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Abstract
The K-means algorithm is one of the most popular clustering algorithms in current use as it

is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use

entails certain restrictive assumptions about the data, the negative consequences of

which are not always immediately apparent, as we demonstrate. While more flexible algo-

rithms have been developed, their widespread use has been hindered by their computa-

tional and technical complexity. Motivated by these considerations, we present a flexible

alternative to K-means that relaxes most of the assumptions, whilst remaining almost as

fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirich-

let process mixtures), is statistically rigorous as it is based on nonparametric Bayesian

Dirichlet process mixture modeling. This approach allows us to overcome most of the limi-

tations imposed by K-means. The number of clusters K is estimated from the data instead

of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous

data, the MAP-DP framework can be applied to many kinds of data, for example, binary,

count or ordinal data. Also, it can efficiently separate outliers from the data. This additional

flexibility does not incur a significant computational overhead compared to K-means with

MAP-DP convergence typically achieved in the order of seconds for many practical prob-

lems. Finally, in contrast to K-means, since the algorithm is based on an underlying statisti-

cal model, the MAP-DP framework can deal with missing data and enables model testing

such as cross validation in a principled way. We demonstrate the simplicity and effective-

ness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of

diseases known as parkinsonism.
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1 Introduction

The rapid increase in the capability of automatic data acquisition and storage is providing a
striking potential for innovation in science and technology. However, extractingmeaningful
information from complex, ever-growing data sources poses new challenges. This motivates
the development of automated ways to discover underlying structure in data. The key infor-
mation of interest is often obscured behind redundancy and noise, and grouping the data into
clusters with similar features is one way of efficiently summarizing the data for further analy-
sis [1]. Cluster analysis has been used in many fields [1, 2], such as information retrieval [3],
socialmedia analysis [4], neuroscience [5], image processing [6], text analysis [7] and bioin-
formatics [8].

Despite the large variety of flexible models and algorithms for clustering available, K-means
remains the preferred tool for most real world applications [9]. K-means was first introduced
as a method for vector quantization in communication technology applications [10], yet it is
still one of the most widely-used clustering algorithms. For example, in discovering sub-types
of parkinsonism, we observe that most studies have used K-means algorithm to find sub-types
in patient data [11]. It is also the preferred choice in the visual bag of words models in auto-
mated image understanding [12]. Perhaps the major reasons for the popularity of K-means are
conceptual simplicity and computational scalability, in contrast to more flexible clustering
methods. Bayesian probabilistic models, for instance, require complex sampling schedules or
variational inference algorithms that can be difficult to implement and understand, and are
often not computationally tractable for large data sets.

For the ensuing discussion, we will use the following mathematical notation to describe
K-means clustering, and then also to introduce our novel clustering algorithm. Let us denote
the data as X = (x1, . . ., xN) where each of the N data points xi is a D-dimensional vector. We
will denote the cluster assignment associated to each data point by z1, . . ., zN, where if data
point xi belongs to cluster k we write zi = k. The number of observations assigned to cluster
k, for k 2 1, . . ., K, is Nk and N � i

k is the number of points assigned to cluster k excluding point
i. The parameter � > 0 is a small threshold value to assess when the algorithm has converged
on a good solution and should be stopped (typically � = 10−6). Using this notation, K-means
can be written as in Algorithm 1.

To paraphrase this algorithm: it alternates between updating the assignments of data points
to clusters while holding the estimated cluster centroids, μk, fixed (lines 5-11), and updating the
cluster centroids while holding the assignments fixed (lines 14-15). It can be shown to find
some minimum (not necessarily the global, i.e. smallest of all possible minima) of the following
objective function:

E ¼
1

2

XK

k¼1

X

i:zi¼k

jjxi � mkjj
2

2
ð1Þ

with respect to the set of all cluster assignments z and cluster centroids μ, where 1

2
jj:jj

2

2
denotes

the Euclidean distance (distance measured as the sum of the square of differences of coordi-
nates in each direction). In fact, the value of E cannot increase on each iteration, so, eventually
E will stop changing (tested on line 17).

Perhaps unsurprisingly, the simplicity and computational scalability of K-means comes at a
high cost. In particular, the algorithm is based on quite restrictive assumptions about the data,
often leading to severe limitations in accuracy and interpretability:

MAP-DP: K-Means Alternative
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1. By use of the Euclidean distance (algorithm line 9) K-means treats the data space as isotropic
(distances unchanged by translations and rotations). This means that data points in each
cluster are modeled as lying within a sphere around the cluster centroid. A sphere has the
same radius in each dimension. Furthermore, as clusters are modeled only by the position
of their centroids, K-means implicitly assumes all clusters have the same radius. When this
implicit equal-radius, spherical assumption is violated, K-means can behave in a non-intui-
tive way, even when clusters are very clearly identifiable by eye (see Figs 1 and 2 and discus-
sion in Sections 5.1, 5.4).

2. The Euclidean distance entails that the average of the coordinates of data points in a cluster
is the centroid of that cluster (algorithm line 15). Euclidean space is linear which implies
that small changes in the data result in proportionately small changes to the position of the
cluster centroid. This is problematic when there are outliers, that is, points which are unusu-
ally far away from the cluster centroid by comparison to the rest of the points in that cluster.
Such outliers can dramatically impair the results of K-means (see Fig 3 and discussion in
Section 5.3).

3. K-means clusters data points purely on their (Euclidean) geometric closeness to the cluster
centroid (algorithm line 9). Therefore, it does not take into account the different densities of
each cluster. So, because K-means implicitly assumes each cluster occupies the same volume

Table 1.

Algorithm 1: K-means Algorithm 2: MAP-DP(spherical Gaussian)

Input x1, . . ., xN: D-dimensional data

� > 0: convergence threshold

K: number of clusters

x1, . . ., xN: D-dimensional data

� > 0: convergence threshold

N0: prior count

ŝ2: spherical cluster variance

s2
0
: prior centroid variance

μ0: prior centroid location

Output z1, . . ., zN: cluster assignments

μ1, . . ., μK: cluster centroids

z1, . . ., zN: cluster assignments

K: number of clusters

1 Set μk for all k 2 1, . . ., K 1 K = 1, zi = 1 for all i 2 1, . . ., N

2 Enew =1 2 Enew =1

3 repeat 3 repeat

4 Eold = Enew 4 Eold = Enew

5 for i 2 1, . . ., N 5 for i 2 1, . . ., N

6 for k 2 1, . . ., K 6 for k 2 1, . . ., K

7 7
s� ik ¼

1

s2
0

þ 1

ŝ2 N� ik
� �� 1

8 8 m� ik ¼ s� ik
m0

s2
0

þ 1

ŝ2

P
j:zj¼k;j6¼i

xj
� �

9 di;k ¼
1

2
jjxi � mk jj

2

2
9 di;k ¼

1

2ðs� i
k
þŝ2Þ
jjxi � m� ik jj

2

2
þ D

2
lnðs� ik þ ŝ2Þ

10 10 di;Kþ1 ¼
1

2ðs2
0
þŝ2Þ
jjxi � m0jj

2

2
þ D

2
lnðs2

0
þ ŝ2Þ

11 zi ¼ arg mink21;...;Kdi;k 11 zi ¼ arg mink21;...;Kþ1½di;k � lnN� ik �

12 12 if zi = K + 1

13 13 K = K + 1

14 for k 2 1, . . ., K 14

15 mk ¼
1

Nk

P
j:zj¼k
xj 15

16 Enew ¼
PK

k¼1

P
i:zi¼k
di;k 16

Enew ¼
X K

k ¼ 1

X

i : zi ¼ k
di;k � KlnN0 �

XK

k¼1
logGðNkÞ

17 until Eold − Enew < � 17 until Eold − Enew < �

doi:10.1371/journal.pone.0162259.t001
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in data space, each cluster must contain the same number of data points. We will show later
that even when all other implicit geometric assumptions of K-means are satisfied, it will fail
to learn a correct, or even meaningful, clustering when there are significant differences in
cluster density (see Fig 4 and Section 5.2).

4. The number K of groupings in the data is fixed and assumed known; this is rarely the case
in practice. Thus, K-means is quite inflexible and degrades badly when the assumptions
upon which it is based are even mildly violated by e.g. a tiny number of outliers (see Fig 3
and discussion in Section 5.3).

Some of the above limitations of K-means have been addressed in the literature. Regarding
outliers, variations of K-means have been proposed that use more “robust” estimates for the
cluster centroids. For example, the K-medoids algorithm uses the point in each cluster which is
most centrally located. By contrast, in K-medians the median of coordinates of all data points
in a cluster is the centroid. However, both approaches are far more computationally costly than
K-means. K-medoids, requires computation of a pairwise similarity matrix between data points
which can be prohibitively expensive for large data sets. In K-medians, the coordinates of

Fig 1. Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data, with

unequal cluster radii and density. The clusters are well-separated. Data is equally distributed across

clusters. Here, unlike MAP-DP, K-means fails to find the correct clustering. Instead, it splits the data into

three equal-volume regions because it is insensitive to the differing cluster density. Different colours indicate

the different clusters.

doi:10.1371/journal.pone.0162259.g001

Fig 2. Clustering solution obtained by K-means and MAP-DP for synthetic elliptical Gaussian data.

All clusters share exactly the same volume and density, but one is rotated relative to the others. There is no

appreciable overlap. K-means fails because the objective function which it attempts to minimize measures

the true clustering solution as worse than the manifestly poor solution shown here.

doi:10.1371/journal.pone.0162259.g002

MAP-DP: K-Means Alternative
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cluster data points in each dimension need to be sorted, which takes much more effort than
computing the mean.

Provided that a transformation of the entire data space can be found which “spherizes” each
cluster, then the spherical limitation of K-means can be mitigated. However, for most situa-
tions, finding such a transformation will not be trivial and is usually as difficult as finding the
clustering solution itself. Alternatively, by using the Mahalanobis distance, K-means can be

Fig 3. Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data, with

outliers. All clusters have the same radii and density. There are two outlier groups with two outliers in each

group. K-means fails to find a good solution where MAP-DP succeeds; this is because K-means puts some

of the outliers in a separate cluster, thus inappropriately using up one of the K = 3 clusters. This happens

even if all the clusters are spherical, equal radii and well-separated.

doi:10.1371/journal.pone.0162259.g003

Fig 4. Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data. Cluster

radii are equal and clusters are well-separated, but the data is unequally distributed across clusters: 69% of

the data is in the blue cluster, 29% in the yellow, 2% is orange. K-means fails to find a meaningful solution,

because, unlike MAP-DP, it cannot adapt to different cluster densities, even when the clusters are spherical,

have equal radii and are well-separated.

doi:10.1371/journal.pone.0162259.g004
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adapted to non-spherical clusters [13], but this approach will encounter problematic computa-
tional singularities when a cluster has only one data point assigned.

Addressing the problem of the fixed number of clusters K, note that it is not possible to
choose K simply by clustering with a range of values of K and choosing the one which mini-
mizes E. This is because K-means is nested: we can always decrease E by increasing K, even
when the true number of clusters is much smaller than K, since, all other things being equal,
K-means tries to create an equal-volume partition of the data space. Therefore, data points find
themselves ever closer to a cluster centroid as K increases. In the extreme case for K = N (the
number of data points), then K-means will assign each data point to its own separate cluster
and E = 0, which has no meaning as a “clustering” of the data. Various extensions to K-means
have been proposed which circumvent this problem by regularization over K, e.g. Akaike(AIC)
or Bayesian information criteria (BIC), and we discuss this in more depth in Section 3).

So far, we have presented K-means from a geometric viewpoint. However, it can also be
profitably understood from a probabilistic viewpoint, as a restricted case of the (finite) Gauss-
ian mixture model (GMM). This is the starting point for us to introduce a new algorithm
which overcomes most of the limitations of K-means described above.

This new algorithm, which we call maximum a-posteriori Dirichlet process mixtures
(MAP-DP), is a more flexible alternative to K-means which can quickly provide interpretable
clustering solutions for a wide array of applications.

By contrast to K-means, MAP-DP can perform cluster analysis without specifying the num-
ber of clusters. In order to model K we turn to a probabilistic framework where K grows with the
data size, also known as Bayesian non-parametric(BNP) models [14]. In particular, we use
Dirichlet process mixture models(DP mixtures) where the number of clusters can be estimated
from data. To date, despite their considerable power, applications of DP mixtures are somewhat
limited due to the computationally expensive and technically challenging inference involved [15,
16, 17]. Our new MAP-DP algorithm is a computationally scalable and simple way of perform-
ing inference in DP mixtures. Additionally, MAP-DP is model-basedand so provides a consis-
tent way of inferringmissing values from the data and making predictions for unknown data.

As a prelude to a description of the MAP-DP algorithm in full generality later in the paper, we
introduce a special (simplified) case, Algorithm 2, which illustrates the key similarities and differ-
ences to K-means (for the case of spherical Gaussian data with known cluster variance; in Section
4 we will present the MAP-DP algorithm in full generality, removing this spherical restriction):

• The number of clusters K is not fixed but inferred from the data. The algorithm is initialized
with K = 1 and all data points assigned to one cluster (MAP-DP algorithm line 1). In the
assignment step (algorithm line 11), a choice is made between assigning the current data
point to one of the existing clusters (algorithm line 9) or assigning it to a prior cluster located
at μ0 with variance s2

0 (algorithm line 10). When s� ik � s2
0 and the current data point is the

same distance from μ0 and from the current most likely cluster centroid m� ik , a new cluster is
created (algorithm lines 12, 13) only if the prior count (concentration) parameter N0 > N � ik .
In other words, all other things being geometrically similar, only the relative counts of the
number of data points in each cluster, and the prior count, determines whether a new cluster
is created or not. By contrast, if s� ik is very different from s2

0, then the geometry largely deter-
mines the creation of new clusters: if a data point is closer to the prior location μ0 than to any
other most likely existing cluster centroid, m� ik , then a new cluster is created.

• In this spherical variant of MAP-DP, as with K-means, the Euclidean metric 1

2
jj:jj

2
2

is used

to compute distances to cluster centroids (algorithm lines 9, 10). However, in MAP-DP, the

MAP-DP: K-Means Alternative
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log of N � ik is subtracted from this distance when updating assignments (algorithm line 11).
Also, the composite variance s� ik þ ŝ2 features in the distance calculations such that the
smaller s� ik þ ŝ2 becomes, the less important the number of data points in the cluster N � ik
becomes to the assignment. In that case, the algorithm behaves much like K-means. But, if
s� ik þ ŝ2 becomes large, then, if a cluster already has many data points assigned to it, it is
more likely that the current data point is assigned to that cluster (in other words, clusters
exhibit a “rich-get-richer” effect).MAP-DP thereby takes into account the density of clusters,
unlike K-means. We can see s� ik þ ŝ2 as controlling the “balance” between geometry and
density.

• MAP-DP directly estimates only cluster assignments, while K-means also finds the most
likely cluster centroids given the current cluster assignments. But, since the cluster assign-
ment estimates may be significantly in error, this error will propagate to the most likely clus-
ter centroid locations. By contrast, MAP-DP never explicitly estimates cluster centroids, they
are treated as appropriately uncertain quantities described by a most likely cluster location
m� ik and variance s� ik (the centroid hyper parameters). This means that MAP-DP does not
need explicit values of the cluster centroids on initialization (K-means algorithm line 1).
Indeed, with K-means, poor choices of these initial cluster centroids can cause the algorithm
to fall into sub-optimal configurations from which it cannot recover, and there is, generally,
no known universal way to pick “good” initial centroids. At the same time, during iterations
of the algorithm, MAP-DP can bypass sub-optimal, erroneous configurations that K-means
cannot avoid. This also means that MAP-DP often converges in many fewer iterations than
K-means. As we discuss in Appendix C cluster centroids and variances can be obtained in
MAP-DP if needed after the algorithm has converged.

• The cluster hyper parameters are updated explicitly for each data point in turn (algorithm
lines 7, 8). This updating is a weighted sum of prior location μ0 and the mean of the data cur-
rently assigned to each cluster. If the prior variance parameter s2

0 is large or the known cluster
variance ŝ2 is small, then μk is just the mean of the data in cluster k, as with K-means. By con-
trast, if the prior variance is small (or the known cluster variance ŝ2 is large), then μk� μ0,
the prior centroid location. So, intuitively, the most likely location of the cluster centroid is
based on an appropriate “balance” between the confidencewe have in the data in each cluster
and our prior information about the cluster centroid location.

• While K-means estimates only the cluster centroids, this spherical Gaussian variant of
MAP-DP has an additional cluster variance parameter ŝ2, effectively determining the radius
of the clusters. If the prior variance s2

0 or the cluster variance ŝ2 are small, then s� ik becomes
small. This is the situation where we have high confidence in the most likely cluster centroid
μk. If, on the other hand, the prior variance s2

0 is large, then s� ik �
ŝ2

N � ik
. Intuitively, if we have

little trust in the prior location μ0, the more data in each cluster, the better the estimate of the
most likely cluster centroid. Finally, for large cluster variance ŝ2, then s� ik � s2

0, so that the
uncertainty in the most likely cluster centroid defaults to that of the prior.

A summary of the paper is as follows. In Section 2 we review the K-means algorithm and its
derivation as a constrained case of a GMM. Section 3 covers alternative ways of choosing the
number of clusters. In Section 4 the novel MAP-DP clustering algorithm is presented, and the
performance of this new algorithm is evaluated in Section 5 on synthetic data. In Section 6 we
apply MAP-DP to explore phenotyping of parkinsonism, and we conclude in Section 8 with a
summary of our findings and a discussion of limitations and future directions.

MAP-DP: K-Means Alternative

PLOS ONE | DOI:10.1371/journal.pone.0162259 September 26, 2016 7 / 28



2 A probabilistic interpretation of K-means

In order to improve on the limitations of K-means, we will invoke an interpretation which views
it as an inference method for a specific kind of mixture model. While K-means is essentially geo-
metric,mixture models are inherently probabilistic, that is, they involve fitting a probability den-
sity model to the data. The advantage of considering this probabilistic framework is that it
provides a mathematically principled way to understand and address the limitations of K-
means. It is well known that K-means can be derived as an approximate inference procedure for
a special kind of finite mixture model. For completeness, we will rehearse the derivation here.

2.1 Finite mixture models

In the GMM (p. 430-439 in [18]) we assume that data points are drawn from a mixture (a
weighted sum) of Gaussian distributions with density pðxÞ ¼

PK
k¼1

pkN ðxjmk;SkÞ, where K is
the fixed number of components, πk > 0 are the weighting coefficients with

PK
k¼1

pk ¼ 1, and
μk, Sk are the parameters of each Gaussian in the mixture. So, to produce a data point xi, the
model first draws a cluster assignment zi = k. The distribution over each zi is known as a cate-
gorical distribution with K parameters πk = p(zi = k). Then, given this assignment, the data
point is drawn from a Gaussian with mean μzi

and covariance Szi
.

Under this model, the conditional probability of each data point is
pðxijzi ¼ kÞ ¼ N ðxijmk;SkÞ, which is just a Gaussian. But an equally important quantity is the
probability we get by reversing this conditioning: the probability of an assignment zi given a
data point x (sometimes called the responsibility), p(zi = k|x, μk, Sk). This raises an important
point: in the GMM, a data point has a finite probability of belonging to every cluster, whereas,
for K-means each point belongs to only one cluster. This is because the GMM is not a partition
of the data: the assignments zi are treated as random draws from a distribution.

One of the most popular algorithms for estimating the unknowns of a GMM from some
data (that is the variables z, μ, S and π) is the Expectation-Maximization (E-M) algorithm. This
iterative procedure alternates between the E (expectation) step and the M (maximization)
steps. The E-step uses the responsibilities to compute the cluster assignments, holding the clus-
ter parameters fixed, and the M-step re-computes the cluster parameters holding the cluster
assignments fixed:
E-step:Given the current estimates for the cluster parameters, compute the responsibilities:

gi;k ¼ p zi ¼ k x; mk;Skjð Þ ¼
pkN xi mk;Skjð Þ

PK
j¼1

pjN xi mj;Sj

�
�
�

� � ð2Þ

M-step:Compute the parameters that maximize the likelihood of the data set p(X|π, μ, S, z),
which is the probability of all of the data under the GMM [19]:

p X p; m;S; zjð Þ ¼
YN

i¼1

XK

k¼1

pkN xi mk;Skjð Þ ð3Þ

Maximizing this with respect to each of the parameters can be done in closed form:

Sk ¼
PN

i¼1
gi;k pk ¼

Sk

N

mk ¼
1

Sk

XN

i¼1
gi;kxi Sk ¼

1

Sk

XN

i¼1
gi;k xi � mkð Þ xi � mkð Þ

T

ð4Þ

MAP-DP: K-Means Alternative
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Each E-M iteration is guaranteed not to decrease the likelihood function p(X|π, μ, S, z). So,
as with K-means, convergence is guaranteed, but not necessarily to the global maximum of the
likelihood.We can, alternatively, say that the E-M algorithm attempts to minimize the GMM
objective function:

E ¼ �
XN

i¼1

ln
XK

k¼1

pkN xi mk;Skjð Þ ð5Þ

When changes in the likelihood are sufficiently small the iteration is stopped.

2.2 Connection to K-means

We can derive the K-means algorithm from E-M inference in the GMM model discussed
above. Consider a special case of a GMM where the covariance matrices of the mixture compo-
nents are spherical and shared across components. That means Sk = σI for k = 1, . . ., K, where I
is the D × D identity matrix, with the variance σ> 0. We will also assume that σ is a known
constant. Then the E-step above simplifies to:

gi;k ¼

pk exp �
1

2s
k xi � mk k

2

2

� �

PK
j¼1

pj exp �
1

2s
k xi � mj k

2

2

� � ð6Þ

The M-step no longer updates the values for Sk at each iteration, but otherwise it remains
unchanged.

Now, let us further consider shrinking the constant variance term to 0: σ! 0. At this limit,
the responsibility probability Eq (6) takes the value 1 for the component which is closest to xi.
That is, of course, the component for which the (squared) Euclidean distance 1

2
jjxi � mkjj

2

2
is

minimal. So, all other components have responsibility 0. Also at the limit, the categorical prob-
abilities πk cease to have any influence. In effect, the E-step of E-M behaves exactly as the
assignment step of K-means. Similarly, since πk has no effect, the M-step re-estimates only the
mean parameters μk, which is now just the sample mean of the data which is closest to that
component.

To summarize, if we assume a probabilistic GMM model for the data with fixed, identical
spherical covariance matrices across all clusters and take the limit of the cluster variances σ! 0,
the E-M algorithm becomes equivalent to K-means. This has, more recently, become known as
the small variance asymptotic (SVA) derivation of K-means clustering [20].

3 Inferring K, the number of clusters

The GMM (Section 2.1) and mixture models in their full generality, are a principled approach to
modeling the data beyond purely geometrical considerations. As such, mixture models are useful
in overcoming the equal-radius, equal-density spherical cluster limitation of K-means. Never-
theless, it still leaves us empty-handed on choosing K as in the GMM this is a fixed quantity.

The choice of K is a well-studied problem and many approaches have been proposed to
address it. As discussed above, the K-means objective function Eq (1) cannot be used to select
K as it will always favor the larger number of components. Probably the most popular approach
is to run K-means with different values of K and use a regularization principle to pick the best
K. For instance in Pelleg and Moore [21], BIC is used. Bischof et al. [22] use minimum descrip-
tion length(MDL) regularization, starting with a value of K which is larger than the expected
true value for K in the given application, and then removes centroids until changes in
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description length are minimal. By contrast, Hamerly and Elkan [23] suggest starting K-means
with one cluster and splitting clusters until points in each cluster have a Gaussian distribution.
An obvious limitation of this approach would be that the Gaussian distributions for each clus-
ter need to be spherical. In Gao et al. [24] the choice of K is explored in detail leading to the
deviance information criterion (DIC) as regularizer. DIC is most convenient in the probabilistic
framework as it can be readily computed using Markov chain Monte Carlo (MCMC). In addi-
tion, DIC can be seen as a hierarchical generalization of BIC and AIC.

All these regularization schemes consider ranges of values of K and must perform exhaus-
tive restarts for each value of K. This increases the computational burden. By contrast, our
MAP-DP algorithm is based on a model in which the number of clusters is just another ran-
dom variable in the model (such as the assignments zi). So, K is estimated as an intrinsic part of
the algorithm in a more computationally efficient way.

As argued above, the likelihood function in GMM Eq (3) and the sum of Euclidean dis-
tances in K-means Eq (1) cannot be used to compare the fit of models for different K, because
this is an ill-posedproblem that cannot detect overfitting. A natural way to regularize the
GMM is to assume priors over the uncertain quantities in the model, in other words to turn to
Bayesian models. Placing priors over the cluster parameters smooths out the cluster shape and
penalizes models that are too far away from the expected structure [25]. Also, placing a prior
over the cluster weights provides more control over the distribution of the cluster densities.
The key in dealing with the uncertainty about K is in the prior distribution we use for the clus-
ter weights πk, as we will show.

In MAP-DP, instead of fixing the number of components, we will assume that the more
data we observe the more clusters we will encounter. For many applications this is a reasonable
assumption; for example, if our aim is to extract different variations of a disease given some
measurements for each patient, the expectation is that with more patient records more sub-
types of the disease would be observed.As another example, when extracting topics from a set
of documents, as the number and length of the documents increases, the number of topics is
also expected to increase. When clustering similar companies to construct an efficient financial
portfolio, it is reasonable to assume that the more companies are included in the portfolio, a
larger variety of company clusters would occur.

Formally, this is obtained by assuming that K!1 as N!1, but with K growing more
slowly than N to provide a meaningful clustering. But, for any finite set of data points, the num-
ber of clusters is always some unknown but finite K+ that can be inferred from the data. The
parametrization of K is avoided and instead the model is controlled by a new parameter N0

called the concentration parameter or prior count. This controls the rate with which K grows
with respect to N. Additionally, because there is a consistent probabilistic model, N0 may be
estimated from the data by standard methods such as maximum likelihood and cross-valida-
tion as we discuss in Appendix F.

4 Generalized MAP-DP algorithm

Before presenting the model underlying MAP-DP (Section 4.2) and detailed algorithm (Section
4.3), we give an overviewof a key probabilistic structure known as the Chinese restaurant pro-
cess(CRP). The latter forms the theoretical basis of our approach allowing the treatment of K as
an unbounded random variable.

4.1 The Chinese restaurant process (CRP)

In clustering, the essential discrete, combinatorial structure is a partition of the data set into a
finite number of groups, K. The CRP is a probability distribution on these partitions, and it is
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parametrized by the prior count parameter N0 and the number of data points N. For a partition
example, let us assume we have data set X = (x1, . . ., xN) of just N = 8 data points, one particular
partition of this data is the set {{x1, x2}, {x3, x5, x7}, {x4, x6}, {x8}}. In this partition there are
K = 4 clusters and the cluster assignments take the values z1 = z2 = 1, z3 = z5 = z7 = 2, z4 = z6 = 3
and z8 = 4. So, we can also think of the CRP as a distribution over cluster assignments.

The CRP is often describedusing the metaphor of a restaurant, with data points corre-
sponding to customers and clusters corresponding to tables. Customers arrive at the restaurant
one at a time. The first customer is seated alone. Each subsequent customer is either seated at
one of the already occupied tables with probability proportional to the number of customers
already seated there, or, with probability proportional to the parameter N0, the customer sits at
a new table. We use k to denote a cluster index and Nk to denote the number of customers sit-
ting at table k. With this notation, we can write the probabilistic rule characterizing the CRP:

p customer iþ 1 joins table kð Þ ¼

Nk

N0 þ i
if k is an existing table

N0

N0 þ i
if k is a new table

8
>>><

>>>:

ð7Þ

After N customers have arrived and so i has increased from 1 to N, their seating pattern
defines a set of clusters that have the CRP distribution. This partition is random, and thus the
CRP is a distribution on partitions and we will denote a draw from this distribution as:

z1; . . . ; zNð Þ � CRP N0;Nð Þ ð8Þ

Further, we can compute the probability over all cluster assignment variables, given that
they are a draw from a CRP:

p z1; . . . ; zNð Þ ¼
NK

0

N Nð Þ
0

YK

k¼1

Nk � 1ð Þ! ð9Þ

where NðNÞ0 ¼ N0ðN0 þ 1Þ � � � � � ðN0 þ N � 1Þ. This probability is obtained from a product
of the probabilities in Eq (7). If there are exactly K tables, customers have sat on a new table
exactly K times, explaining the term NK

0
in the expression. The probability of a customer sitting

on an existing table k has been used Nk − 1 times where each time the numerator of the corre-
sponding probability has been increasing, from 1 to Nk − 1. This is how the term

QK
k¼1
ðNk � 1Þ!

arises. The NðNÞ0 is the product of the denominators when multiplying the probabilities from
Eq (7), as N = 1 at the start and increases to N − 1 for the last seated customer.

Notice that the CRP is solely parametrized by the number of customers (data points) N and
the concentration parameter N0 that controls the probability of a customer sitting at a new,
unlabeled table. We can see that the parameter N0 controls the rate of increase of the number
of tables in the restaurant as N increases. It is usually referred to as the concentration parameter
because it controls the typical density of customers seated at tables.

We can think of there being an infinite number of unlabeled tables in the restaurant at any
given point in time, and when a customer is assigned to a new table, one of the unlabeled ones
is chosen arbitrarily and given a numerical label. We can think of the number of unlabeled
tables as K, where K!1 and the number of labeled tables would be some random, but finite
K+< K that could increase each time a new customer arrives.
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4.2 The underlying probabilistic model

First, we will model the distribution over the cluster assignments z1, . . ., zN with a CRP (in fact,
we can derive the CRP from the assumption that the mixture weights π1, . . ., πK of the finite
mixture model, Section 2.1, have a DP prior; see Teh [26] for a detailed exposition of this fasci-
nating and important connection).We will also place priors over the other random quantities
in the model, the cluster parameters. We will restrict ourselves to assuming conjugate priors for
computational simplicity (however, this assumption is not essential and there is extensive liter-
ature on using non-conjugate priors in this context [16, 27, 28]).

As we are mainly interested in clustering applications, i.e. we are only interested in the clus-
ter assignments z1, . . ., zN, we can gain computational efficiency [29] by integrating out the
cluster parameters (this process of eliminating random variables in the model which are not of
explicit interest is known as Rao-Blackwellization [30]). The resulting probabilistic model,
called the CRP mixture model by Gershman and Blei [31], is:

z1; . . . ; zNð Þ � CRP N0;Nð Þ

xi � f yzi

� � ð10Þ

where θ are the hyper parameters of the predictive distribution f(x|θ). Detailed expressions for
this model for some different data types and distributions are given in (S1 Material). To sum-
marize: we will assume that data is describedby some random K+ number of predictive distri-
butions describing each cluster where the randomness of K+ is parametrized by N0, and K+

increases with N, at a rate controlled by N0.

4.3 MAP-DP algorithm

Much as K-means can be derived from the more general GMM, we will derive our novel clus-
tering algorithm based on the model Eq (10) above. The likelihood of the data X is:

p X; zjN0ð Þ ¼ p z1; . . . ; zNð Þ
YN

i¼1

YK

k¼1

f xijy
� i
k

� �
d zi ;kð Þ ð11Þ

where δ(x, y) = 1 if x = y and 0 otherwise.The distribution p(z1, . . ., zN) is the CRP Eq (9). For
ease of subsequent computations, we use the negative log of Eq (11):

E ¼ �
XK

k¼1

X

i:zi¼k

ln f xijy
� i
k

� �
� K ln N0 �

XK

k¼1

ln G Nkð Þ � C N0;Nð Þ ð12Þ

where C N0;Nð Þ ¼ ln GðN0Þ

GðN0þNÞ is a functionwhich depends upon only N0 and N. This can be
omitted in the MAP-DP algorithm because it does not change over iterations of the main loop
but should be included when estimating N0 using the methods proposed in Appendix F. The
quantity Eq (12) plays an analogous role to the objective function Eq (1) in K-means. We wish
to maximize Eq (11) over the only remaining random quantity in this model: the cluster assign-
ments z1, . . ., zN, which is equivalent to minimizing Eq (12) with respect to z. This minimiza-
tion is performed iteratively by optimizing over each cluster indicator zi, holding the rest, zj:j6¼i,
fixed. This is our MAP-DP algorithm, described in Algorithm 3 below.

For each data point xi, given zi = k, we first update the posterior cluster hyper parameters
y
� i
k based on all data points assigned to cluster k, but excluding the data point xi [16]. This

update allows us to compute the following quantities for each existing cluster k 2 1, . . . K, and
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for a new cluster K + 1:

di;k ¼ � ln f xijy
� i
k

� �

di;Kþ1 ¼ � ln f xijy0ð Þ
ð13Þ

Now, the quantity di;k � ln N � i
k is the negative log of the probability of assigning data point

xi to cluster k, or if we abuse notation somewhat and define N � i
Kþ1
� N0, assigning instead to a

new cluster K + 1. Therefore, the MAP assignment for xi is obtained by computing
zi ¼ arg mink21;...;;Kþ1½di;k � ln N � i

k �. Then the algorithm moves on to the next data point xi+1.
Detailed expressions for different data types and corresponding predictive distributions f are
given in (S1 Material), including the spherical Gaussian case given in Algorithm 2.

The objective function Eq (12) is used to assess convergence, and when changes between
successive iterations are smaller than �, the algorithm terminates. MAP-DP is guaranteed not
to increase Eq (12) at each iteration and therefore the algorithm will converge [25]. By contrast
to SVA-based algorithms, the closed form likelihoodEq (11) can be used to estimate hyper
parameters, such as the concentration parameter N0 (see Appendix F), and can be used to
make predictions for new x data (see Appendix D). In contrast to K-means, there exists a well
founded, model-basedway to infer K from data.

We summarize all the steps in Algorithm 3. The issue of randomisation and how it can
enhance the robustness of the algorithm is discussed in Appendix B. During the execution of
both K-means and MAP-DP empty clusters may be allocated and this can effect the computa-
tional performance of the algorithms; we discuss this issue in Appendix A.

For multivariate data a particularly simple form for the predictive density is to assume inde-
pendent features. This means that the predictive distributions f(x|θ) over the data will factor
into products with M terms, f ðxjyÞ ¼

QM
m¼1

f ðxmjy
m
Þ where xm, θm denotes the data and

Table 2.

Algorithm 3: MAP-DP (generalized algorithm)

Input x1, . . ., xN: data

� > 0: convergence threshold

N0: prior count

θ0: prior hyper parameters

Output z1, . . ., zN: cluster assignments

K: number of clusters

1 K = 1, zi = 1 for all i 2 1, . . ., N

2 Enew =1

3 repeat

4 Eold = Enew

5 for i 2 1, . . ., N

6 for k 2 1, . . ., K

7 Update cluster hyper parameters y
� i
k (see (S1 Material))

8 di;k ¼ � ln fðxijy
� i
k Þ

9 di,K+1 = −ln f(xi|θ0)

10 zi ¼ arg mink21;...;Kþ1½di;k � lnN� ik �

11 if zi = K + 1

12 K = K + 1

13 Enew ¼
PK

k¼1

P
i:zi¼k
di;k � K lnN0 �

PK
k¼1

logGðNkÞ

14 until Eold − Enew < �

doi:10.1371/journal.pone.0162259.t002

MAP-DP: K-Means Alternative

PLOS ONE | DOI:10.1371/journal.pone.0162259 September 26, 2016 13 / 28



parameter vector for the m-th feature respectively. We term this the elliptical model. Including
different types of data such as counts and real numbers is particularly simple in this model as
there is no dependency between features. We demonstrate its utility in Section 6 where a multi-
tude of data types is modeled.

5 Study of synthetic data

In this sectionwe evaluate the performance of the MAP-DP algorithm on six different syn-
thetic Gaussian data sets with N = 4000 points. All these experiments use multivariate normal
distribution with multivariate Student-t predictive distributions f(x|θ) (see (S1 Material)). The
data sets have been generated to demonstrate some of the non-obvious problems with the K-
means algorithm. Comparisons betweenMAP-DP, K-means, E-M and the Gibbs sampler dem-
onstrate the ability of MAP-DP to overcome those issues with minimal computational and
conceptual “overhead”. Both the E-M algorithm and the Gibbs sampler can also be used to
overcome most of those challenges, however both aim to estimate the posterior density rather
than clustering the data and so require significantly more computational effort.

The true clustering assignments are known so that the performance of the different algo-
rithms can be objectively assessed. For the purpose of illustration we have generated two-
dimensional data with three, visually separable clusters, to highlight the specific problems that
arise with K-means. To ensure that the results are stable and reproducible, we have performed
multiple restarts for K-means, MAP-DP and E-M to avoid falling into obviously sub-optimal
solutions. MAP-DP restarts involve a random permutation of the ordering of the data.

K-means and E-M are restarted with randomized parameter initializations. Note that the ini-
tialization in MAP-DP is trivial as all points are just assigned to a single cluster, furthermore,
the clustering output is less sensitive to this type of initialization. At the same time, K-means
and the E-M algorithm require setting initial values for the cluster centroids μ1, . . ., μK, the num-
ber of clusters K and in the case of E-M, values for the cluster covariances S1, . . ., SK and cluster
weights π1, . . ., πK. The clustering output is quite sensitive to this initialization: for the K-means
algorithm we have used the seeding heuristic suggested in [32] for initialiazing the centroids
(also known as the K-means++ algorithm); herein the E-M has been given an advantage and is
initializedwith the true generating parameters leading to quicker convergence. In all of the
synthethic experiments, we fix the prior count to N0 = 3 for both MAP-DP and Gibbs sampler
and the prior hyper parameters θ0 are evaluated using empirical bayes (see Appendix F).

To evaluate algorithm performance we have used normalized mutual information (NMI)
between the true and estimated partition of the data (Table 3). The NMI between two random
variables is a measure of mutual dependence between them that takes values between 0 and 1
where the higher score means stronger dependence.NMI scores close to 1 indicate good agree-
ment between the estimated and true clustering of the data.

We also test the ability of regularization methods discussed in Section 3 to lead to sensible
conclusions about the underlying number of clusters K in K-means. We use the BIC as a repre-
sentative and popular approach from this class of methods. For all of the data sets in Sections
5.1 to 5.6, we vary K between 1 and 20 and repeat K-means 100 times with randomized initiali-
zations. That is, we estimate BIC score for K-means at convergence for K = 1, . . ., 20 and repeat
this cycle 100 times to avoid conclusions based on sub-optimal clustering results. The theory of
BIC suggests that, on each cycle, the value of K between 1 and 20 that maximizes the BIC score
is the optimal K for the algorithm under test. We report the value of K that maximizes the BIC
score over all cycles.

We also report the number of iterations to convergence of each algorithm in Table 4 as an
indication of the relative computational cost involved, where the iterations include only a single
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run of the corresponding algorithm and ignore the number of restarts. The Gibbs sampler was
run for 600 iterations for each of the data sets and we report the number of iterations until the
draw from the chain that provides the best fit of the mixture model. Running the Gibbs sam-
pler for a longer number of iterations is likely to improve the fit. Due to its stochastic nature,
random restarts are not common practice for the Gibbs sampler.

5.1 Spherical data, unequal cluster radius and density

In this example we generate data from three spherical Gaussian distributions with different
radii. The data is well separated and there is an equal number of points in each cluster. In Fig 1
we can see that K-means separates the data into three almost equal-volume clusters. In K-
means clustering, volume is not measured in terms of the density of clusters, but rather the geo-
metric volumes defined by hyper-planes separating the clusters. The algorithm does not take
into account cluster density, and as a result it splits large radius clusters and merges small
radius ones. This would obviously lead to inaccurate conclusions about the structure in the
data. It is unlikely that this kind of clustering behavior is desired in practice for this dataset.
The poor performance of K-means in this situation reflected in a low NMI score (0.57,
Table 3). By contrast, MAP-DP takes into account the density of each cluster and learns the
true underlying clustering almost perfectly (NMI of 0.97). This shows that K-means can fail
even when applied to spherical data, provided only that the cluster radii are different. Assum-
ing the number of clusters K is unknown and using K-means with BIC, we can estimate the
true number of clusters K = 3, but this involves defining a range of possible values for K and
performingmultiple restarts for each value in that range. Considering a range of values of K
between 1 and 20 and performing 100 random restarts for each value of K, the estimated value
for the number of clusters is K = 2, an underestimate of the true number of clusters K = 3. The
highest BIC score occurred after 15 cycles of K between 1 and 20 and as a result, K-means with
BIC required significantly longer run time than MAP-DP, to correctly estimate K.

Table 3. Comparing the clustering performance of MAP-DP (multivariate normal variant), K-means, E-M and Gibbs sampler in terms of NMI which

has range [0, 1] on synthetic Gaussian data generated using a GMM with K = 3. NMI closer to 1 indicates better clustering.

Geometry Shared geometry? Shared population? Section NMI K-means NMI MAP-DP NMI E-M NMI Gibbs

Spherical No Yes 5.1 0.57 0.97 0.89 0.92

Spherical Yes No 5.2 0.48 0.98 0.98 0.86

Spherical Yes Yes 5.3 0.67 0.93 0.65 0.91

Elliptical No Yes 5.4 0.56 0.98 0.93 0.90

Elliptical No No 5.5 1.00 1.00 0.99 1.00

Elliptical No No 5.6 0.56 0.88 0.86 0.84

doi:10.1371/journal.pone.0162259.t003

Table 4. Number of iterations to convergence of MAP-DP, K-means, E-M and Gibbs sampling where one iteration consists of a full sweep through

the data and the model parameters. The computational cost per iteration is not exactly the same for different algorithms, but it is comparable. The number

of iterations due to randomized restarts have not been included.

Section Convergence K-means Convergence MAP-DP Convergence E-M Convergence Gibbs sampler 1

5.1 6 11 10 299

5.2 13 5 21 403

5.3 5 5 32 292

5.4 15 11 6 330

5.5 6 7 21 459

5.6 9 11 7 302

doi:10.1371/journal.pone.0162259.t004
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5.2 Spherical data, equal cluster radius, unequal density

In this next example, data is generated from three spherical Gaussian distributions with equal
radii, the clusters are well-separated, but with a different number of points in each cluster. In
Fig 4 we observe that the most populated cluster containing 69% of the data is split by K-
means, and a lot of its data is assigned to the smallest cluster. So, despite the unequal density of
the true clusters, K-means divides the data into three almost equally-populated clusters. Again,
this behaviour is non-intuitive: it is unlikely that the K-means clustering result here is what
would be desired or expected, and indeed, K-means scores badly (NMI of 0.48) by comparison
to MAP-DP which achieves near perfect clustering (NMI of 0.98. Table 3). The reason for this
poor behaviour is that, if there is any overlap between clusters, K-means will attempt to resolve
the ambiguity by dividing up the data space into equal-volume regions. This will happen even
if all the clusters are spherical with equal radius. Again, assuming that K is unknown and
attempting to estimate using BIC, after 100 runs of K-means across the whole range of K, we
estimate that K = 2 maximizes the BIC score, again an underestimate of the true number of
clusters K = 3.

5.3 Spherical data, equal cluster radius and density, with outliers

Next we consider data generated from three spherical Gaussian distributions with equal radii
and equal density of data points. However, we add two pairs of outlier points, marked as stars
in Fig 3. We see that K-means groups together the top right outliers into a cluster of their own.
As a result, one of the pre-specifiedK = 3 clusters is wasted and there are only two clusters left
to describe the actual spherical clusters. So, K-means merges two of the underlying clusters
into one and gives misleading clustering for at least a third of the data. For this behavior of K-
means to be avoided, we would need to have information not only about how many groups we
would expect in the data, but also how many outlier points might occur. By contrast, since
MAP-DP estimates K, it can adapt to the presence of outliers. MAP-DP assigns the two pairs of
outliers into separate clusters to estimate K = 5 groups, and correctly clusters the remaining
data into the three true spherical Gaussians. Again, K-means scores poorly (NMI of 0.67) com-
pared to MAP-DP (NMI of 0.93, Table 3). From this it is clear that K-means is not “robust” to
the presence of even a trivial number of outliers, which can severely degrade the quality of the
clustering result. For many applications, it is infeasible to remove all of the outliers before clus-
tering, particularly when the data is high-dimensional. If we assume that K is unknown for K-
means and estimate it using the BIC score, we estimate K = 4, an overestimate of the true num-
ber of clusters K = 3. We further observe that even the E-M algorithm with Gaussian compo-
nents does not handle outliers well and the nonparametric MAP-DP and Gibbs sampler are
clearly the more robust option in such scenarios.

5.4 Elliptical data with equal cluster volumes and densities, rotated

So far, in all cases above the data is spherical. By contrast, we next turn to non-spherical, in
fact, elliptical data. This next experiment demonstrates the inability of K-means to correctly
cluster data which is trivially separable by eye, even when the clusters have negligible overlap
and exactly equal volumes and densities, but simply because the data is non-spherical and
some clusters are rotated relative to the others. Fig 2 shows that K-means produces a very mis-
leading clustering in this situation. 100 random restarts of K-means fail to find any better clus-
tering, with K-means scoring badly (NMI of 0.56) by comparison to MAP-DP (0.98, Table 3).
In fact, for this data, we find that even if K-means is initializedwith the true cluster assign-
ments, this is not a fixed point of the algorithm and K-means will continue to degrade the true
clustering and converge on the poor solution shown in Fig 2. So, this clustering solution
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obtained at K-means convergence, as measured by the objective function value E Eq (1),
appears to actually be better (i.e. lower) than the true clustering of the data. Essentially, for
some non-spherical data, the objective functionwhich K-means attempts to minimize is funda-
mentally incorrect: even if K-means can find a small value of E, it is solving the wrong problem.
Furthermore, BIC does not provide us with a sensible conclusion for the correct underlying
number of clusters, as it estimates K = 9 after 100 randomized restarts.

It should be noted that in some rare, non-spherical cluster cases, global transformations of
the entire data can be found to “spherize” it. For example, if the data is elliptical and all the
cluster covariances are the same, then there is a global linear transformation which makes all
the clusters spherical. However, finding such a transformation, if one exists, is likely at least as
difficult as first correctly clustering the data.

5.5 Elliptical data with different cluster volumes, geometries and

densities, no cluster overlap

This data is generated from three elliptical Gaussian distributions with different covariances
and different number of points in each cluster. In this case, despite the clusters not being spher-
ical, equal density and radius, the clusters are so well-separated that K-means, as with
MAP-DP, can perfectly separate the data into the correct clustering solution (see Fig 5). So, for
data which is trivially separable by eye, K-means can produce a meaningful result. However, it
is questionable how often in practice one would expect the data to be so clearly separable, and
indeed, whether computational cluster analysis is actually necessary in this case. Even in this
trivial case, the value of K estimated using BIC is K = 4, an overestimate of the true number of
clusters K = 3.

5.6 Elliptical data with different cluster volumes and densities, significant

overlap

Having seen that MAP-DP works well in cases where K-means can fail badly, we will examine
a clustering problem which should be a challenge for MAP-DP. The data is generated from
three elliptical Gaussian distributions with different covariances and different number of points
in each cluster. There is significant overlap between the clusters. MAP-DP manages to correctly
learn the number of clusters in the data and obtains a good,meaningful solution which is close

Fig 5. Clustering solution obtained by K-means and MAP-DP for synthetic elliptical Gaussian data.

The clusters are trivially well-separated, and even though they have different densities (12% of the data is

blue, 28% yellow cluster, 60% orange) and elliptical cluster geometries, K-means produces a near-perfect

clustering, as with MAP-DP. This shows that K-means can in some instances work when the clusters are not

equal radii with shared densities, but only when the clusters are so well-separated that the clustering can be

trivially performed by eye.

doi:10.1371/journal.pone.0162259.g005
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to the truth (Fig 6, NMI score 0.88, Table 3). The small number of data points mislabeled by
MAP-DP are all in the overlapping region. By contrast, K-means fails to perform a meaningful
clustering (NMI score 0.56) and mislabels a large fraction of the data points that are outside
the overlapping region. This shows that MAP-DP, unlike K-means, can easily accommodate
departures from sphericity even in the context of significant cluster overlap. As the cluster
overlap increases, MAP-DP degrades but always leads to a much more interpretable solution
than K-means. In this example, the number of clusters can be correctly estimated using BIC.

6 Example application: sub-typing of parkinsonism and

Parkinson’s disease

Parkinsonism is the clinical syndrome defined by the combination of bradykinesia (slowness of
movement) with tremor, rigidity or postural instability. This clinical syndrome is most com-
monly caused by Parkinson’s disease(PD), although can be caused by drugs or other conditions
such as multi-system atrophy. Because of the common clinical features shared by these other
causes of parkinsonism, the clinical diagnosis of PD in vivo is only 90% accurate when com-
pared to post-mortem studies. This diagnostic difficulty is compounded by the fact that PD
itself is a heterogeneous condition with a wide variety of clinical phenotypes, likely driven by
different disease processes. These include wide variations in both the motor (movement, such
as tremor and gait) and non-motor symptoms (such as cognition and sleep disorders). While
the motor symptoms are more specific to parkinsonism, many of the non-motor symptoms
associated with PD are common in older patients which makes clustering these symptoms
more complex. Despite significant advances, the aetiology (underlying cause) and pathogenesis
(how the disease develops) of this disease remain poorly understood, and no diseasemodifying
treatment has yet been found.

The diagnosis of PD is therefore likely to be given to some patients with other causes of
their symptoms. Also, even with the correct diagnosis of PD, they are likely to be affected by
different diseasemechanisms which may vary in their response to treatments, thus reducing
the power of clinical trials. Despite numerous attempts to classify PD into sub-types using
empirical or data-driven approaches (using mainly K-means cluster analysis), there is no
widely accepted consensus on classification.

One approach to identifying PD and its subtypes would be through appropriate clustering
techniques applied to comprehensive data sets representing many of the physiological, genetic

Fig 6. Clustering solution obtained by K-means and MAP-DP for overlapping, synthetic elliptical

Gaussian data. All clusters have different elliptical covariances, and the data is unequally distributed across

different clusters (30% blue cluster, 5% yellow cluster, 65% orange). The significant overlap is challenging

even for MAP-DP, but it produces a meaningful clustering solution where the only mislabelled points lie in the

overlapping region. K-means does not produce a clustering result which is faithful to the actual clustering.

doi:10.1371/journal.pone.0162259.g006
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and behavioral features of patients with parkinsonism. We expect that a clustering technique
should be able to identify PD subtypes as distinct from other conditions. In that context, using
methods like K-means and finite mixture models would severely limit our analysis as we would
need to fix a-priori the number of sub-types K for which we are looking. Estimating that K is
still an open question in PD research. Potentially, the number of sub-types is not even fixed,
instead, with increasing amounts of clinical data on patients being collected, we might expect a
growing number of variants of the disease to be observed.A natural probabilistic model which
incorporates that assumption is the DP mixture model. Here we make use of MAP-DP cluster-
ing as a computationally convenient alternative to fitting the DP mixture.

We have analyzed the data for 527 patients from the PD data and organizing center
(PD-DOC) clinical reference database, which was developed to facilitate the planning, study
design, and statistical analysis of PD-related data [33]. The subjects consisted of patients
referred with suspected parkinsonism thought to be caused by PD. Each patient was rated by a
specialist on a percentage probability of having PD, with 90-100% considered as probable PD
(this variable was not included in the analysis). This data was collected by several independent
clinical centers in the US, and organized by the University of Rochester, NY. Ethical approval
was obtained by the independent ethical review boards of each of the participating centres.
From that database, we use the PostCEPT data.

For each patient with parkinsonism there is a comprehensive set of features collected
through various questionnaires and clinical tests, in total 215 features per patient. The features
are of different types such as yes/no questions, finite ordinal numerical rating scales, and oth-
ers, each of which can be appropriately modeled by e.g. Bernoulli (yes/no), binomial (ordinal),
categorical (nominal) and Poisson (count) random variables (see (S1 Material)). For simplicity
and interpretability, we assume the different features are independent and use the elliptical
model defined in Section 4.

A common problem that arises in health informatics is missing data. When using K-means
this problem is usually separately addressed prior to clustering by some type of imputation
method. However, in the MAP-DP framework, we can simultaneously address the problems of
clustering and missing data. In the CRP mixture model Eq (10) the missing values are treated
as an additional set of random variables and MAP-DP proceeds by updating them at every iter-
ation. As a result, the missing values and cluster assignments will depend upon each other so
that they are consistent with the observed feature data and each other.

We initializedMAP-DP with 10 randomized permutations of the data and iterated to con-
vergence on each randomized restart. The results (Tables 5 and 6) suggest that the PostCEPT
data is clustered into 5 groups with 50%, 43%, 5%, 1.6% and 0.4% of the data in each cluster.
We then performed a Student’s t-test at α = 0.01 significance level to identify features that differ
significantly between clusters. As with most hypothesis tests, we should always be cautious
when drawing conclusions, particularly considering that not all of the mathematical assump-
tions underlying the hypothesis test have necessarily been met. Nevertheless, this analysis sug-
gest that there are 61 features that differ significantly between the two largest clusters. Note

Table 5. Significant features of parkinsonism from the PostCEPT/PD-DOC clinical reference data across clusters (groups) obtained using

MAP-DP with appropriate distributional models for each feature. Each entry in the table is the probability of PostCEPT parkinsonism patient answering

“yes” in each cluster (group).

Group 1 Group 2 Group 3 Group 4

Resting tremor (present and typical) 0.81 0.91 0.42 0.78

Resting tremor (absent) 0.14 0.06 0.42 0.11

Symptoms in the past week 0.58 0.94 1.00 0.67

doi:10.1371/journal.pone.0162259.t005
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that if, for example, none of the features were significantly different between clusters, this
would call into question the extent to which the clustering is meaningful at all. We assume that
the features differing the most among clusters are the same features that lead the patient data
to cluster. By contrast, features that have indistinguishable distributions across the different
groups should not have significant influence on the clustering.

We applied the significance test to each pair of clusters excluding the smallest one as it con-
sists of only 2 patients. Exploring the full set of multilevel correlations occurring between 215
features among 4 groups would be a challenging task that would change the focus of this work.
We therefore concentrate only on the pairwise-significant features betweenGroups 1-4, since
the hypothesis test has higher power when comparing larger groups of data. The clustering
results suggest many other features not reported here that differ significantly between the dif-
ferent pairs of clusters that could be further explored. Individual analysis on Group 5 shows
that it consists of 2 patients with advanced parkinsonism but are unlikely to have PD itself
(both were thought to have <50% probability of having PD).

Due to the nature of the study and the fact that very little is yet known about the sub-typing
of PD, direct numerical validation of the results is not feasible. The purpose of the study is to
learn in a completely unsupervisedway, an interpretable clustering on this comprehensive set of
patient data, and then interpret the resulting clustering by reference to other sub-typing studies.

Our analysis successfully clustered almost all the patients thought to have PD into the 2 larg-
est groups. Only 4 out of 490 patients (which were thought to have Lewy-bodydementia, multi-
system atrophy and essential tremor) were included in these 2 groups, each of which had pheno-
types very similar to PD. Because the unselected population of parkinsonism included a number
of patients with phenotypes very different to PD, it may be that the analysis was therefore unable
to distinguish the subtle differences in these cases. The fact that a few cases were not included in
these group could be due to: an extreme phenotype of the condition; variance in how subjects
filled in the self-rated questionnaires (either comparatively under or over stating symptoms); or
that these patients were misclassified by the clinician. The inclusion of patients thought not to
have PD in these two groups could also be explained by the above reasons.

Comparing the two groups of PD patients (Groups 1 & 2), group 1 appears to have less
severe symptoms across most motor and non-motor measures. Group 2 is consistent with a
more aggressive or rapidly progressive form of PD, with a lower ratio of tremor to rigidity
symptoms. van Rooden et al. [11] combined the conclusions of some of the most prominent,
large-scale studies. Of these studies, 5 distinguished rigidity-dominant and tremor-dominant
profiles [34, 35, 36, 37]. Pathological correlation provides further evidence of a difference in

Table 6. Significant features of parkinsonism from the PostCEPT/PD-DOC clinical reference data across clusters obtained using MAP-DP with

appropriate distributional models for each feature. Each entry in the table is the mean score of the ordinal data in each row. Lower numbers denote con-

dition closer to healthy. Note that the Hoehn and Yahr stage is re-mapped from {0, 1.0, 1.5, 2, 2.5, 3, 4, 5} to {0, 1, 2, 3, 4, 5, 6, 7} respectively.

Mean score Scale Group1 Group 2 Group 3 Group 4

Facial expression 0-4 1.42 1.47 0.42 2.33

Tremor at rest (face, lips and chin) 0-4 0.05 0.32 0.23 1.00

Rigidity (right upper extremity) 0-4 0.90 1.30 0.38 2.11

Rigidity (left upper extremity) 0-4 0.62 1.33 0.19 2.00

Rigidity (right lower extremity) 0-4 0.46 0.97 0.04 2.56

Rigidity (left lower extremity) 0-4 0.38 1.06 0.04 2.67

Finger taps (left hand) 0-4 0.65 1.41 0.50 2.33

PD state during exam 1-4 2.65 3.85 4.00 3.00

Modified Hoehn and Yahr stage 0-7 2.46 3.19 1.62 6.33

doi:10.1371/journal.pone.0162259.t006
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diseasemechanism between these two phenotypes. Our analysis, identifies a two subtype solu-
tion most consistent with a less severe tremor dominant group and more severe non-tremor
dominant group most consistent with Gasparoli et al. [37].

These results demonstrate that even with small datasets that are common in studies on par-
kinsonism and PD sub-typing, MAP-DP is a useful exploratory tool for obtaining insights into
the structure of the data and to formulate useful hypothesis for further research.

Although the clinical heterogeneity of PD is well recognized across studies [38], comparison
of clinical sub-types is a challenging task. Studies often concentrate on a limited range of more
specific clinical features. For instance, some studies concentrate only on cognitive features or
on motor-disorder symptoms [5]. In addition, typically the cluster analysis is performedwith
the K-means algorithm and fixing K a-priori might seriously distort the analysis.

It is important to note that the clinical data itself in PD (and other neurodegenerative dis-
eases) has inherent inconsistencies between individual cases which make sub-typing by these
methods difficult: the clinical diagnosis of PD is only 90% accurate; medication causes incon-
sistent variations in the symptoms; clinical assessments (both self rated and clinician adminis-
tered) are subjective; delayed diagnosis and the (variable) slow progression of the disease
makes disease duration inconsistent. Therefore, any kind of partitioning of the data has inher-
ent limitations in how it can be interpreted with respect to the known PD disease process. It
may therefore be more appropriate to use the fully statistical DP mixture model to find the dis-
tribution of the joint data instead of focusing on the modal point estimates for each cluster.
Our analysis presented here has the additional layer of complexity due to the inclusion of
patients with parkinsonism without a clinical diagnosis of PD. This makes differentiating fur-
ther subtypes of PD more difficult as these are likely to be far more subtle than the differences
between the different causes of parkinsonism.

7 Limitations and extensions

Despite the broad applicability of the K-means and MAP-DP algorithms, their simplicity limits
their use in some more complex clustering tasks. When facing such problems, devising a more
application-specific approach that incorporates additional information about the data may be
essential. For example, in cases of high dimensional data (M>> N) neither K-means, nor
MAP-DP are likely to be appropriate clustering choices. Methods have been proposed that spe-
cifically handle such problems, such as a family of Gaussian mixture models that can efficiently
handle high dimensional data [39]. Since MAP-DP is derived from the nonparametric mixture
model, by incorporating subspace methods into the MAP-DP mechanism, an efficient high-
dimensional clustering approach can be derived using MAP-DP as a building block. We leave
the detailed exposition of such extensions to MAP-DP for future work.

Another issue that may arise is where the data cannot be describedby an exponential family
distribution. Clustering such data would involve some additional approximations and steps to
extend the MAP approach. Fortunately, the exponential family is a rather rich set of distribu-
tions and is often flexible enough to achieve reasonable performance even where the data can-
not be exactly describedby an exponential family distribution.

We may also wish to cluster sequential data. In this scenario hidden Markov models [40]
have been a popular choice to replace the simpler mixture model, in this case the MAP
approach can be extended to incorporate the additional time-ordering assumptions [41].

8 Conclusion

This paper has outlined the major problems faced when doing clustering with K-means, by
looking at it as a restricted version of the more general finite mixture model. We have
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presented a less restrictive procedure that retains the key properties of an underlying probabi-
listic model, which itself is more flexible than the finite mixture model. Making use of Bayesian
nonparametrics, the new MAP-DP algorithm allows us to learn the number of clusters in the
data and model more flexible cluster geometries than the spherical, Euclidean geometry of K-
means. Additionally, it gives us tools to deal with missing data and to make predictions about
new data points outside the training data set. At the same time, by avoiding the need for sam-
pling and variational schemes, the complexity required to find good parameter estimates is
almost as low as K-means with few conceptual changes. Like K-means, MAP-DP iteratively
updates assignments of data points to clusters, but the distance in data space can be more flexi-
ble than the Euclidean distance. Unlike K-means where the number of clusters must be set a-
priori, in MAP-DP, a specific parameter (the prior count) controls the rate of creation of new
clusters. Hence, by a small increment in algorithmic complexity, we obtain a major increase in
clustering performance and applicability, making MAP-DP a useful clustering tool for a wider
range of applications than K-means.

MAP-DP is motivated by the need for more flexible and principled clustering techniques,
that at the same time are easy to interpret, while being computationally and technically afford-
able for a wide range of problems and users. With recent rapid advancements in probabilistic
modeling, the gap between technically sophisticated but complex models and simple yet scal-
able inference approaches that are usable in practice, is increasing. This is why in this work, we
posit a flexible probabilistic model, yet pursue inference in that model using a straightforward
algorithm that is easy to implement and interpret.

The generality and the simplicity of our principled, MAP-based approach makes it reason-
able to adapt to many other flexible structures, that have, so far, found little practical use
because of the computational complexity of their inference algorithms. Some BNP models that
are somewhat related to the DP but add additional flexibility are the Pitman-Yor process which
generalizes the CRP [42] resulting in a similar infinite mixture model but with faster cluster
growth; hierarchical DPs [43], a principled framework for multilevel clustering; infinite Hidden
Markov models [44] that give us machinery for clustering time-dependent data without fixing
the number of states a priori; and Indian buffet processes [45] that underpin infinite latent fea-
ture models, which are used to model clustering problems where observations are allowed to be
assigned to multiple groups.

Appendix

A Implementation practicalities

As with all algorithms, implementation details can matter in practice. We discuss a few obser-
vations here:

• Empty clusters. In MAP-DP, as with K-means, it is always possible that a cluster ceases to
have any data points assigned to it. In that case, since N � ik ¼ 0, then it will be impossible in
future iterations for data points to be assigned to that cluster label. So, it is reasonable to
drop that label and re-assign the remaining non-empty clusters because the additional
empty clusters are merely a wasted computational overhead. The MAP-DP algorithm
(Algorithm 3) can be readily modified to do this; the most sensible place to do this is imme-
diately after lines 12 or 13.

• Dominating reinforcement on initialization. Collapsing out the cluster parameters causes the
cluster geometry to be very robust, for example, largely insensitive to outliers. However, there
is an unwanted side-effect of this robustness: becauseMAP-DP (Algorithm 3) is initialized
with one single large cluster, the reinforcement (rich-get-richer) effect of the DP can
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dominate over the geometry to cause MAP-DP to become trapped in the undesirable config-
uration where no new clusters can be generated. (Note that this is a problem for Gibbs sam-
pling as well, but in theory at least, Gibbs can escape local minima after sufficient iterations,
whereas MAP-DP cannot). Overcoming this reinforcement requires a prior count N0 on the
order of the magnitude of N, but this would usually create many spurious small clusters. To
avoid this side-effect, a practical solution removes the reinforcement effect due to this partic-
ular initialization scheme by insertingN � i1 ¼ 1 in between lines 9 and 10 (Algorithm 3), only
on the first iteration.

• Numerical computation of negative log likelihood. Computing the NLL (Algorithm 3 line 13)
requires evaluating ln Γ(Nk) terms which are difficult to estimate with high precision for
large values of Nk. As a result the NLL can develop small numerical errors which can cause
the NLL to increase slightly over iterations. A simple practical fix is to replace the conver-
gence test with absolute values, i.e. |Eold − Enew|< � in line 14.

B Randomized restarts

As MAP-DP is a completely deterministic algorithm, if applied to the same data set with the
same choice of input parameters, it will always produce the same clustering result. However,
since the algorithm is not guaranteed to find the global maximum of the likelihoodEq (11), it
is important to attempt to restart the algorithm from different initial conditions to gain confi-
dence that the MAP-DP clustering solution is a good one. Since there are no random quantities
at the start of the MAP-DP algorithm, one viable approach is to perform a random permuta-
tion of the order in which the data points are visited by the algorithm. The quantity E Eq (12)
at convergence can be compared across many random permutations of the ordering of the
data, and the clustering partition with the lowest E chosen as the best estimate.

C Obtaining cluster centroids

As explained in the introduction,MAP-DP does not explicitly compute estimates of the cluster
centroids, but this is easy to do after convergence if required. The cluster posterior hyper
parameters θk can be estimated using the appropriate Bayesian updating formulae for each
data type, given in (S1 Material). For example, for spherical normal data with known variance:

sk ¼
1

s2
0

þ
1

ŝ2
Nk

� �� 1

mk ¼ sk
m0

s2
0

þ
1

ŝ2

X

i:zi¼k

xi

 ! ð14Þ

Using these parameters, useful properties of the posterior predictive distribution f(x|θk) can
be computed, for example, in the case of spherical normal data, the posterior predictive distri-
bution is itself normal, with mode μk. Indeed, this quantity plays an analogous role to the clus-
ter means estimated using K-means.

D Out-of-sample predictions

To make out-of-sample predictions we suggest two approaches to compute the out-of-sample
likelihood for a new observation xN+1, approaches which differ in the way the indicator zN+1 is
estimated.
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1. Mixture predictive density. The unknown indicator zN+1 can be integrated out resulting in a
mixture density:

p xNþ1jN0; z;X
� �

¼
XKþ1

k¼1

p zNþ1 ¼ kjN0; z;X
� �

p xNþ1jz;X; zNþ1 ¼ k
� �

ð15Þ

The assignment probability p(zN+1 = k|zN, N0) is Nk
N

0
þN for an existing cluster and N

0

N
0
þN for

a new cluster. The second term corresponds to the predictive distribution of N + 1 point

pðxNþ1jz;X; zNþ1 ¼ kÞ ¼ f xNþ1jy
� ðNþ1Þ
k

� �

.

2. MAP predictive density. We can also use a point estimate for zN+1 by picking the minimum
negative log posterior of the indicator p(zN+1|xN+1, N0) or equivalently:

zMAP
Nþ1
¼ arg min

k21;...;K;Kþ1

� ln p xNþ1jz;X; zNþ1 ¼ k
� �

� ln p zNþ1 ¼ kjN0; z;X
� �� �

ð16Þ

where p(xN+1|z, X, zN+1 = k) and p(zN+1 = k|N0, z, X)are computed as in the approach above.
Once we have evaluated theMAP assignment for point N + 1, zMAP

Nþ1
¼ k� wemodel xN+1

with predictive density pðxNþ1jz;X; z
MAP
Nþ1

¼ k�Þ ¼ f xNþ1jy
� ðNþ1Þ
k�

� �

.

The first (marginalization) approach is used in Blei and Jordan [15] and is more robust as it
incorporates the probability mass of all cluster components while the second (modal) approach
can be useful in cases where only a point prediction is needed.

E Missing data

In MAP-DP, we can learn missing data as a natural extension of the algorithm due to its deri-
vation from Gibbs sampling: MAP-DP can be seen as a simplification of Gibbs sampling where
the sampling step is replaced with maximization. The Gibbs sampler provides us with a gen-
eral, consistent and natural way of learning missing values in the data without making further
assumptions, as a part of the learning algorithm. That is, we can treat the missing values from
the data as latent variables and sample them iteratively from the corresponding posterior one
at a time, holding the other random quantities fixed. In this framework, Gibbs sampling
remains consistent as its convergence on the target distribution is still ensured. (Note that this
approach is related to the ignorability assumption of Rubin [46] where the missingness mecha-
nism can be safely ignored in the modeling.Molenberghs et al. [47] have shown that more
complex models which model the missingness mechanism cannot be distinguished from the
ignorable model on an empirical basis.)

Coming from that end, we suggest the MAP equivalent of that approach. We treat the miss-
ing values from the data set as latent variables and so update them by maximizing the corre-
sponding posterior distribution one at a time, holding the other unknown quantities fixed. In
MAP-DP, the only random quantity is the cluster indicators z1, . . ., zN and we learn those with
the iterative MAP procedure given the observations x1, . . ., xN. Consider some of the variables
of the M-dimensional x1, . . ., xN are missing, then we will denote the vectors of missing values
from each observations as x�

1
; . . . ; x�N with x�i ¼ ðx

�
i;mÞ

M
m¼1

where x�i;m is empty if feature m of the
observation xi has been observed.MAP-DP for missing data proceeds as follows:

1. For each feature m = 1, . . ., M, sample all of the missing values x�1;m; . . . ; x�N ;m from the likeli-

hood for that variable given the prior parameters f(xi|θ0,m). Note that we assume

MAP-DP: K-Means Alternative

PLOS ONE | DOI:10.1371/journal.pone.0162259 September 26, 2016 24 / 28



independent priors and that the likelihood for the different variables can take different
forms, as in the case study 6.

2. Combine the sampled missing variables with the observedones and proceed to update the
cluster indicators z1, . . ., zN, treating all of the variables as known. The indicators z1, . . ., zN

are updated as above, by computing for each point i, the K + 1 quantities di,1, . . ., diK, di,K+1

and computing zi ¼ arg mink21;...;;Kþ1 ½di;k � lnN � ik �.

3. Once all of the indicators z1, . . ., zN are updated, update the missing variables x�1; . . . ; x�N .
For each point i, update x�i by taking the mode of the corresponding likelihood
x�i;d ¼ arg maxx�;d f ðx�;djy

� i
zi Þ. For the elliptical model we can take the mode of each dimen-

sion independently x�i;d ¼ arg maxx�;d f ðx�;d jy
� i
zi;dÞ. After all x�1; . . . ; x�N are updated, go back

to step 2 and update the cluster indicators z1, . . . zN, now using the observations and the
updated missing variables.

F Estimating the model hyper parameters (θ0, N0)

In Bayesian models, ideally we would like to choose our hyper parameters (θ0, N0) from some
additional information that we have for the data. This could be related to the way data is col-
lected, the nature of the data or expert knowledge about the particular problem at hand. For
instance when there is prior knowledge about the expected number of clusters, the relation E
[K+] = N0 log N could be used to set N0.

In cases where this is not feasible, we have considered the followingalternatives:

1. Empirical Bayes (EB). Set the hyper parameters to their corresponding maximum marginal
likelihood values. The maximum marginal likelihood expression for θ0 will be different for
the different data types and will not always be available in closed form. Usually they can be
obtained from the parameter updates in (S1 Material) by omitting the prior terms. In
MAP-DP, the maximum likelihood estimates for the hyper parameters θ0 coincide with EB
estimates as the cluster parameters θ have already been integrated out. In fact, in the simple
case of conjugate exponential family models, the EB estimates and the maximum likelihood
estimates for the model hyper parameters are quite similar. That is why it is common to use
the maximum likelihood estimates as a simple approximation to the EB estimate. This
approach is referred to as parametric EB point estimation [48]. Note that using EB to learn
the hyper parameter N0 would not be efficient because there is no closed form expression
for the marginal likelihood (see point 3 below, and Eq (17).

2. Multiple restarts. Run MAP-DP with different starting values for each of the hyper parame-
ters (θ0, N0), compute the NLL from Eq (12) including the C(N0, N) term at convergence,
change one of the hyper parameters holding the rest fixed and then restart MAP-DP with
the prior parameter. Set that hyper parameter to the value resulting in smallest NLL and
proceed in the same way for the next hyper parameter of the model. Bayesian optimisation
[49] has also been proposed to fit model hyper parameters but requires the specification of a
Gaussian Process and associated priors that may be challenging in practice. We have there-
fore not utilised this approach and prefer the simpler greedy search approach. However in
certain cases BO may be more efficient in terms of the number of MAP-DP runs required.

3. MAP estimate. Place a prior on the hyper parameter of interest and numerically compute
the mode of the posterior. For instance, by using a gamma prior on N0, p(N0) = Gamma
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(aN0
, bN0

), the posterior is proportional to:

p N0jN;Kð Þ /
G N0ð Þ

G N0 þ Nð Þ
N

KþaN0
� 1

0 exp � bN0
N0

h i
ð17Þ

We can numerically minimize the negative log of this posterior using e.g. Newton’s method.
To ensure the solution is positive we can compute the gradient with respect to ln N0: as Ras-
mussen [50] notes p(ln N0|N, K+) is log-concave and therefore has a unique maximum.

4. Cross-validation. By considering a finite set of values for (θ0, N0), choose the value corre-
sponding to the minimum, average, out-of-sample likelihood across all cross-validation rep-
etitions (see Appendix D). This approach is taken in Blei and Jordan [15] to compare
different inference methods.

We have found the second approach to be the most effectivewhere empirical Bayes can be
used to obtain the values of the hyper parameters at the first run of MAP-DP. For small data-
sets we recommend using the cross-validation approach as it can be less prone to overfitting.

Supporting Information

S1 Function. This is an example function in MATLAB implementingMAP-DP algorithm
for Gaussian data with unknownmean and precision.
(M)

S1 Script. This is a script evaluating the S1 Function on synthetic data.
(M)

S1 Material. We include detailed expressions for how to update cluster hyper parameters
and other probabilities whenever the analyzeddata type is changed.
(PDF)
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