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An Enhanced Method for Determination of the
Ramping Reserves

Aramazd Muzhikyan', Amro M. Farid®> and Kamal Youcef-Toumi?

Abstract—Power generation reserves play a central role for
maintaining the balance of generation and consumption. Re-
serves, scheduled in advance, compensate for forecast error,
variability and transmission losses. However, as reserves are a
costly commodity, their amount should be carefully assessed to
prevent unnecessary expense. Currently, the quantity of required
reserves are determined based upon a posteriori methods that
use operator’s experience and established assumptions. While
these assumptions have been made out of a level of engineering
practicality, they may not be formally true given the numerical
evidence. The earlier “sister” paper to this work presented a
method to determine the quantity of load following reserves a
priori. This paper now uses a similar methodology to determine
the quantity of ramping reserves.

I. INTRODUCTION

Power balance is one of the key requirements for reli-
able power system operations. To that end, system opera-
tors schedule appropriate amounts of generation to meet the
real-time demand. However, forecast error, load variability
and transmission losses impose practical limitations on the
scheduling process. Normally, this challenge is overcome with
the scheduling of additional generation capacity called load
following reserves. Doing so, implicitly also schedules a
corresponding amount of ramping reserves; which are the max-
imum and minimum ramp rates of the dispatched generators.
Generally speaking, ad-hoc empirical methods have been used
to determine the appropriate amount of load following reserves
and the development for more formal methods still remains
an open research question. Furthermore, there is severe lack
of methods to determine the appropriate amount of ramping
reserves. This paper uses classification of reserves as it is
defined in [1], [2].

The existing industrial practice and academic literature re-
volves around a similar theme. As discussed in [3], the quantity
of reserves is determined a posteriori on the basis of historical
experience of power system operation. The standard deviation
of potential imbalances, o, is determined from the forecast
error or the net load variability. Then, the load following re-
serves are defined to cover the appropriate confidence interval
in compliance with the North American Electric Reliability
Corporation (NERC) balancing requirements. NERC defines
the minimum score for the Control Performance Standard 2
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(CPS2) equal to 90% [4]. Under the assumption of normal
distribution, a 20 confidence interval is chosen [3], [5]. Other
studies have used a 3o confidence interval [6], [7] to comply
with the industry standard of 95% [8].

These industrial and academic works essentially make the
following assumptions in their calculations of load following
reserves for the next relevant period of time.

Assumption 1. Invariant Probability Density Function of
Imbalances: The probability density function of the power
system imbalances measured over the previous period will be
of the same functional shape in the next period. Normally, it
is assumed that the imbalances have a normal distribution.

Assumption 2. Equivalence of Standard Deviations: The
standard deviation of power system imbalances is equivalently
determined by either the net load variability or the forecast
error. Some works use variability [3], [9], [10], while others
use the forecast error [7], [11]-[13].

Assumption 3. Invariant Standard Deviation: The standard
deviation in the next period will be of the same magnitude as
in the current period.

Assumption 4. Non-dependence on Power System Operator
Decisions & Control: The standard deviation of power system
imbalances does not depend on the endogenous characteristics
of the power system operator decisions and control. According
to Assumption 2, it depends only on variability and forecast
error, which can be viewed as exogenous disturbances to the
power system operation and control.

While these assumptions have been made out of a level
of engineering practicality, it is unlikely that they are formally
true. Assumption | suggests that the power system’s stochastic
processes retain their characteristics from one period to the
next in the form of a normal distribution, which has no
numerical evidence [14]-[16]. In regards to Assumption 2, a
perfectly forecasted but highly variable net load still requires
more load following reserves than a modestly variable net
load [17]. Similarly, a high forecast error will require greater
reserves than low forecast error [17]. Therefore, the reserve
requirements is more likely to depend on both variability and
forecast error. Meanwhile, Assumption 3 suggests that power
system does not evolve over the long term. However, variables
such as the variable energy resource (VER) penetration level
and capacity factor, the forecast error, the net load variability,
and the resource scheduling time step all have the potential
to change over the term. Finally, the recent Federal Energy
Regulatory Commission (FERC) requirement to change the
minimum frequency of the balancing market from 1 hour to
15 minutes suggests that power system imbalances do depend
on the power system’s endogenous characteristics contrary to
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Assumption 4. A more detailed discussion of the potential
invalidity of these assumptions can be found in [17].

The earlier “sister” paper to this work [18] presented
an enhanced method to determine the quantity of load fol-
lowing reserves a priori with a set of assumptions that are
more closely supported by numerical evidence and analytical
models. This paper now does the same; using a similar
methodology to determine the quantity of ramping reserves.
It is organized as follows. Section II provides the background
of the problem and the fundamental definitions, Section III
presents the methodology of the ramping reserve requirements
calculation and Section IV summarizes the results and presents
the future work.

II. BACKGROUND

This section provides the conceptual background necessary
for the operating reserves calculation methodology presented
in the following section. This consists of an introduction to
power grid enterprise control model and definition of a number
of fundamental terms.

A. Power Grid Enterprise Control

In this paper, power system operations are modeled as a
three-layer enterprise control [19], [20] on top of the physical
power grid as presented in Fig. 1. The balancing is performed
through three consecutive stages, namely resource scheduling,
balancing actions and regulation service. Each consecutive
stage operates at a smaller timescale, that allows successive
improvements of power balance. The system takes as inputs
the day-ahead and short-term net load forecasts and the reserve
requirements.
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Figure 1: A three-layer power grid enterprise control model

The resource scheduling is performed by running security-
constrained unit commitment (SCUC), which is formulated as

a linear mixed-integer program [21]. SCUC uses the day-ahead
net load forecast Ppy to schedule generation that meets the real-
time net load P(¢). Since the forecast is not perfect, the actually
scheduled generation and ramping capabilities do not match
the real-time requirements, and APpy (¢) imbalance remains at
the SCUC output. To this end, SCUC also schedules Proap
load following and Rgapp ramping reserves to mitigate the
imbalance in the next stage [19], [20].

The balancing actions layer consists of a security-
constrained economic dispatch (SCED) and manual operator
actions. The SCED uses the short-term net load forecast
Psr(t) information and scheduled reserves to re-dispatch the
generation in real-time. It should be noted that the imbalance
at the output of this stage APsr(¢) is smaller since SCED uses
a more accurate forecast and operates at a smaller timescale.
In parallel to generation dispatch, procurement of regulation
reserve Prgg is made to mitigate the imbalance in the next
stage.

The regulation service layer is based on an automatic
generation control (AGC) algorithm. The AGC responds to the
current imbalance level and adjusts the generation output to
mitigate it. The imbalance APgy () at the output of regulation
service layer is further mitigated by the load response and
system inertia and the remaining imbalance I(¢) is used to
assess system balancing performance.

B. Fundamental Definitions

In order to facilitate the usage of this work across different
power systems, a number of non-dimensional quantities are
introduced.

Definition 1. Penetration Level (7): The installed VER capac-
ity P’ normalized by the system peak load Pf eak [22]:

n = P/ ppect 1)

Definition 2. VER Capacity Factor (y): The average VER
output Py (t) per installed capacity taken over a period Ty (e.g.
I year) [18]:

V(1)

= “pmax
5 \%4

)
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Definition 3. Variability (A): Given the choice of the output
P(t) (e.g. the VER generation, the load, the net load), the vari-
ability is the root-mean-square of that output’s rate normalized
by the root-mean-square of that output [18]:

_rms (dP(r)/dt)

rms(P(t)) )

It is known from the literature that VER and load power spectra
have distinctive shapes [23], [24]. Thus, the way to manipulate
the variability of the profile while keeping its spectral shape
is temporal scaling of the profile. Assume that a base profile
Py(t) has a variability Ag and P(¢) is defined as:

P(t) = Py(or) 4)
According to (3):

_rms (dPy (o) /dt) _ o ms (dPy(or)/d(at))
rms(Py(ot)) rms(Py(t))

=0aAo (5)



Thus, « is the variability of the given profile normalized by
the base variability Ag [18]:

QZ/TO (6)

Finally, it is important to introduce a number of definitions
in regards to the forecast and its error. Fundamentally speaking,
while the net load is a continuously varying function in time,
the forecast has discrete values resolved with each scheduling
time block (e.g. 1 hour). Therefore, the two quantities are
inherently mismatched. Instead, the “Best Forecast” and “Best
Ramping Forecast” are defined.

Definition 4. The Best Forecast: Given the choice of the output
P(t) (e.g. the VER generation, the load, the net load), the best
forecast value Py is equivalent to the average value of the
output during the k™ time block of duration T:

(k+1)T

I

P = / P(t)dt %
kT

Definition 5. The Best Ramping Forecast: Given the choice
of the output P(t) (e.g. the VER generation, the load, the net
load), the best ramping forecast value Ry is the best forecast
change during the k' time block divided by the time block

duration T
s _ Boir—Br

Rt T (8)

The forecast error definition is based on the deviation
between the actual forecast and the best forecast, which in turn
may be defined by various measures such as mean absolute
error (MAE), mean square error (MSE) [25]. It is also often
convenient to normalize the load and VER forecast errors by
the peak load and the installed capacity respectively.

Definition 6. Load Forecast Error (€1): The standard deviation
of the difference between the best and the actual load forecasts
normalized by the peak load [18]:

N
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Definition 7. VER Forecast Error (gy). The standard deviation
of the difference between the best and the actual VER forecasts
normalized by the installed capacity [18]:

&, =
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Finally, it is important to define a set of profiles used
in the ramping reserve calculations. They may be understood
graphically as shown in Fig. 2.

Definition 8. Best Generation Schedule: A constant time series
at the value of the best forecast over the given interval T:

F’T(I):Pk’]‘7 kTStS(k‘Fl)T (11D

Definition 9. Forecasted Generation Schedule: A constant time
series at the value of the net load forecast over the given
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Figure 2: Actual output, forecasted profile and best forecast
profile

interval T:
Pr(t)=Per, kT <t < (k+1)T (12)

Definition 10. Best Ramping Schedule: A constant time series
at the value of the best ramping forecast over the given interval
T:

RT(I)ZR/(7T, kTSfS(k—FI)T (13)

Definition 11. Forecasted Ramping Schedule: A constant time
series at the value of the net load ramping forecast over the
given interval T

A

Rr(t) =Ry, kT <t < (k+1)T (14)

This work assumes that the load and VER forecasts have
Zero mean error:

Y (B-R)=Y (Re-F)=Y (B -B)=0 (5

k=0 k=0 k=0
It also assumes that any shifted copies of VER and load
forecast errors are uncorrelated [26], i.e., for any integer m:

Y (PE-BY) (P, —B,) =0 (16)
k=0

III. RAMPING RESERVE REQUIREMENT
CALCULATION METHODOLOGY

As stated in the Section II, the generation and ramping
scheduling process is performed based on the solution of the
SCUC problem. However, in real power systems the scheduled
generation never matches the actual required output. Three
factors are identified, that affect this mismatch [18]:

e  Scheduling time step. The SCUC problem has a lim-
ited time resolution: usually the scheduled values are
given on a hourly basis. However, the real-time power
output changes constantly, which makes matching of
scheduled and actually required generation impossible.

e  Forecast error. The SCUC problem is solved based on
the day-ahead net load forecast. However, the real time
net load output never matches the forecasted value,
since each forecasting process has limited accuracy.
This forecast error contributes to the mismatch.



e  Transmission losses. The linearized SCUC problem
ignores system losses in the power balance equation.
However, in a real power system the losses also
participate in the power balance. Absence of the loss
term also increases the mismatch.

Using the profile definition above, the difference between
actual consumption and the scheduled generation ramping rates
can be written as follows:

d(P()+L(1) 4

arr) = SPOLEO) )
= (R)~Rr(0)) + (Rr )~ Re @) + S0 )
where P(t) net load is the combined load and VER:
P(t) = PE(r) — PV (1) (18)

The third term is the change rate of the transmission losses
as the generation outputs and loads change. Normally, the
transmission losses are about 4 — 8% of the total active power
generated [27] and stay nearly at the constant level during the
operations. Thus, the third term can be ignored.

A. The Strategy

While the existing reserve requirement determination tech-
niques are driven by Assumptions 1-4, the current paper seeks
to test these assumptions and propose an analytical model
that changes the reserve requirement determination framework
from assumptions to equations. Similar calculations for the
determination of the load following reserve requirement is
presented in [18]. As the first step, an analytical expression
for the standard deviation of the potential ramping imbalances
described in (17) is derived that explicitly contains the defined
dimensionless units:

G(n7Y7aLaaV78L58VaT) (19)

This expression provides an a priori determination of how
ramping reserve requirements evolve as the system evolves
and hence are sufficient to comprehensively test the validity
of Assumptions 2-4. Next, the shape of the probability density
function potential imbalances is studied under a variety of
scenarios to test the credibility of Assumption 1. Such an
analysis helps in the numerical determination of the required
confidence multiplier S:

Rramp = B0 (20)

This strategy gains further importance by virtue of the fact that
the major part of the derivation of (19) is carried out in the
spectral domain. Previous work in the literature has shown that
the power spectra of VER generation and load have distinctive
shapes [23], [24] which may be described by the very same
parameters as in (19). Therefore, the method presented in
this paper allows a ramping reserve calculation which may
be generalized to different VER integration scenarios.

B. The Statistical Moments

This section is devoted to the calculation of the standard de-
viation of ramping imbalance (17). First, the average value of
the imbalance is calculated straightforwardly and then a more
involved calculation of the standard deviation is presented.

1) The Average Value of Ramping Imbalances: By defini-
tion, the average value of ramping imbalance in (17):
1

To nT
" ~ 1 r 1 [ 4
m=r O/ (R(0) - R@)) de= - 0/ Rt~ 0/ R(r)dt =

(k+1)T

Ty

P(Ty) —P(0) 1" 5 P(Tp) — P(0)
=0 R(r)dt| = =Y~
To Ty k;() kl (r)dt Ty

1l P(Ty)—P(0) P,—B
oy (Pri—B) = T B 21

where n = Ty /T is the integer number of T intervals in the
data set. For a long data set m can be assumed to be zero.
The calculation of the standard deviation is presented in the
following section.

2) The Standard Deviation of Imbalances: By definition,
the standard deviation of ramping imbalance (17) is:
0

a1
Ty

+% 0/ (Re)~ &) (Ro)

Ty

o’ = [ (rt)-RG

dt-i-

- I?(t))dt =0+ 05 +20%

(22)
Each component is calculated separately.
nT
1 ~ = A
ot = — [ (R()—RO) (Rt~ k1) )at =
0
L 1 (k+1)T
|7 J”(R@)R@D(R0>R@gm _
= i | (k+1)T
“a k| (BRI kl (R)~R(r) ) dt (23)

Equation (23) is the cross-covariance between the forecast
error term and the integral difference of the actual and the
best scheduled ramping rates. This term should be zero, since
presence of any cross-covariance can be used to enhance the
forecasting technique. This statement is verified numerically.

Next, 0, is calculated as follows:

| nT (k+1)T
@‘ﬂ!@@ (0) a=
1

1nll B
/ R )d
ln

i(m—ﬁo?:7%§:Uaﬂfa»waﬂfaﬂzz
=0

S |

k = =0
1 1}1—1 B . 2 ln—l B

=7 ZI;)(Pk—H*Pk-H) +£k§6(1’k b)) -
—1

2n _ A _
- (Pes1 — Pesr) (P — Pk)] 24

k=0



Using (18), (24) can be split into load and VER terms:

n—1

1 |1) 1 .
Gzzzﬁ ;Z(Pk+l Phy) “‘;Z(PkL—PkL)Z_
=0 =0
2}1—1 . S . . 1 1= 1
- (Pk+1_Pk+1) (Pk _PkL) +ﬁ Z(Pk+l Pk+1) +
=0 >0
ln—l v 2 — "V
+ (R —B) Z o —B) (BE =B | -
=0 =
2 |15 v pv
-7z ;Z Pl —PBhy) (B —BL) +
S N U | ) AL vV pV eak
+ (Pe—B) (P _Pk>_;Z(Pk+1—Pk+1)(Pk —-B) - +(OCVV7T'PLP )
k=0 k=0
1) . .
R ) 0 )| - i o 20k e

where 0,7y is zero according to (16). The first two terms of oy,
are the standard deviation and the third term is the single lag
auto-covariance of the load forecast error. Using the forecast
error definitions (9) and (10), oy, and oy can be written as:

1 ed
o = e\ /2(1-pf) P (26)

1
O = v /2 (1—p2) -z P 27)

where p; and py are auto-correlations of load and VER
forecast errors respectively.

Finally, the calculation of o] uses normalized profiles of
the load and VER output:

dPL(t) _ d (PO (OCLZ)Ppeak)

RM(t) = dt at — Rk(our) - o - PP
(28)
R (1) = dP¥(r) _ d (PX(aV;).y.n,Pfeak) )
dt i
:Rg(a\/t) - Oy -y.ﬂ.Pl]jeak 00
The best schedule profiles are expressed as follows:
(k+1)T o
/ P(owt)dt — / Plogrydt| =
(k=1)T
1 (k+1)oy. T T
A L G
koy, T o
(k+1)o, T rauT
= % / Po(t)dt — / Py(r)dt aL_PLpeak _
(arT) koy T et
=R (ogt) - oy, - PP o

where 7; = o - T is the scheduling timestep normalized by
the load variability. Similarly derivation for the VER gives:

Ry (1) =Ry, (avt)- o -y 1. PP 31

Drawing upon (22), the expression for o7 with normalized
profiles is represented as:

oAy [ B0 -BO as g [0 Fofa-
2 7

“ / [(Rh6) ~ Rs(0)) (R (1)~ RE (1))

Ty
2] _ 2
G T / (R (out) — RE: (agt))* der
0

Ty
21 r _ 2
%/(Rv(avl)—R%/(avl‘)) dt—
0

-2 (\/ngeak)z %

Ty

X ;O/(RL(OCU) RIfL(aLt)) (Rv(avt) RTV((th)) dt =
0

2
k
= (af -of, + g V’n* - ofy —2e.0v Y- OFyy) (Pf“’” )
(32)
As mentioned in Section III-A, the calculations of 67, o1y and

o1y are performed in the spectral domain. Using Parseval’s
theorem:

ofL=/+ [|RL R%L(w)ﬂ dw (33)
2 * 14 sV 2
G‘V:/_w [|R (0) — R}, ()| }d(o (34)
] oo *
GIZLV = \/ﬁ . E |:(RL((1)) R%L((x))) X
v ® v ®
) <R (Oﬂv/aL> K (aV/OCL)ﬂ 4 &
where R(®) is the truncated Fourier transform of R(¢):
R(w) = L / TOR(t) ot gy (36)
TV T

The oyry term depends on both ¢ and ay. This dependence
exists to emphasize the disproportional scaling of the load
and VER power spectra. If these variabilities are changed
disproportionately, the total variability change depends on the
proportion of variabilities oy /cay. However, if the goal is to
study the impact of the total variability change on the ramping
reserve requirement, load and VER variability would change
proportionally. In this case, o7 only depends on o -7 which
means that the increase in the variability can be compensated
by the decrease of the scheduling timestep. However, in
that case the total ramping reserve requirement increases o
times. Thus, the ramping reserve requirement is reasonably
proportional to the total variability of the system.

The goal now is to express R“(®), RV (®), R}, (@) and
R}, (®) in terms of PY(w) and PV(®). Since the cases for
load and VER are calculated similarly, only one profile is
considered and the superscripts L, V are omitted. For the data
with resolution Ty, the Fourier transform of the derivative is as
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P — P 1
Rlo)=F L1y _ _p 1—
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The following section is devoted to the time-domain demon-
stration of the processing steps, which clarifies the logic of the
spectral domain manipulations later.

e /o) (37

3) Time Domain Demonstration: The transformation from
pln] into p[n] has five steps as demonstrated in Fig. 3:

Step 1: Averaging. Averaging calculates the average of the
input for one scheduling time step 7'

1 N—1
=5 Y Pln—k (38)
k=0

where N = T,/T; is the number of samples in 7y. The last
samples of each 7, interval match the profile average value
for that interval and should be extracted by downsampling
the profile with 7 time step. Since the downsampling process
starts from the first sample, a phase adjustment of the profile
is implemented.

Step 2: Phase Adjustment. Phase adjustment shifts the profile
by N — 1 samples:

Py[n] = Pi[n—(N—1)] (39)

Step 3: Downsampling. The profile is downsampled with a
time step T:
P
Pi[n] = { 02[’1]’

Step 4: Differencing. Differentiation with a step N generates
the sampled data for Ry,:

n=k-N;

otherwise. (40)

Ps[n]—P3[n—N] _ .
Ry[n] = no n=kA
0, otherwise.

(4D
Step 5: Summing. The last step is to turn single samples into
rectangles for each interval. Since each interval contains only
one non-zero sample, summing the recent N samples for each
point in the interval yields the value of the same sample:

i =Y Rin—K] @2)
k=0

Fig. 3 shows, that consecutive implementation of these four
processing steps convert p[n] into p[n]. The next paragraph
implements these four steps in the spectral domain.

4) Frequency Domain Calculations: The same processing
steps described in the previous section are implemented in the
spectral domain.

Step 1: Averaging. Using the linearity and translation prop-
erties of the Fourier transform, (38) takes the following form
in the spectral domain:

lNl

Z Plw
Using the formula for the sum of geometric progression:

1 1—-

NPT ar = PO T e

_/wnTr (43)

e_ijTv 1 1— e_ijx'

Pi(®) = (44)
Step 2: Phase Adjustment. Using the translation property of
the Fourier transform, (39) takes the following form in the
spectral domain:

Pz(a))

1 1 —e ok

— - Lje(-Ty)
NP @) T

45)
Step 3: Downsampling. The spectrum of the downsampled
profile has the following form:

sz( 277:n) _

1N 2\ 1—e /(@)%
e 0_P<°"T>J<m>
i(
(0

=P (@) e/*N-DT =

j(wZT’i")(Tsz)] _

n= e

= 27n — ¢~ J(0T—2mn)
=wm 2 |P <w > —Zmzx

N? = T, el T
NG 27rn)ej(a) ZT%)TA} _

r 27n

1 Nl 21 —i(0— )T . )
== Z P(w—n> e T (l—effwT/‘)efwa

wE|Pe-T ) e

(46)

where exp(j27n) = 1 is taken into account.



Step 4: Differencing. The differenced profile takes the fol-
lowing form in the spectral domain:

Ri(@) = Py () (1—¢ 7o) =

T
: 2nn
1 N—1 27-[ 7]((‘77?)7??
= 2 Z P(w_ n) ° ; 27n X
A T ) 1o R
X (1 _e—jaﬂ}c)zej(DTx (47)

Step 5: Summing. Similar to the first step, in the spectral
domain (42) takes the following form:

1—e /0%
Rs(0) = Ra(0) 1— 47, =
1 A 27n e_j(“’_zTL;l)T“
T}N n=0 T:\’ l_gij(wiTix)Ts
1 — i)
x ( 1-— e*jcuTs) el (48)

Thus:

X el 0T (49)

e IO F)T; 1 (1 —e_/“’TX)S

l_e_j(w_zr%)Ts lfe*j“’TS

5) Simplifications: The final expressions should not depend
on the sampling period 7; and the length of the available
data N. Equation (49) can be simplified by making reasonable
assumptions. First, it is assumed that the data sampling rate is
much higher than its variability. Accurate calculations require
high resolution data that captures the variability. Since the vari-
ability corresponds to the data spectral width, this assumption
implies that the data spectral width is much smaller than the
sampling rate. As a result, the spectrum has negligible values
at @ > 1/T;. Thus, the following simplifications can be made
by taking the first order approximation of the Taylor series:

1—e /95 & joT, (50)
e /9T ~ 1 (51)

The same applies to all shifted spectral copies. Using these
simplifications, (37) and (49) can be rewritten as:

R(w) = joP(w) (52)
L _ 2zn i 3
_ T, & P(w Tx) (l—e J“’TX) el

Ry (0) = = - -~
T n;) ](CO—ZT%) 1 —eJoT

(53)

The multiplier 1/ (1 — e /®%) in (53) is a periodic function
that matches 1/ well at low frequencies. Its multiplication
by the sum of the shifted spectral copies makes the copies far
from the center appear very small. Thus, it can be replaced by
1/w. Also, since 1/ decays monotonically, it mitigates all
the copies outside the range, thus the summation can be done
over infinity. This also makes the final expression independent

n=0:05¢e=0020=14
1 : : :

Ll 1 S
i l“ulmmn.m ]

B " ‘
il s \
-3 -2 -1 0 1 2 3
Normalized Ramping Rates

Figure 4: Probability density and cumulative probability func-
tions for different values of 7, € and o

of the sampling frequency:

2 .
|+ P(w—%) (1 _ef/wa)3 o
];3 .n:H}Q (a)_ Znn) 0] ¢

R (0) = —
T
(54)

Equation (54) shows, that the variability and the scheduling
time step appear everywhere as multipliers. This means, that
the impact of increased variability on the system can be effec-
tively mitigated by reduced scheduling time step. Substituting
(54) into (33), (34) and (35), the resulting expression depends
on the following components:

( 27n 27rm) { *< 27‘m> < 27‘cm)]
plo—— 00— =E|P|o— Plo-—
T, T, T; T,
(55)

for all values of m and n, which are the samples of the spectrum
correlation function. The correlation happens between mixed
copies of VER and load spectrum.

C. The Probability Distribution Shape Consideration

Once the standard deviation has been calculated according
to Equation (19), the paper returns to the determination of
B found in (20). To that end, the probability distribution of
(17) is studied, which also allows revising the Assumption 1.
This is achieved by varying the probability density of (17)
with different values of penetration level, forecast error and
variability. Changes in capacity factor and scheduling time step
would have similar impact as penetration level and variability
respectively [18]. Fig. 4 shows the associated probability
density function normalized to unit standard deviation. Here,
the family of probability density profiles largely differ from
each other and do not have normal shape in contradiction to
Assumption 1. However, confidence intervals for the given
probabilities are more important in the reserve requirement
calculation. Therefore, the associated family of cumulative
distribution function (CDF) is represented in Fig. 4. Although
there is still a significant difference amongst them, in the scope
of this work only the 90% and 95% confidence intervals are
of the most interest. As Table I shows, the 90% and 95%
confidence intervals generally agree for the wide ranges of
penetration level, forecast error and variability. The inaccuracy,



defined here as the ratio of the standard deviation and average
value, is comparably very small. Thus, it can be concluded that
the reserve requirements for these two confidence intervals are:

REAMP ~ 1 86 (56)
REAMP ~2 .26 (57)

where o is calculated according to (22).

Table I: 90% and 95% confidence intervals

Percentage | Min Max Inaccuracy
5% -1.8010 | -1.5554 | 0.039
95% 1.4493 | 1.5646 | 0.018
2.5% -2.2288 | -1.8195 | 0.036
97.5% 1.7768 | 1.9955 | 0.025

IV. CONCLUSIONS AND FUTURE WORK

The framework established in this work allows an assess-
ment of the power system ramping reserve requirement. It
is based on analytical derivations of the standard deviation
that shows that the reserve requirements depends on non-
dimensional parameters of the power system and the net load.
This result is contrary to the assumptions in the existing
literature. As future research direction, a set of validating
simulations will be performed to study the impact of the
calculated reserves on the system performance.
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