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Understanding how the structure of cognition arises from the
topographical organization of the cortex is a primary goal in
neuroscience. Previous work has described local functional gradi-
ents extending from perceptual and motor regions to cortical
areas representing more abstract functions, but an overarching
framework for the association between structure and function is
still lacking. Here, we show that the principal gradient revealed by
the decomposition of connectivity data in humans and the macaque
monkey is anchored by, at one end, regions serving primary sensory/
motor functions and at the other end, transmodal regions that, in
humans, are known as the default-mode network (DMN). These
DMN regions exhibit the greatest geodesic distance along the cortical
surface—and are precisely equidistant—from primary sensory/motor
morphological landmarks. The principal gradient also provides an
organizing spatial framework for multiple large-scale networks and
characterizes a spectrum from unimodal to heteromodal activity in a
functional metaanalysis. Together, these observations provide a
characterization of the topographical organization of cortex and in-
dicate that the role of the DMN in cognition might arise from its
position at one extreme of a hierarchy, allowing it to process trans-
modal information that is unrelated to immediate sensory input.

topography | connectivity | cortical organization | default-mode network |
gradients

Akey assumption in neuroscience is that the topographical
structure of the cerebral cortex provides an organizing

principle that constrains its cognitive processes. Recent advances
in the field of human connectomics have revealed multiple large-
scale networks (1–3), each characterized by distinct functional
profiles (4). Some are related to basic primary functions, such as
movement or perceiving sounds and images; some serve well-
documented, domain-general functions, such as attention or
cognitive control (5–8); and some have functional characteristics
that remain less well-understood, such as the default-mode network
(DMN) (9, 10). Although the topography of these distinct distrib-
uted networks has been described using multiple methods (1–3), the
reason for their particular spatial relationship and how this con-
strains their function remain unclear.
Advances in mapping local processing streams have revealed

spatial gradients that support increasingly abstract levels of repre-
sentation, often extending along adjacent cortical regions in a
stepwise manner (11). In the visual domain, for example, the ventral
occipitotemporal object stream transforms simple visual features,
coded by neurons in primary visual cortex, into more complex visual
descriptions of objects in anterior inferior temporal cortical regions
and ultimately, contributes to multimodal semantic representations

in the middle temporal cortex and the most anterior temporal
cortex that capture the meaning of what we see, hear, and do (12–
15). Similarly, in the prefrontal cortex, a rostral–caudal gradient has
been proposed, whereby goals become increasingly abstract in an-
terior areas more distant from motor cortex, because they are
increasingly removed from selection processes that operate on
specific motor representations (5, 16–19). Much like the function–
structure correspondence elucidated by topographic maps within
sensory and motor areas (20, 21), these processing gradients provide
a systematic mapping between spatial position and a functional
spectrum of increasingly abstract representations (22).
Processing gradients have proven useful for understanding the

relation between specific regions and function in separate domains:
Mesulam (23) observed that the emergence of more abstract
functional classes of cortex may follow a similar trajectory, hy-
pothesizing that abstract categories emerge from the convergence
of information across modalities (Fig. 1C). This notion has recently
been extended by Buckner and Krienen (24), who proposed the
“tethering hypothesis,” arguing that association cortex gains its
functional attributes through its increasing spatial distance from
the constraints that determine the functional specialization of
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primary cortex. These viewpoints suggest that there may be
macroscale gradients that integrate information across multiple
domains into progressively more abstract representations, in which
local gradients within specific cortical systems could be situated
and understood.
One large-scale cortical system with function that remains

unclear is the DMN. Initially identified through its tendency to
deactivate during externally oriented tasks (25), the DMN has
since been shown to activate in tasks that depend on informa-
tion retrieved from memory, such as remembering the past or
thinking about the future, or considering the mental states of
others (reviews are in refs. 10 and 26). The DMN is also known
to play a role in states that are less related to ongoing environ-
mental events, such as daydreaming and mind wandering (27–30),
and contributes to lapses in external processing (31). A consensus
view on the role of the DMN in human cognition is still lacking,
however, because of the increasing number of cognitive domains in
which it has been implicated. As well as playing an active role during
states, such as autobiographical memory retrieval, social cognition,
and future thinking, the DMN has recently been shown to operate
in concert with regions implicated in cognitive control during
complex working memory tasks (32–36). This emerging evidence
illustrates that the DMN is not tied to a specific form of in-
formational content, leading to suggestions that it acts as a hub that
integrates representational information across the cortex (30, 37).
To understand the topographic organization of the cerebral

cortex at the macroscale (38), we explore how the principal vari-
ance in cortical connectivity relates to the topography of structure
and function by addressing four key questions. (i) Is there a mac-
roscale gradient of connectivity in the human brain that reflects the
systematic integration across modalities in a hierarchical fashion?
(ii) Does this macroscale organization relate to the geometric

structure of the cortex? (iii) Does the organization captured by the
principal gradient account for the spatial distribution of large-scale
networks and the associated functions across the cortex? (iv) Do
these observations provide a framework for understanding the
functional role of the DMN in cognition?

Results
We began our analysis by characterizing the components describ-
ing the maximum variance in functional connectivity patterns—
the extent to which nodes agree in the spatial distribution of cor-
relations—across the human cerebral cortex (Fig. 1 and Fig. S1).
The functional connectivity matrix consisted of 91,282 cortical
and subcortical “grayordinates” with a resolution of 2 mm from the
preprocessed dense connectome S900 release of the Human
Connectome Project (HCP) (39). These data were based on 1 h of
resting-state fMRI data acquired from 820 healthy adult individ-
uals. No further processing of the connectivity matrices beyond
those already implemented by the HCP, which included minimal
spatial smoothing of 2 mm FWHM (40), was conducted.
Rather than delineating discrete network parcellations, we

implemented a method that captures gradients in connectivity
patterns over space—a cortical feature termed “connectopies”
(41). This method, known as diffusion embedding (42), allows
local and long distance connections to be projected into a
common space more effectively than approaches that use linear
dimensionality reduction, such as principal component analysis
(SI Materials and Methods). The resultant components, which we
describe here as “gradients,” are unitless and identify the posi-
tion of nodes along the respective embedding axis that encodes
the dominant differences in nodes’ connectivity patterns.

A B

EDC

Fig. 1. The principal gradient of connectivity in both the (A) human and (B) macaque monkey cortices shows a spectrum between unimodal regions (dark blue) and
transmodal regions (sienna), which in the human cortex, peaks in regions corresponding to the DMN. The proximity of colors can be interpreted as greater similarity of
connectivity patterns. (C) The illustration of connectivity organization suggested by Mesulam (23) proposes a hierarchy of processing from distinct unimodal areas to
integrative transmodal areas. Labels Gradient 1 and Gradient 2, which were not included in the original figure, correspond to the results in D. Modified from ref. 23. (D) A
scatter plot of the first two connectivity embedding gradients. Gradient 1 extends between primary sensorimotor and transmodal regions (red). Gradient 2 separates
somatomotor and auditory cortex (green) from visual cortex (blue). Histograms depicting the distribution of values are presented on the respective axes. (E) Colors from the
scatter plot are presented on the cortical surface for anatomical orientation. A1, primary auditory; ag, angular gyrus; cing, anterior cingulate cortex; ifg, inferior frontal
gyrus; infs, intermediate frontal sulcus; L, limbic; M1, primary motor; mfg, middle frontal gyrus; mtc, middle temporal cortex; P, parietal; Pf, prefrontal; phf, para-
hippocampal formation; pmc, posteromedial cortex; ps, principal sulcus; S1, primary somatosensory; sfg, superior frontal gyrus; V1, primary visual; vmpfc, ventromedial
prefrontal cortex.
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The Principal Gradient in Humans and Macaque Monkeys. The prin-
cipal gradient (Fig. 1A), which accounts for the greatest variance
in connectivity in the human brain (Fig. S2), is anchored at one
end by the primary and unimodal visual, somatosensory/motor,
and auditory regions. At the other end are regions including the
angular gyrus, rostral anterior cingulate, posteromedial cortex,
middle temporal gyrus, and middle and superior frontal gyri—
regions that, in humans, are collectively described as the DMN.
Regions situated between the two extreme ends of the principal
gradient include the inferior frontal sulcus, the intraparietal
sulcus, and the inferior temporal sulcus, constituting hetero-
modal integration and higher-order cognitive regions.
The initial proposal of Mesulam (23) was motivated by tract-

tracing studies conducted in the macaque monkey. To determine
whether our method would generalize to these forms of data, we
performed the same embedding analysis on a publicly available
database of tract-tracing studies conducted in the macaque monkey.
The principal gradient of the macaque monkey cerebral cortex is
presented in Fig. 1B and similar to the human functional connec-
tivity-based results, anchored at one end by visual and somatosen-
sory/motor regions and at the other end by higher-order transmodal
regions in the temporal lobe and the medial and lateral prefrontal
cortexes. The cross-species correspondence of the principal gradient
suggests that this axis of connectivity variation is phylogenetically
conserved and may represent a primary dimension of cortical ex-
pansion (43).
The topography of the principal gradient in both the human and

macaque monkey is consistent with the claim that cortical con-
nectivity is organized along a dimension spanning primary/unimodal
and transmodal regions—a hypothesis that is summarized sche-
matically along the Gradient 1 dimension in Fig. 1C. However, for
this spectrum to indicate hierarchical integration across distinct
modalities, the following connectivity component should distinguish
between primary modalities as indicated by the dimension Gradient
2 in Fig. 1C.
Consistent with the hypothesis by Mesulam (23) (Fig. 1C), the

component accounting for the second-most variance in connectivity
in the human brain differentiates regions solely within the unimodal
end of the principal gradient (Fig. 1D). One end of the spectrum is
characterized by regions of the occipital cortex implicated in pro-
cessing visual input, whereas the opposite end includes the so-
matosensory and motor regions surrounding the central sulcus as
well as the auditory regions of the temporal perisylvian region (Fig.
1E). The convergence described by the first two connectivity gra-
dients across sensory/motor modalities and toward a singular set of
nodes within transmodal cortex is consistent with the claim that the
principal gradient is organized along a dimension that integrates
unimodal regions in a hierarchical manner (Fig. 1C). Moreover, the
principal gradient, anchored at one end by the DMN, contains
within it several local processing gradients that have already been
described within the temporal and frontal lobes (12–15, 17–19).

Additional gradients describing progressively less connectivity vari-
ance are available in Fig. S1.

DMN Peaks of the Principal Gradient Are Equidistant from Primary
Areas. Having characterized the topography of a principal gra-
dient in connectivity, we next investigated whether it is related to
the intrinsic geometry of the cortex. To do so, we examined
whether regions at the extreme of the DMN end occupy spatial
locations that are maximally distant along the cortical surface
from unimodal regions. We selected seven peak cortical nodes
across the DMN clusters of the principal gradient and calculated
the minimum geodesic distance from all other nodes to any of
these “seed” nodes (additional description of methods is in SI
Materials and Methods).
Fig. 2 shows that cortical distance reproduces many features of

the spatial embedding of the principal gradient. Four of the peak
DMN nodes are equidistant from the central sulcus, which is the
topographical landmark of primary somatosensory/motor cortex.
Likewise, we observe a similar correspondence with the calcarine
sulcus, marking the location of primary visual cortex. More gener-
ally, distance clearly increases with lower principal gradient values,
with an especially rapid transition in the connectivity gradient be-
tween 25 and 40 mm and plateaus at the extremes (Fig. 2B). This
relationship is, nevertheless, captured by a linear fit (R2 = 0.55). It is
noteworthy that unimodal regions are at least 40 mm from the
DMN peaks. In similar analyses of macaque monkey cortical dis-
tance (Fig. S3), we observed a comparable distance threshold for
unimodal regions. In sum, this analysis shows that the principal
connectivity gradient reflects macrostructural features of cortical
organization: the nodes corresponding to one extreme end of the
gradient—core regions of the DMN—are maximally distant from
regions that directly govern perception and action.

The Principal Gradient Captures the Spatial Layout of Large-Scale
Networks. We next examined the extent to which the principal
gradient captures the macroscale layout of intrinsic functional
connectivity networks. Despite the high reproducibility of large-
scale resting-state networks (1, 44–46), there is no clear over-
arching spatial schema to explain the transition of one network
to another. We examined the widely used seven-network par-
cellation by Yeo et al. (2) with respect to the position of each
network along the principal gradient (Fig. 3A). [Results using the
17-network parcellation from ref. 2 are presented in Fig. S4.]
Fig. 3 shows that networks are not randomly distributed along

this dimension: instead, as shown in the box plots in Fig. 3B,
cortical nodes from the same network tend to cluster at similar
positions. Importantly, the DMN identified in this parcellation
(Fig. 3, red) occupies one extreme position along the principal
gradient and is maximally separated from visual (Fig. 3, purple)
and motor (Fig. 3, blue) networks, which are at the other extreme.
One exception is the limbic network (Fig. 3, beige), which includes
an extensive range of values. However, the spatial distribution of

A B

Fig. 2. (A) The minimum geodesic distance (in millimeters) from each point on the cortical surface to seven seed nodes located in the positive peaks of the principal
gradient. Morphological landmarks of primary areas denoted by white dotted lines, such as the central sulcus (cs; somatosensory/motor), calcarine sulcus (cals; visual),
and transverse temporal gyrus (tt; auditory), are equidistant from the surrounding DMN peaks (illustrated by arrows). Gray lines mark the calculated equidistant line.
(B) The contour scatter plot shows the negative relationship between geodesic distance from seven positive peak locations and the principal gradient (R2 = 0.55).
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this network may be accounted for by low signal to noise within
the original data used for parcellation (2), and it may, thus, not
accurately reflect the connectivity of its constituent regions.
This analysis, therefore, shows that the principal gradient of

connectivity provides a framework for the spatial ordering of
large-scale networks. In addition, the principal gradient captures
similar, repeating transitions between these networks, which occur
across cortical lobes (Fig. 3C). We represent this consistent ar-
rangement as a schematic illustration in Fig. 3D. Notably, outlier
gradient values for each network are located predominantly at
their boundaries (Fig. S5), suggesting that, in some cases, the
principal gradient describes gradual connectivity transitions that
are obscured by discrete network parcellation.

Distribution of Functions Along the Principal Gradient. Our final
analysis explored whether the regions located at the DMN ex-
treme of the gradient serve functions that are abstracted from
perception and action. We conducted a metaanalysis using the
NeuroSynth database (47) [Figs. S6 and S7 show corresponding
analysis using the BrainMap database (48)] and examined the
association between a list of topic terms with regions of interest
created from five-percentile bins of the principal gradient. Topic
terms were sorted by their weighted average position along the
gradient, revealing a systematic shift in function. Fig. 4 shows
that the unimodal end is characterized by terms depicting acting
and perceiving, such as “motor,” “visual perception,” “multi-
sensory processing,” and “auditory processing,” whereas the end
characterized by the DMN emphasizes terms such as “social
cognition,” “verbal semantics,” and “autobiographical memory”—
tasks that rely on complex representations abstracted away from
specific sensory and motor processes. Between the extremes, we
observe domain-general functions, such as “cued attention,” “in-
hibition,” and “working memory,” in regions corresponding to the
dorsal attention and salience networks above (Fig. 3D).

Discussion
Our analysis characterized a principal gradient of cortical orga-
nization in the human connectome, which is anchored at one end
by systems implicated in perceiving and acting, and at the other
end by transmodal association regions, corresponding in humans
to the DMN (Fig. 1). A comparative analysis using tract-tracing

data from studies in the macaque monkey found a corresponding
gradient, providing initial evidence that this axis of connectivity
variation may be phylogenetically conserved. The observation that
the principal gradient corresponds to the intrinsic geometry of the
cortex—regions in the DMN have the greatest geodesic distance
along the cortical surface from primary sensory/motor areas—
further indicates this axis may provide a crucial blueprint for cor-
tical organization (Fig. 2). We also found that large-scale networks
are arranged along this axis, with the same transitions between
consistently adjacent networks occurring throughout the cortex
(Fig. 3). Finally, a task-based metaanalysis characterizing the func-
tional attributes of this gradient showed a spectrum of increasing
abstraction that follows the transition from unimodal cortex to the
extreme end of the gradient in the DMN (Fig. 4).
The location of the DMN at one extreme end of the principal

gradient provides an organizing principle for understanding its role
in cognition. First, these findings provide anatomical support for
why the DMN has been associated with processes that are un-
related to immediate stimulus input, such as daydreaming or mind
wandering (27, 28, 30). The DMN is at a maximal distance from
systems involved in perception and action in both functional con-
nectivity and anatomical space, indicating that the neural activity in
these regions is likely to be comparably insulated from direct en-
vironmental input (49, 50). Second, the location of the DMN as
equidistant from all sensory/motor systems is aligned with its broad
range of functions that requires integration between multiple
sensory systems, including episodic (51) and semantic memory (52–
54), social cognition (55, 56), goal-directed working memory tasks
(26, 32, 33, 35), and reward-guided decision making (57, 58). The
two cardinal features of the DMN related to abstraction––stimulus
independence and content heterogeneity––can be accounted for by
its position at the end of a topographical hierarchy that is equi-
distant from unimodal systems, thus acting as a hub of integration
across multiple sensory modalities (37) (Fig. 3D).
The principal gradient illustrates a broader topographic or-

ganization of large-scale connectivity (38) that accounts for the

A B

C D

Fig. 3. (A) The principal gradient values from each of seven networks (2) are
presented as (B) box plots ordered by the mean value. (C) Illustrative cutouts
taken from A to show the repeated patterns of network spatial adjacency
captured by the principal gradient. Arrows in A indicate the corresponding
orientation of the cutouts. (D) A schematic of the spatial relationships of ca-
nonical resting-state networks (2) applying the schema suggested in ref. 23
presented in Fig. 1C. dmn, default-mode network; dorsal attn, dorsal attention
network; sal, salience network; somato/mot, somatosensory/motor network.

Fig. 4. NeuroSynth metaanalysis of regions of interest along the principal
gradient using 24 topic terms. Terms are ordered by the weighted mean of their
location along the gradient. Sensory processing terms are located at the top
followed by domain-general cognitive functions and then, higher-order abstract
cognitive and memory-related processes. Similar results using the BrainMap
database are available in SI Materials and Methods. autobiographical mem.,
autobiographical memory; multisensory proc., multisensory processing.
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spatial arrangement of local processing streams throughout the
cerebral cortex. Gradients in both the temporal and prefrontal
cortexes are apparent in Fig. 1, showing that these hierarchies
are not isolated local phenomena; they emerge as elements of a
spectrum that begins within input–output systems and ends with
the DMN. Notably, our results are consistent with a recent
modification of the rostral–caudal processing gradient described
within lateral frontal cortex (59, 60). Rather than the more
rostral areas located farther along in the processing hierarchy
(18, 19), two distinct hierarchical gradients of temporal- and
feature-related abstraction converge in middle lateral prefrontal
cortex (60). The consistency between the principal gradient and
this revised lateral prefrontal hierarchy suggests that it may pro-
vide a source for future studies investigating the detailed topog-
raphy of local processing streams.
In addition to incorporating local processing streams within a

global framework, the principal gradient situates discrete large-
scale connectivity networks along a continuous spectrum. With
recent advances in multimodal cortical parcellation (61), this
approach provides a complementary means to describe the ge-
stalt of the cortical mosaic. Future studies are needed to better
characterize the types of transitions between different patterns of
large-scale connectivity and identify where processing occurs in a
stepwise (11) or “gradiential” manner (22).
It is now widely accepted that the DMN is important, because it

permits cognitive processing that is independent of the here and
now. This capacity is adaptive, because it permits flexibility: more
abstract representations of a stimulus enable the generation of
alternative behaviors, allowing original and creative thoughts to
emerge (62). Along those lines, a “positive–negative” axis of brain–
behavior covariation describes a similar connectivity spectrum,
distinguishing the DMN from sensory/motor regions (63). Beyond
supporting states of creativity and planning (64, 65), the DMN has
also been implicated in almost all psychiatric conditions (66), in-
dicating that there may be costs as well as benefits from the ca-
pacity to apprehend the world as it might be rather than seeing it
as it is right now.

Materials and Methods
The principal gradient was derived from human (39) and macaque (67, 68)
connectivity matrices using diffusion embedding (42)—a nonlinear di-
mensionality reduction technique (Fig. 1). Geodesic distance along the cor-
tical surface from peak nodes of the transmodal end of the principal
gradient, presented in Fig. 2, was calculated using an exact distance algo-
rithm (69, 70). For the comparison with canonical large-scale networks (Fig.
3), the principal gradient values were extracted from each of seven networks
from ref. 2. Finally, binarized masks at five-percentile increments of the
principal gradient were used as regions of interest in a NeuroSynth (47)
metaanalysis (Fig. 4). Additional information regarding methods is available
in SI Materials and Methods as well as Figs. S1–S7. All software used in this
study is openly available at https://neuroanatomyandconnectivity.github.io/
gradient_analysis/.

All MRI data used in this study were publicly available and anonymized.
Participant recruitment procedures and informed consent forms, including
consent to share deidentified data, were previously approved by the
Washington University Institutional Review Board as part of the HCP (39).
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