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Abstract— Pushing is a motion primitive useful to handle
objects that are too large, too heavy, or too cluttered to be
grasped. It is at the core of much of robotic manipulation,
in particular when physical interaction is involved. It seems
reasonable then to wish for robots to understand how pushed
objects move.

In reality, however, robots often rely on approximations
which yield models that are computable, but also restricted and
inaccurate. Just how close are those models? How reasonable
are the assumptions they are based on? To help answer these
questions, and to get a better experimental understanding
of pushing, we present a comprehensive and high-fidelity
dataset of planar pushing experiments. The dataset contains
timestamped poses of a circular pusher and a pushed object,
as well as forces at the interaction. We vary the push interaction
in 6 dimensions: surface material, shape of the pushed object,
contact position, pushing direction, pushing speed, and pushing
acceleration. An industrial robot automates the data capturing
along precisely controlled position-velocity-acceleration trajec-
tories of the pusher, which give dense samples of positions and
forces of uniform quality.

We finish the paper by characterizing the variability of
friction, and evaluating the most common assumptions and
simplifications made by models of frictional pushing in robotics.

I. INTRODUCTION

Pushing is a widely used motion primitive for robotic
manipulation. It can aid in the positioning and reorientation
of parts [1, 2, 3, 4]; facilitate grasping under pose uncertainty
[5] or clutter [6]; or help in the transportation of large or
heavy objects [7, 8]. The mechanics of pushing have also
been used to aid perception, for example to track the pose of
a pushed object [9, 10, 11], to estimate its shape [11], and to
identify inertial parameters such as mass, moment of inertia
or coefficient of friction [12, 13]. All these applications rely
on a good understanding of the mechanics of pushing, which
let us predict how an object moves under a certain push.

At an analytical level, pushing is a well understood
problem. For decades, the mechanics and robotics com-
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munities have developed models to explain the interaction
at the interface between a pushed object and a support
surface [1, 14, 10, 15, 8]. These are usually based on
Coulomb’s friction law, often rewritten as the maximum-
power inequality [16]. In Section II, we summarize these,
and see how they have led to compact and deterministic
models that, under sufficient assumptions, can be used to
explain and control the motion of a pushed object.

The reality, however, is bitter. Predicting the motion of a
pushed object is not trivial. In practice, the sensitivity of the
task to small changes in contact geometry, along with the
variability of friction, hinders accurate predictions.

More recently, data-driven models [17, 7, 18, 19, 20]
have been proposed as an alternative approach to analysis.
Studies are still incipient and either do not offer sufficient
generality, or do not address variability. A lack of common
datasets or benchmarks may explain why learning has not yet
had the same effect that it has in other disciplines, such as
computer vision. Datasets could facilitate research in model
development by enabling evaluation and comparison of so-
lutions. Although robots excel at accuracy and repetition,
capturing large amounts of real data requires setting and
resetting of experiment conditions, which is tedious with
human intervention, and difficult without it. This is in stark
contrast, for example, to collecting digitized daily images for
computer vision research [21].

In this study, we have automated the setting and execution
of controlled pushing experiments, and captured a large high-
fidelity dataset of pushing interactions. The dataset, detailed
in Section III, includes a wide variety of controlled pushes
recorded at a high sample rate with both a force/torque
sensor, and a Vicon tracking system.

The dataset covers variations in surface material, object
shape, contact position, pushing direction, pushing speed,
and pushing acceleration. To our knowledge, this is the
first dataset of this caliber. A significant novelty of the
dataset is that it contains dynamic pushing where the inertial
components have an appreciable effect over frictional forces,
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Fig. 1. Data capturing hardware: A steel pusher is attached to an ATI
force/torque sensor, and driven by an ABB IRB 120 robot arm. The object
(stainless steel block) is instrumented with reflective markers and tracked
with a Vicon motion tracking system. The block slides on top of an
interchangeable support surface.

for which there is little work in the literature. We hope it will
provide a tool for an experimental study of pushing.

In summary, our contributions are:
• A dataset of planar pushing containing time series of

high-fidelity poses of both the pusher and the pushed
object, and forces experienced by the pusher. This yields
more than a million timestamped data points of poses
and forces for each combination of shape and material.

• An evaluation of common assumptions made by analyt-
ical models of pushing in robotics.

II. RELATED WORK

One of the most common assumptions in robotic pushing,
and possibly in robotic manipulation, is quasistatic interac-
tion. In the context of pushing, quasistatic interaction means
that the velocity of the involved objects is small enough
that inertia is negligible. Instantaneous motion is then a
consequence of the balance between contact forces, frictional
forces, and gravity. The quasistatic assumption makes the
problem more tractable, yielding simpler models, and is a
reasonable assumption for the scales and speeds in much of
robotic manipulation [22].

Mason [1] starts the line of work on pushing by proposing
a voting theorem to determine the rotation direction of a
pushed object. Goyal et al. [16] propose a limit surface
representation to map motions and frictional forces of a
sliding object. These serve as the foundation of much
subsequent work on pushing. Lee and Cutkosky [23] pro-
pose to approximate the limit surface as an ellipsoid to
improve computational time. Lynch et al. [24] apply the
ellipsoidal approximation to derive a closed-form analytical

TABLE I
ASSUMPTIONS AND APPROXIMATIONS MADE IN PRIOR WORK

Condition Work examples
Uniform friction* [all]
Known pressure distribution [16, 24, 23, 6]
Known center of friction [1]
(the centroid of pressure distribution)
Coulomb friction* [1, 24, 10, 3, 26, 6]
Maximum power inequality* [all]
(generalized Coulomb friction)
Quasistatic interaction [24, 1, 3, 6]
Ellipsoidal limit surface* [23, 24]
Sliding (frictionless) pushing [10]
Sticking (infinite friction) pushing [8]
* Conditions that we explicitly validate in this paper.

solution for quasistatic pushing, including both sticking and
sliding behaviors. Howe and Cutkosky [25] explore more
approximation methods of limit surfaces, and provide a
guide for choosing between them based on the pressure
distribution, computation cost and accuracy. These models
provide functional representations of Coulomb’s friction law,
and the maximum power inequality [16]. We find practical
use cases, for example, for stable pushing of a planar object
with a fence-shaped finger [3], for planning robust push-
grasps for objects in clutter [6], and for planning in-hand
manipulation with patch contacts [26].

Peshkin and Sanderson [14] address the uncertainty in
pushing by sampling all possible pressure distributions and
predicting a range of possible object motions. Jia and Erd-
mann [10] investigate dynamic pushing but assume fric-
tionless interaction between pusher and object. Behrens [8]
instead studies dynamic pushing assuming infinite friction
between pusher and object. Table I summarizes these works
along with their assumptions and approximations. In this
paper we explicitly validate the assumptions marked with
an asterisk (*).

III. THE PUSHING DATASET

This dataset records the poses of a pusher and a pushed
object together with the interaction forces for a variety
of pushing experiments. Variations in experiments cover 6
dimensions: object shape, surface material, pusher direction,
pusher speed, pusher acceleration, and initial contact posi-
tion. This section describes these dimensions, which are also
summarized in Table II. For extended details, refer to the
dataset website [27]:
· Shape. Different shapes can give us insights into

phenomena such as the dependence of friction with
variations in the support pressure distribution. We use
3 rectangles with different aspect ratios (rect1-3),
3 right triangles with different skews (tri1-3), 3
ellipses with different eccentricities (ellip1-3), 1
hexagon (hex), and 1 butterfly shape (butter). See
Table III for dimensions and other physical properties.
All objects are fabricated in stainless steel, and bead
blasted to give a rough finish free of burrs.· Surface material. The support surface where the object
slides is of great importance as it dictates the frictional



TABLE II
SUMMARY OF DIMENSIONS EXPLORED IN THE DATASET.

Shape
rect1, rect2, rect3, hex, ellip1, ellip2, ellip3 , butter , tri1, tri2, tri3

Surface abs, derlin, polywood, pu
Speed (mm/s) 10, 20, 50, 75, 100, 150, 200, 300, 400, 500
Acceleration (ms−2) 0, 0.1, 0.2, 0.5, 0.75, 1, 1.5, 2, 2.5
Initial contact 33 points for tri1-3 and hex, 40 for ellip1-3 and butter, and 44 for rect1-3
Initial push direction 0◦, 20◦, 40◦, 60◦, 80◦, -20◦, -40◦, -60◦, -80◦

interaction with the object. We experiment with four
surfaces: i) ABS, ii) Delrin, iii) plywood, and iv)
polyurethane (hardness 80A durometer). The first two
are widely used hard plastics. The third is a softer
material and the fourth has a rubber-like texture. We
will refer to the materials as abs, delrin, plywood,
and pu respectively throughout the paper. In section V
and VI, we characterize relevant frictional properties of
these surfaces.· Speed. Speed dictates the regime in which the object
moves: quasistatically (negligible inertia) or dynami-
cally (meaningful inertia). We explore pusher trajecto-
ries with constant speeds: 10, 20, 50, 75, 100, 150, 200,
300, 400, and 500 mm/sec.· Acceleration. The acceleration of the pusher is a rel-
atively unexplored dimension. We capture interactions
both with constant speed (zero acceleration) and with
constant accelerations 0.1, 0.2, 0.5, 0.75, 1, 1.5, 2, and
2.5 ms−2 starting from rest.· Contact position. Each object is pushed at a number
(between 33 and 44) of evenly-spaced contact locations.· Push direction. For each contact location we vary the
direction of the push between -80◦ to 80◦ around the
contact normal with increments of 20◦, for a total of 9
directions.

Each experiment executes an open-loop pusher trajectory
in the reference frame of the initial pose of the object, leading
to evolving contact geometry between object and pusher.
The trajectory is executed and recorded at 250 Hz, which
allows us to explore different contact interactions efficiently,
including transitions between sticking and sliding.

The experiments are position controlled in preference
to force controlled for three reasons: First, the position,
speed and acceleration of the pusher can be controlled very
accurately with an industrial robot, whereas force sensors
typically have much lower signal-to-noise ratio; Second,
controlling the force between pusher and object is challeng-
ing because it is constrained by friction, and errors in the
friction coefficient can lead to unexpected trajectories; Third,
although we do not control force directly, we record the force
and pose of the object at a high frame rate. The data is still
useful to study the relation between forces and motions.

IV. DATA COLLECTION SPECIFICATIONS

In this section we detail the data collection system and the
automated process designed to record the pushes. Figure 1
shows the setup: a 6 DOF industrial robotic manipulator
equipped with a stiff cylindrical rod acting as a pusher.

A. Hardware

Robot. The system uses an ABB IRB 120 industrial robotic
arm with 6 DOF to control precisely the position, velocity
and acceleration of its tool center point (TCP). The robot
has a horizontal reach of 580 mm and a payload of 3 kg,
which is sufficient since the pushed objects have a mass in
the order of 1 kg.

Force sensing. We use an ATI Gamma force-torque sensor
rigidly attached to the 6th link of the robot to measure the
reaction force from the object on the pusher. The sensor
has high sensitivity with force resolution of 1/160 N in
the pushing plane, and torque resolution of 1/2000 N·m
perpendicular to the pushing plane.

Motion sensing. We track the pose of the object with a Vicon
motion tracking system, composed of 5 Bonita cameras with
a wide field of view. Each object is fitted with 4 reflective
markers. Although 3 are in theory sufficient, in practice 4
asymmetric markers give more stable readings.

The noise in the recording system is quite small. The
accuracy of the object position depends on the accuracy of
the Vicon system, which is below 0.5 mm for translation and
0.5◦ for rotation. The pose of the pusher is directly given by
the robot, with an accuracy of 0.1 mm.

Pusher. The robot is equipped with a stiff cylindrical steel
pusher, mounted on and perpendicular to the measurement
plate of the force-torque sensor. The pusher has length
156 mm and diameter 9.5 mm, which we found to be a
good trade-off to minimize occlusions and provide rigidity.

Objects. We use a total of 11 objects, all water-jet cut in
stainless steel for durability. They are bead blasted to remove
burrs, retaining a more realistic “rough” surface. Object mass
ranges between 0.75 and 1.4 kg depending on the shape. All
objects are 13 mm thick. The friction coefficient between
the pusher and the object is approximately 0.25, which was
determined using a traditional variable slope experiment.



TABLE III
SET OF OBJECTS IN THE DATASET. PHYSICAL PROPERTIES.

Object Mass (g) Dimension (mm) Moment of
inertia (g·m2)

rect1 837 w:90, h:90 1.13
rect2 1045 w:90, h:112.5 1.81
rect3 1251 w:90, h:135 2.74
hex 983 circumradius: 60.5 1.50
ellip1 894 w:105, h:105 1.23
ellip2 1110 w:105, h:130.9 1.95
ellip3 1334 w:105, h:157 2.97
butter 1197 w1:95.3, w2:54.7, h: 156 2.95
tri1 803 leg1: 125.9, leg2: 125.9 1.41
tri2 983 leg1: 125.9, leg2: 151.0 2.11
tri3 1133 leg1: 125.6, leg2: 176.5 2.96

B. Software

To facilitate integration of various components such as
robot control, force-torque sensor, and motion tracker, we use
the Robot Operating System (ROS) framework. Data streams
(robot pose, object pose and force-torque) are published as
ROS topics and recorded at 250 Hz. The experiments are
logged as ROS bag files and parsed into HDF5 and JSON
format. Refer to [27] for more format details.

C. Data Collection Process

The pushing experiments follow these steps:
1. The tracker locates the object.
2. The robot executes an open-loop straight push along

a predefined position-velocity-acceleration trajectory, in
the initial reference frame of the object. The Vicon
tracker and force-torque sensor record the interaction.

3. If needed, the robot resets the location of the object by
dragging it to approximately the center of the plate.

4. Iterate.
The reset mechanism, key for capturing a very large number
of experiments, is implemented by a thick tapered washer on
the top of the object, that allows the pusher to easily drag
the object in the plane.

The pusher starts in contact with the object and follows a
straight line of 5 cm. The figure under the paper title shows
6 examples of straight-line pushes.

The data collection results in an approximate total of
6,000 pushes per object and surface. Each push produces
an average of 200 timestamped interactions. In total, the
experiments yield more than a million triples of pusher
motion, object motion and pushing force.

V. VARIABILITY OF DYNAMIC SURFACE FRICTION

To support the previous dataset, we have conducted a
series of experiments to characterize surface friction. In
particular we are interested in studying the variability of the
effective coefficient of friction with respect to these factors
of a sliding motion:

1) location,
2) repetition,
3) speed, and
4) direction.

Fig. 2. Cage for experiments of variability of surface friction. When
engaged (right) the object fits loosely in the cage. The force-torque sensor
measures both the force and moment of friction in the plane.

To study these effects we design the cage in Figure 2 to
push the rectangle rect1 in a controlled manner. The cage
does not clamp the object but traps it, with a small gap (<
1 mm) between object and cage. This gives the robot full
control over the object sliding motion. We are interested
in characterizing the dynamic friction force between the
object and the surface, measured as the reaction force in
the horizontal plane on the force/torque sensor at the robot
wrist. We define then the theoretical dynamic coefficient of
friction (DCoF) as the ratio between the measured reaction
force ff and the supporting normal force fn, DCoF =

ff
fn

.
In the experiments, the robot performs line scanning mo-

tions tailored to exploring specific dimensions: 1) location,
2) repetition, 3) speed and 4) direction. For dimensions 1-3)
in each pass of the scan, the robot pushes the block from
left to right and back to the starting point. It then moves
down to transit to the next scanline. Neighboring scanlines
are separated by 5 mm for 1) for high spatial resolution,
and 100 mm for 2) and 3) for non-overlapping scans. All
scanlines for 4) follow the diameters of a circle at the surface
center. Data for 1), 2), and 4) are captured at a speed of 20
mm/s; for 3), we conduct 10 scans for each of the 10 speeds
described in Section III.

1) Spatial variability. Surface imperfections yield variation
in the DCoF. Figure 3a shows the spatial distributions
recovered for all four surfaces. The areas mapped are approx-
imately 20 cm by 40 cm. It is interesting to note that even
seemingly smooth and uniform materials such as delrin
have distinguishable differences on the surface. Figure 3b
shows the histogram of the measured DCoF for each surface
material. Sorting their standard deviation from low to high,
we have delrin: 0.016, abs: 0.017, plywood: 0.024,
and much larger pu: 0.064. Interestingly, the histograms
resemble Gaussian distributions which could be considered
as a basic model for frictional sliding.
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Fig. 3. a) Spatial distribution of the coefficient of friction (DCoF) for four materials. The darker the color, the higher the coefficient. b) Histogram of the
same distributions.
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Fig. 4. Evolution of the coefficient of friction (DCoF) over 100 scans,
for four different materials. Note that abs and delrin have a relatively
short break-in phase, plywood does not stop degrading, and pu is more
resistant to abrasion.

2) Temporal variability. A surface generally becomes
smoother after being repeatedly rubbed in a polishing pro-
cess. Similarly, sliding objects polish the surface they slide
on and therefore change its effective DCoF. Here we quantify
the polishing effect on newly purchased surfaces. Figure 4
shows a decreasing trend of the effective DCoF for all
materials. This effect is sometimes called break-in. After 100
scans, their respective DCoFs change like:

• abs: 0.15 to 0.13 (-13.6%);
• delrin: 0.16 to 0.12 (-22.2%);
• plywood: 0.28 to 0.24 (-11.3%);
• pu: 0.29 to 0.28 (-2.3%).
We observe that delrin and abs have an appreciable

break-in period after which the DCoF converges to an almost
constant value. For plywood, the break-in period is much
longer. For pu, the break-in period is almost non-existent,
hinting that for the range of forces we consider, there is
almost no degradation of the material over time. Indeed, the
type of polyurethane we used is abrasion-resistant.

3) Speed variability. Coulomb friction states that the mag-
nitude of the friction force should not depend on the object

0 100 200 300 400 500
Speed (mm/s)

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t

of
fr

ic
ti

on

abs delrin plywood pu

Fig. 5. Change of the coefficient of friction (DCoF) with sliding speed of
the object.

sliding speed. Figure 5 shows the results for experiments
conducted with different speeds. Indeed, delrin, abs and
plywood present little variability of DCoF with speed. The
DCoF of pu however, increases up to 1.0 for high speeds.
The phenomenon is already observed in [28] for rubbers,
and [29] states that pu possess this characteristic. Coulomb
friction then would not be a good approximation when the
speed of experiments spans a wide range.

4) Direction variability. When a material presents friction
independent of the sliding direction, we say it is isotropic;
otherwise, anisotropic. To test it, we perform successive
scans where we force the object to slide through the center
of the plate in different directions. Figure 6 shows the set of
friction forces collected. An isotropic material would show
a circular force profile. The figure shows that abs and
delrin are close to isotropic, plywood slightly less, and
pu the least. For pu, the ratio between the largest friction and
the smallest is around 3/2, which is a significant difference.
This could explain, in part, the large standard deviation of
the DCoF observed in Figure 3b since scans are run forward
and backward.
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VI. EVALUATION OF MODELS OF FRICTIONAL SLIDING

In this section we study whether:
1) frictional sliding follows the maximum-power inequal-

ity, a.k.a. maximum dissipation principle;
2) the limit surface of a particular material can be well

approximated by an ellipsoid.
We conduct experiments with the same setup as in Sec-

tion V, with all scans passing through the center of the
plate. To analyze the behavior of the frictional sliding wrench
(force and torque), we conduct experiments controlling the
instantaneous sliding twist of the object (linear and angular
velocity) as it passes through the center of the plate.

To achieve this we generate trajectories with different
ratios of translation and rotation velocity. We perform linear
scans that approach the center of the plate at different
angles in increments of 5◦ and from a starting distance
from the center ∈ {50, 25, 12.5, 0} mm. For each scan, the
object rotates between angles θ and −θ where we vary
θ ∈ {−88◦ . . . 88◦} with increments of 4◦.

1) Principle of maximum-power inequality. The curves in
Figure 6 are known as limit curves (LC), i.e., the set of all
possible frictional forces between object and surface material
in pure translational sliding. The principle of maximum-
power inequality [16] states that the resolution of frictional
force and sliding motion is such that dissipation of power
will be maximized. We can state the principle as:

∀f∗ ∈ LC, (f − f∗) · v ≥ 0,

where f and v are the friction force and sliding velocity at
contact, and f∗ is any other friction force in the LC.

In a general contact/friction problem, this principle is
difficult to resolve, since it is a constraint that involves
both forces and motions [26]. In our experiments, however,
we force a particular velocity on the object. Then it is
straightforward to verify if ∆P = f · v −maxj(fj · v) ≥ 0,

0 50 100 150 200 250 300 350

Sliding direction (deg)

−3 .0

−2 .0

−1 .0

0 .0

∆
P

(m
*N

/s
)

abs delrin plywood pu

Fig. 7. Difference between power dissipated and maximum dissipable
power (∆P ) for the squared object rect1 sliding along different directions.
The maximum power inequality expresses that ∆P should be zero.

where j spans all points in the LC. To avoid issues with the
different types of frictional variability discussed Section V,
we only use data for the object passing through a particular
point of interest.

Figure 7 shows ∆P for experiments with different di-
rection when passing through the center of the plate. All
materials except for pu, yield ∆P very close to 0. For pu,
there are 2 regions where ∆P is significantly less than 0.
They correspond to the abrupt transitions at the top and
bottom of its limit curve in Figure 6.

2) Limit surface and ellipsoidal approximation. A slid-
ing planar object can both translate and rotate. The corre-
sponding frictional wrench will have then both force and
torque components. The limit curve (LC) discussed above
generalizes into a limit surface (LS), the 2D set of frictional
wrenches in the 3D wrench space that a surface can exert on
a sliding object. Figure 8a shows a simple visualization of
that limit surface. Similar to the LC, the LS works as follows:
If the object is sliding, the friction wrench lies on the LS;
otherwise, it lies strictly inside the LS. The maximum-power
inequality dictates then that the motion corresponding to a
particular frictional force must be orthogonal to the LS at
that point [16].

For computational reasons, the LS is occasionally ap-
proximated as an ellipsoid [25]. Here we verify that ap-
proximation by constructing the real limit surface from real
measurements. Figure 8b shows the recovered LS for four
materials. We fit an ellipsoid to that data, by assuming
it is centered at the origin, and estimating the moment
magnitude from pure rotational motion and force magnitude
from pure translational motion. The shade region shows the
2σ uncertainty region.

Observe that the real limit surface is closer to thicker
noisier ring. We can also see that the underlying curve of
the data resembles an ellipse but not exactly. Finally, we
observe that delrin has the most symmetric LS, abs and
plywood are slightly biased toward the left side, possibly
due to slight anisotropy, and pu resembles very little to an
actual LS.
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Fig. 8. (a) Conceptual limit surface. The set of all possible frictional
wrenches (force/torques) that the sliding object can receive from the surface
(b) Experimental set of frictional force/torques exerted on the sliding object
rect1 by different materials, and best ellipsoidal fitting, in the fx-m plane.

VII. STOCHASTICITY OF PUSHING MOTION

Experiments in Section V show that friction expresses a
degree of variability in several dimensions, including space,
time, speed and direction. If we want to use simple models,
that will not be overconfident about frictional behavior, one
could treat friction as a stochastic process. Here, we describe
how the uncertainty looks like and motivate further in-depth
studies to gain insight about the following questions:

• Does the object motion distribution appear Gaussian?
• How wide is it?
• Are the predictions from models in use close to the

experimental behavior?
• Is the distribution dependent on the surface material?
To do so, we repeat a particular straight-line push experi-

ment 2,000 times. The particular settings are:
• shape: rect1;
• contact location: half way in between the center and

edge of the block side;
• contact angle: normal direction;
• speed: 20 mm/s (quasistatic speed);
• acceleration: 0 mm/s2;
• surface: all 4 materials;
• pusher displacement: 15 cm.

For parsing the results, we denote the object trajectory
as starting from (x, y, θ) = (0, 0, 0), and ending at

TABLE IV
DISTRIBUTION OF OBJECT DISPLACEMENTS AFTER REPEATED PUSHES

Surface Mean Trans. std Rot. std
(mm, mm, deg) (mm) (deg)

abs (40.1, -67.6, 74.7) 5.5 (7.1%) 3.2 (4.3%)
delrin (38.8, -50.7, 78.5) 3.4 (5.2%) 1.3 (1.6%)
plywood (36.4, -93.6, 70.2) 8.1 (8.0%) 4.2 (6.0%)
pu (40.2, -85.0, 69.3) 11.7 (12.5%) 4.5 (6.5%)
simulator [24] (41.0, -98.1, 66.3) N/A N/A

30 35 40 45 50
∆x (mm)

−100 −80 −60 −40
∆y (mm)

50 60 70 80 90
∆θ (degree)

Fig. 10. Histogram of displacements ∆x, ∆y, and ∆θ produced by the
2000 pushes in Figure 9.

(∆x,∆y,∆θ). Figure 9 shows the resulting trajectories. The
distribution of final poses seems to have at least three modes,
and its shape is clearly not Gaussian. Table IV shows the
standard deviation (std) of ending poses, which depends
on the surface type. We normalize the error by the mean
displacement to get an error rate (%). Qualitatively the
standard deviation is related to the characterization of friction
variability in Section V. It would be interesting to further
investigate what is the nature of that relationship.

Figure 9 also shows a comparison of the mean experimen-
tal trajectory and the prediction by a model driven simulator
[24]. They look quite different. Thus, another interesting
future direction is to better evaluate those differences, in
particular, under what conditions the predictions of a simple
deterministic model are reasonable.

Experiments show that even when trying to replicate the
same initial conditions with an accurate vision system and
an accurate robot, a determined pushing interaction yields
appreciable and structured uncertainty at the outcome. This
motivates further investigation of effective ways to take into
account uncertainty or variability in friction.

VIII. CONCLUSION

This paper presents a large and high-fidelity experimental
dataset of planar pushing interactions. The data spans six
different dimensions of the pushing problem: the shape of
the pushed object, the material of the surface where it
slides, the location of contact between pusher and slider,
and the direction, velocity, and acceleration along which the
pusher moves. Overall, these generate more than a million
timestamped samples of positions of pusher and slider, as
well as interaction forces.

We also describe and evaluate the most common assump-
tions and approximations used in models of planar pushing.
The results say that while some assumptions such as the



(a) (b) (c)

Fig. 9. Example of 2000 pushes of object rect1 on surface material abs. (a) Mean object trajectory. The thick solid line traces the center of mass of
the object. (b) Comparison with simulated trajectory (dashed line) with the model in [24]. The experiment yields a significant difference. (c) Distribution
of the final locations of the center of mass of the object. Note the multi-modality.

maximum power inequality are generally good representa-
tions of the relationship between the directions of friction
and motion, other assumptions are not equally respected. In
particular the ratio between the magnitudes of normal force
and friction force at contact (i.e. the coefficient of friction)
is not necessarily constant, and the ratio changes in space,
with orientation, with velocity, and with time. As expected,
materials that are harder yield slightly better approximations.

Our current and future work include leveraging this dataset
to develop more accurate semi-parametric and stochastic
models of frictional pushing; investigating its use in the
context of simulation, planning, and control; as well as
continued efforts in collecting experimental data for pre-
hensile [30] and non-prehensile [12] contact interactions.
Of particular interest are out-of-plane motions that involve
different manipulation actions such as rolling or toppling.

Our long term goal is to steer away from a manipulation
paradigm that relies heavily on open loop executions of
motions that are planned with simple deterministic models
of frictional interaction.
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