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Abstract

Optogenetics has become an important research tool and is being considered as the basis for 

several neural prostheses. However, few studies have applied optogenetics to the auditory 

brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited 

responses in neurons in higher centers of the auditory pathway, and it measured the evoked 

response to optical stimulation. Viral-mediated gene transfer was used to express 

channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed 

near the surface of the infected CN and recordings were made in higher-level centers. Optical 

stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central 

nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of 

IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL 

acoustic click stimulus. This broad pattern of activity was consistent with histological 

confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up 

to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher 

than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory 

brainstem response, which had a simpler waveform than the response to acoustic stimulation. 

Control cases showed no responses to optical stimulation. These data suggest that optogenetic 
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control of central auditory neurons is feasible, but opsins with faster channel kinetics will be 

necessary to convey information in rates typical of many auditory signals.
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1. Introduction

Optogenetic control of neural pathways has been used to investigate many neural systems 

including memory, olfaction, motor control, and the limbic system (Boyden et al., 2005; 

Ayling et al., 2009; Hira et al., 2009; Rolls et al., 2011; Stortkuhl and Fiala, 2011; Huff et 

al., 2013; Shimano et al., 2013). Optogenetics uses viral vectors (Boyden et al., 2005) or 

tissue-specific promoters (Zhao et al., 2011) to deliver light-sensitive microbial opsins into 

neural membranes and enable the neurons to respond to optical stimulation (Boyden et al., 

2005; Han and Boyden, 2007; Chow et al., 2010). Channelrhodopsin-2 (ChR2) is the most 

widely used opsin in neuroscience research. This molecule, when delivered to neurons of the 

CNS, can be activated by pulses of blue light. ChR2 has been safely expressed and 

stimulated, without observed immune response, in vivo in multiple species, including non-

human primates, over a period of months to years (Zhang et al., 2006; Wang et al., 2007; 

Bernstein et al., 2008; Han et al., 2009; Chan et al., 2010; Chow et al., 2010).

Only a few recent studies have applied optogenetics to the auditory system. In a pioneering 

study of the CN, Shimano et al. (2013) introduced ChR2 into the CN neurons and 

demonstrated local increases in activity in response to light. In a study of the cochlea of 

transgenic animals expressing ChR2, stimulation of the cochlea with light activates auditory-

nerve fibers and higher centers in the auditory pathway (Hernandez et al., 2014). That study 

proposed the idea of an auditory implant based on optogenetics, an optical cochlear implant. 

The cochlear implant is an auditory prosthesis implanted into the inner ear and it 

successfully restores hearing in terms of comprehension of speech (Moore and Shannon, 

2009; Colletti et al., 2012). Another auditory prosthesis potentially amenable to the use of 

optogenetics is the auditory brainstem implant (ABI; (Otto et al., 1998). The ABI is an array 

of electrodes surgically placed on the surface of the CN, bypassing a damaged cochlea or 

auditory nerve in human patients who cannot benefit from a cochlear implant. The 

significant limitation of the ABI is that the majority of users, especially those who have had 

a vestibular schwannoma removed from the area, have poor speech comprehension when 

compared with users of the more successful cochlear implant (Colletti et al., 2012) In 

addition, many ABI users experience side effects (e.g. pain, facial twitching, and dizziness) 

from the non-specific activation of neighboring nerves affected by electric current spread. A 

revised design of the ABI with penetrating electrodes did not improve comprehension (Otto 

et al., 1998) and is no longer an option. New approaches to the ABI using optogenetics 

could be explored as a means to more effectively restore hearing to these deaf individuals.

In the current study, the goal was to establish the response characteristics of neurons in 

higher centers following stimulation of ChR2-expressing CN neurons. We chose to record in 
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the inferior colliculus (IC), a higher-order nucleus that receives direct projections from the 

CN, and from auditory cortex (Actx), which is several synapses above the CN at the highest 

level of the pathway. Of special interest is the limitation of optical responses to pulses of 

high-rates, because the ChR2 ion channel, which has sluggish kinetics (Boyden et al., 2005), 

is likely to limit responses to lower rates compared to that observed for acoustic stimulation. 

We also compared the far-field evoked response characteristics evoked by light and those 

evoked by sound. Given the circuitry of the CN, with a complex mix of excitatory and 

inhibitory neurons (Nelken and Young 1994), it is not clear what the higher-level response 

type will be. However, the results will be important in any future considerations of an 

auditory prosthesis based on optogenetics.

2. Results

2.1. Expression of ChR2 in the cochlear nucleus

Mice injected with ChR2 had ChR2-GFP immunolabeled neurons and axons throughout the 

three subdivisions of the CN (DCN, dorsal; PVCN, posteroventral and less label in the 

AVCN, anteroventral; Fig 1A). For example, there was labeling in the fusiform cell layer of 

DCN (Fig. 1A). There was also labeling in neuropil and axons (arrowheads in Fig 1A and 

insert images in Fig 1B). The anterogradely labeled axons were observed in the exit 

pathways of the CN (dorsal and ventral acoustic stria: (Warr, 1966; Smith et al., 1993) and in 

the targets of these axons, the contralateral cochlear nucleus (Cant and Gaston, 1982; 

Alibardi, 1998b; Brown et al., 2013a) and contralateral IC (Oliver, 1985; Schofield and 

Cant, 1996; Malmierca et al., 2005). Al though there was variability from animal to animal, 

all cases with label in the CN also had axonal label in at least 3 of the 4 brainstem locations 

listed above. Cases with significant label (10 or more cells or axons) in the injected CN and 

upstream targets were defined as ChR2+ (e.g. Fig. 1A), whereas cases with no label in the 

CN were defined as ChR2− (e.g. Fig. 1C). For the most part, however, the density of 

extracellular immunofluorescence hindered identification of discrete cell types in the CN. In 

total, 18 of the 27 cases were ChR2+, and the remaining 9 were ChR2− (these included the 2 

sham surgery and 1 control mice). In two ChR2+ cases the cochlea and auditory nerve was 

examined for retrograde label of the virus; none was detected.

2.2. Responses of higher centers to optogenetic activation of the cochlear nucleus

Optical stimulation of the CN in ChR2+ cases evoked spiking activity in the contralateral IC. 

The response pattern of a typical recording to a light pulse is provided in Figure 2. A dot 

raster plot from a single electrode demonstrated the timed pattern of response to pulses of 

different intensities (Fig. 2A). At low intensities, only spontaneous activity was observed, 

whereas at higher intensities, there was a clear response within the first 10 ms following 

stimulus onset. The rate-intensity function for the same electrode was a well fit by a 

sigmoidal function with a threshold of 6 dB re: 1 W/m2 (Fig 2B). The threshold across 16 

electrodes (Fig. 2D) averaged 9.2 dB re: 1 W/m2 (STD was 1.5 and the SEM was 0.4), with 

the lowest activation threshold of 6 dB re: 1 W/m2 recorded from the electrode with the 

highest firing rates (electrode #8, Fig. 2D). The light-driven response increased with level to 

quickly saturate at a stimulation level between 15–20 dB re: 1 W/m2. In ChR2+ cases, when 

the light intensity was sufficient to elicit a response in IC, an increasing monotonic 
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relationship between firing rate and pulse rate was observed (Fig 2E). The spatial pattern of 

optically driven multiunit responses was broad in most cases. Here, it was observed on all 16 

electrodes (Fig. 2C, activation index, 16), which spanned the tonotopic axis of the IC. 

Across all Chr2+ cases, the mean activation width was 11.8 (SD 5.7), whereas it was only 

0.2 (SD 0.4) in ChR2− and control mice.

To control for any potential optophonic or electrical artifact, multiunit activity in ChR2+ 

cases was measured with the laser off, laser pointing away from the animal, and the laser in 

the ear canal (to assess whether laser stimulation produced an acoustic artifact). No 

responses were recorded in these control experiments. In addition, no optical responses were 

detected in sham or control mice or in a ChR2− mouse.

In mammals, the auditory system is capable of synchronizing to temporal aspects of 

incoming stimuli, including pure-tone and amplitude modulated tones, up to 4000 Hz 

(Liberman, 1978; Rhode and Greenberg, 1994). ChR2+ mice also showed synchrony, with 

peristimulus time histograms (Fig 3A) demonstrating a clear time-locked increase in activity 

at suprathreshold levels. The synchronization index (SI), a measure of synchronization to the 

stimulus pulse-rate, of the response measured from an electrode in the 20 kHz region of the 

IC was well fit with a sigmoidal function having a synchronization threshold near 10 dB re: 

1 W/m2 and a saturation point near 25 dB re: 1 W/m2 (Fig 3B). The SI for all 16 electrodes 

spanning the IC was significant (Fig 3C & 3D). SI threshold ranged between 10–15 dB re: 1 

W/m2 (mean threshold of 12.7dB with STD of 1.3 and SEM of 0.3) with the lowest 

threshold equivalent to the electrode with the lowest rate threshold. No synchronization was 

detected when the laser was off or not directly on the surface of the DCN.

In Chr2+ cases, the SI index decreased for pulse rates above 33 Hz (Fig 3E), as is expected 

from the limits of ChR2 (Boyden et al., 2005; Ishizuka et al., 2006; Lin et al., 2009). The SI 

for all ChR2+ cases was much lower for pulse rates of 320 Hz than for 5 Hz (Fig 4A, right). 

Maximal firing up to 600 sp/s was found at the higher pulse rate but was somewhat lower at 

the low rate (Fig 4A, left). Firing rate thresholds, though, were not significantly different, 

but synchronization index threshold was lower for low pulse rates (Fig 4B). Activation width 

was not significantly different between the two pulse rates for both firing rate and 

synchronization (data now shown).

Responses to light stimulation of the CN were also found in a higher center of the auditory 

pathway, the auditory cortex (Actx) (n=2 mice). There was broad activation across 

electrodes (Fig. 5), which were placed along the tonotopic axis (caudal-rostral dimension). 

The activation index in this case was again 16 (all 16 electrodes were responsive). 

Thresholds were 10 – 20 dB re: 1W/cm2 range (Fig. 5), similar to thresholds for IC 

responses. These findings suggest that optogenetic stimulation of the CN evokes activity in 

the entire central auditory pathway.

2.3. Comparing Acoustic, Electric and Optical stimulation of Auditory Pathway

Optical stimulation and auditory stimulation both resulted in broad response profiles in the 

IC (Fig 6). Optical stimulation (Fig. 6A, top) and acoustic stimulation with a click (Fig 6B 

top panel) produced approximately the same firing rates. A comparison of SI to optical or 
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acoustic stimulation also revealed a common pattern across modalities (Fig 6A, B bottom 

panels), however SI values in response to optical stimulation were always less (note 

differences in color scales). Overall, the spatial pattern of light-evoked optogenetic response 

is similar to that of the response evoked by a broadband acoustic stimulus (i.e. broad 

activation with monotonic increases in firing rate and SI as a function of stimulus intensity); 

however its synchrony is distinctly lower.

Optogenetic stimulation produced an optically evoked ABR (Fig 7). In each of 5 ChR2+ 

cases examined at pulse rates of 7 – 47 pulses/s, a response was observed with either a single 

waveform peak (Fig 7B) or a multi-peak waveform. No optical response was elicited in the 

two sham surgical cases or in an age-matched control CBA/CaJ mouse. The waveform of 

this oABR differed from that of the acoustic ABR, which had at least 5 waveform peaks 

(Fig. 7A). Electric stimulation produced a characteristic waveform with multiple positive 

and negative peaks within the first 7 ms (Fig 7C). Each of the three different stimulation 

modalities (acoustic, optical and electrical) produced multi-peak waveforms that were 

significantly different in size and latency of peaks. However, when output (μV) was 

normalized for each modality and the peak growth was analyzed, each of the I–O curves had 

a similar shape (Fig. 7D).

3. Discussion

Overall, this study demonstrates that light stimuli presented to the CN after viral infection of 

ChR2 activates major centers (IC and Actx) in the auditory pathway. These optogenetic 

results are more encouraging than those obtained using infrared neural stimulation, which 

does not produce responses in the CN (Verma et al., 2014).

3.1. Cell types in the CN infected by ChR2

The CN contains a variety of cell types and projections (Osen and Roth, 1969; Willard and 

Ryugo, 1983; Hackney et al., 1990) and our data suggest that a range of these types can be 

infected. For example, labeling was observed in all three CN subdivisions, and since each 

contains distinct types of neurons, there are at least several types of neurons that are ChR2 

positive. In the DCN, label was observed in the fusiform cell layer, and axons likely to be 

from fusiform cells were observed in the dorsal acoustic stria and IC. Labeling of axons in 

the contralateral CN shows that commissural pathways can be labeled, and these originate in 

a subset of CN multipolar cells (Cant and Gaston, 1982; Shore et al., 1992; Brown et al., 

2013a). Labeling of axons in the ventral acoustic stria must originate in neurons of the 

PVCN and AVCN and these could be from bushy and/or multipolar cells. The use of a CAG 

promoter may be responsible for labeling in diverse types of CN cells. Present results 

suggesting that ChR2 is transported mainly in the anterograde direction are similar to 

previous studies (Chamberlin et al., 1998; Shimano et al., 2013). It is not clear to what 

extent our responses arise from stimulation of neuronal cell bodies vs. axons since both are 

labeled.

It is also not clear to what extent our responses are affected by inhibitory neurons, which are 

present at the level of the CN. For example, commissural multipolar cells, whose axons were 

labeled here, consist of both excitatory and inhibitory subclasses (Cant and Gaston, 1982; 
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Shore et al., 1992; Brown et al., 2013a). In the DCN, which is the most superficial part of 

the CN directly beneath the optical fiber in our experiments, there are both excitatory and 

inhibitory neurons, an the neural output is shaped by the characteristics of each (Nelken and 

Young, 1994). We did not observe inhibitory responses at the level of the IC, but our simple 

paradigm could be modified in ways to search for these, such as optical stimulation 

interleaved with presentation of a tone.

3.2. Optical stimulation of the ChR2+ CN produces a broad spatial pattern of activation

The responses measured in the IC were broad and spanned much of the entire tonotopic 

(dorsal-ventral) axis of the central nucleus. They were in general character much like the 

response profile evoked by an acoustic click. Similarly, responses to light in Actx were 

broad along its tonotopic axis. The simplest explanation for the broad pattern of activity was 

the broad expression pattern of ChR2 across the CN. This, coupled with the fact that a wide-

diameter optical fiber was used (400 μm, which spans much of the mouse DCN), suggests 

that optogenetic excitation across the CN was conveyed to the higher centers of the auditory 

pathway. Fibers of smaller dimensions, or expression of ChR2 in limited areas, will be 

necessary to demonstrate frequency-specific activation in the CN.

3.3. Synchrony of optogenetic responses falls off at moderate pulse rates

The responses in IC were synchronized to pulse rates up to approximately 50 pulses/s, 

typical of ChR2 kinetics (Boyden et al., 2005; Ishizuka et al., 2006; Lin et al., 2009). 

However, for an auditory prosthesis, increased synchrony at higher rates may be required. In 

cochlear implant users, it is estimated that the user is capable of detecting meaningful pitch 

percepts by modifying stimulation rates up to 300 Hz (Eddington et al., 1978; Tong and 

Clark, 1985; Zeng, 2002). Our findings demonstrate that ChR2, in its current state, does not 

meet the criteria for this type of synchronous activity. Future generations of opsins (e.g. 

ChIEF, ChETA and Chronos) may be more appropriate to optimally carry auditory 

information by synchronizing to high-rate pulses (Lin et al., 2009; Gunaydin et al., 2010; 

Klapoetke et al., 2014).

Optical stimulation of the CN was synchronized enough, however, to generate an auditory 

brainstem response, the oABR. The ABR evoked by sound is a multi-peaked waveform that 

represents ascending neural activity from within the auditory nerve and brainstem (Melcher 

and Kiang, 1996). Like the oABR from cochlear stimulation (Hernandez et al., 2014), the 

oABR from CN stimulation had a waveform that was had fewer peaks and was broader 

compared to that from acoustic stimulation. In addition to directly stimulating the CN 

neurons and thus by-passing the auditory nerve response, the oABR is also influenced by the 

slow kinetics of the ChR2 channel (Boyden et al., 2005), which may decrease the temporal 

synchrony of the response generators compared with the synchrony associated with sound 

responses. In addition, the acoustic ABR’s main contributions are from CN bushy cells 

(Melcher and Kiang, 1996), but it is not clear whether this is true for the oABR.

3.4. An eventual auditory neuroprosthesis based on light?

Our new results suggest that an optogenetic prosthesis could provide a way of eliciting 

auditory percepts for those individuals lacking auditory-nerve function, who are currently 
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obliged to accept the current version of the ABI and its inherent limitations. In our 

experiments, the neurons expressing ChR2 respond to light applied to the surface of the CN, 

and they activate much of the central auditory pathway and should thus evoke hearing 

sensations. Light of the wavelength used here (473 nm) penetrates through water at least 

several millimeters (Richter and Tan, 2014), and it likely penetrates throughout the entire 

extent of the thin CN of the mouse and may penetrate to the deeper areas of the human CN 

(Moore and Osen, 1979; Rosahl and Rosahl, 2013). Surface light, compared to the surface 

electrical stimulation in the conventional ABI (McCreery et al., 2007), has the potential to 

convey a more focused stimulation to deep neural tissue. More focused stimulation might 

avoid the side effects (e.g. pain, facial twitching, and dizziness) that are common for some 

electrodes of the conventional ABI array. Although the present study did not show this for 

the CN, optical stimulation of the cochlea excites narrower regions of the IC than monopolar 

electrical stimulation (Hernandez et al., 2014). Thus, an optical auditory prosthesis could 

offer finer frequency selectivity, since best frequency is mapped to spatial position in most 

central auditory nuclei. To take advantage of this characteristic, an optogenetic ABI would 

require a number of independent stimulation channels for transmitting the spectrum of the 

acoustic signal. Our results show, though, that an opsin providing higher synchrony will be 

needed to convey the rapid modulations in the speech signal. And finally, it remains to be 

seen whether a new type of ABI can circumvent the challenge of speech coding in a CN that 

has been damaged by the presence of a tumor or its removal from the 8th cranial nerve 

(Colletti et al., 2012).

4. Experimental Procedure

4.1. Surgical Procedures and Infection of AAV2/8-ChR2 to the CN

All experimental procedures on CBA/CaJ mice were performed in accordance with the 

National Institutes of Health guidelines for the care and use of laboratory animals as well as 

approved animal care and use protocols at the Massachusetts Eye & Ear Infirmary, Boston, 

MA.

4.2. Surgical Procedures and Infection of AAV2/8-ChR2

Normal hearing CBA/CaJ mice (n=27) were aged 8–12 weeks, weighing 18–24 g, and of 

either sex. Following anesthesia (xylazine 20 mg/kg, given intraperitoneally [i.p.] and 

ketamine 100 mg/kg, i.p.) the mouse was held in a Kopf (Tujunga, CA) small-animal 

stereotaxic apparatus by snout clamp. The skin overlaying the skull was slit and a 

craniotomy of the left posterior skull surface was performed using rongeurs. Partial 

cerebellar aspiration (of the left hemisphere) exposed the dorsal surface of the brainstem 

with the ampulla of the semicircular canal as a general landmark. The left dorsal cochlear 

nucleus (DCN) was identified by brainstem surface landmarks (there was no attempt to 

visualize the auditory nerve as it enters the CN ventrally. Direct exposure of the DCN, rather 

than stereotaxic injection, was used to minimize the chances of missing the desired injection 

site. Pressure injections of between 1.0–2.0 μl of adeno-associated virus with 

channelrhodopsin-2 (AAV2.8-ChR2 fused with GFP and CAG promoter; (Alexopoulou et 

al., 2008) for 2–4 minutes were made into the CN using a 10 μl Hamilton (Reno, NV) 

syringe in 24 mice. Immediately following injection, the incision was closed and the scalp 
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was sutured. Four additional mice were used as either ‘sham’ or control cases. Sham mice 

(n=2) underwent the exact surgical protocol as injected mice, including insertion of an 

empty Hamilton syringe in to the brainstem for 2–3 minutes. Control mice (n=2) had no 

history of manipulation.

After a 3–4 week survival time to allow for expression of the ChR2, the mice were prepared 

for acute surgery to characterize responses to optical stimulation. Initial anesthesia was as 

above with 60–80 mg/kg ketamine supplements as necessary. Using a scalpel, the injected 

region was re-exposed (for optical stimulation) and a craniotomy was made over the right 

inferior colliculus and/or the right auditory cortex (for recordings). The brain surface was 

covered with high-viscosity silicon oil. During the course of physiological recordings, the 

core body temperature of the animal was maintained at 36.8°C with a homeothermic blanket 

system. After all recordings were made, the animal was sacrificed with an overdose of 

ketamine, brainstems were extracted and post-fixed for 2 hours, cryoprotected in 30% 

sucrose for 24–48 hours, frozen, and cut on a cryostat and coronal sections were cut at 60 

μm.

Brainstem tissue was processed to enhance visualization of ChR2-GFP. Before the staining 

procedure, sections were allowed to dry at room temperature and then rehydrated in PBS for 

10 min. After washing with PBS, tissue was permeabilized and blocked with blocking 

solution (0.3% Triton X-100, 15% heat inactivated goat or donkey serum in PBS) for 1 h. 

Primary antibody was diluted (0.1% Triton X-100, and 10% heat inactivated goat or donkey 

serum in PBS) and applied to the tissue overnight at 4° C. Antibody dilutions were: 1:400 

for monoclonal mouse anti-B-Tubulin (Covance), and 1:800 for polyclonal rabbit anti-GFP 

(Invitrogen). Secondary antibodies (Alexafluor 488- and 568- conjugated; Invitrogen) were 

used to detect primary antibodies. Visualization of nuclei was performed with 4,6-

diamidino-2-phenylindole (DAPI), (Vector Laboratories). Staining was analyzed with 

epifluorescence microscopy (Axioskop2 Mot Axiocam, Zeiss) and confocal microscopy 

(TCD, Leica).

Using a fluorescence microscope, a histological analysis of ChR2-GFP label in the 

brainstem was performed in each case 3–4 weeks after injection of viral mediated ChR2 (the 

observer was blind as to case number and surgical history). The presence or absence of GFP 

labeled cells in CN and axons in CN exit pathways and targets were noted.

4.3. Physiological Data Collection

4.3.1. Stimuli—Optical stimuli were produced by a laser (BL473T-100FC, Shanghai Laser 

& Optics Century Co.), led through an optical fiber (400 μm diameter) with the tip directly 

contacting the exposed surface of the DCN. Blue light (473 nm) pulses of 1 ms duration 

presented continuously at 5 pulses/sec unless otherwise indicated. The number of pulse 

presentations was typically 80, but varied from 40 to 120. For the subset of experiments 

characterizing the effect of pulse rate, pseudorandomized 500 ms pulse trains, followed by 

500 ms with no stimulation, were presented with pulse rates ranging from 5–320 Hz. For 

both protocols, light intensity was varied between −15.4 and 29.1 dB re: 1 W/cm2, which 

adequately captured the range of firing rate responses from threshold to saturation. The laser 

was calibrated by positioning the optical fiber 2 mm from a high-sensitivity thermopile 
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sensor (Coherent PS19Q) connected to a power meter (Coherent LabMax-TOP). The voltage 

command parameters were systematically varied, and the measured power was divided by 

the cross-sectional area of the fiber and by the pulse rate to get the radiant exposure in 

mJ/cm2.

4.3.2. Multiunit recordings—Multiunit recordings were made from the central nucleus 

of the IC or Actx using either a 16-channel linear silicon probe or a 4×4 shank array, 

respectively (both with 177 μm2 contact area, 50 μm contact separation, NeuroNexus 

Technologies). Final adjustments in position of the recording electrodes were made to obtain 

a complete tonotopic mapping across the recording channels (Malmierca et al., 1993; Guo et 

al., 2012) from 11.3 to 45.25 kHz in 0.5 octave steps and from 0–80 dB in 10 dB steps, 

using 20 ms duration tone bursts with a repetition rate of 10 bursts/s.

4.3.3. Spike detection—Voltage waveforms of multiunit activity were measured with the 

16-channel recording electrodes, amplified, and recorded to disk. To remove slow 

fluctuations in the signal due to movement or other slow artifacts, the mean waveform across 

the 16 electrode channels was computed and subtracted from the individual channel 

waveforms. Additional electrical and physiological noise was further removed by filtering 

the resulting waveforms between 500 and 3000 Hz with 5-point Butterworth filters. Spikes 

were defined as waveform segment that had values greater than 4 times (a factor determined 

empirically) the background noise level after filtering. For pulse rates of 5 Hz, the 

background noise level was measured as the median value of the filtered waveform between 

12 ms post-stimulus onset and the onset of the following pulse (optically evoked spiking was 

never observed at a time longer than 12 ms post-stimulus onset). For pulse rates higher than 

5 Hz, the background noise level was defined as the median value of the filtered waveform 

during the period between pulse trains.

4.3.4. Firing rate and activation thresholds—To compute average firing rate, spike 

count was determined in a set analysis window and divided by window duration. For 5 Hz 

pulse trains, the analysis window was 1–12 ms post-stimulus onset. For higher pulse rates, 

the analysis was completed during the 500 ms stimulation period. For each electrode, firing 

rate was plotted as a function of light intensity and the resulting rate/intensity function (RIF) 

was fitted with a sigmoid curve. Spontaneous firing rate was computed for each electrode 

from the OFF portion of the response (e.g. the 12–200 ms window for pulses at 5 Hz, or the 

500 ms OFF region for pulses at higher rates). Evoked firing rates were compared between 

the analysis window and the spontaneous period across various pulse rates and pulse 

amplitudes with a paired t-test. For each electrode number, the logarithm of the p-values was 

plotted as a function of light intensity and fitted with a sigmoid curve. Activation threshold 

was determined as the light intensity at which the fitted log-p-value/intensity function 

became smaller than 0.01. Activation width was defined as the number of electrodes that 

crossed activation threshold.

4.3.5. Synchronization index and synchronization thresholds—To investigate 

temporal properties of laser-evoked spiking we computed the synchronization index (SI; 

(Goldberg and Brown, 1969), during a response window of 1–12 ms post-stimulus onset. 

Darrow et al. Page 9

Brain Res. Author manuscript; available in PMC 2016 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The SI varies between 0 (no synchronization) and 1 (all spikes occurring exactly at the same 

phase of the stimulus period). For each electrode, SI was plotted as a function of light 

intensity and fitted with a sigmoid curve. A Rayleigh test of uniformity was used to assess 

the significance of the computed SI (Mardia and Jupp, 1999.). Similarly to our determination 

of activation threshold, the logarithm of the p-values obtained with the Rayleigh tests was 

plotted against light intensity and fitted with a sigmoid curve. Synchronization threshold was 

determined as the light intensity at which the fitted log-p-value/intensity function crossed 

0.01.

4.3.6. Auditory Brainstem Response (ABR) and Distortion Product 
Otoacoustic Emissions (DPOAE) tests—ABR measurements were recorded under 

anesthesia with needle electrodes inserted in the vertex and pinna, and with a ground near 

the tail. ABRs were evoked in response to acoustic stimulation (5-ms tone pips at 16 kHz or 

click), CN electrical stimulation (biphasic bipolar pulses, 0–0.4mA, 7–27Hz) or CN optical 

stimulation (1ms, 7–27Hz pulse rate). The electric stimulation was delivered to the surface 

of the CN using a pair of stainless steel wires insulated except at the tip (200 μm diam.; 

impedance 0.1–0.5 MΩ) and was presented through a stimulus isolator (Model 2200, A-M 

Systems, Carlsborg, WA). For ABR recordings, evoked responses were amplified, filtered 

and averaged. DPOAE tests were used to determine any changes in cochlear function 

following virus injections. 2f1–f2 emissions were recorded in response to primary tones: f1 

and f2, with f2/f1 = 1.2 and f2 level 10 dB < f1 level, with f2 at 8.0, 11.3, 22.6, 32.0, and 

45.25kHz. In all cases, the DPOAEs and tone-pip ABR thresholds were within normal limits 

for CBA/CaJ mice at 12–16 weeks old (data not shown).
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Figure 1. 
Histological localization of ChR2-GFP. A) Fluorescent images of ChR2-GFP (top, left) and 

DAPI staining to indicate neurons (bottom, left) are merged into a composite view in the 

DCN. Other merged images indicate composites of staining in the PVCN and AVCN (all 

from case KND 12). Arrowheads indicate immunofluorescence label in fusiform cell layer 

and extracellular label in deeper DCN that obscures cell-type identification. B) High-

magnification confocal images (merged DAPI and ChR2-GFP staining) of CN cell bodies. 

Schematic illustrates positions of ChR2 expression in cell bodies of the CN and in 

anterogradely labeled axons in the dorsal and ventral acoustic stria (DAS and VAS), the 

contralateral CN, and contralateral IC. C) Fluorescent images of a ChR2- case (e.g. KND 

26) in which the expression pattern is observed outside the CN (just medial to it). In this and 

other ChR2- cases, no neuronal labeling of auditory brainstem structures was observed.
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Figure 2. 
Responses to light in IC in ChR2+ cases (A–D: KND 23; E: KND37). A) Dot rasters at 

increasing light intensities from a single electrode in the IC (#8, with best response to sound 

frequency of 20 kHz). Each dot represents a multiunit action potential and there were 120 

presentations for each light intensity. At low intensities, there is only spontaneous activity, 

whereas at higher intensities, there was driven activity in the first 10 ms following stimulus 

onset. B) Average firing rate between 1 and 12 ms in this electrode as a function of light 

intensity (blue dots, with error bars indicating ± 2 standard errors; solid blue line: sigmoidal 

fit). The threshold (blue diamond) was near 6 dB re: 1W/cm2 and the saturation occurred 

near 20 dB re: 1W/cm2. Black line and symbols show little response when the laser was off. 

C) Firing rate across all 16 recording electrodes showing the abrupt threshold above which 

there is broad activation. The baseline firing rate in each electrode was subtracted to 

facilitate comparison across electrodes. D) Thresholds were similar across all recording 

electrodes (about 10 dB re: 1W/cm2). Response window was 1 and 12 ms post-stimulus. E) 

Effect of pulse rate on firing rate across different light intensities Stimuli were 500 ms pulse 
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trains and response window was the entire 500 ms (electrode #14, with best response to 

sound frequency of 16 kHz). Firing rate increased as a function of light pulse rate, consistent 

with the increased stimulation energy per cycle.
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Figure 3. 
Analysis of synchronization in IC in ChR2+ cases (A–D: KND 23; E: KND 37). A) A clear 

response near stimulus onset at the largest stimulus intensities is observed in poststimulus 

time histograms (5000 bins, electrode #8, 5 Hz pulse rate, 1-ms duration light pulses). B) 

Synchronization index (SI) in same electrode (blue dots are means, error show ± 2 standard 

deviations, blue line: sigmoidal fit). The SI threshold was near 10 dB re: 1W/cm2 (blue 

diamond) and it approached saturation at 30 dB re: 1W/cm2. Black points show laser OFF 

condition. C) SI mapping as a function of intensity for all electrodes. D) Synchronization 

thresholds as a function of IC electrode. Thresholds were defined as the light intensity at 

which SI was significant (Rayleigh test, p<0.01). E) SI as a function of pulse rate at different 

light intensities (from electrode #14, with best response to sound frequency of 16 kHz). At 

the higher light intensities, SI rolls off at pulse rates above 60 Hz.
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Figure 4. 
Summary data (8 mice, 16 electrodes each) for pulse rates of 5 and 320 Hz. A) Maximum 

firing rate was greater in the 320 Hz condition, consistent with increased stimulation energy 

(p<0.001, Mann-Whitney U-test). In contrast, SI was significantly lower in the 320 Hz 

condition (p<0.001, Mann-Whitney U-test). Non-significant SI were set to 0 to facilitate 

comparison. B) Firing rate thresholds were not significantly different between the 5 and 320 

Hz conditions (p=0.14, Mann-Whitney U-test) whereas SI thresholds were significantly 

lower at the 5 Hz condition (p<0.001, Mann-Whitney U-test). In most cases, there was no 

significant SI at 320 Hz (threshold = ∞) in spite of large firing rate response.
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Figure 5. 
Optical stimulation activates both the IC and Actx (KND 25). In the IC, average firing rate 

(A) and SI (B) show broad patterns across electrodes with thresholds in the 10 to 20 dB re: 

1W/cm2 range (1-ms duration light pulse at 5 Hz, 40 presentations). In Actx firing rate (C) 

and SI (D) also show broad patterns. Brackets indicate the 4×4 electrode set-up of the 

recording probe: e.g. electrode contacts 1–4 are located within a column of the Actx.
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Figure 6. 
Comparison of IC responses between optical and acoustic stimulation in a ChR2+ mouse 

(KND 21). A) Activation maps in response to 1 ms duration blue light pulses presented at a 

rate of 5 Hz (80 presentations). Top: Average firing rate and bottom: SI both show broad 

activation with thresholds in the 10 to 20 dB re: 1W/cm2 range. B) Activation maps in 

response to 0.1 ms duration acoustic clicks presented at a rate of 23 Hz (80 presentations) 

for sound levels ranging from 0 to 80 dB SPL. Top: Average firing rate and bottom: SI. Both 

measures show broad activation with thresholds in the 40 to 60 dB SPL range.
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Figure 7. 
Acoustic, optical, and electrical evoked potentials (KND 38). A) Waveforms from an 

acoustically evoked ABR recorded in response to different levels of a 23 Hz 1-ms stimulus 

(512 repetitions). B) Waveforms of the optically evoked ABR recorded with a 1-ms 23 Hz 

blue light pulse presented 500 times to the CN. C) Electrically evoked ABR in the same 

animal with a level series using a 200 μs electrical pulse presented at 27 Hz with 100 

repetitions. D) Input-output (I–O) curves showing a roughly similar shape for the three types 

of stimulation. Normalized baseline to peak output (μV) was used.
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