrophil-tumor cell interactions may not be uniformly pro-metastatic.

Because neutrophils are the first line of defense for infectious insults, attention has recently

focused on the link between systemic infection and metastatic seeding. In particular, cancer patients

undergoing tumor resection surgeries often encounter post-surgical infection, which is followed by the

activation of the immune response fundamental for the reparative process 106. However, a disturbing

feature of systemic infection in cancer patients is the association of neutrophilia and activation with

adverse metastatic outcomes independent of the morbidity associated with the infection itself 107-109

Animal models of injury such as cecal ligation and ischemia reperfusion have shown to induce the

formation of neutrophil extracellular traps (NETs) which trap circulating tumor cells and enhance

metastasis 1 0111 . Similarly, pre-stimulation of neutrophils with lipopolysaccharide (LPS) increased tumor

cell retention in hepatic sinusoids and gross metastases 103. Thus, tumor-PMN interactions can play an

important role in linking infection, inflammation, and metastasis. Combined with the finding that tumor

resection often sheds cancer cells into the circulation""2 1 1 3 it has become imperative to clearly elucidate

the cellular and molecular players underlying these observations.

In this Chapter, we make improvements to the microvasculature model developed in Chapter 2 in

order to address issues of throughput and robustness. Using this improved assay combined with LPS-

stimulated neutrophils to recapitulate an inflamed state, we probed the dynamic interactions between

tumor and host cells during hematogenous dissemination. We show that various tumor cell types can co-

localize with neutrophils and arrest intraluminally in heterogeneous TC-PMN clusters. Aggregation is

dependent on PMN adhesive interactions, particularly with endothelial ICAM-1 that is up regulated only

upon tumor cell contact. Following initial arrest in clusters, PMNs are further confined and sequestered

via autologous chemotaxis towards PMN derived IL-8 and tumor-derived CXCL-1, a response which is

enhanced via immobilization and maintenance of chemokines on the intraluminal endothelial heparan

sulfate (HS) groups. PMN sequestration at tumor clusters results in the spatial localization and hence

effectiveness of PMN-derived IL-8, which, above threshold concentrations, disrupts the adjacent

endothelial barrier and facilitates invasion of PMN-associated tumor cells through the vascular wall.
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4.2 Methods for investigating the role of PMNs during tumor extravasation

Design and fabrication of a multiplexed extravasation assay

In order to address the technical challenges associated with assay throughput and reproducibility,

the device presented in Chapter 2 was modified. A single gel injection port allows the parallel distribution

of cells into 8 independent vascular beds through a branching network (Figure 26A). Wider channels

(500 [tm wide by 130 [tm high) in the branching network leading to the entrance of each gel region,

combined with a narrow channel (120 [im wide) downstream of the gel region prevents premature leakage

of hydrogel into the side channels if any other is prematurely filled. Since fibrinogen polymerizes rapidly

once in contact with thrombin, the branching network length and channel width were designed to reduce

the tendency for premature polymerization before all 8 devices have been filled. Although the gel regions

are all connected via a the same branching network, they can be considered to be independent since the

characteristic diffusion time scale is on the order of days for a small proteins in water (D1 0-6 cm 2/s),

even when media flow is introduced to the system. This is negligible compared to the time span of a

typical extravasation experiment in our assay (8-12 hours).

Constant media perfusion is achieved via a -5 mm passive hydrostatic pressure head using a large

integrated reservoir attached to the top of the device after introduction of the tumor cells into each

microvascular bed (Figure 26B). The reservoir and channels are separated by a dual-purpose "ports and

plugs" layer, which simultaneously provides access to and restricts flow in a manner that allows

formation of identical pressure drops across all 8 regions in the direction orthogonal to that in the

reservoir. Using this simple pump-free method, physiologically relevant shear stresses ranging from 0.1-1

Pa can be robustly maintained for ~6 hours before significant changes (>10%) in the pressure drop

occurs. In cases were the experiment was longer, fluid was replenished in reservoirs to restore the original

hydrostatic pressure drop, and the reservoir was carefully secured to the chip to prevent delamination over

time.

In addition, the larger gel-cell mixing volume decreases variations in cell densities between hydrogel

regions in one entire chip, which greatly improves the percentage of perfusable vascular beds in each

experiment. Furthermore, with no changes to the volume of perfusable networks and the number of

starting HUVECs and FBs, the number of independent devices that can be filled is increased at least 4-

fold (>56). This is partly due to the significant reduction in the dead-volume by replacing 8 gel injection

ports with one, while parallel seeding significantly reduces the time required to seed a "single" hydrogel

region independently. Preparation of cells for device injection is similar to that described in Chapter 2 and

the step-by-step modified protocol can be found in Appendix B.
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Figure 26. Multiplexed microfluidic chip allows higher throughput and robust formation of microvascular beds and

quantification of TC extravasation. (A) Each chip houses 8 independent hydrogel regions for the formation of microvessel

beds. 8 gel regions are connected by branching channels on each side to facilitate parallel injection of HUVEC or FB

suspensions. Gels are prevented from bursting via the use of relief ports downstream of the hydrogel region. After 4 days of

culture, perfusable vascular beds form in the HUVEC chamber with the help of paracrine signaling from suppor8ng fibroblasts

(green region). TCs/PMNs are introduced into the flow inlets and travel across vascular bed via a short (- 1 min) pressure drop

across each individual gel region. Fluorescence inset depicts a confocal projec8on of one perfused vascular network. (B) To

induce continuous media flow over -6 hrs after cell perfusion, a large integrated reservoir sustaining a hydrostatic pressure drop

of -5mm water is secured on top of the PDMS chip. The media in the reservoir is connected to the flow inlets and outlets on the

PDMS chip via an acrylic layer that that blocks reservoirs at required positions (diagonal).

Human neutrophil isolation

Human neutrophils were obtained from fresh human blood (diluted 1:1 in HBSS (Invitrogen))

collected from healthy donors (Research Blood Components, Cambridge, MA), at most 3 hours before

perfusion. Briefly, blood anti-coagulated with sodium citrate was layered onto Histopaque 1077 (Sigma),

centrifuged (without brake at 1400 rpm), and plasma and PMBC layers were removed. PMNs were

further separated using a density gradient with 2% dextran (Sigma) for 30 minutes at 1400 rpm, followed

by red blood cell lysis with cold water. All procedures were done at room temperature. Isolated cells were

resuspended at 6M/mL in HBSS and stained with Cell Tracker Deep RedTM (Invitrogen) at 0.5 pM for 10

minutes and washed twice with HBSS. In experiments requiring inflamed PMANs, cells were further

incubated with 30 ng/mL of LPS (Sigma) for 25 minutes at 37*C, and washed 3 times with HBSS. The

full protocol for PMN isolation can be found in Appendix C.
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Cytokine array

MA2 were plated onto 6 well plates in EGM-2MV until 60% confluence, after which media was

replaced and incubated for 4 hours before collection conditioned media. In some cases, freshly isolated

PMNs were also incubated on 6 well plates, or co-incubated with MA2 cells, for 4 hours in EGM-2MV.

Conditioned media was centrifuged at 800g for 10 minutes to remove debris and stored at -20C until use.

Undiluted conditioned media and EGM-2MV control media was assayed using a human 80-cytokine

array (Cat #. AAH-CYT-5, Raybiotech), following the manufacturer's protocol.

Cell culture and treatments

Pooled human umbilical vein ECs (HUVECs) (Lonza) were transduced with a mCherry LifeAct

plasmid (Addgene), and cultured in EGM-2MV supplemented with SinglequotS TM (Lonza, Walkersville)

on collagen-I coated plates and used at passage <6. Normal human lung fibroblasts (Lonza) were cultured

in FGM-3 supplemented with Singlequots TM (Lonza, Walkersville) and used at passage <12. Human GFP

expressing melanoma A-375 and A-375 MA2 (gift from the Hynes Lab, MIT) and MDA-MB-231

(ATCC) were maintained in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. For

tumor cell and PMN perfusion, cells were trypsinized and resuspended at 1.2 M/mL and mixed with

PMNs to achieve a final density of 0.6 M/mL (tumor) and 3 M/mL (PMN).

Antibodies and reagents

For blocking of neutrophil surface CDI lb after LPS activation, cells were incubated with anti-

CD1 lb (1:200 in HBSS) (Cat #. 301319, Biolegend) for 30 minutes at 4'C, followed by an HBSS wash.

Tumor ICAM-1 was blocked by a 30-minute incubation with anti-ICAM-l diluted 1:200 in DMEM (Cat

#. BBA9, R&D) at 40 C. HUVEC ICAM-I was blocked by perfusing vascular networks with anti-ICAM-

1 (1:200 in EGM-2MV) and devices were incubated for 30 minutes at 370 C followed by 2 washes with

EGM-2MV before perfusion of cells. At times, HUVEC microvessels were stimulated with recombinant

human IL-8 (Cat #. 208-IL, R&D) diluted at various concentrations in EGM-2MV for 3 hours at 37C

prior to cell perfusion. To degrade the endothelial heparan sulfate layer, microvascular networks were

pre-incubated with heparinase III from flavobacterium heparinum (Cat #. H88891, Sigma) at 3U/mL for 2

hours prior to tumor cell perfusion. At times, HUVEC vessels were pre-treated with undiluted

conditioned media (collected as described above) from tumor cells or PMNs for 3 hours prior to cell

perfusion with the same media.

To test the influences of various cytokines on PMN dispersion and TC extravasation, tumor cells

mixed with LPS activated PMNs (at final perfusion densities) were incubated with anti-CXCL at 15
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pg/mL (Cat #. MAB275), anti-IL-8 at 1 ptg/mL (Cat #. MAB208), anti-CCL-4 at 5 pg/mL (Cat #.

MAB27 1), anti-CXCL-7 at 20 pg/mL (Cat #. MAB3 93), anti-IL-6 at 0.2 pg/mL (Cat #. MAB206), or

control isotypes, all from R&D. Cells suspension were incubated with antibodies for 20 minutes on ice

followed immediately by perfusion into microvascular networks (without washing).

For siRNA mediate knockdown of IL-8 and CXCL-1 in MA2, cells were plated on six well plates

and transfected with 25 pmol of IL-8 (Cat #. s7327) and/or CXCL-I (Cat #. 215133) Silencer Select

siRNA (Thermo Fischer) using Lipofectamine RNAiMax reagent (Thermo Fischer) (treated twice over 48

h), before trypsinization and perfusion into microvessels. Knockdown on secreted proteins was confirmed

via ELISA (Cat #. D8000C, R&D).

Immunostaining

Microfluidic chips were fixed with 4% paraformaldehyde for 10 min, not permeabilized (to stain for cell

surface proteins only), and blocked with 3% BSA and 10% normal goat serum in PBS for 5 h. Samples

were then incubated in primary antibodies against active conformation of CDI lb (1:200) (Cat #. 301407,

Biolegend), ICAM-1 (1:100) (Cat #. 322702, Biolegend), and heparan sulfate (1:100) (Cat #. 370255-S,

Amsbio) overnight at 4C in blocking buffer. Devices were washed with PBS for 5 hours and incubated

with secondary antibody (Alexa Fluor 647 or Alexa Fluor 568, Invitrogen) at 1:200 for 4 h.

Confocal and epifluorescent time-lapse imaging. Devices were imaged with a laser scanning confocal

microscope (Olympus FV-1000) at lOX (N.A. 0.45) at 4-micron z-steps with 800X800 pixel resolution,

every 20 minutes. For epifluorescent time lapses (Carl Zeiss), devices were imaged at lOX (N.A. 0.45) on

one focal plane with 486 X 468 pixel resolution, every 40-50 seconds. In both set-ups, devices were

maintained at 37C and 5%CO 2 for the duration of the time lapse. Time-lapse sequences were analyzed via

Imaris Bitplane (for 3D confocal projections) and ImageJ (for 2D epifluorescent images).

Quantification of tumor cell or PMN extravasation

In all experiments quantifying extravasation in microvascular networks, the transmigration rate of

one device is calculated from 6 random fields of view via confocal microscopy at 20X (NA 0.75) with

1.26-micron z-steps and 800 X 800 pixel size. 3D projections were reconstructed in Imaris Bitplane. All

tumor cells or PMNs that were observed to partially cross or completely clear the endothelial barrier were

classified as "extravasated."
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Image segmentation, determination of TC-PMN clusters, cluster-associated or free PMNs/TCs

Because TC-PMN clusters are heterogeneous in cell numbers, area coverage, cell-cell ratios, and

cell-cell separation distances, we defined a "TC-PMN cluster" as any aggregate of cells with at least 1

tumor cell and 6 PMNs, each of which must be no more than 10 xm away from nearest cell in the cluster

(determined from images at t=0). Relative distances between all cells were determined beforehand by

segmentation of TCs into surfaces (thresholded) and PMNs (into 3 [tm radius spots), using the "Surfaces"

and "Spots" functions, followed by the "Distance Transformation" function on Imaris Bitplane (Figure

27A). Furthermore, the cluster must be at least 150 [tm away from other defined clusters (see Figure 27B

for examples). PMNs lying within TC-PMN clusters were categorized as "cluster-associated," while those

free from clusters within a 150 rn radius of the cluster boundary were classified as "free."

To determine the fractions of PMNs remaining over time, the periphery of each TC-PMN cluster

defined at t=0 was delineated by generating a minimum bounding sphere around the cluster, using Image

J. At each 20-minute time frame, that stayed within a 50 Vm radius from the defined periphery was

considered to be "remaining," while those outside of the 50 [rm radius was deemed "lost." The fraction

remaining was determined by taking the fraction of the total PMNs remaining over the 5 analyzed clusters

in one device. The mean of at least 5 devices per condition is presented.

Conversely, to categorize "PMN-associated" TCs or "PMN-free" TCs, a similar metric was

applied. If a tumor cell has at least 6 PMNs within a 40 [tm radius from the tumor cell periphery, it was

categorized as "PMN-associated." If the tumor cell has less than 2 PMNs within a 100 pm radius is

deemed "PM1N-free." Tumor cells do not fall into either category is "undefined" and not used for this

specific analysis (see Figure 27C for examples). The extravasation rate of each subpopulation is

determined by taking the fraction of the total number of PMN-associated TCs or free-TCs extravasated in

a single device, and the average of at least 5 devices is presented.
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Figure 27. (A) Examples of original (maximum intensity projection) and segmented TCs and PMNs. PMNs are represented as 3

micron radius spheres. White spheres denote "cluster-associated" PMNS, while yellow spheres denote PMNs that are >10 micron

any other cells in the cluster, and hence are not part of the cluster (for definitions, see Methods). (C) Further examples of defined

-TC-PMN clusters." PMNs within the blue dotted boundary are classified as -'cluster-associated" PMNs. PMNs that are not part

of TC-PMN clusters are are at least 150 away from any other clusters are defined as "free" PMNs. All other PMNs that do satisfy

either criteria are categorized as "undefined" to order to clearly discretize each population. (D) Examples of "PMN-associated"

tumor cells and "free" tumor cells.

Tracking of PMN migration

To determine migration tracks of PMNs, epifluorescent images taken every 40-50 s were

segmented (via ImageJ) to clearly delineate individual PMNs. PMNs were manually tracked using the

"Manual Tracking" algorithm and paths were plotted on MATLAB.

To determine the migration speeds and euclidian distances of cluster-associated PMNs or free

PMNs, representative cells were randomly chosen based and their categorization was based on their

position at the first time point of imaging ("t=0"), despite the fact that their association with clusters may

change over time. Each point represents one PMN, and statistics are determined by averaging speeds of

analyzed PMNs in one device, with n=5 devices per condition.
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Statistics

Statistical analysis was performed with SigmaPlot using the student's two-tailed t-test when

comparing two conditions, or one-way ANOVA with Tukey's post-hoc analysis when applicable.

4.3 TC-PMN aggregation is dependent on the up-regulation of endothelial ICAM-1 upon TC

contact, combined with passive trapping

To recapitulate the inflamed phenotype of neutrophils found during post-surgical infections often

occurring from primary tumor resections, neutrophils were first stimulated with LPS (30 ng/mL) for 30

minutes and washed 3 times, followed by co-perfusion with A375-MA2 melanoma cells into in vitro

vascular beds. Immediately after intraluminal arrest, the two cell types were frequently found clustered

together either in direct physical contact or close proximity to one another (Figure 28A-B).

Approximately 60% of PMNs in a microvascular bed are found to be associated with TCs (within 40

microns to closest TC surface). Live video analysis revealed that while some neutrophils appear to make

direct adhesive contact with tumor cells during transit, the clustering becomes most apparent when tumor

cells begin to decelerate and plug or partially obstruct a narrow capillary, causing adjacent neutrophils to

also decelerate and arrest. Upon closer inspection, many clustered neutrophils exhibited a spread

morphology directly on the surface of the trapped tumor cell and on adjacent endothelial cells, and were

frequently positive for the activated conformation of CD1 lb suggesting engagement of neutrophil CDI lb

with ligands on the tumor and endothelial surfaces (Figure 28 C-D).

To understand whether intravascular TC-PMN clustering is dependent on adhesive interactions or

passive trapping, quiescent or LPS treated neutrophils were incubated with anti-CD 1 b prior to perfusion.

LPS stimulation upregulated surface CDl lb expression and increased the percentage of trapped TC

aggregates associated with PMNs. In contrast, addition of anti-CD I1 b attenuated this association. To

understand whether CDII b is interacting with tumor and/or endothelial cell ligands, either the

endothelium or TCs were pre-treated with anti-ICAM-1, a known ligand for CDI lb. Both conditions

resulted in significantly less TC-PMN clustering, with blocking of EC-ICAM- 1 giving a stronger

reduction. Notably, replacement of PMNs with 4-micron beads still resulted in -18% of association,

indicating an inherent level of pure physical trapping in TC-PMN clustering (Figure 28E-F).
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clusters. (C) Confocal images depicting the close association between PMNs and TCs intraluminally. (D) PMNs clustered near

the surface of TCs are often positive for the activated conformation of CDI lb. (E) Representative lOX images showing overall

level of PMN-TC intraluminal clustering under flow in the presence of control lgG, anti-CD 11 b or when tumor cells are replaced

with 15 pim diameter beads. (F) Percentage of arrested TC aggregates per device that are found associated with PMNs, in

presence of neutralizing antibodies for CDIl b, ICAM-1 , or when PMNs/TCs are substituted with similarly sized polystyrene

beads, after 30 min of co-perfusion (10-13 devices per condition). (G) Number of PMNs found in each individual TC-PMN

cluster, in the presence of anti-CD 11 b, anti-ICAM- 1, or when TCs are replaced by beads. Each point represents one tumor/bead

cluster, with 38-85 clusters over >5 devices/condition. (H) Average number of PMNs arrested in a single device after 1 hr of flow

when perfused with TCs in the presence or absence of adhesion neutralizing antibodies, or when PMNs were perfused alone (last

bar). Each point represents 1 device with 4-5 devices/condition. In (f-h), statistical significance is generated by comparing to the

case of TC + PM~N (LPS) (grey). *p<0.0), **p<0.00J, ***p<0.0001, and error bars indicate SD.

Immunostaining of ICAM-1 on endothelial cells revealed low levels in quiescent vessels,

followed by a significant increase upon MA2 cell perfusion alone, and an even higher increase with MA2

and stimulated PMN co-perfusion (Figure 29). When tumor cells were substituted with 15 p~m beads,

ICAM-1 intensity did not increase, and TC-PMN co-localization was significantly less compared to the

case with tumor cell perfusion (Figure 28F). Moreover, since blocking TC-ICAM-1 alone showed less

clustering attenuation than blocking EC-ICAM-1, this suggests that PMIN-CDI lb to EC-ICAM-1
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interactions may play a more significant role in clustering, and that this adhesion can be strengthened by

the up regulation of EC ICAM-I upon tumor cell contact.

Sequestration of PMNs in the vasculature may be important for effectively exerting their downstream

effects. Confocal imaging revealed the total number of PMNs arrested in individual TC-PMN clusters

was increased upon LPS treatment, and subsequently decreased when CDl lb or endothelial or TC

ICAM- 1 was blocked (Figure 28G). The degree of TC-PMN association was also positively correlated

with the number of PMNs remaining in the microvasculature after one hour of flow, while perfusion of

stimulated PMNs alone resulted in the least number of PMNs arrested (Figure 28H). Altogether, our data

suggests that the degree of PMAN association with TCs and their overall sequestration in the vasculature is

strongly dependent on adhesive interactions between PMN CDI lb and endothelial ICAM-l up regulated

upon TC and PMN contact, and partly on physical trapping.

HUVEC only + MA2 + MA2 + PMN (LPS pre-treated)
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Figure 29. Representative immunostaining images of ICAM-I in unpermeabilized microvessels. Quantification of mean

intensity of ICAM-I signals normalized to area of vessel coverage (in arbitrary units).

4.4 Clustered PMNs are further confined via autologous chemotaxis to PMN-derived IL-8 and

tumor-derived CXCL-1

To probe possible dynamic interactions between tumor cells and PMNs within clusters immediately

after their arrest, we performed time-lapse confocal and epifluorescent imaging of individual "TC-PMN

clusters" within vessels. We further broke down PMNs into two sub-populations - "cluster-associated" or

"free" - based on their proximity to arrested TC-PMN clusters (see Figure 27 and Figure 30A for

examples). Approximately 60% of PMNs arrested in a device are classified as "cluster-associated" and

~25% as "free," while the ones which could not fit clearly into either category were "undefined." When
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images were acquired at intervals of 40 s, PMNs clustered near TCs were not static, but rather extremely

on the surface of the endothelium, with some transmigrating into the surrounding matrix. In particular, the

migration behavior of PMNs differed depending on their proximity to trapped TC-PMN clusters.

Cluster-associated PMvNs exhibited both decreased migration speeds (0.14 pm/s vs. 0.22 pim/s) and

displacement (101 pm vs. 291 pm) compared to free PMNs over a period of 90 min (Figure 30B). Since

there was a 3-fold difference in displacement and only a 1.5-fold difference in speed, we hypothesized

that that cluster-associated PMNs were still highly migratory, but may exhibit some type of confinement

behavior. In order to visualize the directionality of PMN movement relative to the cell cluster, we plotted

representative migration tracks of cells in either category. Indeed, cluster-associated PMNs remained

more confined to their original position, whereas free PMNs exhibited significantly greater dispersion

(Figure 30C). When individual PMN positions were plotted relative to the cluster boundary rather than

their own starting positions, cluster-associated PMNs migrated in a "back and forth" motion while

remaining within a -50-80 pm radius.

We next asked whether the sequestering of PMNs within TC-PMN clusters was simply due to

physical confinement (since cluster-associated PMNs may encounter more steric hindrance from adjacent

cells compared to free PMNs), or a chemotactic response to chemokines secreted by the cells within the

cluster. To identify chemokine candidates, conditioned media was collected from 4 h of culture of

adherent MA2 cells alone, quiescent PMNs, MA2-PMN co-culture, and LPS stimulated PMNs alone. The

array revealed two highly expressed and potent neutrophil chemotactic factors, IL-8 (from MA2 and

inflamed PMNs) and CXCL-1 (from MA2) (Figure 30D). We hypothesized that the cells comprising the

clusters could behave as a concentrated chemokine source for cluster-associated PMNs. As a preliminary

test, we incubated devices with both anti-IL-8 and anti-CXCL- 1 and observed the migration patterns of

cluster-associated PMNs only. Blocking these chemokines resulted in an increase in PMIN dispersion,

migration speed and displacement (Figure 30E-F), as well as increased separation distance from the

periphery of the TC-PMN cluster. This suggests that PMNs initially arrested within the TC-PMN cluster

are further sequestered at the site via chemotactic confinement, and that in the absence of these

chemokines, PMNs would be free to migrate randomly.
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Figure 30. Cluster-associated PMNs exhibit decreased migration speed and increased confinement, which is dependent on
TC and PMN secreted factors. (A) Examples of cluster-associated PMNs and free PMNs arrested intraluminally (for criteria to

define cluster-associated vs free, see Methods). Both associated and free PMNs should be also be free of other TC-PMN clusters

within a 150 pim radius. (B) Migration speed and end-to-end distance from original position of cluster-associated vs. free PMNs

(43-53 PMNs per condition over 5 devices). (C) Representative migration tracks of free (blue) and cluster-associated associated

(red) PMNs over 90 min (40 s time step). Dotted circle delineates the 200 pim radius. (D) Human cytokine array showing relative

magnitudes of secreted factors from MA2 alone, PMN alone, LPS-activated PMNs or MA2+PMN co-incubation, after 4 hr of

culture. Two highly secreted chemotactic cytokines (CXCL-l and IL-8) were identified in the system. (E) Migration speed and

end-to-end distance from original position of cluster associated PMNs with or without anti-CXCLI+anti-IL-8 (30-34 PMNs per

condition, over 5 devices). Error bars indicate SD, **p<0.001, ***p<0.0001, error-stdev. (F) Migration tracks of PMNs

incubated with anti-CXCLQ+anti-IL-8 (green) or ctrl lgG (red).

Tumor cells are generally not observed to begin extravasation until >2 hours post-arrest in our

microvessels 26 ,"4 . Thus, in order to understand whether there exists a correlation between PMN

sequestration in clusters and extravasation, we quantified the fraction of PMNs remaining in each cluster

after a longer time point of 3 hours, at coarser time steps. As suggested by the dispersion of the migration

tracks previously observed, the fraction of original PMNs in TC-PMN clusters remaining at 3 hours was
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significantly less when CXCL-1 and IL-8 were co-blocked (Figure 31A-B). We next performed a series

of experiments to decipher the relative levels of contributions of individual chemokines and their sources.

While blocking CXCL-1 alone resulted in a significant reduction in dispersion, blocking IL-8 alone

produced dispersion nearly at the same level as co-blocking. This suggests that IL-8 is a more potent

chemokine than CXCL- 1 in confinement; however, loss of IL-8 may be slightly compensated by the

activity of CXCL-1 or other chemokines (Figure 31B-C). Additionally, we found that IL-8 is secreted by

both stimulated PMNs and MA2s at high levels (and negligible levels from endothelial cells and

fibroblasts. Since the IL-8 antibody does not discriminate based on source, we sought to decouple the two

sources. Interestingly, ablation of tumor-derived IL-8 via siRNA did not result in changes in PMN

sequestration, while co-knockdown of tumor IL-8 and CXCL-1 induced a moderate level of PMN loss,

similar to CXCL-1 antibody treatments (Figure 31C). Importantly, replacement of TCs with 15 tm beads

saw no changes in dispersion, while treatment of beads and PMNs with anti-IL-8 caused high levels of

dispersion. Together, this suggests that the presence of tumor cells first promotes intraluminal PMN

clustering via up-regulation of EC ICAM-1, and that once aggregated, PMNs are further sequestered by

acting as their own chemotactic source. In particular, PMN-derived IL-8 appears to be more critical than

tumor secreted factors for confinement.
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Figure 31. PMN-derived IL-8 and TC-derived CXCL-1 promote PMN sequestration in arrested clusters. (A)

Representative images of cluster-associated PMNs (white) and their dispersion from TCs (green) over 2 hours, in the absence and

presence of anti-CXCLI + anti-IL-8. (B) Quantification of PMN dispersion by calculating the fraction of PMNs remaining in

individual clusters over 3 hours (every 10 min) when the system is treated with IL-8 and/or CXCL-l neutralizing antibodies, or

when tumor cells are replaced with 15 micron polystyrene beads. (C) Quantification (paired comparison) of the differences

between the fraction of PMN remaining at 3 hours. Devices are treated with either ctri IgG or anti-IL-8 and/or anti-CXCL-1. In

some cases, only tumor-derived IL-8 and/or CXCL-I is ablated via siRNA. Each point represents one device with at least 5 TC-

PMN clusters averaged per device (n>5 devices per condition).

Lastly, preliminary simulations showed that it is indeed possible for chemokine gradient (such as IL-8

and CXCL-1) to be established intraluminally with an arrested TC-PMN cluster acting as a chemokine

source under fluid flow. The spatial distribution of PMNs around TCs results in higher mean downstream

IL-8 concentrations (by one order of magnitude) compared to PMNs and TC lumped in one source or

tumor cells alone, and gradients could be established over at least 100 ptm from the edge of the TC-PMN

cluster (Figure 32). Together, this data suggests that PMN confinement at TC-PMN clusters is mediated

by self-secreted IL-8 and TC-derived CXCL-1, and possibly via intraluminal chemokine gradient

formation.
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Figure 32. A vessel segment is simulated in 2D using Comsol Multiphysics. IL-8 secretion rates (from both TCs and PMNs),

vessel geometry and flow rates were determined empirically. 2D heat maps of the spatial distribution of IL-8 (mol/m^2 s) under

physiological flow conditions, assuming constant flux of IL-8 from (A) an arrested tumor cell only, (B) one tumor cell and 6

PMNs lumped in one equivalent source, or (C) distributed. X and Y axes are in microns. (D) The concentration profile across the

vessel at the point 100 microns downstream of the tumor cell. Differences in the velocity magnitude and distribution in the case

of a single tumor cell (E) versus a cluster of tumor cells and PMNs (F).

Lastly, it is known that the endothelial glycocalyx, specifically heparan sulfate proteoglycans

(HSPGs) within syndecan-2, is capable of binding cytokines and growth factors with high affinity '. We

hypothesized that IL-8 secreted by activated PMNs can be sequestered on the surface of the endothelium

and may be critical in maintaining sufficient levels of IL-8 in the presence of fluid flow. To test this,

vessels were pre-treated with heparinase III to degrade the HSPG layer and then washed prior to tumor

and PMN perfusion. Migration speeds of PMNs alone in microvasculature did not change with heparinase

III treatment (Figure 33A-C). However, when co-perfused with MA2, PMNs exhibited significant

dispersion from their initial cluster over 3 hours, although not comparable to co-blocking IL-8 and

CXCL-1 (Figure 33D).
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Figure 33. (A) Representative immunostaining (and phase - inset) of heparan sulfate (red) and nucleus (green) on the surface of

HUVEC monolayers after 2 hours of treatment with 3U/mL of heparinase III. (B) Extravasation rates (at 6 hours) of MA2 alone

or MA2 + stimulated PMNs without or without pre-treatment of microvascular heparinase III. (C) Migration speed of stimulated

PM4Ns in microvasculature without or without pre-treatment with heparinase III. (D) Quantification of fraction of PMNs

remaining in TC-PMN clusters over 3 hours (10 mIN time steps) when the micro-vessels were pre-treated with heparinase III (to

degrade the heparan sulfate groups) or buffer and washed prior to MA2-PMN perfusion (n>3 devices/condition, with at least 5

clusters per device). *p<0.05, **p<o.o l, ***p<0.001, error-s.e.m.

Lastly, since we observed the ability of tumor and PMN perfusion to up-regulate endothelial

ICAM- 1, we sought to confirm whether PMNh confinement at clusters was due to chemotaxis towards

soluble factors, rather than differences in the availability of adhesion receptors on the endothelium. Since

PMNs can be found to transmigrate into the extravascular space and migrate within the perivascular

space, we analyzed the migration behavior of extravascular PMNs only (Figure 34). PMNs were first

categorized into "free" and "cluster associated populations. Interestingly, "free" PMNs were much more

likely to extravasate compared to "cluster-associated" PMNs, while device treatment with anti-IL-8 and

anti-CXCL-1 increased "cluster-associated" PMN extravasation rates only slightly (Figure 34C). While

extravascular PMN migration speeds were slightly lower than intravascular migration speeds likely due to

steric hindrance in the matrix, there were no significant differences in speeds between the extravascular
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subpopulations even in the presence of blocking antibodies. However, migration tracks revealed that

extravascular PMNs still exhibited similar dispersion patterns to the respective cases where intra- and

extravascular PMNs were not distinguished, suggesting that chemotactic confinement is still effective

even in the perivascular matrix (Figure 34D-F).
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Figure 34. (A) Representative images of both extravasated tumor cells (green) and extravasated PMNs (white) from within

microvasculature (red). (B) Representative image of a typical transmigrating PMN from microvasculature occurring within 60 s.

(C) Fraction of PMNs in each subpopulation (cluster-associated, free or associated with antibody treatment) which transmigrate

into the extravascular matrix (at least once) over the span of 3 hours post seeding (n=4 devices/condition) (D) Migration tracks of

extravascular PMNs that are cluster associated, free, or cluster associated and treated with anti-IL-8 and anti-CXCL-1 (8

representative PMN tracks plotted per condition). (E) Euclidian distance from original position of extravascular PMNs. (F)

Migration speed of extravascular PMNs (n=9 cells per condition).
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Altogether, our results suggest that PMNs initially associated with TCs are further sequestered at

clusters, mainly via an autologous chemotactic response to their own IL-8. Chemokine immobilization on

the endothelial glycocalyx further acts to enhance the level of ligand at the cluster vicinity.

4.5 Presence of PMNs enhance TC transendothelial migration rates in addition to attenuating TC

loss from shear flow

We next asked whether the sequestration of PMNs at TC-PMN clusters could directly influence the

extravasation potential of tumor cells. Sequestration could act to localize pro- or anti- extravasation

factors secreted by PMNs, or act as a contact-dependent facilitator (e.g. open the endothelial barrier by

transmigrating themselves or act as a protective shield against blood flow) or barrier (e.g. steric hindrance

preventing tumor access to the endothelium) for extravasation. We began by deciphering how TC-PMN

clustering and PMN confinement could influence both tumor cell retention, and the ability of tumor cells

to cross the endothelial barrier.

We found that the numbers of MA2 or MDA-MB-231 arrested in the microvasculature within the first

5 minutes were not significantly different when co-perfused with LPS stimulated PMNs, suggesting little

effect on initial TC arrest (Figure 35A). However, after 30 minutes of continued media flow (no cells)

through the microvascular bed, the percentage of tumor cells retained (out of the number trapped at 5

minutes), was significantly higher for both MA2 and MDA-MB-231 cells with PM1Ns, and this difference

persisted for up to 2.5 hr of flow (Fig 35B). We also note that the size of trapped tumor clusters was not

significantly different when co-perfused with PMNs, indicating that increased retention is likely due to

stronger adhesions of the arrested tumor cell to the surrounding endothelium with PMNs present, rather

than differences in the physical size of clusters formed (Figure 35C). Thus, PMNs do not promote initial

arrest of tumor cells but rather enhance their resistance to intraluminal shear over time, which may be

partially due to the CDI I b-ICAM- I interactions we and others'16 ,117 observed earlier.
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Figure 35. Presence of PMNs enhance TC transendothelial migration rates in addition to attenuating TC loss due to shear

flow. (A) Number of tumor cells arrested in microvessels during an initial 5 minute perfusion, with or without PMNs. (B)

Percentage of tumor cells retained in devices when flow is continued for 30 minutes (n>10 devices/condition, error bars indicate

SD, *p<0.05, ***p<0.00 ). (C) The number of TCs in individual TC clusters when co-perfused with or without PMNs (n>48

clusters over 5 devices, error bars indicate SD, *p<0.05, ***p<0.001). (D) Extravasation rates at 6 hrs of A375, A-375-MA2 and

MDA-MB-231 when co-perfused with quiescent PMNs or LPS activated PMNs at a 1:5 ratio (rates are calculated as the number

extravasated over those retained rather than initial numbers arrested, in order to decouple the effects of retention). (E)

Extravasation rates of MA2 at 24 hours post TC-PMN perfusion. (F) Extravasation rates of MA2 at 6 hours when co-incubated

with conditioned media (CM) generated from various conditions (n>9 devices/condition, error bards indicate SEM, *p<0.01,

**p<0.001, ***p<0.0001).

In order to de-couple the effects of PMNs on TC retention and the potential ability of PMNs to

directly modulate TC or EC behavior, extravasation rates were determined as the number of transmigrated

cells divided by the number retained after 30 minutes of flow. This metric was valid since we observed
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tumor cell retention rates to plateau beyond 30 minutes. Melanoma cell lines A375 and A375-MA2

(highly metastatic) and the breast cell line MDA-MB-231 were co-perfused with either quiescent or

PMNs pre-stimulated with LPS (then washed). Addition of quiescent PMNs with A375 or MA2 resulted

in significant increases in tumor cell transmigration, while addition of inflamed PMNs resulted in even

higher levels. Interestingly, transmigration rates of MDA-MB-231 only increased when LPS-stimulated

PMNs were perfused (Figure 35D). The pro-extravasation effects of inflamed PMNs continued for as

long as 24 hours (Figure 35E). When the pro-retention effects of PMNs were not decoupled, the

differences between extravasation rates (taken over the initial number of cells at t=0 min instead of t=30

min) were even greater. Thus, our results indicate that beyond protecting TC loss from flow, PMNs can

additionally enhance the ability of TCs to cross the endothelial barrier.

To determine whether the pro-extravasation effect of PMNs was due to the action of secreted factors

or juxtacrine effects, MA2 cells were perfused only in the presence of conditioned media (CM). CM from

LPS stimulated neutrophils and MA2-PMN (stimulated) co-culture resulted in significant increases in

transmigration compared to quiescent PMN or MA2 CM (Figure 35F). Pre-treatment of ECs with the

same CM also increased extravasation, while pre-treatment of MA2 cells did not, indicating a stronger

effect on ECs. Interestingly, CM from MA2-quiescent PMN co-culture also increased extravasation,

suggesting that MA2s alone have the potential to activate PMNs without LPS stimulation. In fact, co-

incubation of PMNs with all of our tumor cells lines or their conditioned media resulted in increases in

surface CD 11 b expression, indicating PMN activation. Combined, this suggests that a key mechanism by

which PMNs enhance transmigration of tumor cells is via release of cytokines from activated PMNs,

rather than contact-dependent mechanisms.

4.6 PMN confinement at the vicinity of TC clusters enhances TC extravasation through

sequestration of PMN-derived IL-8

In order to determine the cytokine(s) responsible for the pro-extravasation effect of PMNs, we looked

to our cytokine array for factors up-regulated in stimulated PMNs or when co-incubated with MA2s.

Upon LPS stimulation, PMNs dramatically increased the secretion of IL-8, IL-6 and CCL4 compared to

negligible levels in unstimulated PMNs, and produced CXCL-7 in both unstimulated and stimulated

states. Co-incubation of stimulated PMNs with MA2 cells did not induce further production of these

cytokines beyond summed levels, nor any other cytokines originally not produced by either cell type

alone. To determine whether any of these cytokines affected MA2 extravasation, co-perfused devices

were further incubated with antibodies against IL-8, IL-6, CCL4 and CXCL-7 during the entire 6-hr
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extravasation assay. Only blocking of IL-8 produced a significant reduction in transmigration, while

neutralization of all others showed no appreciable response (Figure 36A).

To decipher the target of IL-8, MA2s or HUVEC networks were pre-treated with recombinant

human hIL-8 at varying concentrations (0-500 ng/mL) for 3 hours, followed by tumor cell perfusion

without PMNs. Extravasation rates increased in a dose dependent manner when HUVECs were pre-

treated with IL-8, while no changes were observed with MA2 pre-treatment, consistent with our previous

results with conditioned media (Figure 36B). Furthermore, permeability to 70kDa dextran begins to

increase significantly when HUVECs are treated with > 50 ng/mL of rh-IL-8, suggesting that PMN-

derived IL-8 may act to weaken the integrity of the endothelial barrier when present at high enough

concentrations.
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Figure 36. IL-8 released by LPS stimulated neutrophils increases TC transmigration rates. (A) Extravasation rates of MA2

in the presence of neutralizing antibodies at 6 hrs post injection. (B) Effect of micro vessel or MA2 pre-incubation with various

concentrations of recombinant IL-8, on MA2 extravasation rates at 6 hrs post injection. (C) Production of IL-8 by LPS

stimulated neutrophils compared to MA2 inherent secretion (in pg/million cells). (D) Tumor (MA2) IL-8 secretion was inhibited

via siRNA to decouple tumor IL-8 from PMN IL-8. (*p<0.01, **p<0.001, ***p<0.0001, n=3 independent experiments each with

3 devices/condition).
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Since MA2 produced IL-8 on the same order of magnitude as stimulated PMNs (300 pg/10^6 cells

and 100 pg/I 0^6 cells, respectively) (Figure 36C), we sought to determine whether additional levels of

IL-8 from PMNs could enhance extravasation independent of MA2 produced IL-8. Tumor cells were

again treated with IL-8 siRNA prior to perfusion to attenuate protein secretion during the assay. Co-

perfusion of MA2 IL-8si with simulated PMNs still resulted in increases in transmigration rates to levels

remarkably similar to MA2 control siRNA with PMNs. Incubation with anti-IL-8 reversed this behavior

(Figure 36D). Treatment of MA2 with IL-8 siRNA did not affect their own ability to extravasate. Thus,

while MA2-derived IL-8 may be below the threshold level to induce appreciable consequences in

transmigration, PMN-derived IL-8 alone may be sufficient. Taken together, LPS-stimulated PMNs can

enhance extravasation in two ways: (1) increase the absolute number of possible extravasation events by

enhancing tumor cell retention, and (2) facilitate tumor transendothelial migration via PMN-derived IL-8,

likely via disruption of the endothelial barrier.

Since PMNs can facilitate tumor transmigration via the action of secreted IL-8, we asked whether

PMN sequestration at TC-PMN clusters via autologous chemotaxis is indeed critical to the effectiveness

of this mechanism. In an attempt to de-couple the effect of PMN-dispersion from the possible direct effect

of IL-8 on TC or EC function, we first separated TCs into two sub-populations: PMN-associated and non-

associated. Approximately 75% of trapped cells were PMN-associated, ~20% non-associated.

Importantly, we found extravasation rates of PMN-associated tumor cells to be significantly higher

compared to non-associated cells, strongly suggesting the presence of a proximity-dependent effect of

PMNs on neighboring tumor and endothelial cells (Figure 37A). Furthermore, neutralizing both IL-8 and

CXCL- 1 not only abrogates PMN sequestering at clusters, but also causes a significant decrease in the

extravasation rates of PMN-associated TCs. Conversely, there is no effect on extravasation rates of the

"non-associated" subpopulation, further suggesting a direct correlation between IL-8+CXCL-1-dependent

confinement and extravasation (Figure 37B). Combined with earlier results showing the ability of both

PMN-derived and recombinant IL-8 to enhance extravasation, it is highly likely that PMN sequestration

at TC-PMN clusters is critical in the pro-extravasation effect of PMVNs by localizing IL-8 to sites of tumor

arrest. Without PMN confinement, secreted IL-8 may not reach an effective mean concentration, because

the sources are too spatially dispersed.

Importantly, we found that increased dispersion of PMNs from clusters is correlated with an

augmented loss of PMvNs from the entire microvascular network (Figure 37B). It is likely that "free"

PMNs are more prone to loss, while PMNs sequestered in clusters benefit from increased protection from

shear flow. Indeed, the loss of "free" PMNs was significantly higher compared to the loss of PMNs that

were originally "cluster-associated," after 6 hours of flow (Figure 37C), despite the fact that "free"

PMNs have a higher propensity to extravasate. Taken together, confinement of PMNs in clusters may
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enhance the numbers of PMNs arrested in the microvasculature and be necessary for enabling the pro-

extravasation effect of PMNs by localizing IL-8 to sites of tumor arrest.

600-

50- **

20 Anti-CXCL-1 2 0-

1) 0210 1 20 0.

10 00
0

Figure 37. PMN confinement at TC-PMN clusters increases extravasation rates of cluster-associated TCs through

sequestration of IL-8 and further prevents PMN loss due to flow (A) Percentage of tumor cells extravasated in the PMN-

associated or non-associated subpopulations, either with or without the presence of anti-IL-8 and anti-CXCL- 1 to attenuate

confinement. Extravasation rates of non-associated TCs do not change in the presence of antibodies (n=6 devices, error bars

indicate SEM, *p<0.05, **p<0.0 ). (B) Percentage of original (at t=0) PMNs remaining in micro-vessel beds after 6 hours of

flow in the absence or presence of anti-1L8 + anti-CXCL-1 (n=10 devices, error bars indicate SD, *p<0.05 ). (C) Percentage of

PMNs remaining in cluster-associated or free subpopulations after 6 hours of flow (with MA2 co-perfusion). Each point

represents the average of at least 5 clusters across 5 R.O.I, or at least 20 free PMN over 5 R.O.I.

4.7 Discussion

While the roles of neutrophils at the primary tumor site have been extensively studied, whether

neutrophils play pro- or anti- metastatic functions during hematogenous dissemination is less clear.

Importantly, it has been shown that primary tumor resection surgeries are associated with high rates of

infections, and that these complications are correlated with adverse oncological outcomes independent of

107-109 wt
the morbidity associated with the infectious insult' -. Combined with the fact that resection surgeries

often shed tumor cells into the circulation""', it has become apparent that neutrophils, the first line of

defense in the body, may play an important role linking infection, inflammation and metastasis. In this

study, we aimed to understand the dynamic roles of inflamed neutrophils in the specific steps of tumor

cell arrest and extravasation.
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To decipher these roles, we employ a unique in vitro model of the human microvasculature,

which enables us to dynamically visualize tumor-neutrophil-endothelial interactions at spatial and

temporal resolutions that would otherwise be challenging in in vivo systems. Compared to Transwell

assays or parallel flow chambers, we are able to recapitulate key events such as the physical trapping and

arrest of tumor cells and neutrophils in vessels with diameters and flow patterns comparable to those of in

vivo microvasculature2 6,114 . This is key since TC-PMN clustering, PMN sequestration and the formation

of chemokine gradients (while relevant in the context of in vivo vasculature) may not occur in static

assays or even those involving flow over an open endothelial monolayer. Furthermore, our vascular beds

are embedded within thin (<150 micron) hydrogels, which limit vessels to approximately one plane of

view. This facilitates high temporal-resolution tracking of rapidly migrating neutrophils (<30 second per

frame) compared to intravital imaging in thicker in vivo tissues that are either less optically accessible or

require longer imaging times to capture out-of-plane migration events. Importantly, we can easily

determine the spatial relationships between tumor, neutrophils and endothelial cells, enabling robust

categorization of tumor cells and neutrophils into various sub-populations such as "PMN-associated"

tumor cells and "cluster-associated" PMNs. Understanding the minute differences in behavior between

cell sub-populations within the same vascular bed was key to our understanding of chemotaxis and

sequestration, which would not have been possible if cells were lumped into one category.

It has been previously shown in mouse models of dissemination that arrested tumor cells can co-

localize with neutrophils, through integrins 02 ,103 , NETs 10 or even through the attraction of platelets27 .

Huh and colleagues showed that melanoma ICAM-1 and PMN CD I Ib/beta-2 facilitated the aggregation

of the two cell types within a parallel flow chamber. However, realistically, TCs and PMNs interact in

narrow capillaries (rather than a flat surface) where physical occlusion and increased contact area with the

endothelium may play a more significant role. By coupling both mechanisms in our assay, we show that

not only can tumor ICAM-l/PMN CDI lb interactions modulate cell clustering, physical trapping under

flow can also play a role. Furthermore, we find that up-regulation of endothelial ICAM-1 upon contact

with tumor cells and PMNs can greatly enhance co-localization rates, and that this adhesion may play a

stronger role than TC ICAM-1. This suggests that aggregation and adhesion of PMNs intraluminally

depends strongly on the presence of tumor cells to upregulate endothelial ICAM-1, likely via tumor

inflammatory mediators".

The initial co-localization of tumor cells and neutrophils via adhesive interactions may be an

important pre-requisite for the sequestration of PMNs. We have observed, for the first time, that these

cluster-associated neutrophils remain confined to approximately a 70-micron radius of the original TC-
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PMN cluster, via an autologous chemotactic mechanism to tumor- and PMN-derived chemokines. This

behavior exists even without appreciable neutrophil recruitment from other distant sites, as the initial

levels of PMNs in clusters formed during intravascular arrest are sufficient to establish a chemokine

source. In particular, we find that the presence of PMN-secreted IL-8 is critical for chemotaxis in this

specific context, compared to tumor-secreted IL-8 or CXCL-1.

While neutrophil chemotaxis has generally been well studied in the context of extravascular

gradients 119, chemotaxis can also occur intraluminally, such as in the case of MIP-2 generation from an

extravascular source 2 . In this instance, gradients are established in spite of blood flow by the

immobilization of the chemokine by the endothelial glycoclayx. Hpa-tg mice, which express truncated

heparan sulfate chains, exhibited random PMN intraluminal migration2 . In this study, we show PMN

sequestration in tumor clusters may also depend on a similar mechanism of IL-8 binding to heparan

sulfate groups on endothelial syndecan-2" 5 . Indeed, our numerical simulations suggest that under flow

conditions, mean concentrations of IL-8 may be on the lower end of the spectrum required for PMN

response 1, and it is possible that IL-8 binding to the endothelial glycocalyx significantly enhances the

level of IL-8 available on the luminal surface. It follows that degradation of heparan sulfate groups in our

micro-vessels with heparinase III decreased the level of confinement of cluster-associated PMNs. Lastly,

it is worth noting that in addition to PMN and TC derived cytokines, other cells in the system can

modulate the spatial distribution of chemokines. For instance, we find that HUVECs can also secrete low

levels of IL-8 basally, and that this expression is up regulated upon exposure to inflammatory factors such

as TNF-a or LPS (but interestingly not by MA2 tumor conditioned media). Thus, it is likely that

endothelial cells themselves can produce 2 2 or even internalize 123 IL-8 or other chemokines, further

complicating gradient profiles.

Confinement of PMNs at arrested tumor foci may be a key pre-requisite for the pro-extravasation

effect of PMNs to take effect. Direct co-perfusion of tumor cells with stimulated PMINs results in

significant increases in extravasation in a paracrine manner. Inflamed PMNs secrete high levels of IL-8,

which, in addition to acting as a chemotactic source, can independently disrupt the endothelial barrier,

facilitating the invasion of trapped tumor cells into the extravascular matrix. It is likely that the

sequestration of PMNs at tumor foci allows IL-8 to be highly localized and act effectively on the adjacent

endothelium. The significant increase in the number of co-localized PMNs per tumor cluster upon LPS

treatment may further exacerbate this effect. Indeed, the subpopulation of "PMN-associated" tumor cells

showed significantly higher transmigration rates than "non-associated" tumor cells, within the same

device. Furthermore, extravasation rates in PMN-associated TCs decreased upon neutralization of
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chemotactic factors IL-8 and CXCL-1, but not in the non-associated population, strongly suggesting that

PNN confinement is critical for the effects of PMN-derived IL-8 to be exerted.

Previous studies have implicated IL-8 in arrest and extravasation in the presence of neutrophils.

Specifically, melanoma-derived IL-8 can upregulate CDI lb on PMNs, facilitating their aggregation with

entrapped tumor cells and promoting retention 0 2 ,1 7. This leads to an increase in tumor cell transmigration

events due to the greater number of tumor cells attached to the endothelial monolayer that are available to

extravasate. While we have also found IL-8 to be the key effector in our system, our study is the first to

implicate a direct effect of IL-8 and its sequestration near tumor cells on tumor cell transendothelial

migration, and that this is not merely a consequence of altered TC retention rate. Furthermore, we show

that rather than tumor-derived IL-8, it is PMN-derived IL-8 that is mainly responsible for this specific

mechanism.

The phenotypic state of neutrophils in the peripheral blood can be heterogeneous depending on

environmental factors such the presence of a primary tumor or systemic inflammation. For instance, in the

presence of a growing tumor, subclinical changes in leukocyte compositions and numbers can occur at
42,125distant sites to favor metastatic growth 2 . In the present study, we primarily focused on deciphering

the link between systemic inflammation and hematogenous dissemination. As such, most of our

experiments were performed with LPS-pre-stimulated neutrophils to mimic the inflamed phenotype that

would be typically found during severe infection. Interestingly, we find that even without pre-stimulation,

initially non-stimulated PMNs are still capable of elevating extravasation when co-perfused with tumor

cells in the microvasculature (albeit to a lesser degree than stimulated PMNs). Furthermore, pre-treatment

of vascular beds with conditioned media from MA2-PMN (quiescent) co-culture also induces similar

effects. This suggests that tumor cells alone can stimulate neutrophils, resulting in an alternate activation

pathway that also results in the release of pro-extravasation factors. It has previously been suggested that

without exogenous stimulation, melanoma secreted IL-8 can stimulate neutrophils to further produce IL-8
102and that this interaction promotes increased tumor-PMN binding and hence metastasis . While we do

not find IL-8 secretion in co-culture to be above the summed values of individual sources, we observe that

co-incubation of melanoma cells with quiescent PMNs up regulates CDI lb.-Furthermore, co-incubation

of PMNs with the breast cancer cell line MDA-MB-231 does not produce pro-extravasation effects,

except when PMNs are pre-stimulated. We conclude that the ability of tumor cells to activate PMNs and

produce pro-extravasation factors is cell line specific, whereas in the case of systemic infection, PMNs

can enhance tumor extravasation without cell-type specificity.
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Figure 38. Working hypothesis for PMN-TC interactions during extravasation. (1) PMNs and TCs decelerate and arrest

in clusters under flow in narrow capillaries from physical trapping. Increased contact time may facilitate engagement of CD-

1 lb to EC-ICAM-1 and to TC-ICAM-1, enhancing PMN-TC associations. EC-ICAM is further upregulated upon TC

contact, which may enhance PMN adhesion. (2) Once clustered, highly migratory PMNs continue to be sequestered in

clusters due the action of PMN-derived IL-8 tumor derived CXCL-1. This chemotactic confinement of PMNs is enhanced

by immobilization of chemokines on the EC glycocalyx. (3) The the occlusion of vessels by PMN-TC clusters promotes

both TC and PMN retention by decreasing levels of flow entering the vessel segment. (4) Confinement of PMNs results in

the spatial localization of pro-transmigration cytokines. (5) One of these factors could be IL-8, which plays an additional

role of enhancing extravasation potential of tumor cells, such as through the weakening of the endothelial barrier. Dotted

arrows indicate chemokine secretion, red arrow indicates migration direction.

In summary, employing an in vitro model of human microvasculature, we show that inflamed

neutrophils and tumor cells can arrest and co-localize intravascularly to form TC-PMN clusters under

flow, and that their formation is dependent on endothelial ICAM-1 up-regulated upon tumor cell contact

(Figure 38). We show, for the first time, that after initial arrest, "cluster-associated" PMNs are further

sequestered within the cell aggregates via autologous chemotaxis to tumor- and PMN-derived CXCL-1

and IL-8 respectively, and that this effect is enhanced via chemokine immobilization to luminal

endothelial heparan sulfate groups. Sequestration of PMNs at clusters enables IL-8 to spatially localize

and accumulate and facilitating tumor cell extravasation.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Despite the fact that metastasis is the leading cause of cancer related deaths, many of the

biological mechanisms that drive this key process remain poorly understood. Metastasis is the sequence

of events by which cancer spreads from the primary tumor via hematogenous or lymphatic dissemination,

resulting in downstream colonization at remote, secondary sites, often the liver, lung, brain or bone

marrow 126. This complex cascade of events is initiated by the invasion of primary tumor cells into

surrounding tissues, and entry into the vasculature, followed by transport and intravascular arrest at a

distant site, extravasation, and finally, cell proliferation and formation of metastatic foci. In particular,

tumor cell extravasation is thought to be an essential and possibly rate-limiting step, as most metastases

are found in the extravascular space rather than intraluminal. Thus, it is of utmost importance that we

understand the effectors and signaling pathways that regulates the extravasation process. However, these

aspects of the metastatic cascade remain less understood, largely due to the technical challenges

associated with imaging, throughput, isolation, and analysis of circulating tumor cells that have

disseminated into visceral, distance organs. A fundamental understanding of these steps will also likely

lead to improved methods for screening of potential therapeutic agents targeted at inhibiting

extravasation.

In this thesis, we present the engineering of an in vitro model of the human microcirculation with

the capability to recapitulate discrete steps of early metastatic seeding, including arrest, transendothelial

migration and early micrometastases formation. The microdevice features self-organized human

microvascular networks with physiologically relevant microvessel diameters, through which tumor and

various host cells can be perfused and easily tracked over time via standard confocal microscopy.

Contrary to most in vivo and ex vivo extravasation assays, robust and rapid scoring of extravascular cells

combined with high-resolution imaging with high magnification (short working distance) objectives can



be easily achieved due to the confinement of the vascular network to one plane close to the surface of the

device. This renders extravascular cells clearly distinct and allows tumor cells of interest to be identified

quickly compared to those in thick tissues. The ability to generate large numbers of devices per

experiment coupled with fast quantitation further allows for highly parametric studies, which is required

when testing multiple genetic or pharmacological perturbations. This is coupled with the capability for

live tracking of single cell extravasation events allowing both tumor and endothelial morphological

dynamics to be observed in high detail with a moderate number of data points.

After biological characterization and functional testing, we applied our extravasation assay to probe a

variety of biological questions in order to gain a deeper mechanistic understanding of the process of

tumor cell extravasation, in ways that are technically challenge in vivo. Harnessing our advantages of

increased throughput and higher spatio-temporal resolution, we studied role tumor integrins and how their

interactions with endothelial cells and perivascular matrix proteins can modulate extravasation. Results

from our assay reveal that tumor beta-I integrin is critical for successful transendothelial migration in a

variety of tumor cell lines and due in part to the inability to maintain filipodial protrusions into the

subendothelial matrix via integrin engagement and recruit of F-actin to the protrusion tip. Specifically,

adhesion via 13l and a6p I to subendothelial laminin was a critical prerequisite for successful

transmigration. Additionally, after clearing the endothelial barrier, 11 is required for invasion past the BM

and migration away from the abluminal surface. Finally, we show that 11 depletion, but not alpha integrin

depletion, reduces extravasation in vivo and inhibits metastatic colonization, suggesting that the

cumulative defects in the extravasation cascade due to 11 depletion ultimately impairs metastasis

formation. Combined, these novel findings may be useful when designing future therapeutic integrin

targets to curtail the progression of the extravasation cascade.

Recently, much attention has been directed to the role of "pre-metastatic" niches, which consist of

complex tumor-host cell interactions during circulation, extravasation and re-colonization. For instance,

circulating immune cells including platelets and leukocytes have been shown to interact with tumor cells,

and can act to enhance metastasis 42,64,127. To probe the interactions between various circulating cell types,

we first demonstrate the ability augment the complexity and relevance of the extravasation

microenvironment in our micro-devices and apply it to deduce novel biological insights. In particular, we

co-perfuse human leukocytes and tumor cells and monitored their interactions on a single level in the

circulation. Results from our assay reveals that PMNs and tumor cells can aggregate together

intraluminally in an adhesion dependent manner, which involves PMN-CDI lb and endothelial ICAM-1

that is upregulated upon tumor cell contact. Following arrest, PMNs are further confined via an
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autologous chemotaxis mechanisms towards PMN-derived IL-8 and tumor derived CXCL-1, chemokines

which are immobilized on the surface of the endothelium via heparan sulfate groups. Importantly,

sequestration of PMNs with tumor clusters results in the localization PMN-derived IL-8, which acts to

increase the extravasation rates of associated tumor cells.

5.2 Future directions

Engineering and Methodology

In vitro platforms should not only offer not only advantages such as low cost and simplicity of

application, it should allow for high throughput and highly parametric testing of multiple conditions that

is difficult in an in vivo set-up. In particular, the increasing popularity, development and robustness of

RNAi strategies and genome editing techniques such as CRISPR has allowed high throughput production

of knockdown or knockout cell lines targeting genes that could be relevant to metastasis. Thus, it is

crucial that the in vitro screening technologies are improved to achieve the level of high throughput

parametric and even combinatorial testing that is required. Currently, our microfluidic chip has been

improved to increase the output of microvascular beds by a factor of ~5, using the same number of

starting cells and seeding time. The branching method allows for parallel seeding, cutting down seeding

times, dead-volumes, and the variability in cell concentrations from device to device, effectively

increasing robustness of device perfusability. Up to 56 independent devices can be generated with 2

million endothelial cells. However, there is still great room for improvement. For instance, automated gel

injection using a syringe pump could decrease the user-to -user variability in injection speeds (and hence

shear stresses), which can cause differences in polymerized gel architectures. Moreover, while cell-gel

injection is parallelized, perfusion of tumor cells and quantification methods currently remain unchanged.

Tumor cell suspensions are manually injected into each device, rendering it particularly time consuming

when multiple replicates of multiple conditions are required, causing numbers to quickly grow large. This

issue may be addressed by designing a modular "tumor cell perfusion" manifold which can be attached

onto the top of the PDMS chip after gel injection, and feature a branching channel network capable of

delivering tumor cells into multiple devices from a single injection port. Another outstanding issue is one

of data acquisition and analysis. Increasing the device throughput also increases the imaging burden, since

a minimum number of tumor cells need to be imaged per device to collect sufficient data, and the z-

resolution must be fine enough to allow adequate 3D reconstruction for analysis. The most viable solution

is to change the imaging modality to epifluorescence microscopy, where multiple stacks can be taken per

region of interest at high magnifications, then processed via deconvolution algorithms to achieve the
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cross-sectional details of the tumor cells in the z-dimension. Using this imaging mode, the optimal

configurations must be determined to give an adequate level of z-resolution for analysis while

significantly reducing the speed of acquisition compared to conventional laser-scanning confocal

microscopy. Lastly, image analysis can greatly benefit from automation. This requires sequential

algorithms to (1) segment the surfaces of the endothelial cell channel and the tumor cell channel, (2)

identify then discretize individual tumor cells when present in clusters, (3) extrapolate the cross-sectional

data and store as sets of coordinates, (4) determine, based on concavity of the cross-section of vessels,

where the intraluminal and extravascular regions are located (4) and last, apply distance transformations

to determine the position of the tumor cell surfaces relative to the intra- and extra-vascular regions.

Biological questions

By increasing the level of complexity of the micro device, one can further augment the realism of

the extravasation model, and in turn apply the model to answer relevant mechanistic questions. Recently,

much attention has been directed to the role of "pre-metastatic" niches, which consist of complex tumor-

host cell interactions during circulation, extravasation and re-colonization. For instance, circulating

immune cells including platelets and leukocytes have been shown to interact with tumor cells, and can act

to enhance metastasis 42,64,127. We demonstrate that human platelets and/or leukocytes isolated from whole

human blood can be perfused with tumor cells and immune-tumor interactions can be monitored in the

tVN micro devices and that an effect of co-culture on extravasation efficiency can be detected.

Additionally, the contribution of stromal cells such as pericytes can also be investigated by seeding these

cells together with HUVECs in the same gel region. There is also increasing evidence favoring the "seed

and soil" theory for metastatic cancer cells, which suggest that some cancer cell types display increased

propensity to "home" to and/or subsequently colonize certain organs. While the current device cannot be

used to model homing processes such as selective arrest (since tumor cells flow into and are physically

trapped in the vasculature), it is possible to use the assay to understand how different "organ-

microenvironments" influence extravasation and subsequently tumor cell proliferation, beyond

extravasation. Such organ-mimicking microenvironments may be achieved by adding relevant cell types

to the matrix, allowing either direct physical contact or paracrine communication, depending on the

choice of cell arrangement in the various micro-channels. For instance, bone- or muscle-mimicking

extravasation microenvironments were recapitulated in our model by co-culturing HUVECs with osteo-

differentiated primary hBM-MSCs or C2C 12 (myoblasts), respectively. Extravasation rates were

significantly different in co-culture and mono-culture environments, suggesting key roles for organ-

specific host stromal cells in modulating the factors controlling extravasation 128. These micro devices can
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be very useful tools for studying organ specific microenvironments and metastatic "niches"; they thus

complement in vivo studies by providing relatively higher throughput and kinetic cell migration data.

Lastly, there is potential, after more development, for the assay to be used to study early

micrometastases formation via prolonged culture of microdevices (e.g. >24 hours). We have found that

[VNs can remain relatively stable between days 1-6 post tumor cell seeding, such that the morphological

changes of the [tVNs (i.e. vessel diameter, interconnectivity) are small enough that the same vessel

segments can be recognized and tracked as culture progresses 5 1 . In this time frame, various tumor cell

lines can be seen to migrate into the extravascular space as well as proliferate extravascularly. However,

the relevance of these results may greatly depend on the stromal microenvironment, thus it may be

necessary to consider the presence of stromal cells such as fibroblasts, pericytes, macrophages and others

that have been implicated with proliferation and survival in the perivascular niche. Taken together, this

assay has the potential to further the understanding of the underlying mechanisms of extravasation, which

is critical for the development of therapeutic opportunities at distinct stages of cancer progression.
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Appendix A

Protocol for extravasation assay (single device)

Materials
Device Fabrication

e Photoresist SU-8 100 (for photolithography; Microchem)
e Photomask with microdevice design (available for download in Supplementary Information)
* Dow coming Sylgard 184 Silicone Encapsulant Clear (Ellesworth, Cat. no. 184 SIL ELAST KIT

0.5KG)
e Biopsy punches (Ted Pella, Cat. no. 15110-40)
e Razor blades (Ted Pella, Cat. no. 121-32)
* Scalpel
e No.1 22X40 mm glass coverslips (VWR, Cat. no. 48393-048)
e Scotch tape

Cell seeding
e Human umbilical vein endothelial cells (p8 or lower, Lonza, Cat. no. CC-2517) and normal

human lung fibroblasts (pl5 or lower, Lonza, Cat. no. CC-2512)
- Fibrinogen (Sigma, Cat. no. F8630-1G)
- Thrombin (Sigma, Cat. no. T9549)
e Endothelial growth media (EGM-MV BulletKitTM) (Lonza, Cat. no. CC-3202)
e Fibroblast growth media (FGM-2 BulletKit TM) (Lonza, Cat. no. CC-3132)

0.05% trypsin (wt/vol) (ThermoFischer, Cat. no. 25300054)
- Hemocytometer or other cell counting tools

e Dulbecco's PBS (D-PBS, pH 7.2-7.4; Wisent, Cat. no. 311-010-CL)
* Sterile dH 20
- DMEM GlutaMAX (ThermoFischer, Cat. .no. 10566-016)
e FBS (ThermoFischer, Cat. no. 10437-010)
* Gel loading pipette tips (VWR, Cat. no. 37001-152)
e Pair of surgical scissors
* Humidity chambers (e.g. empty P1000 pipette tip boxes with rack, filled halfway from the bottom

with sterile water) (e.g. VWR, Cat. No. 10034-060)

Equipment

e Vacuum desiccator (Cole Parmer, Cat. no. WU-06514-30)
* Drying oven (60 - 80'C)
- Benchtop centrifuge for use with 15 mL tubes

* Incubator at 37*C and 5% CO 2

e Autoclave
Plasma cleaner (Harrick Plasma, Cat. no. PDC-001)

- Water bath at 37'C
- Confocal microscope with environmental chamber (maintained at 37'C and 5% CO2) and

motorized stage (optional)
e 3D imaging processing software (e.g. Imaris Bitplane (Belfast, UK))



REAGENT AND EQUIPMENT SET UP

Fibrinogen solution, 6 mg/mL: Dissolve 15 mg of bovine fibrinogen in 2.5 mL of sterile PBS (-/-) in a

15 mL tube by incubating the mixture in a 370 C water bath for 3 hours. Do not vortex. Sterile filter the

solution (0.2 [tm filter) and aliquot the dissolved fibrinogen mixture in 1 mL eppendorf tubes and store at

4C until usage.
E PAUSE POINT It is recommended that fibrinogen solutions be made on the day of or the day prior to

expected use. Long-term storage of solutions is not recommended (thus dissolved solutions are generally

one-time-use).

Thrombin solution, 100 U/mL: resuspend thrombin with sterile PBS (-/-) to a final concentration of 100

U/mL). Aliquot and store at -20*C until use.

HUVEC and FB cell culture: Thaw HUVECs and FBs until the required amount for the number of

devices to be seeded (at least 1.5 x 106 HUVECs and 1 x 106 HLFs are required for a total of 12 devices).
Cell numbers can be scaled accordingly if more or fewer devices are to be seeded.

m PAUSE POINT Use lower passage HUVECs (<P8) for best ptVN formation results, as endothelial

cells become more senescent as passage number increases. Take care as to not allow HUVECs to become

over-confluent prior to trypsinization.

Re-suspension media: Add 40 [tL of thrombin stock solution to ImL complete EGM-2MV to make

4U/mL thrombin solution. Keep media on ice until time of device seeding.

Preparation of humidity chambers: Prepare humidity chambers for device seeding by filling pipette tip

boxes (with a removable rack) with water and autoclaving the whole box for 20 minutes. Set aside to

cool, then transfer to a 37 *C incubator until time of device seeding.

PROCEDURE

PDMS device fabrication e TIMING 24 hrs

1. Fabricate the micro device wafer using the photo mask pattern given in this protocol. A channel

height between 110-150 microns is optimal for the volumes and densities in this given protocol.

Wafers can be made via SU-8 micro patterning methods that are established and detailed

elsewhere 129 or via outsourcing. Silanize wafer overnight in a vacuum desiccator.
2. Fabricate and sterilize PDMS devices using the procedure outlined in our previous protocol

(Steps 9-26 in Shin et al, Nature Protocols, 2012)50. We recommend punching 3 mm diameter

holes for the media reservoirs and 1 mm diameter holes for gel injection ports (Figure 1A).

Incubate bonded devices at 800 C for >24 before seeding to ensure that hydrophobicity is restored.

Make sure to keep devices in sterile conditions until opening the device container under a sterile

cell culture hood.

Seeding of endothelial cells and fibroblasts in microdevices for pLVN formation * TIMING 2 hr for

seeding and 4 days for culture

3. Make sure prepared devices are at room temperature.

4. Aliquot 8 pL of pre-made fibrinogen solution into 0.5mL eppendorf tubes. The number of

aliquots made should be 2X the number of devices that will be seeded. Keep aliquots on ice.
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A CRITICAL STEP Separate aliquots of fibrinogen are made for each individual gel region to be
seeded because once thrombin is added to fibrinogen, gelation can occur in < 30 seconds.
5. Trypsinize HUVECs and FBs with 0.05% trypsin for 3 minutes, neutralize with EGM-2MV and

centrifuge for 5 min at 200 g.
6. Aspirate media from the cell pellets and re-suspend the cells at 12 x 1 0 6/mL (HUVECs) and 6 x

106/mL (FBs) in re-suspension media. Keep cells on ice.
m PAUSE POINT Make sure to aspirate as much of the supernatant as possible (e.g. by waiting a
few seconds and aspirating the residual media), since the error in resuspended cell density can be
easily increased and propagated when working with small volumes.
7. Mix 8 p.L of HUVEC suspension with 8 p L of a fibrinogen aliquot by pipetting up and down 4-5

times. Withdraw 10 RpL and immediately inject the HUVEC-gel mixture into the center gel region
by slowly pipetting it (using a P10 pipette) via one injection port until the solution has reached
halfway down the channel. Then, inject the rest of the mixture via the port on the other end of the
channel, until the two interfaces of the gel meet in the middle. Retract the pipette tip slowly
without releasing the injector. Repeat this process with the FBs by injecting the FB-fibrinogen
mixture into the two flanking channels.

A CRITICAL STEP The cell-gel mixture must be injected slowly in order to prevent leakage into
the media channels. It is recommended that injection into a single gel region be done by injecting
halfway on both ends of the channel until the two interfaces meet. This decreases the risk of too much
pressure building up at the inter-post interface causing gel bursting into the media channels.
m PAUSE POINT Do not re-use the leftover fibrinogen-thrombin mixture in the aliquot for a
subsequent device. Even if leftover the aliquot is still "liquid," injection of this leftover solution may
result in gel fiber alignment in the device because the solution has already begun to polymerize.
?TROUBLESHOOTING
8. View the device in a sterile petri dish under a phase contrast or bright field microscope to ensure

gels are intact and cells are homogeneously seeded.
9. Place the finished device into the humidity chamber and allow gelation for 15 minutes at room

temperature. Repeat steps 7-8 with the rest of the devices.
A CRITICAL STEP Ensure that the cell solution is well mixed before withdrawing 10 pL each
time as cells will sink to the bottom of the tube quickly resulting in inhomogeneous seeding densities.
10. After gelation of all devices, fill the media channels with EGM-2MV by forming a tight seal

around the media port with the pipette tip. Depending on the size of the reservoir punched, the
pipette tip may have to be cut to size in order to form a seal. Inject media until all reservoirs are
filled.

OPTIONAL: Instead of filling with media, it is advised to dilute leftover HUVECs to 2M/mL in
EGM-2MV and seed the cells in the media channels flanking the HUVEC gel region. Doing this will
allow more consistent lumen opening to the media channel, since the monolayer formed in the media
channel will sprout into the gel and "anastomose" with the vessel segments near the inter-post region,
generating a wider opening for facilitation of tumor cell perfusion.
?TROUBLESHOOTING
11. Culture the devices at 37*C and 5% CO2 .
?TROUBLESHOOTING
12. Change the media in the devices every 24 hours by aspirating each media reservoir with a fine

tipped gel-loading tip. Then fill all reservoirs on one side with media, wait until the media has
flowed down the channel causing the media levels to rise in the opposing reservoir. Top off the
reservoirs with more media until they are full. ptVNs will be ready to perfuse on day 4-6.

Perfusion of tumor cells e TIMING 20 min to 1.5 h (if using cell tracker)
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13. Briefly check the vessel openings at the inter-post regions to assess whether the vascular

networks have formed connections with the media channel. Examples of connections (and lack of

connections) can be found in Supplementary Figure 2, as well as the how perfusability is

scored, and sample data on the typical number of perfusable devices that should be generated per

experiment.
? TROUBLESHOOTING
14. Replace all media in the channels of the device with 0.1% BSA in PBS and incubate for 20

minutes to minimize unspecific adhesion of tumor cells to the glass during tumor perfusion.

Replace with fresh EGM.
15. If live imaging will later be performed to track extravasation, HUVECs should be fluorescently

labeled to robustly differentiate between intravascular and extravascular cells. This can be done

by perfusing the device with cell-tracker or DiI solution in EGM-2MV and incubating for 1 hour

at 37"C and 5% CO 2. After incubation, wash the device twice with EGM before proceeding. Skip

this step if HUVECs have already been transfected to express a cytoplasmic or membrane

fluorescent marker.
* PAUSE POINT Apply a hydrostatic pressure drop across the HUVEC gel region to help the dye

penetrate the entire ptVN. A pressure drop of 4mm H20 (equivalent to -38 piL of solution in both

reservoirs on one side of the gel region, for a 3 mm diameter reservoir) can be applied to promote

convection and thus penetration of the dye throughout the vascular bed.

16. If tumor cells for perfusion are non-fluorescent, label cells by adding cell trackerTM or DiI

solution directly to adhered cells after washing once with PBS, and following the manufacturer's

instructions.
17. Aspirate the dye and wash adherent tumor cells twice with PBS. Trypsinize and re-suspend tumor

cells to a final concentration of 5 x 105 cells/mL in EGM-2MV and store momentarily on ice. For

suspended cells, dilute the dye further with buffer (PBS, HEPES or HBSS depending on the cell

type) and wash via centrifugation. Re-suspend these cells to the desired concentration.

18. If perfusing platelets and/or neutrophils with tumor cells, mix the cells together to achieve the

desired ratio.
19. With a gel-loading tip connected to an aspiration line, withdraw media from all 4 reservoirs

directly flanking the HUVEC gel region. Mix the tumor cell suspension well, and fill one

reservoir with 10 ptL of cell suspension. Wait 5 seconds for the cells to flow down the medial

channel (parallel to the gel). Aspirate all reservoirs again and apply 38 [tL of cell suspension to

both reservoirs on one side (this is creates a pressure drop of -4mm H20 across the vascular

bed). The volume should be adjusted if the reservoir diameter is different than 3 mm. Cells

should now flow across the HUVEC gel region within the lumens due to the pressure drop. Check

the device using bright field or phase contrast microscopy to ensure that cells are flowing through

the p.VNs (Supplementary Movie 1). Flowing cells can be clearly seen even at lOX

magnification. Cells should gradually arrest in microvasculature due to size restriction. If vessel

openings are small and few tumor cells flow through the capillary bed, use a fine pipette tip on an

aspiration line to gently aspirate media from a downstream media port for 1-2 seconds.

? TROUBLESHOOTING
A CRITICAL STEP Aspirate gently and with a fine tip as to not form a tight seal with the media

ports, which may cause the media channel to be fully aspirated, or cause vessels to rupture.

20. After -5 minutes of tumor cell perfusion via hydrostatic pressure drop, fill the reservoirs on one

end of the device and allow media to flow through the media channel (parallel to the gel region)

to wash away remaining tumor cells. If constant perfusion of media is not required for the rest of

the extravasation experiment, top off the media reservoirs with fresh EGM to prevent media

drying. Devices can be maintained in an incubator until any desired time point, and extravasated

cells can be imaged and analyzed by device fixation followed by confocal microscopy.
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Alternatively, extravasation events on a single cell level can be monitored live via multi-area
time-lapse imaging.

(Optional) Live imaging of transendothelial migration e TIMING 4 to 72 hours

21. Prepare the environmental chamber on the confocal microscope beforehand to assure that the
chamber reaches a steady 37*C and 5% CO 2 by the time of tumor cell perfusion into the devices.

22. Immediately after step 19, transfer the device(s) in a sterile petri dish and secure the device onto
the specimen holder in the environmental chamber.

A CRITICAL STEP Ensure that the chamber is well humidified and sealed for the entire duration
of the time-lapse to prevent drying out and cell death.
m PAUSE POINT Parafilm can be used to seal crevices and help create a well contained and
humidified chamber.
23. Allow the device to rest on the specimen holder in the primed environmental chamber for at least

10 minutes before imaging to allow for thermal drift.
24. While waiting for equilibration of the device, set up the time-lapse parameters. For quantification

of extravasation and/or real-time visualization of tumor cell protrusions during extravasation, use
at least 20X objective (NA=0.75 resolution=800 X 800) or higher and at least 2 sm z-slice
thickness. To track protrusion formation, image each region at least once every 20 minutes or
faster, depending on the overall speed of protrusion onset and total translocation time for a
particular cell type or condition. Set region locations if there are multiple areas of interest in the
device. For quantification of extravasation efficiency of one device, select enough regions of
interest to span the entire device - this typically yields approximately 40 to 150 tumor cells per
sample. The extravasated fraction is calculated by dividing the number of extravasated cells in the
entire device by the total number of tumor cells in these regions at t=0. This number is considered
to be one data point. This data can be collected for both live imaging samples or fixed samples
that have been incubated to a desired endpoint. For tracking of tumor cell proliferation, acquire
images at least once every 5 hours for > 24 hours.

?TROUBLESHOOTING
25. Ensure the chamber is protected from other sources of light and begin the time lapse.

m PAUSE POINT Avoid high laser intensities as this can cause photo toxicity and cell death
during imaging.

?TROUBLESHOOTING

(Optional) Immunostaining and fluorescent visualization of cellular proteins and basement
membrane * TIMING 24 hours (includes overnight incubation)

26. Devices can be fixed and stored for further imaging or immunofluorescent staining after a time-
lapse, or directly after incubation to a desired time point. Aspirate all media reservoirs and fill all
reservoirs on one side with 4% paraformaldehyde (-50 microliters per device). Allow the fluid to
flow through the channels 2-3 times by aspirating the opposing reservoirs as they begin to fill.
Incubate devices at RT in the dark for 10 minutes, then remove PFA from all reservoirs and
replace with IX PBS.

m PAUSE POINT Fixed devices can now be stored for 2-3 weeks in a well sealed petri dish to
prevent evaporation. Devices can later be used for imaging and/or immunofluorescent staining.
m PAUSE POINT From this step, introduction of new solution will follow the same technique as
step 25. Ensure the solution passes through the media channels at least 2-3 times before
incubation.
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27. To stain for intracellular proteins, permeabilize cells with 0.1% Triton X and incubate for 10

minutes. Wash twice with PBS, incubating 5 minutes per wash. For staining of basement
membrane proteins, skip this step.

28. Block the device with 5% BSA and 3% goat serum in PBS for 3 hours at RT.

29. Dilute primary antibody of choice in the recommended dilution in blocking buffer (-30
microliters / device) and incubate it with the device overnight at 4*C in the dark.

30. Wash the devices with 0.5% BSA in PBS 5 times, at 15 minutes each.
31. Dilute secondary antibody of choice at 1:200 in washing buffer and incubate at RT in the dark for

3 h.
32. Remove secondary antibody from reservoirs and wash 3X with washing buffer, incubating 15

minutes per wash.
33. Image the device on a confocal microscope or store the device at 4*C. For visualization of

basement membrane proteins such as collagen IV and/or laminin relative to extravasating tumor

cells, acquire images at 60X for best results.
?TROUBLESHOOTING

Quantification and analysis of extravasation * TIMING 8 minutes per device

34. For quantification of extravasation for a single testing condition, images should either be acquired

for the entire device (roughly equivalent to 5 regions of interest per device at 20X magnification)

or the same number of arbitrary regions per device. Take images at a 2 pm z-slice size or

thinner, to obtain adequate resolution during 3D image reconstruction for extravasation
determination. Optimal microscope settings may depend on the fluorescent intensity of cultured

cells and model of the microscope. See Supplementary Table 1 for confocal settings used on an

Olympus FV1000.
35. Using Imaris or other 3D rendering software such as the Image J "orthogonal views" function,

score each individual cell as intravascular, mid-extravasation or extravascular (See Figure 3 for

examples of scoring).
?TROUBLESHOOTING
36. Calculate extravasation rate as the number of completely extravascular cells divided by the total

number of cells in a single device.
m PAUSE POINT Ensure that a sufficient number of total cells have been imaged per device

before making extravasation calculations. Total number of imaged cells should ideally be in the

range of 40 - 100 cells per device, given a perfusion concentration of~0.5M/mL. Total cell

counts that are too low results in large deviations in the extravasation rates between devices, and

may not be very informative. However, perfusion of too many tumor cells per device (>200)

should also be avoided since over-crowding of tumor cells will render it difficult to analyze via

image analysis, or affect extravasation behaviors.
37. To quantify extravasation rates for a single treatment/condition, we advise to make the above

quantification (Step 36) on at least 3 independent devices per experiment, and at least 3
independent experiments (i.e. a total of>9 devices per condition). The final extravasation rate can

be calculated as the mean of the averages from each independent experiment.

38. To calculate rate of protrusion formation, analyze the status of the protrusion for individual tumor

cells at multiple time frames (e.g. 20 minute frame intervals). The first time frame where a cell
exhibits protrusion formation past the endothelium can be analyzed as the "time for protrusion

onset" (Figure 4A). The same tumor cell can be followed until the cell has fully transmigrated

past the endothelium. The time interval between full body transmigration and the initiation of

protrusion can be analyzed as the "total time required for transmigration."
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Appendix B

Modified protocol for seeding of multiplexed chips

I) Pour -80-90 g of PDMS into wafer
2) Cure at 80C for at least 2 hours
3) Cut out PDMS carefully as to not damage/crack the SU-8 wafer (gray piece)
4) Cut and punch (3mm reservoir and 1 mm gel injection port). Cut the device into rectangle following

the surrounding borders of the device. Be careful to not touch any of the features.
5) Cover the device (both sides) with tape and then remove just before cleaning (step 6). Make sure ALL

holes are punched at this point.
6) Clean (both devices and #1.5 coverglasses)

a) Prepare a beaker of soapy water using soap and DI water from the tap
b) Immerse PDMS/glass into soap
c) Rinse thoroughly with autoclaved DI water (in the plastic Nalgene bottle with blue cap, next to

the beige TC fridge. Make sure bottle has autoclave tape on it.)
d) Spray wet device (both sides) with 70% ETOH
e) Rinse thoroughly with autoclaved DI water
f) Blow dry immediately using air in the fume hood
g) Transfer to clean petri dish

7) Bond (***Both 48 hours before seeding, to ensure complete and homogeneous hydrophobicity
recovery***)
a) On for 1:30
b) Pump until 2:00
c) Turn on plasma slowly and treat until 3:20
d) Bond by aligning the device with glass
e) Press down gently with fingers on all the device features, including post areas and Christmas tree

branching areas.
f) Transfer to 60C oven

8) Device seeding (find 2 P200 pipettors)
a) Remove devices and place in fridge to allow compaction
b) Aliquot fibrin gel (2 per chip, at 25 uL each. Use a P200 pipette for this.)
c) Re-suspend cells in EGM-thrombin mixture as usual (12M/mL EC; 4M/mL FB)
d) Set another P200 pipette to 45 uL.
e) Mix 25 ul of cell with the 25 uL fibrinogen aliquot. Mix 4 times and seed using the 45uL set

pipette.
f) Hold device so that the ECs will "sink" towards the direction of the FB channel (you might find

that your right hand needs to cross over to the left side).
g) Inject EC suspension by placing pipette as close to 90 degree a possible with device. Inject until

you see the LAST gel region touch JUST the end of the channel (NOT including the downstream
"neck" region).

h) Repeat with FB. Devices should maintain in the same 90-degree orientation. Your right hand
should now inject on the right side.

9) Place immediately in humid chamber.
10) Start time
11) Repeat on other CHIPS
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12) Fill media when the first device has reached the 15 minute mark. Cut P200 tip.
13) Fill only to the bottom of the downstream reservoir and fill the downstream reservoir later. DO

NOT make the media droplets coalesce.
14) Place CHIP into a 150mm dish.
15) Place a small petri dish filled with PBS on the side of the device, to maintain humidity during culture.

Changing media:
16) Aspirate ALL media reservoirs.
17) For fast media filling, take a ImL of media and fill it in a continuous "line" down the 3mm reservoirs

on the "E" side of the device. The media should flow very quickly down the channels. 20 sec later,
top off the downstream "F" side channels with discrete drops of media. This should only take you
<45 seconds per device.
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Appendix C

Troubleshooting table for network formation

Problem Possible cause Potential solution
Gel does not eject Fibrin has gelled before Pipette only 4-5 times when mixing aliquots to prevent
from pipette into injection premature gelation from shear stress
microdevice

Gels should be injected within 30 seconds of mixing
fibrinogen with thrombin

Cell distribution is Cell solution was not mixed Mix 12M/ml HUVEC solution well (with a P200 pipette)
not homogeneous well enough prior to each time prior to withdrawing and mixing with a

combining with fibrinogen fibrinogen aliquot.

Inject cells slowly to avoid gel "alignment" effect due to
Injection speed is too high high shear-induced pre-mature polymerization.
resulting in "alignment" of
cells along the center region
of the channel

Gel does not form a Gel is underfilled Inject with slightly more pressure, particularly giving a
flat gel-media slight increase in pressure when reaching the region where
interface at the inter- the two gel interfaces meet in in the center of the gel
post regions channel.

Make sure the device is kept in a sealed humid chamber
Gel has started to evaporate immediately after seeding, until media injection.

Gel bursts into the Injection pressure is too high Decrease the speed of injection into the gel region.
media channel
Bubbles form at the Gel was likely underfilled or Ensure that gels are not "under-filled" by injecting slightly
interpost regions was not properly humidified. more gel before retracting the pipette tip.
after media filling This results in concavity at the

gel-media interface, which Make sure a seeded device is immediately placed into the
traps bubbles when media is humid chamber after seeding.
filled.

Microvascular Cell seeding density may be Ensure HUVECs are seeded at a final concentration of
networks do not too low 6M/mL.
form over 4 days

Ensure that the cell suspension is mixed well prior to
mixing with a single fibrinogen aliquot since cells can settle
quickly in the re-suspension.

Media should completely fill the reservoir. The user may
choose to fill extra media so it forms a "dome" over the

Cells begin to die because reservoirs. This is helpful if the reservoir diameters are
media has evaporated from the smaller than 4mm.
reservoirs and/or was not
refreshed every 24 hours Acquire a new batch of cells (i.e. different Lot. #), and

choose pooled populations when possible

Batch to batch variability of
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HUVECs or NHLF
Microvascular Improper media exchange Ensure that both reservoirs are emptied and that fresh media
networks regress/die is allowed to flow at least twice across the media channel
over 4 days before topping off the reservoirs.

Devices must be kept at 37*C and 5% CO 2 at all times.
Incorrect temperature and/or

CO 2 levels The amount of media in the channel alone is less than 10

yL, thus make sure reservoirs contain an additional >50 ML
Media has dried out of media at all times.

Networks do not Cell seeding density is not Ensure HUVEC seeding density is around 6M/mL (final
form openings to the high enough concentration)
media channel

See "Optional" step at Step 10, to seed an endothelial
monolayer in the media channels, which allows ECs in the
media channel to "anastomose" with vessel segments at the
inter-post region.

See Supplementary Figure 2 for examples of perfusable
and non-perfusable openings, as well as typical number of
perfusable devices that should be achieved per seeding
session.

Tumor cells are not Not enough of a pressure drop Use a pressure drop of around 4 mm to achieve an adequate
flowing through the across the gel region flow rate through the network. This can be achieved by
network pipetting -38 uL of cell suspension in both reservoirs on

one side of the gel region (for a 3 mm diameter port).
Lumens have not yet opened
up to the media channel to Continue to culture the devices for 1-2 more days to allow
connect to the media ports sufficient time for lumens to open up to the media channel

Cells are fluorescent May be condensation on the Decrease the humidification level of the environmental
but not clear objective lens or the glass chamber

surface of the device

Poor sample placement Check to see that the sample is placed correctly on the
specimen holder

Cells are dying over Environmental chamber is not Check to see if there are leaks resulting in less than optimal
imaging time maintained CO2 and temperature conditions

Decrease the laser intensity or the interval frequency of
Photo toxicity imaging

Unspecific staining Not enough washing after Make sure when washing that solutions are completely
incubation of primary or displaced down the media channel and removed. Let the
secondary antibody wash buffer incubate for >10 minutes between washes to

facilitate diffusion.
Reconstructed cross Step size setting during image See SI Table I for sample microscope settings used to
sectional view of acquisition was too large acquire typical data.
lumens on image
processing software
is "fuzzy" or not
well-defined enough
for robust
quantification
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Appendix D

shRNA Species Sequence

ITGB1-1 Human TGCTGTTGACAGTGAGCGCCAGATGAAAATAGATGAATAGTGAAGCCACAGATGTATTAAACATCTATTTCATCTGTTGCCTACTGCCTCGGA

ITGBI-2 Human TGCTGTTGACAGTGAGCGCACCGAGCAATTTCTGCTAAATAGTGAAGCCACAGATGTATTTAGCAGAAAATTGCTCGGTTTGCCTACTGCCTCGGA

ITGBI-3 Human TGCTGTTGACAGTGAGCGCCCGAGCAATTTTCTGCTAAAATAGTGAAGCCACAGATGTATTAGCAGAAAATTGCTCGGTTGCCTACTGCCTCGGA

ITGBI-4 Human TGCTGTTGACAGTGAGCGACCGGTGAAAATCCTATATATAGTGAAGCCACAGATGTATATAAATAGGATTCACCGGCTGCCTACTGCCTCGGA

ITGBI-5 Human TGCTGTTGACAGTGAGCGCTCCCACAACACTGAATGCAAATAGTGAAGCCACAGATGTATTTGCATTCAGTGTTGTGGGATTGCCTACTGCCTCGGA

ITGBI-6 Human TGCTGTTGACAGTGAGCGAAAGAGGGATAATACAAATGAATAGTGAAGCCACAGATGTATTCAMTGTATTATCCCTCTTCTGCCTACTGCCTCGGA

ITGBI-7 Human TGCTGTTGACAGTGAGCGAAGCCACAGACATTTACATTAATAGTGAAGCCACAGATGTATTAATGTAAATGTCTGTGGCTCTGCCTACTGCCTCGGA

ITGBI-8 Human TGCTGTTGACAGTGAGCGCCGGGTGAAAATCCTATATATAGTGAAGCCACAGATGTATATAAATAGGATTCACCCGTTGCCTACTGCCTCGGA

ITGB3-1 Human TGCTGTTGACAGTGAGCGCTCCAACATGTTAATAGTTATAGTGAAGCCACAGATGTATAACTATTAACAAATGTTGGAATGCCTACTGCCTCGGA

ITGB3-2 Human TGCTGTTGACAGTGAGCGACCGCTTCAATGAGGAAGTGAATAGTGAAGCCACAGATGTATTCACTTCCTCATTGAAGCGGGTGCCTACTGCCTCGGA

ITG1B3-3 Human TGCTGTTGACAGTGAGCGAAAGAGCAGATGTCATTCCATATAGTGAAGCCACAGATGTATATGGAATGACATCTGCTCTTGTGCCTACTGCCTCGGA

ITGB3-4 Human TGCTGTTGACAGTGAGCGATACCCTGAGTTCATAAATATAGTGAAGCCACAGATGTATAAATATGAACTCAGGGTAGTGCCTACTGCCTCGGA

ITGB3-5 Human TGCTGTTGACAGTGAGCGACCACGTCTACCTTCACCAATATAGTGAAGCCACAGATGTATATTGGTGAAGGTAGACGTGGCTGCCTACTGCCTCGGA

ITGB3-6 Human TGCTGTTGACAGTGAGCGCCCGGCTACTACTGCAACTGTATAGTGAAGCCACAGATGTATACAGTTGCAGTAGTAGCCGGTTGCCTACTGCCTCGGA

ITGB3-7 Human TGCTGTTGACAGTGAGCGCAAGGGAGAGAGTGCTATTGTATAGTGAAGCCACAGATGTATACAATAGCACTCTCTCCCTTTTGCCTACTGCCTCGGA

ITGB3-8 Human TGCTGTTGACAGTGAGCGCTGGCAGTATGGTAGAGGGATATAGTGAAGCCACAGATGTATATCCCTCTACCATACTGCCATTGCCTACTGCCTCGGA

Firefly AAGGTATATTGCTGTTGACAGTGAGCGAGCTCCCGTGAATTGGAATCCTAGTGAAGCCACAGATGTAGGATTCCAATrCAGCGGGAGCCTGCCTACT
Luciferase GCCTCG
(FF)
ITGAI-2 Mouse TGCTGTTGACAGTGAGCGCCCCAACAAAGTGAATATTCAATAGTGAAGCCACAGATGTATTGAATATTCACTTTGTTGGGTTGCCTACTGCCTCGGA

ITGAI-3 Mouse TGCTGTTGACAGTGAGCGACCCGGCTAATGTTATATTGTATAGTGAAGCCACAGATGTATACAATATAACATTAGCCGGGGTGCCTACTGCCTCGGA

ITGAI-5 Mouse TGCTGTTGACAGTGAGCGCCTGGATGGTCATCTTCTGATATAGTGAAGCCACAGATGTATATCAGAAGATGACCATCCAGTTGCCTACTGCCTCGGA

ITGA2-2 Mouse TGCTGTGACAGTGAGCGACCCGTGATCTCCTAAACTAGTGAAGCCACAGATGTATTGTTAGGAAGATCACGGGCTGCCTACTGCCTCGGA

ITGA2-6 Mouse TGCTGTTGACAGTGAGCGACTGAAAGACCTTCACATGAAATAGTGAAGCCACAGATGTATTTCATGTGAAGGTCTTTCAGCTGCCTACTGCCTCGGA

ITGA2-7 Mouse TGCTGTTGACAGTGAGCGCCAGGGCGATGGGATACTTCTATAGTGAAGCCACAGATGTATAGAAGTATCCCATCGCCTGTTGCCTACTGCCTCGGA

ITGA3-1 Mouse TGCTGTTGACAGTGAGCGAATGGACAATGTTCGCGATAAATAGTGAAGCCACAGATGTATTTATCGCGAACA1TGTCCATCTGCCTACTGCCTCGGA

ITGA3-6 Mouse TGCTGTTGACAGTGAGCGCCAGCTACATGATTCAGCGGAATAGTGAAG CCAATGTATTCCG TGTCTGTTGCCTACT CCTCGGA

ITGA3-7 Mouse TGCTGTTGACAGTGAGCGCCCGGATTATGCCCAAGTACCATAGTGAAGCCACAGATGTATGGTACTTGGGCATAATCCGGTTGCCTACTGCCTCGGA

ITGA4-1 Mouse TGCTGTTGACAGTGAGCGCGGGCATCATGTGATCACCAAATAGTGAAGCCACAGATGTATTTGGTGATCACATGATGCCCATGCCTACTGCTCGGA

ITGA4-2 Mouse TGCTGTTGACAGTGAGCGCCGACATTTCACCATCATTATTTAGTGAAGCCACAGATGTAAATAATGATGGTGAAATGTCGTTGCCTACTGCCTCGGA

ITGAB-1 Mouse TGCTG1GACAGTGAGCGCCACCACAGATCTGGATATTAATAGTGAAGCCACAGATGTATTAATATCCAGATCTGTGGTGTTGCTACTGCCTCGGA

ITGA6-2 Mouse TGCTGTTGACAGTGAGCGCCCGATGCATAGTATTGATCTATAGTGAAGCCACAGATGTATAGATCAATACTATGCATCGGATGCCTACTGCCTCGGA

ITGAS-6 Mouse TGCTGTTGACAGTGAGCGCTAGGGTGATTAACTTAGGCAATAGTGAAGCCACAGATGTATTGCCTAAGTTAATCACCCTAATGCCTACTGCCTCGGA

ITGA8-2 Mouse TGCTGTTGACAGTGAGCGAAACCTATAGAATTTAAATCAATAGTGAAGCCACAGATGTATTGATTTAAATTCTATAGGTTCTGCCTACTGCCTCGGA

ITGA8-3 Mouse TGCTGTTGACAGTGAGCGCTTGGATGATTCTACC TTTAATAGTGAAGCCACAGATGTATAGGTAGAATCATCCAAATGCTACTGCCTCGA

ITGA8-5 Mouse TGCTGTTGACAGTGAGCGCCAGATAATTATTGGCGATGAATAGTGAAGCCACAGATGTATTCATCGCCAATAATTATCTGATGCCTACTGCCTCGGA

ITGAV-9 Mouse TGCTGTTGACAGTGAGCGCCTGCATTGTGTCTTATTGTATTAGTGAAGCCACAGATGTTACTGCCTCGGA

ITGAV-10 Mouse TGCTGTTGACAGTGAGCGCGCATAGTACCTCTTCAGTTACTAGTGAAGCCACAGATGTAGTAACTGAAGAGGTACTATGCTTGCCTACTGCCTCGGA

ITGBI-4 Mouse TGCTGTTGACAGTGAGCGACCAGACGGAGTAACAATAATTAGTGAAGCCACAGATGTAAATTGTTACTCCGTCTGGCTGCCTACTGCCTCGGA

ITGBI-5 Mouse TGCTGTTGACAGTGAGCGCGGCTCTCAAACTATAAAGAAATAGTGAAGCCACAGATGTATTTCTTTATAGTTTGAGAGCCTTGCCTACTGCCTCGGA

ITGB2-1 Mouse TGCTGTTGACAGTGAGCGCGCCCATCGCGGTGACAAATAGTGAAGCCACAGATGTATTTGTCACCGCAGATGGGCTTGCCTACTGCCTCGGA

ITGB2-4 Mouse TGCTGTTGACAGTGAGCGAGGAAGGCTGTTGGATAACTTATAGTGAAGCCACAGATGTATAAGTTATCCACAGCCTTCCGTGCCTACTGCCTCGGA

ITGB2-6 Mouse TGCTGfTGACAGTGAGCGAGGAMAAGCTATCTCCACAATAGTGAAGCCACAGATGTATTTGTGGAGATAGCTGCCGTGCCTACTGCCTCGGA

ITGB3-2 Mouse TGCTGTTGACAGTGAGCGCGCAAACAACCCGCTGTATAAATAGTGAAGCCACAGATGTATTTATACAGCGGGTTGTGCTTGCCTACTGCCTCGGA

ITGB3-3 Mouse TGCTGTTGACAGTGAGCGACCTCTCAGATGCGCAAGCTTATAGTGMGCCACAGATGTATAAGCTTGCGCATCTGAGAGGCTGCCTACTGCCTCGGA

ITGB3-9 Mouse TGCTGTTGACAGTGAGCGAGCAGGCATTGTCCTGCCCAATTAGTGAAGCCACAGATGTAATTGGGCAGGACAATGCCTGCCTGCCTACTGCCTCGGA

ITGB3-10 Mouse TGCTGTTGACAGTGAGCGAGGAAGGAATGCTAAATTTGTAGTGAAGCCACAGATGTACAAATTTAGCAAATTCCTTCCGTGCCTACTGCCTCGGA

ITGB4-4 Mouse TGCTGTTGACAGTGAGCGACAGGGTGGAGAAGACTACGAATAGTGAAGCCACAGATGTATTCGTAGTCTTCTCCACCCTGGTGCCTACTGCCTCGGA

ITGB4-7 Mouse TGCTGTTGACAGTGAGCGAAGGGTGGAGAAGACTACGAAATAGTGAAGCCACAGATGTATTTCGTAGTCTTCTCCACCCTGTGCCTACTGCCTCGGA
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