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Abstract

We explore three areas of the first—principles studies of substitutional alloy thermo-
dynamics: the parameterization of the configurational energy of the alloy, the search
for the ground states, and the inclusion of the vibrational degrees of freedom in the
lattice models.

We develop a method for obtaining effective cluster interactions (ECI's) in sub-
stitutional alloys from total-energy calculations, based on linear-programming tech-
niques. The method reproduces not only the formation energies, but also the ground-
state line and relative energies of different structures. We show that long-range
interactions are necessary to reproduce the ground-state line of the fcc Pd-rich su-
perstructures in the Pd—-V system.

We review existing methods to obtain the ground states of a lattice model and
develop a method that can solve problems with long-range ECI’s. We find solutions
to two ground-state problems on the fcc lattice: ternary alloys with first— and second-
neighbor ECI's and binary alloys with first- through fourth-neighbor ECI’s.

A deep understanding of alloy thermodynamics requires not only a model of the
substitutional excitations, but also of the other degrees of freedom in the alloy. We
show that, with very few assumptions, the effects of lattice vibrations can be included
in the lattice models used to study alloy phase stability. We illustrate the formalism
by applying it to several systems: a one-dimensional alloy, “isotopic” alloys, Ar-
Kr alloys, and MgO-CaO pseudobinary mixtures. The predicted MgO-CaO phase
diagram is in very good agreement with experimental data. By using available ex-
perimental information on intermetallic alloys, we estimate that the lattice vibrations
may reduce transition temperatures by ~ 30% in some systems.

First-principles techniques are required if reliable predictions are sought. We
evaluate the Debye approximation, usually used in first-principles studies, and show
that it fails to capture the configuration dependence of the vibrational free energy. We
develop a new method, based on the calculation of a few spring constant parameters,
and apply it to study Si—Ge alloys.
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Summary

We explore three areas in the study of alloy thermodynamics: the parameterization of
the substitutional energy of the alloy, the search for the ground states of the resulting
lattice Hamiltonian, and the inclusion of the vibrational degrees of freedom in the
lattice models.

We develop a method for obtaining effective cluster interactions (ECI’s) in substi-
tutional binary alloys from first—principles total-energy calculations, based on linear—
programming techniques. The method reproduces not only the formation energies,
but also the ground-state line and relative energies of different structures. Using the
new method, we show that long-range pair interactions (seventh- or eighth-neighbor
pairs) are necessary to reproduce the ground-state line of the fcc Pd-rich superstruc-
tures in the Pd-V system.

The study of the ground-state structures is the first step in the calculation of the
thermodynamic properties of an alloy. We use the polyhedron method to approxi-
mately solve the ground-state problem of ternary alloys on the fcc lattice with first-
and second-neighbor interactions. To our knowledge, this is the largest ground-state
problem solved to date, with 323, 188 vertices in the ground-state polytope. Although
most of the vertices do not correspond to real structures, we find 31 ezact ternary
ground states.

We show that the complexity of the polyhedron method grows in such a way that
solutions for alloys with more than a few ECI’s will not be obtained in the near future.
For this reason, we develop a method, that we call “enumeration” method, that is
capable of finding approximate solutions of the ground-state problem for any interac-
tion range. The method is based on an exhaustive enumeration of ordered structures
with relatively small unit cells, and the construction of the convex hull of the re-
sulting points in correlation space. We apply the enumeration method to study the
ground-state configurations of binary fcc alloys with first- through fourth- neighbor
ECI’s. Our solution shows that previous approximate solutions underestimated the
number of possible ground-state structures by an order of magnitude.

To be able to make reliable predictions of phase stability of alloys, all the important
contributions to the free energy have to be included in the models. We show that with
very few assumptions the effects of lattice vibrations can be included in the lattice
models used to study alloy phase stability.

For temperatures of the order of, or larger than, the Debye temperatures of the
system, the effect of the lattice vibrations, in the harmonic approximation, can be
included in the ECI’s with a term linear in temperature. These high-temperature
“vibrational” ECI's depend on the spring constant disorder but not on the masses of
the atoms.

We illustrate the formalism by applying it to several model systems. A linear chain
with only nearest-neighbor springs is solved exactly in the high-temperature limit,
and an elastic approximation is used for the low-temperature limit. The accuracy of
this approximation is verified with a numerical study.

In “isotopic” alloys, where two isotopes of the same element are mixed together,
there is no chemical difference between the species. However, due to the different



masses of the isotopes, the vibrational frequencies depend on the arrangement of the
atoms, and a small phase-separation tendency is induced. We estimate the consolute
temperatures of these systems to be extremely low (in the milli-Kelvin range).

The Ar-Kr system is used to illustrate the change in the predicted phase diagram
of an ordering alloy when the lattice vibrations are included in the model. The
order—disorder transition in this system is reduced by 12% by the lattice vibrations.

With the use of Lennard-Jones potentials, we study the trends in the effect of
lattice vibrations with chemical affinity and size mismatch of the alloy species. We
found that although for most alloy systems the lattice vibrations will reduce the
predicted transition temperatures, there are some combinations of chemical affinity
and size mismatch for which the opposite is true. By using available experimental
information on intermetallic alloys, we estimate that the lattice vibrations may reduce
transition temperatures by ~ 30% in some systems.

The MgO-CaO system is highly ionic and the ions are almost spherical. This
allows us to use a simplified first—principles method to compute phonon frequencies
for ordered structures. The computed phase diagram with the effect of vibrations is
in very good agreement with available experimental data.

Because complete computations of the phonon density of states from first prin-
ciples are difficult, simpler models for the vibrational free energy have been used to
incorporate these effects into phase diagram calculations. We systematically investi-
gate the accuracy of these approximations by studying model systems for which the
vibrational free energy can be computed exactly in the harmonic approximation. We
find that the Debye approximation, usually used in first—principles studies, fails to
capture the configuration dependence of the vibrational free energy. We explain the
reason for this failure.

We develop a new method to include the lattice vibrations in the alloy models
from first principles, based on the calculation of a few spring-constant parameters.
This method produces reliable, quantitative predictions and does not require the
calculation of the full phonon dispersion relations. To illustrate the applicability of
the new method to real systems, we study Si-Ge alloys.
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Chapter 1

Introduction

The science and engineering of materials is at the early stages of a major transfor-
mation. Historically, the research and development of new materials has been done
through the traditional interplay of experimentation and theory. After many experi-
ments, often guided by trial and error, a material has been developed to achieve the
desired properties. This is an expensive process, that gives limited insight on how
the final properties of the material are determined. The powerful tools of atomistic
modeling and simulation are adding a new dimension to the research in materials sci-
ence. They allow for a deeper understanding of the properties of materials and open
the road for a new generation of engineered materials with improved performance.
Computational methods are already complementing laboratory experiments, and are
likely to replace them in many applications in the future.

The present thesis makes a small contribution towards making computational
materials science a useful discipline for the development of new materials and the
understanding of their properties. In this chapter, we describe the field of model-
ing and simulation in materials science and engineering and situate our work within
the framework of current research. In section 1.1, we describe the development and
achievements of computational material science, and argue that the combined ad-
vances in solid state physics and computer power are responsible for the rise of the
new discipline. The application of computational tools to the development and un-
derstanding of alloys is discussed in section 1.2. Finally, the chapter ends with a
description of how this thesis fits in the framework of alloy theory (section 1.3).

1.1 Computational materials science

According to the current understanding of nature, the behavior of matter at the
length scales of every—day human life, is completely determined by the electromag-
netic forces through which nuclei and electrons interact, together with the laws of
quantum and statistical mechanics. Any phenomenon that takes place between dis-
tances of Angstroms and meters is completely described by this simple set of prin-
ciples. Under most circumstances, the influence of the other forces of nature (i.e.,
gravitational, weak, and strong nuclear forces) is too small to affect the understand-
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ing of the properties of the materials that surround us.!

If we were able to solve the equations of quantum and statistical mechanics that
describe the behavior of materials, we would know everything there is to know about
them. However, the energetics and time evolution of materials are determined by
~ 102, coupled, non-linear differential equations; while complex sums over the high
dimensional phase space of the systems are needed to obtain the thermodynamic
properties. These equations can be solved exactly for very simplified and idealized
systems (that usually do not resemble anything in nature). These few solutions,
together with empirical theories and a large amount of experimentation, dominated
the science and engineering of materials until the invention of the computer. The
amazing increase in computational power and the breakthroughs in solid state physics
that produced sensible approximations to deal with the complexity of these systems
created the field of computational materials science. In the rest of this section, we
analyze these developments in more detail, and describe areas of materials science in
which modeling and simulation techniques are already having a big impact.

1.1.1 Computer power

One of the sources for the development of computational materials science is the
dramatic improvement of computer power in the last decades. Almost any measure
of performance of computer power has experienced an exponential growth since the
1940’s. Memory and speed have doubled every one to two years for the past 40
years [1]! These amazing developments, unparalieled in any other area of human
endeavor, have dramatic implications for the applicability of computers to science.
Problems that were deemed too difficult to solve a decade ago, are feasible today, and
will be trivial in 10 years. Figure 1-1 shows examples of this growth.

Although there have been several predictions of this exponential growth slowing
down due to different kinds of forecasted limitations, they have all been disproved
by technological innovations. It is currently argued that economic constraints may
be the first factor to limit the exponential growth of computer power [15]. However,
there is no evidence that the trend is leveling off.

1.1.2 Advances in solid state physics

The dramatic improvement in computer power would not be revolutionary for ma-
terials science, if it weren't for the recent series of advances in solid state physics
that paralleled the developments in the computer world. Even the most powerful
computer would be incapable of attacking the most basic problems without the extra
insight that simplified the quantum and statistical mechanics of materials.

Since the atomic nuclei are much more massive than the electrons, the latter can
be assumed to respond instantaneously to changes in the positions of the former.
This is known as the Born-Oppenheimer or “adiabatic” approximation [16€], and it

1One notable exception is the growth of high quality crystals in a gravitational field that produces
inhomogeneities in composition.
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has been successfully applied to most problems in solid state physics. Furthermore,
the nuclei can be assumed to behave classically, with well defined positions and mo-
menta, and to obey Newton’s equations of motion.?2 With these approximations, the
quantum mechanical problem is reduced to solving the Schrodinger equation for all
the electrons, with the nuclei assumed to be fixed at their current positions.

The quantum mechanical problem of computing the electronic energy of an ar-
rangement of atoms can be mapped exactly onto the problem of a single “quasi-
particle” in a non-local effective potential. This is known as density functional the-
ory [17, 18, 19]. Although this is a major simplification of the problem, the resulting
equations are still too difficult to solve, mainly due to the non-local characteristics of
the so—called exchange and correlation petentials of the electrons. The local density
approximation (LDA) [18] solves this difficulty by assuming that the exchange and
correlation potentials can be expressed as a local functional of the electronic density.
With the LDA, and the aid of powerful computers, the electronic structure and en-
ergetics of simple systems can be computed with a high degree of accuracy. This
includes systems of a few atoms, or periodic arrangements with unit cells composed
of at most a few hundred atoms. Calculations of lattice constants, elastic properties,
and energy differences between different crystal structures are in good agreement with
experimental observations.

The LDA equations can be solved using a variety of techniques. These techniques
differ in: the choice of the basis sets used for the description of the wave functions,
whether or not the techniques are self-consistent, and whether the equations are
solved for all the electrons of the system or just the valence electrons. The realization
that only the valence electrons are affected when atoms are brought close together led
to the development of frozen core methods, such as the pseudopotential methed [20],
used in chapter 6 of this thesis. By “freezing in” the core electrons, the quantum
mechanical problem is further simplified without losing much accuracy.

The study of systems at non—zero temperature adds a new dimension to the com-
plexity of the problem. The calculation of thermodynamic properties requires complex
summations over all possible configurations of the system. Therefore, in order to use
modeling and simulation to solve the thermedynamics of solid state systems, other
developments were necessary.

Early on, mean field methods [21] were used to estimate the free energy of very
simple model systems. These methods neglect the statistical correlations between
atoms. With the advent of the computer, improvements over the mean field methods
became possible. The cluster variation method [22] for substitutional alloys, for
example, treats the statistical correlations within a finite distance, and neglects them
beyond it.

Other simulation methods that try to sample the relevant part of the phase space
of the system were developed and extensively used. Among these, the most notable
are the Monte Carlo and the molecular dynamics methods. In the Monte Carlo

2An exception to this rule is the so—called quantum solids, like solid He. In these systems, even
the zero—point vibrational amplitude of the atoms is comparable to the interatomic distance and
therefore any classical picture of the nuclei fails.
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method [23], points in phase space of the system are generated with different statistical
distributions (i.e., canonical, grand-canonical, etc.) using a stochastic process. On
the other hand, the molecular dynamics method [24, 25] simulates the actual time
evolution of the system, by integrating Newton’s equations of motion for the atomic
nuclei in the force fields generated by the electronic clouds.

In recent years, the new developments in computational materials science have led
to the creation of new journals devoted to modeling and simulation. Some of the new
journals, with the dates they first appeared are Macromolecular theory and simula-
tions (January, 1994), Modelling and simulation in materials science and engineering
(October, 1992), Molecular simulation (1992), Computational Materials Science (Oc-
tober 1992), Materials theory “e-print” archive at Los Alamos National Laboratory,’
(October 1994) etc. Of course, the number of publications using computational mod-
eling and simulations has also increased in traditional journalis in physics, chemistry,
and materials science.

1.1.3 Computational materials science: achievements and
limitations

Although the field of computational materials science is relatively new, it has already
made important contributions towards a better understanding of materials properties.
The main driving forces for the new developments are the following advantages of
modeling and simulations over traditional experiments:

greater control of experimental variables,

attainability of extreme experimental conditions,

access to detailed information about the system,

lower cost,

greater flexibility.

In traditional experimental settings the variables that define a syster: are not
always under complete control. For example, it is practically impossible to have
100% purity in the samples to be studied, or to have a single crystal free of point
defects. These limitations are naturally absent in atomistic computer simulations,
where one has complete control over the system under study.

There is a limit to the maximum pressure attainable in the laboratory. This tech-
nological difficulty precludes experimental studies of materials at very high pressures,
with important applications in geophysics. In computer simulations, the pressure can
usually be adjusted to any desired value without difficulty. The same is true of other
variables, such as vacuum levels, high and low temperature, etc., for which extreme
conditions are easily obtained in computer simulations.

Not all the information about the state of the system under study is available
with traditional experimental techniques. For example, diffraction techniques are

3Universa! Resource Locator: http://xxx.lanl.gov/archive/mtrl-th
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capable of measuring some properties of the short range corder in disordered binary
alloys. However, the exact distribution of atoms around a given atom is very dif-
ficult to obtain with current technology. A computer simulation contains all this
information, which is readily available for analysis when the system is modeled.

The cost of the equipment and materials necessary to perform sophisticated ex-
periments increases as the researcher needs more control and wishes to extract more
information about the system under study. On the other hand, the price of the fastest
computers is approximately constant in time, or even decreasing in some cases. If
these trends continue, and the sophistication of experimental techniques keeps increas-
ing, it is very likely that modeling studies will replace traditional experimentation for
economic reasons.

Finally, computer simulations have an inherent flexibility that traditional ex-
periments lack. Once a simulation is prepared, changing one atomic species in the
system or adding a new component in a complex alloy is not difficult. Even study-
ing “what if” situations can help give insight into the mechanism underlying a given
phenomenon. For example, the value of the atomic mass of an element could be con-
tinuously varied to see how it influences the vibrational properties. Of course, since
there are only a few stable isotopes of any element, it is not possible to achieve this
using real experiments.

Applications of atomistic computer simulation can be found in different areas
of materials science. Essentially, every phenomenon that takes place at the atomic
level is amenable to simulation. These are some of the materials science problems
that have been studied with computer modeling: point defects, dislocations, grain
boundaries, simple inter-phase boundaries, segregation, phase stability of elements
and alloys, mechanisms for melting, diffusion, electronic properties, optical properties,
heat transfer, crystal growth, kinetics of phase transformations and simple processing,
elastic properties, mechanics properties, simple 2-D fracture, dielectric properties,
ferroelectric properties, polymer folding, superconductivity, superfluidity, percolation,
critical phenomena, quasicrystals, catalysis, chemical reactions, adsorption.

However, not all news is good about modeling and simulation in materials science.
The approximations and simplifications necessary to obtain a solvable set. of equations
present a serious concern about computational studies. These approximations are of
two different types: a) known effects that are not supposed to contribute significantly
to the properties being computed, and b) unknown effects. Examples of the former
class of approximations are the adiabatic approximation that decouples the electronic
problem from the time evolution of the nuclear coordinates (this approximation is
“harmless” is most cases), and the approximation of neglecting the contribution of
lattice vibrations to the free energy of alloys (this approximation is not good for some
systems, as shown in this thesis, in chapters 4, 5, and 6). For the latter type of
approximations, we can mention the effect of unknown impurities in real systems.
These unknown conditions are sometimes important for determining the properties
of the materials under study. In these cases, the modeling techniques are bound to
fail.

The second limitation the modeling and simulation techniques suffer from is that
the studies are currently limited to systems of a few hundred atoms using first-
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principles techniques, or to a few million atoms when empirical approaches are used.
This allows one to study small systerns (e.g., molecules, quantum dots), periodic sys-
tems (perfect solids), point defects (using supercell approximations [20]), etc. How-
ever, atomistic simulations of mesoscopic problems are prohibitively expensive. These
problems include microstructure formation, complex inter-phase boundaries, process-
ing, fracture, etc. There is some hope that these problems will be solved as a result of
the forecasted increase in computer power. However, most of the methods currently
used scale with the size of the input as “N3.” This means that when the size of the
system increases by a factor of 2, either the time necessary to solve it, or the mem-
ory necessary to store it in the computer increases by a factor 23 = 8. Or, in other
words, if we could build computers 1000 times faster than the fastest computer avail-
able today, we could solve problems only 10 times larger than the problems we can
solve today. There is a great deal of interest within the scientific community to avoid
this N? scaling by developing new methods that scale only linearly with N [26, 27].
Although these methods are more computationally expensive than traditional meth-
ods for the systems currently attainable, they may be the way of the future, when
computers are able to function some orders of magnitude faster.

1.2 Alloy theory

There are very few applications for materials made of just one element from the peri-
odic table. When two or more species are combined, the “menu” of possible properties
increases dramatically, allowing the materials engineer to fine-tune materials for spe-
cific applications. An understanding of the mixing properties of different kinds of
atoms is therefore very important for the development of improved materials.

“Alloy theory” studies the behavior of systems composed by two or more atomic
species, using computational or theoretical tools. In this thesis we are concerned with
the thermodynamic properties of substitutional alloys. In a substitutional alloy, the
thermodynamically stable phases can be thought of as different arrangements of the
atomic species on the sites of a lattice. There are some examples of alloy systems
in which this is the case for the complete composition range. However, almost every
alloy system is substitutional in some limited range of composition. Examples of both
cases are shown in figure 1-2. We will further restrict the scope of the present thesis
to solid state phases of the alloys. The properties of liquid and gaseous phases will
not be considered.

The ultimate goal of alloy theory is to produce an “alloy machine.” This alloy
machine would require as input the set of sought properties of a material, and would
produce as output the composition and processing conditions of a material with those
properties. Of course, we are very far from achieving this goal, and will be satisfied
with a much more modest objective: given the atomic numbers and masses of two or
more species, compute the thermodynamic properties of the alloys they form. When
only this information is used, and no experimental input is required, the calcuiations
are called “first—principles” or “ab-inttio.”

Of all the thermodynamic propertiies of an alloy, its temperature-composition
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Fiigure 1-3: Steps to compute the temperature—composition phase diagram of a sub-
stitutional alloy from first principles.

phase diagram is probably the most compact and useful piece of information. Al-
though it only contains equilibrium data, the type and location of the stable phases
can give the materials engineer information about the final microstructure of an alloy
after processing. The steps usually taken to compute the temperature—composition
phase diagram of a substitutional alloy from first principles are shown in figure 1-3.

For systems that are not completely substitutional, such as Cu-Zn (see figure 1-2),
the process can be carried out for more than one parent lattice, to obtain the free
energies of phases that cannot be interpreted as ordering on the same lattice. Once
these free energies are obtained, the complete solid—state part of the phase diagram
can be computed.

The first two steps in the flowchart of figure 1-3 constitute the input of the prob-
lem. For first—principles studies, only the atomic numbers and masses of the species
are required. If we restrict ourselves to substitutional alloys, then the lattice on which
the two or more species will order is also part of the input to the problem. This re-
striction does not imply that the atoms are constrained to sit motionless on the exact
lattice sites. As will be discussed further in this thesis, the only requirement for a
valid mapping of the alloy Hamiltonian onto a lattice model is that every microstate
of the alloy be uniquely mapped onto a substitutional state of the lattice [28]. There-
fore, the lattice model can accommodate not only substituticnal excitations, but also
relaxations away from ideal lattice sites, lattice vibrations, electronic excitations, etc.
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In the rest of this section, we describe the techniques used to accomplish the three
main steps in the flowchart of figure 1-3.

1.2.1 Building the alloy Hamiltonian

The first step in the calculations is the construction of the Hamiltonian of the lattice
model. The simplest approach is to assign an energy to every arrangement of the
alloy species on the ideal lattice sites. This energy can be computed using a variety
of methods with a wide range of sophistication and accuracy, from the full ab-initio
quantum-mechanical methods to very simple empirical potentials.! This was the
approach used in the early studies of phase stability. For simple alloy systems, it
predicted phase diagrams in qualitative agreement with experiment [29)].

Very rapidly, researchers realized that, even with the most sophisticated energy
methods, the results did not converge to the experimental measurements. The pre-
dictions could be significantly improved when the constraint of the atoms sitting at
the ideal lattice sites was lifted. Even for substitutional alloys, the size mismatch
between the different atomic species will induce some relazation away from the ideal
lattice sites. When these relaxation effects are taken into account, the predicted phase
diagrams of many alloy systems improve dramatically, in some cases giving results
that are in gquantitative agreement with experiment [30, 31].

If the predictions of the computational models are to compete in accuracy with
the experimental techniques, further improvements are necessary. The next step to
improve the models of alloy thermodynamics, is to consider not only the substitu-
tional exchanges that the lattice model naturally account for, but also other kinds
of excitations. Even with very crude approximations for the vibrational and elec-
tronic excitations, better agreement with experiment was achieved (30, 31, 32, 33]. In
this thesis, we develop systematic methods for including the lattice vibrations in the
studies of alloy phase stability.

In 1984, an important breakthrough made all these developments possible: the
cluster expansion. Sanchez, Ducastelle, and Gratias [34] proved that any property of
a substitutional alloy that only depends on the distribution of atoms on the lattice
can be expanded exactly in a basis of so—called cluster functions. Furthermore, for
properties that only depend on the local arrangement of atoms, this cluster expansion
can be truncated, keeping only the terms that describe the local envircnments. When
the property of interest is the energy of the substitutional arrangement, the cluster
expansion has the form of a generalized Is' ug Hamiltonian, with a few coupling param-
eters. Therefore, the problem of computing the energy of any possible arrangement
of atoms on a lattice is reduced to the knowledge of these few parameters.

Various methods have been devised to obtain the coupling parameters of the
generalized Ising Hamiltonian of the alloy. The most popular and powerful method
is originally due to Connolly and Williams [35] and was later generalized by other
authors (36, 37, 38]. This method is usually referred to as the Connolly-Williams
(CW) method or “structure inversion method” (SIM). The basic idea behind the

“In which case the computation is not a “first—principles” study.
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SIM is to compute the energy of a few simple periodic arrangements of atoms on
the lattice and then obtain the coupling parameters of the cluster expansion by a
least-squares procedure. The SIM can very easily accommodate atomic relaxations
and non-substitutional excitations.

Other methods to obtain the coupling parameters include the “direct configura-
tional averaging” (DCA) and the “coherent potential approximation” (CPA) with
the “generalized perturbation method” (GPM). In the DCA method, the coupling
parameters are obtained by an explicit average of the energy over all possible con-
figurations of the alloy [39, 40]. In the CPA-GPM scheme, an approximation of the
alloy with random occupancy of the lattice sites by the atomic species is built, and
the ordering energies are computed through a perturbative approach [41]. Currently,
neither of these two methods is capable of modeling the atomic relaxations away from
ideal lattice sites. Although some attempts have been made to remove this limitation,
it is not clear whether the DCA and the CPA-GPM can compete with the SIM in
studies of complex alloy systems.

Once the cluster expansion is obtained, the alloy prcblem is reduced to the cal-
culation of the thermodynamics of the resulting lattice model. Before calculating the
free energy of the alloy it is convenient to know the stable phases T = 0K, i.e., the
ground states of the lattice model.

1.2.2 Ground states of the lattice Hamiltonian

The stable phases at T = 0K, or ground states, are those arrangements of atoms
on the lattice that minimize the energy of the system. For very simple systems,
these structures can be obtained by simple inspection of the lattice Hamiltonian. For
example, in the ferromagnetic Ising model, the minimum energy structures correspond
to all spins “up” or all spins “down.” For the antiferromagnetic Ising model on the
simple square lattice, for example, the ground state is the “checkerboard” ordering.

Two kinds of difficulties arise when the simple Ising model with nearest—neighbor
interactions is generalized to model alloys. First, the connectivity of the lattice may
introduce “frustration” effects. For example, in an antiferromagnetic Ising model on
a triangular lattice, the energy would be minimized if we could find a distribution of
spins that only had unlike spins as nearest neighbors. However, this is not possible
due to the topology of the lattice, that contains triangles of nearest neighbors. The
second difficulty that arises when studying alloys is that the Hamiltonian usually
contains interactions that go beyond the nearest—neighbor distance.

Several methods have been developed to find the ground state structures of a
lattice model. These methods have been successful in studying a number of alloy
systems and will be discussed in chapter 3.

1.2.3 Free energies and phase diagrams

The phase diagram of the alloy is determined by the competition for stability of all
the possible phases of the alloy. Any statistical mechanical method should, at least,
include the phases that are stable at T = 0K (ground states), the disordered state
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(which is stable in the high temperature limit), and other phases that are in close
competition with the ground states. Two methods have been widely used to com-
pute phase diagrams of alloys: the Monte Carlo method and the cluster variation
method (CVM). In the Monte Carlo method [23], the equilibrium state of the system
is simulated using a stochastic approach. In its most basic formulation, it does not
produce free energies, and the stable phases are obtained by inspection of the equi-
librium structures during the simulation. The CVM [22, 41|, on the other hand, is
an extension of the mean field method to compute free energies of any given phase
of the alloy. After the free energies of all the phases that compete for stability are
computed, the phase diagram is obtained by minimizing the free energy of the alloy.

Most of the phase transitions in alloys are first-order transitions and therefore
there is no need to perform studies of critical phenomena. Even for alloys that
present second-order transitions, we are interested in the transition temperatures
and compositions, and can obtain these properties with enough accuracy, using the
CVM [42].

1.3 Contributions made in this thesis

In spite of all the recent improvements in alloy theory, there are still some problems
to be solved before the predictions of phase stability become quantitatively reliable.
In this thesis we address some of these problems. We made contributions in three
different areas of alloy theory: the construction of the lattice model Hamiltonian, the
determination of the ground-state structures of the lattice model, and the inclusion
of the vibrational degrees of freedom in studies of phase stability.

In chapter 2, we show that the traditional methods to build the lattice Hamiltonian
from the energies of ordered arrangements of the alloy can fail to capture important
features of the energetics of the alloy. A new method, based on linear programming
techniques, is proposed to overcome these limitations. We apply the new method to
the study of the Pd-V alloy, and show that long range pair interactions are necessary
to obtain a good parameterization of the energetics of the systern.

The state—of-the-art methods to find the ground-state structures of the alloy
lattice model are reviewed in chapter 3. We show that, although very successfui for
simple alloys, these methods fail when the interaction range is beyond the second
or third neighbor. We developed a new method that can approximately solve the
ground state problem for complex alloys and applied it to the binary alloys on the fcc
lattice with first— through fourth-neighbor pair interactions. The limits of the exact
traditional methods are illustrated with the solution of the ground state problem of
the ternary alloys on the fcc lattice with first— and second-neighbor interactions.

The effect of lattice vibrations on the phase stability of substitutional alloys is
studied in chapters 4, 5, and 6. We show that non—substitutional degrees of freedom,
like the lattice vibrations and the electronic excitations, can be accounted for in a
lattice model of the alloy. This is done by a coarse-graining procedure with very
few assumptions (chapter 4). We apply the new formalism to study a variety of
systems, ranging from very simple model systems, to more complex systems where
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first-principles quantum-mechanical computations are necessary:

¢ Empirical potentials are used to study model systems (including a crude model
of Ar-Kr alloys). From these studies, we conclude that the size of the effect
of lattice vibrations on phase stability can be large and therefore should be
included in the studies of phase stability (chapters 4 and 3).

® A simple first-principles method is applied to the study of the MgO-CaO sys-
tem. Our prediction of th- phase diagram is in very good agreement with
experiments (chapter 6).

e We study different approximations to do ab-initio calculations, and develop a
new method that produces more reliable results than traditional techniques.
This new method is applied to study the Si-Ge system (chapter 6).

Finally, chapter 7 summarizes the conclusions of this thesis, and chapter 8 outlines
suggested future work to continue improving the models of alloy phase stability.
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Chapter 2

The lattice—model Hamiltonian

The construction of the lattice Hamiltonian is the first step in the first—principles
calculations of phase diagrams of substitutional alloys (see figure 1-3). Once the input
to the alloy problem is specified (atomic numbers and masses of the alloy species and
the parent lattice on which the atoms will order), the next step is to compute the
energy of every possible arrangement of the atoms on the lattice. The justification
of the mapping of the quantum-mechanical, continuous Hamiltonian onto the lattice
model Hamiltonian is deferred to chapter 4. For now, it suffices to assume that
the thermodynamical properties of the alloy are well described by the lattice model,
with an energy associated with every possible substitutional state.! Since only the
substitutional energy is considered in the alloy Hamiltonian and other contributions
are neglected (i.e., lattice vibrations, electroric and magnetic excitations, etc.), the
terms “energy” and “Hamiltonian” are used interchangeably throughout this chapter.

The calculation of the energy for all possible configurations of the lattice model is
beyond the capabilities of any energy method. For a binary alloy with N sites, there
are 2V possible configurations, most of which are non-periodic. Since N is a large
number when modeling macroscopic behavior, even with the most simple empirical
potential model we would not be able to compute all the 2V energies.

The development of the cluster ezpansion technique solved this problem by reduc-
ing such computation to the knowledge of a few energy parameters. In this chapter,
we describe the cluster expansion for substitutional alloys, review the schemes used
for the calculation of the energy parameters of the lattice-model Hamiltonian, and
develop a new method that overcomes some of the limitations of the previous formu-
lations. We apply the new method to the study of the energetics of Pd-V alloys.

! As described in chapter 1, the lattice model does not imply that the atoms are fixed at their ideal
lattice positions. In fact, the energy corresponding to any substitutional state is the ground-state
energy of all the microstates of the alloy that are mapped onto that substitutional state. This is
achieved, in practice, initializing the system with the atoms at the ideal lattice sites and relaxing
the atomic coordinates until the energy is minimized (locally). These ideas are further discussed in
chapter 4.
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Figure 2-1: Examples of two—dimensional lattices.? The lattices extend infinitely in
space. Only a portion of the lattice is shown. Lattices a and b have one lattice site per
primitive unit cell, while lattice b and c have two and three lattice sites per primitive
unit cell respectively.

2.1 The cluster expansion

The ordering phenomena in a substitutional alloy take place on a periodic structure
of sites in space. These points in space form inter-penetrating Bravais lattices.?
Examples of two—dimensional lattices are shown in figure 2-1. The lattices can have
one or more sites per primitive unit cell. Examples of lattices with one lattice site
per unit cell are lattices a and b in figure 2-1, and the face- and body-centered-cubic
lattices in three dimensions. In lattices with more than one site per unit cell, such
as lattices ¢ and d in figure 2-1 and the hexagonal-closed-packed three—dimensional
lattice, not all the sites are connected by lattice translations.

Our goal in this section is to review a systematic way of describing the possible
arrangements of the atomic species on the sites of the lattice, and any function of such
arrangement (e.g., ‘he energy or volume per atom of the system). We will restrict
the considerations in this chapter to binary alloys (only two atomic species form the
alloy). For extensions to multicompcnent alloys, the reader is referred to published
studies [34, 45, 46, 47]. To formally describe the substitutional state of a binary alloy,
we define a variable, o;, for every site i of the alloy as:

Graphical Atomic o.
representation  species !

‘ A +1
Occupancy <
of site i
B -1

The complete substitutional state of an N-site alloy is then described by a binary

2From the crystallographic point of view, a lattice has, by definition, only one site per unit
celi {43]. However, in this thesis we will refer to “lattices” as any periodic structure of sites. This
allows us to refer to the hexagonal—closed-packed (hcp) structure as a lattice, when in fact it is
composed by two inter—penetrating simple-hexagonal Bravais lattices. This is common practice in
the field of lattice models [44].
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Figure 2-2: Schematic representation of the mapping of the substitutional state of
the alloy onto a configuration of the spin variables.

vector, & = (01,02,...,0x). The variables o; are usually called “spins” in analogy
with the magnetic problem. Figure 2-2 schematically shows the mapping of the
substitutional state of the lattice onto an Ising-like state of a set of spin variables.

In order to describe any function of configuration, such as the energy, volume,
etc., we need to introduce some definitions. Consider two arbitrary scalar functions
of configuration, f(&) and g(&). The scalar product between these functions is defined
as

(1,9) = 3w T £@)9(0), (21)

where the sum is over all 2V possible configurations of the lattice model.

A cluster a is a subset of the sites of the lattice. Examples of clusters on the
simple-square two—dimensional lattice are shown in figure 2-3. For every cluster, a,
we define a cluster function, o4, as the product of the spin variables on the sites of

the cluster, i.e.,
i€a

where Greek subindices represent clusters and Roman subindices label lattice sites.
The cluster functions are functions of configuration, i.e., 0, = 0,(&), and take on the
values +1 or —1, depending on the values of the spins on the cluster. The definition
is extended to the “empty” cluster {a cluster that contains no lattice sites), for which
Cyp = 1.

The most important property of the cluster functions is that they form an or-
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Figure 2-3: Examples of clusters on the simple-square two—dimensional lattice. The

dark sites belong to the clusters. a, 3, and v are first, second, and third neighbor
pair clusters; € and (¢ are three—site clusters, or “triplets,” and ¢ is a four-site cluster.

thonormal basis of the functions of configuration. To prove this property, we need to
show that: a) the cluster functions are normalized, b) they are orthogonal, and c)
they are complete in the space of functions of configuration.

The normalization of the cluster functions is easily proved:

(0ay00) = 5N Zaa(a 04(6) = 5N Z 1=1, (2.3)

because there are 2V different configurations 4.

To prove the orthogonality of the cluster functions, we define the following opar-
ations between arbitrary clusters a and §. The union of clusters (c U ) produces a
new cluster that contains the lattice sites that are in cluster « or in cluster 8. The
intersection of clusiers (o N () produces a new cluster composed of the lattice sites
that are both in o and 8. Finally, aAB = aU B — an g is the cluster of lattice sites
that belong to a or 3, but not to both. It follows from equations 2.1 and 2.2 that

i,, 5 0a(3)95(2)
= onN Z H Oi H oj

7 i€a JjEL

= éﬁ ; aaAﬂaanﬂ (24)

(607 dﬂ)

1
= 37 2 e
= 0,
provided that o U 8 — a N B is non-empty (note that aUB —aN B = O if and
only if & = ). The last equality in equation 2.4 follows from the fact that, for any

non-empty cluster v, there are equal number of configurations with o, = +1 and
0, = —1. The normalization and orthogonality of the cluster functions are usually
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condensed in the expression
(O'Q,O'ﬂ) = Oqg- (25)

Finally, the cluster functions form a complete set, i.e., any function of configuration
can be written as a linear combination of cluster functions. This is proved in the
literature [34] by showing that the completeness relation is satisfied, i.e.,

o 2 0u(8)0(8) = bos (26)

where the sum is over all possible clusters. However, it suffices to realize that there
are 2V cluster functions and that the dimensionality of the space of functions of
configuration is also 2%. Since the cluster functions are independent (in fact they are
orthogonal), they form a basis of the space of functions of configuration.

These properties of the set of all cluster functions allow any function f of config-
uration & to be expressed as linear combination of the cluster functions,

f(8) =Y Fa0a(3), (2.7)

where the expansion coefficients, F,, are the projection of the function f onto the
cluster function o,,

Fo = (aayf)- (28)

Expression 2.7 is usually referred to as the cluster erpansion of property f. Any
property of the alloy that depends on the substitutional state, &, and is uniquely
determined by it, can be “cluster—expanded.” Examples of such properties are the
encrgy, volume, elastic properties, etc.3 In particular, the energy of the alloy can be
cluster-expanded,

E@) = Y Vaoa(d). (2.9)

The expansion coefficients of the energy, V,, are usually called effective cluster in-
teractions (ECl's), and, as in 2.8, can be obtained by projecting the energy of the
system onto the corresponding cluster function:

V, = (0a, E). (2.10)

Since the cluster functions form a basis of the space of functions of configura-
tion, the cluster expansion of the energy is exact. However, there are 2V ECI’s in
equation 2.9, and obtaining them is equivalent to computing the energy of all the
2N configurations of the lattice. Therefore, simplifications are necessary to make the
problem tractable.

The first reduction in the number of parameters in the cluster expansion is ob-
tained by considering the syinmetry of the lattice. If there is a symmetry operation in

30n the other hand, thermodynamic properties, such as the configurational entropy, are not just
functions of the current substitutional state, but are ensemble properties and therefore cannot be
expanded as in 2.7.
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the space group of the lattice that maps cluster a onto cluster 3, then the correspon-
dent ECI's will have the same numerical value, i.e., V, = Vj3. For instance, all the
nearest—neighbor pairs in the face-centered—cubic lattice are equivalent by symmetry
and therefore have the same ECI’s. By grouping all the symmetry-equivalent ECI’s
in equation 2.9, the cluster expansion of the energy per lattice site can be reduced to,

B = ¥ maaloa) (@), (.11)

where m, is the number of clusters per lattice site that are equivalent to cluster «a
by the symmetry of the lattice, (o,) is the average of the cluster functions over the
equivalent clusters (sometimes referred to as “correlation functions”), and the prime
indicates that the summation is only performed over non-equivalent clusters «.
Although equation 2.11 is simpler than equation 2.9, it is still too complex to be
practical. In fact, in the thermodynamic limit (N — oo), there is an infinite number
of ECI’s in equation 2.11. In order to make the cluster expansion a useful tool for the
calculation of alloy phase diagrams, it is necessary to introduce approximations that
simplify this expression. In many metallic alloys the energy of the system depends
mostly on the types of local atomic environments present in the alloy. When this is the
case, the energy can be described with cluster functions that comprise a small number
of lattice sites that are located close together. Therefore the cluster expansion can be
truncated to keep only a finite number of small clusters. This is usually symbolized
with a maximal cluster, a;,.z, beyond which the cluster expansion is truncated:

E(F) . |
N Zasamum"va(aa)(a)- (2.12)

The truncated cluster expansion of the energy is the Hamiltonian used for studies
of alloy phase stability. It usually includes the empty, point, a few pair and some
multi-site cluster functions. It has the form of a generalized Ising Hamiltonian, with
not just nearest neighbor couplings (or ECI’s), but also further neighbor and multi-
site interactions.

The truncation of the cluster expansion is not always well justified, and more
sophisticated parameterizations of the substitutional energy of an alloy are sometimes
necessary. They include reciprocal-space treatments [37], schemes where the long-
ranged elastic effects are analyzed separately from the local contributions to the
energy [38], or formulations where the ECI’s are volume-dependent [48]. However,
we have recently proved [49] that even for systems with long-ranged interactions
between the atoms, like purely “Coulombic” systems where point charges interact
electrostatically, short-ranged real-space parameterizations of the energy are possible.

Formal extensions of the cluster expansion technique to multicomponent systems
are straightforward [34). However, the complexity of the formalism grows dramatically
with the number of species, making multicomponent alloys much more difficult to
study than binary alloys. We have recently shown [50] that for the special case of
ionic systems, where cations and anions mix on separate sublattices, the quaternary
problem (two cations and two anions) can be reduced to a binary problem, making
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the calculations feasible.
In the next section, we review the methods that have been used to compute the

ECI’s in equation 2.12 for the parameterization of the energy of alloys.

2.2 Review of methods to compute the effective
cluster interactions

At least three approaches have been used in the past to compute the ECI’s. The
Connolly-Williams (CW) method* takes advantage of the fact that if a few ECI's are
enough to parameterize the energy, then their values can be determined by fitting a
truncated cluster expansion (equation 2.12) to the energy of a small set of ordered
structures on the lattice (we will refer to the energy of ordered structures, when com-
puted with any energy method, as the “direct” energies of the structures, as opposed
to the “cluster-expanded” energies obtained with equation 2.12, once the ECI's are
known). In its first formulation [35], the CW method consisted of fitting the values of
n ECI’s to the direct energy of n ordered arrangements on the lattice. These direct
energies can, for example, be computed from first-principles within the local den-
sity approximation. Subsequent improvements [36] use more ordered structures than
ECI’s, and through a least-squares fit obtain a more stable set of ECI’s, avoiding the
sometimes ill-conditioned inversions. When considering a set of p ordered structures
with direct energies Ej, j =1,...,p, the n ECI's (n < p) are obtained by solving

P ) n 2
ij [% - z maVa (aa)j = minimum, (2.13)
i=1 a=1

where w; is the weight assigned to the j'! structure. Because the cluster expansion
requires only a one-to—one correspondence between atomic positions and lattice sites,
it can also model configurations where the atoms relax away from their ideal lattice
sites. In the CW method, the effect on the energy of the atomic relaxations is taken
into account by relaxing the geometry of the ordered structures used in the fit.

The direct configurational averaging (DCA) method uses recursion techniques to
compute the local density of states and the ECI's through a real space average, usually
in the tight-binding approximation {39, 40]. In this method, the ECI’s are computed
one at a time, using their definition [34], as in equation 2.10. For example, for a pair
ECI, it can be easily shown that equation 2.10 reduces to

Voair = %((EAA) + (EpB) — (EaB) — (EB4)), (2.14)

where (E},) is the average energy of all the configurations & with atom I in the first
site and atom J in the second siie of the pair cluster. Similar expressions can be

4The Connoily-Williams method is sometimes referred to as the “structure inversion method” or
SIM.
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obtained for multi-site clusters. At its present stage, the DCA method does not take
atomic relaxations into account.

Finally, the coherent potential approximation (CPA) [41] can be used to de-
scribe the disordered system by an effective medium and the ECI’s are obtained
perturbing this effective medium, with the so—cali.d generalized perturbation method
(GPM) [41]. The CPA is a mean-field description of the electronic structure of a com-
pletely disordered alloy, constructed by a self--consistent procedure that assures that,
on average, the scattering of electrons by the atoms of the alloy vanishes. The GPM
is a real-space perturbation method that produces concentration-dependent ECI’s,
from a reference medium, like the CPA. Although the CPA-GPM method has been
able to predict general trends, its ability to include atomic relaxations has not yet
been proved.

2.3 A new method to obtain the effective cluster
interactions

Because atomic relaxations can play a very important role in determining the phase
stability of an alloy system [37], the CW method has gained popularity (of the three
methods described above, CW is the only one that takes the effect of atomic relax-
ations into account). Although now widely applied, the least-squares fitting proce-
dure used in the CW method to extract the value of the ECI’s from the direct energies
of ordered structures has the following serious limitations: a) The CW method only
fits the ECI’s to the absolute direct formation energies of ordered structures. How-
ever, ground-state and phase-diagram predictions depend on subtle differences in
direct formation energies of different ordered structures. b) The CW method does
not necessarily reproduce the relative stability of the input structures one fits to (see
for example [51]). This may cause structures that were metastable with the direct
energy calculation, to become stable with the cluster expansion. These structures
would be present in a phase diagram computed with the cluster expansion, whereas
it is clear from the direct energy calculation that they should not be. ¢) The CW
method is incapable of determining what truncation of the cluster expansion is needed
to reproduce the desired features of the direct formation energies of the system.

The method we have developed [52] overcomes the limitations of the CW method
mentioned above. The philosophy of the method is to reproduce not only the direct
formation energies, but also the ground states and relative values of the direct for-
mation energies of a set of ordered structures. The new method only guarantees that
none of the metastable structures included in the fit will become ground states when
their energies are computed with the cluster expansion. However, other structures
not included in the fit may be ground states of the system. In the rest of this section,
we describe the new method, and then apply it to the study of the energetics of the
Pd-V system.

A schematic representation of the input quantities of the new method is shown in
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Figure 2-4: Schematic representation of the quantities needed for the calculation
of the effective cluster interactions using the new method. The ground-state line
(dashed line) is the lower convex hull of the set of formation energies in the energy-
composition plane. The other quantities are: AE;/N: formation energy per atom
of structure j, §;: error assigned to AE;/N, AE;/N: energy difference (per atom)
between structure j and the ground-state line at the composition of structure j.

figure 2-4. As in the CW method, the direct formation® energies of a set of p ordered
structures of A and B atoms arranged on a common parent lattice (AE;/N, j =
1,...,p) are required. Each direct energy is assigned an error bar §;, i.e., AE;/N +4;.
This error bar can be determined either by the error of the method used to obtain
the direct energy or by the maximum error accepted in the cluster expanded energy.

The method also requires information about the ground-state line as obtained
from the total energy method that we wish the cluster expansion to reproduce. The
ground-state line of a set of ordered structures, is defined as the lower convex hull

5For an ordered structure with composition ¢ (atomic fraction of A), the formation value of a
quantity Q is defined as: AQ = Q — [cQ4 + (1 — ¢)QB]- It can be easily shown that the thermo-
dynamic properties of the alloy system will be the same if the lattice Hamiltonian is defined as the
energy or the formation energy. For convenience, the formation energy is used.
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of the energies of those structures in the energy-composition plane (see figure 2-4).
It represents the sequence of thermodynamically stable structures (among the set
of ordered structures chosen®) at T = 0K. In the schematic example of figure 2-4,
structures 1, 6, 8, and 10 define the ground state line of the 11 structures shown.
Each segment of the direct ground-state line is characterized by the composition and
energy of the two ordered ground-state structures at the ends of the segment.

The final input of the new method is the set of lattice-averaged cluster functions
({7a)j, 3 =1,...,p, a=empty cluster, point cluster, pairs, multiplets) for the ordered
structures considered. These averages are easily computed from the description of
the unit cell of the ordered structures.

With the truncation of the cluster expansion symbolized by a,,,,, we impose the
following constraints on the ECI’s:
Qmarx AE . )
Zmava (aa)j < —'Nl"l"&_; J= 1,...,p (2.15)
Qa
Qmaz AE ) .
Emava (Ua)j 2 _]—V—J— i} J= 11"'1p (216)
a
Qmaz .
ab J= 11 Y 4
za: maVal;] > € iaj#b, (2.17)
where

((01), = (01);) (Ga)a + ((01); — (01)a) (Ga)s
(01)p = (01}, .

Equations 2.15 and 2.16 require that the cluster expanded energies be within
the error bars of the direct energies. Equation 2.17 imposes the linear constraints to
reproduce the a-b segment of the direct ground-state line. (0,); is the lattice average
of the point cluster function, related to the concentration through (o,); = 2¢; — 1,
and ¢ is a small number (smaller than the energy differences involved in the problem).
Other constraints can be added to require that relative stabilities of ordered structures
be reproduced in the cluster expansion.

Equations 2.15, 2.16, and 2.17 are linear inequalities in the space of ECI’s, and
can therefore be solved using any standard linear programming technique [53]. If the
linear programming problem has a feasible solution in the space of ECI'’s, then the
cluster expansion with these ECI’s reproduces the required properties of the direct
formation energies. If the volume of the polyhedron of feasible points is large, some of
the constraints can be tightened to produce a better energy parameterization. If there
is no feasible point, the truncation of the cluster expansion did not inciude enough
terms to reproduce the direct energies. Then, there are two alternatives: a) relax the
constraints (increase the error bars or take out segments of the ground-state line), or

(2.18)

I = (oa); =

6The thermodynamicaily stable structures at T = OK of the lattice model are the lower convex
hull of all the 2V states of the lattice model. When a subset of structures is computed, one obtains
an approximation for the exact ground-state line of the system. In chapter 3, the ground-state
problem of the lattice model is analyzed in detail.
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b) include more ECI’s and look for a feasible point in the new space of interactions.
Both of these alternatives can be carried out automatically by a computer program.
One of the strengths of this method is, therefore, that it exactly recognizes whether
a given truncation of the cluster expansion can reproduce the desired features of the
direct formation energies.

The most important features of the substitutional excitation spectrum of the stable
phases are determined by the distance of other metastable ordered structures to the
ground-state line in the energy—composition plane. For metastable structures that
are close to the direct ground-state line, a small relative error in the formation energy
could imply a big relative error in its cluster-expanded distance to the ground-state
line, greatly altering the free energies of the stable phases and, therefore, the phase
diagram. By requiring that the cluster expansion reproduce these distances, this
problem can be avoided and a better description of the energetics of the system can
be obtained. This can be done in the present method by introducing linear constraints
of the form:

AEJ Omar AEJ

=1,...
~ . < ab o 7 . J SRR ¢ .
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where IJ?." is the quantity defined in equation 2.18, AE;/N is the direct energy dif-
ference per atom between structure j and the a-b ground-state tieline at the same
composition, and A; is the error bar assigned to this quantity.

2.4 Application to the Pd-V system

To illustrate the method, we studied the Pd-V substitutional alloys on the fcc lattice.
Much work has been recently reported on this alloy system [54, 55, 56, 57, 40, 58, 33|.
Part of the theoretical interest in Pd-V alloys was motivated by a study indicating
that relatively long-range interactions are needed to describe the energetics of the
ordering processes [54]. Since we are studying the energy of substitutional arrange-
ments on the fcc lattice, our studies are relevant for the Pd-rich concentrations of the
system. On the V-rich side of the phase diagram, the stable phases are not based on
the fcc lattice.

We computed the direct formation energies of 42 ordered structures in the Pd-
V system using the linear muffin tin orbital (LMTO) method in the atomic sphere
approximation (ASA) [59]. The LMTO is a self—consistent all-electron method, based
on the local density approximation [18]. In the ASA, the electrostatic potential around
every ion is spherically averaged, greatly reducing the complexity of the problem. The
results are shown in table 2.1 and figure 2-5. Figures of the unit cells of the structures
can be found in references (41, 40, 3, 11].

The calculations were self-consistent and semi-relativistic. We used equal atomic
sphere radi: for Pd and V, “combined corrections” to the ASA, and 172 points in the
Brillouin zone for k-space integrations. The von Barth-Hedin form for the exchange
and correlation potential was used. In these calculations, only global volume relax-
ations are taken into account. The size mismatch between Pd and V is only 3%, so
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Figure 2-5: Direct formation energies of the 42 ordered structures computed with
the LMTO-ASA method. The ground-state line is shown and the ground-state
structures on the Pd-rich side are labeled with their prototype structure (PtsTi and
MoPt,) or Strukturbericht notation (DO2; and L1p).

the effect of other relaxations is expected to be small.

Of the 42 structures, 18 coincide with the ones studied by Wolverton [58] using
similar techniques. The formation energies for these structures differ from the ones in
reference [58] by less that 4 meV /atom, except for W1 (PdsV3) and W1 (Pd3Vs), for
which the differences are 13.5 and —6.5 meV /atom respectively. To our knowledge,
the energies of the other 24 structures have not been reported before. Since we are
interested in the energetics of Pd-rich configurations, we chose more Pd-rich than
V-rich structures.

We first apply the new method to find a suitable truncation of the cluster expan-
sion that can reproduce the ground-state line of the direct energies of the structures
computed with the LMTO-ASA. The ground-state structures in the Pd-rich part
of the system, as obtained with the LMTO-ASA method, are: fcc-Pd, PtgTi-type,
DOy, MoPt,-type, and L1y (see figure 2-5). It is important to stress that we are not
making use of the values of the direct formation energies in this stage. We are only
asking what truncation of the cluster expansion can give the desired grcund-state
line. We find that the direct ground-state line cannot be reproduced with the ECI’s
used for this system in the past [34, 55, 56, 57, 40, 58, 33]. These include pairs up to
the fourth neighbor, 4 triplets, and 2 quadruplets. By adding pair ECI’s, the direct
ground-state line can be reproduced only when the seventh- or eighth-neighbor pair
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Structure Energy Comp. Ref. | Structure Energy Comp. Ref.
CuPt -240.2 PdV [41] [ L1 -364.9 PdV [41]
A;B, 2426 PdV  [41] | G4c=Z2 3143 PdV  [11]
MoPt, -3041 Pd,V  [41] | MoPt, -179.8 PdV, [41]
DO,, -349.7 Pd;V  [41] | DO, -199.6 PdV; [41]
L1, -281.8 Pd;V  [41] | L1, -201.4 PdV; [41]
NigMo=K15 -270.7 Pd,V  [3] [ NisMo=K15 -157.8 PdV, [3]
W8=K13 -236.6 Pd;V  [40] [ W8=K13 -145.5 PdVs  [40]
PtgTi=K4 -192.9 PdgV  [3] | PtgTi=K4 -98.2 PdVs [3]
w1 -348.3 PdsV; [40] | W1 -289.3 Pd;Vs [40]
K8 -158.6 Pd,V  [3] | K9 -1979 Pd,V  [3]
K12 2505 PdsV  [3] | K19 -3440 Pd;V, (3]
K21 -3148 Pd,V  [3] | K22 -304.1 PdyV  [3]
K29 -328.2 PdsVs [3] | K30 -331.1 Pd;Vs [3]
K33 2923 PdV, [3] | K42 2053 Pd,V 3]
AsB -230.6 PdsV  [41] | G3a -239.0 Pd,V  [11]
G3b -308.0 Pd,V [11] [ G4a -236.3 Pd;V  [11]
G4b -259.8 Pd;V  [11] | G4d 1946 PdV  [11]
G4e -253.2 PdV [11] | G5a -322.6 Pd;V, [11]
G6a -293.0 PdV [11] | G6b -206.0 Pd;V  [11]
Géc -306.6 PdV [11] | G6d -249.6 Pd,V  [11]
G6e -203.7 Pd,V  [11] | Gef 2504 PdyV (1]

Table 2.1: Formation energies of ordered structures in the Pd-V fcc system, as com-
puted with the LMTO-ASA method (see text for details). Kn structures refer to
the n-th structure in reference [3] and Gn structures refer to possible ground-state
structures reported in reference [11]. The other structures are identified by either
their prototype structure, their Strukturbericht notation, or a conventional name.
For some structures, alternative names are shown. All the formation energies are in
meV /atom. The composition is expressed by the chemical formula of the structure.
The fourth column contains the reference number where a picture of the structure

can be found.
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is included. This result could not have been obtained with the CW method.

We decided to iaclude clusters beyond the eighth—neighbor pair, to verify the
convergence of the cluster expansion. We included pairs up to the eleventh-neighbor
distance, 5 triplets and 3 quadruplets, for a total of 20 ECI’s (there are two ninth
neighbors not related by symmetry). The empty and point ECI’s are determined by
requiring that the formation energies of fcc-Pd and fcc-V be zero.

The set of 20 ECI’s is fitted imposing the following linear constraints: a) the
cluster expanded formation energies of the ground-state structures in the Pd-rich
side should be within 15 meV/atom of the LMTO values; b) the ground-state line
as predicted by the LMTO results on the Pd-rich side should be reproduced by the
cluster expansion; c¢) the direct energy differences between the Pd-rich structures and
the ground-state line should be well reproduced by the cluster expansion when this
difference is relatively small; and d) the formation energy of the V-rich structures
should be reproduced within 50 meV /atom. The resulting values for the ECI's are
shown in figure 2-6.

These ECI’s capture the essential features of the energetics of the Pd-V system.
Although the pair ECI’s decay with distance, the 8" neighbor ECI’s is rather large.
Our linear programming technique gives clear evidence that this is necessary to re-
produce the LMTO ground-state line. Figure 2-7 shows that this set of ECI's indeed
reproduces the ground-state structures obtained with the LMTO method. The en-
ergy differences between the metastable Pd-rich structures and the ground-state line
are shown in figure 2-8. It can be seen that the important low-lying structures are
better fitted than the high—energy ones.

For comparison, we also used the CW method to fit the same set of ECI's. Even
with the 20 ECT’s used, the CW method failed to correctly reproduce the ground-state
line. Three of the structures (NigMo, AsB and K12) that were above the ground-
state line in the direct LMTO results, are “pushed” below the ground-state line by
the CW cluster expansion. Gf course, a better CW fit could be obtained by adjusting
the weights of the different structures in the least-squares fit (see equation 2.13).
However, in the CW method, there is no systematic way of achieving this, and even
more important, no a-priort knowledge that a good fit is possible. The CW results
are compared to the ones obtained with the new method in figures 2-7 and 2-8.

Since the NijMo and A5B structures are ground states of the CW energy parame-
terization, they would be stable phases in a phase diagram computed with these ECT’s,
contrary to what the LMTO computations predict. The stability of the NiyMo and
AsB phases, and a relatively poor fit to the low—energy metastable structures would
greatly affect the topology of the phase diagram. This problem is naturally avoided
in the new method, requiring that the direct ground-state line and the direct energies
of structures close to it be well reproduced by the cluster expansion.

Before using a cluster expansion (obzained with either the CW method or the new
method) to compute the phase diagram of an alloy system, the ground states of the
system should be computed with the same cluster expansion. If any of the ground
state structures is not within the set of structures used to derive the ECI’s, its cluster
expanded energy should be checked against the direct energy method. If it is not a
ground state in the direct energy method or if its energy is badly reproduced by the
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Figure 2-6: Effective cluster interactions for the Pd-V system computed with the new
method. The pair clusters are indicated with the shell number, while the multi-site

clusters are drawn explicitly.
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Figure 2-7: Ground-state line on the Pd-rich side of the Pd-V system. The cluster
expansion obtained with the new method reproduces the LMTO results, while the
CW method incorrectly produces two extra ground states (A;B and NiyMo) that are
only metastable in the LMTO results. The curves obtained with the new method and
with the CW method have been shifted down by 50 and 100 meV /atom respectively
for clarity.
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Figure 2-8: Energy differences between the Pd-rich structures and the tielines defined
by the sequence fcc-Pd, PtgTi-type, DO4,, MoPty-type, and L1o. On the abscissa,
the Pd-rich structures are ordered in increasing distance to the tielines as obtaired
with the LMTO method. For the LMTO results and the energy parameterization of
the new method these tielines define the ground-state line, and all the energy dif-
ferences are positive. The energy parameterization obtained with the new method
reproduces the ground states and fits the structures with energies close to the ground-
state line better than structures with high energy. The CW results fail to reproduce
the ground states (negative points in this plot) and the fits to the low—energy struc-
tures are worse than the ones obtained with the new method, while the high-energy
structures are well reproduced.
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cluster expansion, the ECI’s should be recomputed including this structure in the set
of structures the cluster expansion is fitted to.

In summary, the new method to get ECI’s from the direct formation energies of
ordered structures overcomes the limitations of the Connolly-Williams approach by
taking into account the relative stabilities of different structures and the ground-
state line of the alloy system. These relative energies can have a strong effect on
the predicted phase diagram of the alloy system, specially for ordering systems with
many structures close to or on the ground-state line. By applying the method to
the Pd-V alloy system, we found that relatively long-range interactions (seventh-
or eighth-neighbor pairs) are needed to reproduce the ground-state line obtained
with the LMTO-ASA method. By truncating the cluster expansion at the eleventh-
neighbor distance, we found a set of ECI’s that reproduces most of the subtle energy
differences in the Pd-V system. Finally, the method can be easily extended to the
k-space formulation [37], and to volume-dependent ECI’s.



Chapter 3

Ground states in alloys

The first step towards understanding the thermodynamic properties of substitutional
alloys is the study of the ground states of the lattice models. The ground-state
structures are the configurations of atoms on the lattice that have lowest energy, and
therefore, are stable at T' = OK.

It is well known, for example, that in the lattice model on the square two—
dimensional lattice, with point and nearest-neighbor pair effective cluster interactions
(ECI’s),! the ground states of the system are all atoms of the same type (ferromag-
netic) or the “checkerboard” ordering (antiferromagnetic), depending on the values
of the ECI's (see figure 3-1). If the lattice is not the square lattice or the range of the
ECP’s is longer than the nearest—neighbor distance, the problem of finding the lowest
energy structures becomes non-trivial.

In this chapter, we explore some of the techniques that have been developed
to solve the general ground-state problem. The ground-state problem for alloys is
characterized in sections 3.1.1 and 3.1.2. The traditional methods used to solve the
ground-state problem, reviewed in section 3.2.1, are based on linear programming
(LP) techniques, and have been very successful at finding the possible ground-state
arrangements for a variety of lattice models. In this chapter, we will take advantage of
the power of the so—called polytope method, together with recently developed LP al-
gorithms, to find approximate solutions for two ground-state problems: binary alloys
on the fcc lattice with first— through fourth-neighbor pair interactions (section 3.2.3),
and ternary alloys on the fcc lattice with first— and second-neighbor pair interactions
(section 3.2.4). To our knowledge, these problems are the largest ground-state prob-
lems solved to date with the polytope method (in a sense to be further specified
below).

Most of the “interesting” alloy systems require relatively long-ranged cluster ex-
pansions for an accurate description of their energetics (e.g., the Pd-V system dis-
cussed in chapter 2). As we will discover throughout this chapter, the complexity
of the polytope method grows with the interaction range, in such a way that the

1This model is equivalent to the original Ising model where the pair ECI is minus the Ising
coupling between spins and the point ECI corresponds to the external magnetic field [60).
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Figure 3-1: Ground-state structures of the Ising model on the square-lattice with
point (V) and nearest-neighbor pair (V,) interactions {E(F) = V)(o;) + 2Va(03)).
The stability map shows the range of interactions for which each of the structures is
the ground state of the system.
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