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Precise knowledge of a quantum system’s Hamiltonian is a critical pre-requisite for its use in many quantum
information technologies. Here, we report a method for the precise characterization of the nonsecular part of the
excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation
of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool
for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal
evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first
direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear
spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in
silicon carbide.
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I. INTRODUCTION

Negatively charged nitrogen-vacancy centers (NV) in dia-
mond [1] have emerged as promising platforms for quantum
information processing [2] and for a wide range of applications
in quantum sensing [3–5]. The NV electronic spin remarkable
properties, such as optical initialization and readout of its spin
state [6], and extremely long spin coherence [7], make it an
excellent candidate for quantum technologies. The presence
of other nuclear spins in the proximity of the NV defect can
be exploited to enhance the quantum computation or sensing
tasks, for example to achieve better readout [8,9], long-time
memory [10], or to implement quantum error correction
schemes [11–13]. A critical step in many of these schemes
is to first initialize the nuclear spin in a highly polarized (pure)
state [14–18].

Polarization of the NV electronic spin to the mS = 0
sublevel of the ground-state spin triplet is routinely obtained
via optical pumping and intersystem crossing. In general,
this process does not lead to polarization of the nuclear spin
owing to the mismatch between the electron and nuclear spin
energies. However, close to the excited state level anticrossing
(ESLAC), occurring at magnetic field around 510 G, the
transverse hyperfine coupling induces electron-nuclear flip-
flops, and consequently polarization transfer from electron to
nuclear spins [18]. Nearly perfect nuclear polarization has
been demonstrated in previous experiments for 14N [19] or
15N [18,20] composing the NV center, as well as for proximal
13C [19,21,22]. Recently, dynamic nuclear spin polarization
has also been observed in similar defect systems in silicon
carbide, such as the divacancy in 6H-SiC and the PL6 center
in 4H-SiC [23].

The polarization transfer dynamics, and its ultimate achiev-
able level, depends critically on the hyperfine spin structure
of the ground and excited electronic levels. Although the spin
structures of both the ground [14,15,17,24–26] and excited
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[15,27,28] triplet states have been characterized in experi-
ments, the transverse hyperfine coupling between electronic
and nuclear spin is in general difficult to measure. In particular,
the excited state transverse hyperfine coupling strength has
been inferred by assuming an isotropic interaction [15,28],
although ab initio calculations indicate an anisotropy of the
hyperfine tensor for the 15N isotope [16].

In this work we design a strategy to measure the excited-
state transverse hyperfine coupling, by exploiting dynamic
nuclear polarization (DNP) close to the ESLAC. A deeper
understanding of this mechanism would allow enhanced
control of this multispin system, from its initialization to
more complex sensing and computational tasks. Our strategy
combines measuring the time dependence of the polarization
dynamics with ab initio calculations based on a master
equation in the Lindblad operator formalism [29]. Comparing
the experimental results with the model, we can extract the
first experimentally measured value of the transverse hyperfine
coupling in the NV electronic excited state.

II. POLARIZATION MECHANISM

We consider the two-spin system given by the electronic
spin S = 1 associated with the NV center, in its orbital
ground and excited states, and the nuclear spin I = 1 of the
substitutional 14N that constitutes the center together with a
vacancy in the adjacent lattice site. At room temperature, the
orbital ground (3A) and excited (3E) states of the system are
governed by the same form of Hamiltonian. Indeed, in the
excited state, the orbital contribution to the energy spin levels
is quenched due to mixing of the excited state orbital doublet
{Ex,Ey}, attributed to thermally-activated phonon excitations
[30,31]. Therefore, the excited state behaves as an effective
orbital singlet like the ground state, where spin level energies
are determined only by spin-spin and Zeeman interactions.
This is no longer the case at cryogenic temperatures, where
our model would not apply. A scheme of the level structure
generated from these Hamiltonian operators is represented in
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FIG. 1. (a) Seven-level scheme of the NV electronic structure.
Levels 1-3 and 4-6 represent the three different mS projections of
the ground and excited state, respectively. Level 7 represents the
electronic singlet metastable level. We show optical excitations at
532 nm (green arrows), radiative decay within a broad phonon side
band in the range 637–800 nm, with zero phonon line at 637 nm
(red arrows), as well as nonradiative decay (black arrows) via the
metastable level, responsible for spin polarization. (b) Hyperfine
energy levels of the excited state, close to the ESLAC. (c) Sketch
of the experimental setup: an objective focuses the excitation laser
beam and collects the fluorescence; a wire works as an antenna to
deliver MW and RF waves to the NV center and to drive the electronic
and nuclear spins, respectively [33].

Figs. 1(a) and 1(b). In the presence of an externally applied
magnetic field B, the excited-state (ES) Hamiltonian reads

He = DeS
2
z + γeS·B + QI 2

z + S·C·I + γnI·B, (1)

where S and I are the electronic and nuclear spin operators,
De = 1.42 GHz is the electronic zero-field spitting of the
excited state, Q = −4.945 MHz is the nuclear quadrupole
interaction, and γe = 2.802 MHz/G and γn = −0.308 kHz/G
are the electronic and nuclear gyromagnetic ratios. The
hyperfine interaction can be rewritten as:

S·C·I = C//SzIz + C⊥(SxIx + SyIy) (2)

with C// and C⊥ the amplitudes of the longitudinal and
transverse coupling between the two spins. The ground state
Hamiltonian Hg has the same form, with Dg = 2.87 GHz
and hyperfine coupling tensor A, so that S·A·I = A//SzIz +
A⊥(SxIx + SyIy). The values of the amplitudes A// = −2.162
MHz [17], A⊥ = −2.62 MHz [25,32], and C// = −40 MHz
[17,28] were experimentally evaluated via electron spin
resonance. On the other hand, C⊥ has not been experimentally
determined and it is often assumed to be equal to C// [22,28].

The transverse hyperfine coupling in the excited state is
at the basis of the nuclear spin polarization process, since it
leads to a mixing of the states with the same total (electronic
plus nuclear) spin [18]. This mixing becomes relevant near the
level anticrossing in the excited state, where |0, − 1〉e mixes
with | − 1,0〉e, and |0,0〉e with | − 1,1〉e, as illustrated in Fig.
1(c). Here, we used the notation |mS,mI 〉e = |mS〉e ⊗ |mI 〉e
to indicate the unperturbed hyperfine levels of the ES, in the
absence of couplings and transverse magnetic fields. Then,
energy-conserving exchange of polarization by spin flip-flop

can occur, that, when combined with a continuous cycle of
optical excitation and nonradiative decay, leads to a polariza-
tion of both the electronic and the nuclear spins. The relative
population of the hyperfine levels of the ground-state achieved
after long optical pumping depends (i) on the magnetic field
strength and orientation with respect to the NV symmetry axis
and (ii) on the decay rates of the optical transitions between the
spin states (spontaneous emission and intersystem crossing).
On the other hand, the temporal dynamics of the nuclear
polarization strongly depends on the rate of the flip-flop
process, that is, on the transverse hyperfine interaction in the
excited state. Here, we characterize the temporal dynamics of
the population of the hyperfine levels in the ground state of
a single NV center, both in experiment and with a theoretical
model. Since the characteristic timescale of the population
(resp., depletion) of the state |0, + 1〉g (resp., |0,0〉g) crucially
depends on the excited-state transverse hyperfine interaction,
we can determine the excited-state coupling constant C⊥ with
simple magnetic resonance tools.

III. EXPERIMENTS

In the experiment, we used single NVs centers hosted
in an electronic grade diamond sample, with natural 1.1%
abundance of 13C impurities and 14N concentration < 5 ppb
(Element Six). The color centers are optically addressed at
room temperature with a home-built confocal microscope and
their spin was manipulated via resonant microwave driving
[Fig. 1(c)]. The NV centers were chosen to be free from prox-
imal 13C. We work at magnetic fields ranging from 200 G to
420 G, and with a controlled orientation with respect to the de-
fect symmetry axis. Thus, optical illumination (at a wavelength
of 532 nm) induces polarization of the nuclear spin with vari-
able efficiency due to the changing proximity to the ESLAC.

At a given magnetic field, we measured the relative
population of the hyperfine sublevels of the ground-state
electronic spin triplet by performing Ramsey experiments.
We apply two microwave π/2 pulses, on resonance with
the transitions between the spin manifolds (ms = 0 ↔ −1
or ms = 0 ↔ +1) and separated by a variable free evolution
time. For each spin transition, three electron spin resonances
(ESR) emerge in the Fourier components of the free-evolution
signal, corresponding to the three nuclear spin projections
mI = 0, ± 1 of 14N. The typical microwave π/2 pulse that
drives the electronic spin lasts 25–50 ns, with a corresponding
Rabi frequency large enough to simultaneously excite all three
transitions separated by the 2.16 MHz hyperfine interaction
[34]. Due to the high frequency to be probed compared
to 1/T ∗

2 ∼ 0.2 MHz, Ramsey experiments provided high
resolution and signal-to-noise ratio.

Within each spin resonance, the intensities of the different
hyperfine transitions give information on the ground state
manifold populations [see Figs. 2(b) and 2(c)]. We extract
the relative probability of the nuclear spin projection mI as:

Pi = I (νi)∑
j I (νj )

, (3)

where I (νj ) is the integral of the Fourier component of the
Ramsey signal with frequency νj (j = 0, ± 1).
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FIG. 2. (a) Measurement sequence for dynamical nuclear polar-
ization: after an initialization laser pulse, a RF π pulse resonant
with the |0, + 1〉g → |0,0〉g transition reverses the two populations;
a pumping laser pulse with variable time t re-polarizes the nuclear
spin; a Ramsey spectroscopy measurement on the electronic transition
|0,mI 〉g → | − 1,mI 〉g evaluates the polarized fraction of the three
hyperfine levels. (b) and (c) Fourier transform of the Ramsey mea-
surements for a single NV denoted as NV1 at B = 348 G for pumping
time t = 0.5 μs and 17.5 μs, respectively; blue lines are Lorentzian
fits. (d) Polarized fraction P+1 of the nuclear spin as a function of
optical pumping time t , obtained from the Ramsey spectra. Black,
blue, and magenta points correspond to (252G,1.7◦), (348G,1.5◦),
and (411G,0.8◦); the three lines are fit performed with an exponential
function P+1 = P0 − Ae−t/τ .

In order to investigate the temporal dynamics of the
polarization process, we prepare the system in a mixed state
in the lowest-energy electronic level, and then we follow
the behavior of polarization under optical illumination of
variable time duration at the saturation power [see Fig. 2(a)].
For the preparation, first a 20-μs-long optical excitation
partially polarizes the NV-14N system, driving it into an un-
balanced mixed state α−1|0, − 1〉〈0, − 1|g + α0|0,0〉〈0,0|g +
α1|0,1〉〈0,1|g , where α1 ∼ 1 for fields close to the ESLAC, and
αi depend on the magnitude B of the external magnetic field
and on the angle θ with the NV axis. Then, a radiofrequency π

pulse (tπ ∼ 30 μs) on resonance with the |0, + 1〉g ↔ |0,0〉g
coherently reverses the population of nuclear spin projections
mI = 0, + 1 and alters polarization. To reveal the polarization
dynamics, we use an optical pulse of variable length t and
probe the resulting population of the hyperfine levels with

the Ramsey experiment explained above. We characterize the
polarization dynamics for different values of the magnitude
and different orientations of the magnetic field. The method
used for calibrating magnitude and orientation of the magnetic
field is described in Appendix A. The polarized fraction P+1

is reported in Fig. 2(d) as a function of the optical pumping
time t for (B,θ ) = (252 G, 1.7◦), (348 G, 1.5◦), and (411 G,
0.8◦). We observe that P+1 increases in time until reaching
its final value, with variable time-constant ranging from 1
to 5 μs. This saturation level corresponds to the equilibrium
condition between the two competing processes: flip-flop
between electronic and nuclear spin and optical spin pumping.

IV. NUMERICAL MODEL

We compare the experimental results with simulations
obtained by modeling the time evolution of the two-spin state
with the Master equations in the Lindblad form [35,36]. In
turns, this allow us to determined the unknown parameters in
the model.

The time evolution is dictated by the ground-state and
excited-state Hamiltonians (Hg and He, which generate a
coherent dynamics) as well as Markovian processes associated
with coupling to photons and phonons, that induce transitions
between different spin and orbit configurations, such as laser
excitation, spontaneous and stimulated emissions, as well as
intersystem crossing.

The two-spin system is described by the density operator
ρ consisting of 21 hyperfine states—9 in the ground state, 9
in the excited state, and 3 in the singlet state. We calculate
the population of the hyperfine sublevels of the ground state
and the polarized fraction from the diagonal elements of the
density matrix.

The time evolution of ρ is described by the generalized
Liouville equation:

d

dt
ρ = − i

h̄
[H,ρ] + L̂[ρ] (4)

with H the total spin Hamiltonian of ground and excited states.
This master equation allows us to go beyond a simple rate equa-
tion model and fully account for the effects of transverse fields
as well as coherent spin polarization exchange. The Lindbald
operator L̂ in the second term on the right is related to jumps
Lk between different spin states through the equation [29]:

L̂[ρ] =
N∑

k=1

(
Lkρ(t)L†

k − 1

2
L
†
kLkρ(t) − 1

2
ρL

†
kLk

)
. (5)

Most generally, we can write the jump operators as
Lk = √

	mn|m〉〈n|, with 	mn the rate of the transition between
|m〉 and |n〉. We consider spin-conserving radiative transitions
and the decay from the excited states to the ground through
the metastable S = 0 level. We also introduce the contribution
of spin nonconserving radiative processes, the rate of which
we evaluated as ε = 0.01 of the rate of spin conserving
transitions [37]. All the rates related to these transitions are
reported in Table I. Note that these parameters have been
independently measured before, from the dynamics of the NV
center electronic spin alone [37–39]. In order to reproduce
the measured polarization evolution at saturation, and extract
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TABLE I. Transitions and decay rates (from Ref. [37]). The labels
correspond to the energy levels in Fig. 1(a).

Transition Rate [MHz]

Spontaneous Emission 	41, 	52, 	63 63 ± 3
Intersystem crossing 	47 12 ± 3
from ES to singlet 	57, 	67 80 ± 6
Intersystem crossing 	71 3.3 ± 0.4
from singlet to GS 	72, 	73 2.4 ± 0.4

the strength of the transverse hyperfine coupling from the
comparison between theory and data, we set the optical
pumping rate equal to the corresponding radiative relaxation
rate. In our model, we neglect the NV ionization process during
optical illumination, which we demonstrate to give a small
correction of the calculation, as discussed in Appendix C.

The only experimentally unknown parameter in our model
is then the transverse coupling C⊥ that influences the rate of the
flip-flop process and therefore determines the DNP dynamics.

With these mathematical tools, we performed numerical
simulations in different temporal regimes of the optical pump-
ing, investigating both the transient behavior for short time
durations, and the stationary case. We first find, both experi-
mentally and in simulations, that long optical pumping leads
to a maximum constant polarized fraction, which depends on
the magnetic field amplitude and its orientation with respect to
the NV axis. Comparing the asymptotic polarization obtained
from simulation and from experiments allowed us to verify the
validity of our model. We note that our model reproduces very
well the experimental findings at small angles (θ < 3◦), as
shown in Fig. 3. For larger angles the observed polarization is

FIG. 3. Steady-state population P+1 of the hyperfine state |0, +
1〉g , as a function of the modulus of the magnetic field B for
different angles θ with respect to the NV axis. The curves are
numerical solutions of the generalized Liouville equation (θ =
0.0◦,1.0◦,1.5◦,2.0◦,2.5◦, and 3.0◦). For the θ = 0◦,3◦ lines, the
shaded area represents the error due to the uncertainty in the decay
rates reported in Table I (we expect similar uncertainties for the other
angles). Circles are experimental results, with color code and labels
indicating the field orientation θ .

lower than expected; this deviation could be attributed to other
spin decoherence processes in the excited state that reduce
the effective interaction time available for the polarization
exchange [16]. Although in our model we did not include these
processes, such as the excited state electronic spin dephasing,
we verified that they do not have a significant influence on
the dynamics at small angles. Once we have defined the
model that can reproduce well the behavior of the nuclear
spin polarization for long polarization times, we investigate
the dynamics of the process and its characteristic times.

V. DISCUSSION

We now discuss the time evolution of the population of
the |0, + 1〉g and |0,0〉g states as a function of the interaction
between the optical excitation and the NV system. The
relative population of the nuclear spin projection Pi at
long-polarization time strongly depends on the angle between
the magnetic field and the symmetry axis. We note that the
other independently evaluated parameter, the magnetic field
modulus B, affects less crucially the polarization level for
uncertainties of the order of few Gauss, which is our case.
Similarly, the parameter we want to estimate, C⊥, does not
determine the asymptotic polarization (which can then be
used to estimate the magnetic field angle, as explained in
Appendix A), but it affects dramatically the timescale of the
polarization dynamics.

For each experimental condition, B and θ , we performed
simulations of the time evolution of the state probability as a
function of C⊥, which is the only free parameter in the master
equation. This was done for both the |0, + 1〉g and the |0,0〉g
spin components. The |0, − 1〉g was excluded because in most
cases the amplitude of its Ramsey component is very small and
comparable with our signal to noise ratio. In Fig. 4(a) we report
the relative probability of the states mI = 0, ± 1 as a function
of the optical pumping time for B = 252 G, compared with
the theoretical calculation for C⊥ = −15 MHz, −23 MHz,
−40 MHz. We note that the value often used in literature,
C⊥ = −40 MHz [22,28], which derives from the assumption
of isotropic interaction in the excited state, does not fit the
experimental findings—neither the rise time of the population
of the |0, + 1〉g or the-decay time of the |0,0〉g population.

For both |0, + 1〉g and |0,0〉g , we analyze the mean squared
residuals χ2 between data and theoretical curves, as shown
in Fig. 4(b): The residuals were then fitted with an empirical
function [33] to evaluate the best-fitting C⊥. By averaging over
the two nuclear spin components and over the different experi-
mental magnetic field magnitudes and orientations [Fig. 4(c)],
we obtain a precise estimate of the transverse hyperfine
coupling, C⊥ = (−23 ± 3) MHz. This is the first experimental
measurement of the transverse hyperfine coupling in the
excited state of the NV center. The common assumption
C⊥, stemming from the measurement of the secular coupling
constant C//, is not consistent with the present experimental
observation of the timescale of the nuclear polarization.

VI. CONCLUDING REMARKS

In conclusion, we have explored the temporal dynamics
of nuclear spin polarization of an electron-nuclear hybrid
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FIG. 4. (a) Comparison between experimental data and calculation of the relative population of the states |0, − 1〉g, |0,0〉g , and |0, + 1〉g

after optical pumping of variable length t . Blue dots, red diamonds, and green squares correspond to mI = +1,0, − 1 nuclear spin relative
probability. Dotted and dashed lines are the theoretical curves for C⊥ = −15 MHz and −40 MHz, respectively; black line and gray region
correspond to C⊥ = (−23 ± 3) MHz. (b) Mean squared residuals χ2 between data and theoretical curves, as a function of the hyperfine
transverse coupling C⊥ at B = 252 G; black and red scatters refer to mI = +1 and mI = 0, respectively. The fit to the residuals (black and
red lines) were used to find the minimum of the residual distribution and thus the best-fit estimate for c⊥. (c) Transverse hyperfine coupling
parameter of the excited state C⊥ evaluated for different values of the magnetic field. The analysis of both the |0, + 1〉g and the |0,0〉g

components is included, for NV1 (diamonds) and NV2 (triangles). Red straight line and shaded region denote weighted average and standard
deviation of the sixteen values of (B,θ ).

spin system, composed by a single NV center and its 14N
nuclear spin. We found that the timescale of the polarization
in the sublevel |0, + 1〉g of the ground-state hyperfine triplet
(and simultaneous depletion of the |0,0〉g state) crucially
depends on the excited-state transverse hyperfine interaction.
Exploiting this dependence, we have reported the first pre-
cise experimental estimation of the excited-state hyperfine
coupling constant C⊥ with simple magnetic resonance tools,
obtaining a better knowledge of the nonsecular parts of the
system Hamiltonian in the excited state. Our result does not
depend on the specific NV and is representative of NVs in
low concentration bulk diamond. Our findings can be useful
in NMR experiments enhanced by DNP, hyperpolarization
of nuclear spin ensembles, and in all the protocols involving
fast and accurate control of nuclear spins, which are crucial
for many applications in quantum technologies, including
quantum computation, communication, and sensing.
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APPENDIX A: MAGNETIC FIELD CALIBRATION

Here, we detail the methods used to calibrate the magnitude
B of the local magnetic field at the NV position and the angle
θ between the magnetic field and the symmetry axis of the
system. The first calibration method relies on the measurement

of the resonance frequencies ν± of the two ground-state spin
transitions mS = 0 → ±1, which are univocally determined
by B and θ .

In the presence of the magnetic field B, and neglecting the
hyperfine coupling, the ground-state Hamiltonian of the NV
electronic spin S = 1 can be written as [26]:

Hg = γeS·B + Dg(Ŝ2
z − 2/3) + E(Ŝ2

x − Ŝy)2, (A1)

where Ŝx, Ŝy, Ŝz are the spin operators, Dg = 2.87 GHz is
the fine structure splitting, and the parameter E is related
to strain [15,27]. For NV centers in ultrapure bulk diamond
with low nitrogen concentration, as those investigated in the
present work, E � Dg and it can be neglected. Thus, the
eigenvalues of the Hamiltonian can be found as the solutions
of the following characteristic equation

λ3 − 2Dgλ
2 + (D2

g − (γeB)2)λ

+Dg

2
(γeB)2(1 − cos(2θ )) = 0 (A2)

and depend on B and θ . Note that we work at local magnetic
fields well aligned with the NV symmetry axis and far away
from ground-state level anticrossing (GS-LAC) occurring at
around B ∼ 1025 G, so that the eigenvalues correspond to well
defined electronic spin projections mS = 0, ± 1. We directly
evaluated the zero-field splitting Dg with a magnetic resonance
experiment in the absence of any external static magnetic field
and measure the two frequencies ν±(B,θ ) of the transitions
mS = 0 → ±1 of the NV in the local magnetic field via
Ramsey spectroscopy. Then, we obtain a set of two equations
ν±(B,θ ) = (E±1(B,θ ) − E0(B,θ ))/h, where E0,±1 are the
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FIG. 5. Steady-state population of the nuclear spin projections
mI = 0, ± 1 in the presence of a magnetic field as a function of the
orientation angle θ with fixed magnitude B = 411 G (solid symbols:
mI = +1 blue dots, mI = 0 red diamonds, mI = −1 green squares)
and as a function of the magnitude B in the range B = 390–432 G
for θ = 0 (empty symbols, same color code).

eigenvalues of the ground-state Hamiltonian, determined by
Eq. (A2). These equations can be solved with respect to the two
unknown parameters B and θ . Because of uncertainty in the
measured Dg value, as well as the measured frequencies, the
estimate of the magnetic field angle θ is not accurate enough.

Thus, we also extract an independent estimate of the
orientation angle θ of the local magnetic field, by measuring
the steady-state populations P0,+1 of the nuclear spin pro-
jections mI = 0, + 1 of the spin state mS = 0. The solution
of the generalized Liouville equation has shown us that the
short-time dynamics of the hyperfine populations is governed
by the excited-state transverse hyperfine coupling C⊥, as
discussed in Sec. V, whereas the steady-state populations P ∞

0,+1
at long-polarization time is unaffected by C⊥, as shown in
Fig. 4(a). The steady-state populations P ∞

0,+1 are found instead
to strongly depend on the angle θ and less crucially on the
magnitude of the field B, within our typical experimental
uncertainty of the order of few %, as exemplified in Fig. 5.

For any given B and θ , we evaluate the characteristic rise
time τ (resp., depletion time) of P1(t) [resp., P0(t)]. The
time average of P0,+1(t) for t > 5τ is used to estimate P ∞

0,+1.
The theoretical steady-state populations P ∞

0,+1(B,θ ) are fitted
to the experimental data, with the angle θ as the only free
parameter of the fit, by minimizing the mean squared residuals
χ2 between data and theoretical curves.

With this second method, we extracted a refined estimate
of the angle θ , which we found to be consistent with (but
more accurate than) the value estimated from the frequencies
of ground-state spin transitions. We use this refined estimate of
the angle as an input in further calculations of the polarization
dynamics.

APPENDIX B: EFFECTS OF THE LASER
EXCITATION POWER

The excitation rate from the ground to the excited levels,
set by the optical power, strongly influences the time evolution
of the population of the hyperfine sublevels of the electronic
ground state. To discuss its role, we introduce the optical
pumping parameter W . Since we consider the relaxation
rate via the spin-conserving radiative decay channel to be
spin independent (i.e., 	 = 	41 = 	52 = 	63), and the optical
pumping rates from the ground to the excited level to be
proportional to the corresponding relaxation rates [39], we

FIG. 6. (a) Time evolution of the populations of the hyperfine sub-
levels of the electronic ground state, for a magnetic field B = 249 G
aligned along θ = 2.1◦. The points are the experimental results
obtained for NV2, with laser excitation at saturation power (blue
dots, population of |0, + 1〉g; red diamond, |0,0〉g; green squares,
|0, + 1〉g). The curves are obtained from the solutions of the
generalized Liouville equation with C⊥ = −23 MHz, for different
excitation rates W	. The solid line corresponds to W = 1, i.e.,
to the excitation rate at saturation power. The dotted lines refer
to W = 0.01,0.02,0.05,0.1,0.2, and 0.5, as denoted in the figure.
For W � 1, we do not observe further changes in the population
dynamics. (b) Characteristic rise time τ+1 of the population of the state
|0, + 1〉g (blue dots), and decay times τ0 and τ−1 of the population
of the state |0,0〉g (red diamonds) and |0, − 1〉g (green squares) as
a function of the pumping rate parameter W , in log-log scale. The
curves are a logarithmic fit of τ0,±1.
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ΓI = 0 MHz

1MHz

5MHz

10 MHz

20 MHz

FIG. 7. Characteristic rise time τ+1 of the nuclear polarization
process as a function of the magnetic field strength for different
ionization-recombination rates, 	I = 0 (black squares), 1 (red cir-
cles), 5 (blue triangles), 10 (green diamonds), and 20 MHz (pink,
light squares).

define W = 	ij /	ji , with i = 1,2,3, and j = 4,5,6. In Fig. 6
we characterize the time evolution of the populations P0,+1 of
three hyperfine states |0,0〉g and |0, ± 1〉g as a function of W ,
for a typical value of magnetic field (B = 249 aligned along
θ = 2.1◦). Figure 6(a) shows the theoretical curves obtained
from the solutions of the generalized Liouville equation
described in Sec. IV with C⊥ = −23 MHz and compares them
with the experimental data obtained with optical excitation
at the saturation power. From the exponential fit of the
theoretical curves we obtain the characteristic rise time τ+1 of
the population of the hyperfine state |0, + 1〉g , and the decay
times τ0 and τ−1 of the population of |0,0〉g and |0, − 1〉g ,
respectively. We observe that the characteristic times τ0,±1

drop logarithmically when increasing the pumping parameter
W , as shown in Fig. 6(b). We stress that all the experiments
discussed in Sec. V, and used to extract the strength of the
transverse hyperfine coupling, were performed by exciting
the NV defect at the saturation power, and simulations were
conducted setting the optical pumping rate to be equal to

the corresponding relaxation rate, in order to reproduce the
measured time evolution of the hyperfine sublevels.

APPENDIX C: EFFECTS OF CHARGE-STATE
CONVERSION DYNAMICS

The negatively charged NV center can undergo ioniza-
tion (charge-state conversion to NV0) during the 532 nm
laser excitation. The ionization-deionization process has been
studied under various conditions of laser wavelength and
power [40–42], with rates, related to the excitation powers,
varying between kHz [43,44] and MHz [45]. The NV−–NV0

transitions during the polarization laser pulse can reduce the
efficiency of the nuclear polarization mechanism and slow
down its dynamics. To investigate the contribution of these
effects on our estimate of C⊥, we added in our simulations a
simple model of the transitions involving the NV0 state. The
ionization process can only occur from the NV− excited states,
and the NV0 state then decays to the NV− ground state [43];
we assumed that these transitions are nuclear-spin conserving
[46] and have nuclear-spin-independent rates. We characterize
the nuclear polarization time τ+1 as a function of the magnetic
field strength for different ionization-recombination rates 	I .
The results of the simulations are shown in Fig. 7. We observe
that τ+1 increases with 	I , more markedly at relatively low
magnetic field (B ∼ 100–200 G) than close to the ESLAC, and
saturates for 	I � 10 MHz. We also evaluated C⊥ including
the ionization process for B = 252 and 348 G, and by fitting
with the experimental data we find in both cases a small
decrease of C⊥. The decrease, as expected, is higher (up to
5 MHz) for 	I = 10 MHz. Even for this large ionization
rate, the estimated C⊥ values are compatible with their values
in the absence of ionization, given our estimate uncertainty.
At saturation power, we can assume 	I to be on the order
of 1 MHz, implying a correction of ∼5% of our estimate
of the transverse hyperfine coupling, much smaller than our
experimental uncertainty. Finally, we note that if the ionization
process had a larger effect, we would see a more pronounced
effect at lower fields, where the polarization times were much
longer than at higher field. This would have lead to a variation
of the estimated C⊥ with the magnetic field strength, which is
instead absent, as shown in Fig. 4(c).
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