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We analyze the equilibrium of an incomplete information game consisting of two capacity-constrained sup-

pliers and a single retailer. The capacity of each supplier is her private information. Conditioned on their

capacities, the suppliers simultaneously and non-cooperatively offer quantity-price schedules to the retailer.

Then, the retailer decides on the quantities to purchase from each supplier in order to maximize his own

utility. We prove the existence of a (pure strategy) Nash equilibrium for this game. We show that at the

equilibrium each (infinitesimal) unit of the supply is assigned a marginal price which is independent of the

capacities and depends only on the valuation function of the retailer and the distribution of the capacities.

In addition, the supplier with the larger capacity sells all her supply.

1. Introduction

Internet marketplaces facilitate matching of buyers and sellers. For example, alibaba.com 1 provides

such a platform for a wide range of industries including apparel, furniture, energy, electronics. In

this platform, buyers (e.g., retailers) post “buying leads”, which are descriptions of certain products

and also the required quantities. Then, suppliers respond by sending price quotes; these quotes are

only observed by the buyers, but not by the other suppliers. Subsequently, buyers select the best

set of quotes.

In order to better understand competition in such environments, in this paper, we study a setting

that consists of two suppliers who compete over a substitutable good that they are selling to a

single retailer (buyer). The suppliers are capacity-constrained and the capacity of each supplier is

her private information. The suppliers, conditioned on their capacities, simultaneously and non-

cooperatively offer quantity-price schedules to the retailer. Then, the retailer maximizes his utility

by deciding how much to purchase from each supplier. The goal of each supplier is to design price

schedules that maximizes her expected revenue at the equilibrium.

This model serves as an abstraction for competition in traditional industries as well as blooming

Internet markets. In the aforementioned example, the capacity each supplier can dedicate to each

1 The Alibaba group has more than 60 million registered users across the globe and its annual revenue was more than
5 billion dollars in 2010.
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product is her private information. Another example comes from the context of display advertising,

where advertisers (retailers in our setting) purchase impressions (advertisement space) from online

publishers (suppliers). The online publishers are constrained by the number of people viewing

their websites and cannot always satisfy the large number of impressions demanded by a big

advertising campaign (i.e., they are capacity-constrained). Hence, an advertiser sometimes works

with more than one publisher. Yet for another example consider secondary markets for selling

remnant inventories; for instance, hotels and airlines sell their excess capacities to a secondary

market via websites such as hotwire.com and orbitz.com (which corresponds to the retailer in our

setting); SpotCloud offers a similar service in the context of cloud computing where data centers

can sell their excess capacity (see Economist (2011)). As the final example consider the electricity

market. In particular, due to the emergence of renewable resources such as wind, the uncertainty

about the production capacities has increased in this market (see the discussion on supply function

equilibria in Section 1.1). In all the aforementioned models, the suppliers are capacity constrained.

Their exact capacities are their private information.

Contributions

We present an incomplete information game for non-linear pricing competition between two sup-

pliers where the capacity of each supplier is her private information. In this game, the strategy

of each supplier is a function of her private capacity and corresponds to a quantity-price schedule

offered by the supplier to the retailer.

In this game, finding the equilibrium strategies corresponds to solving an Equilibrium Problem

with Equilibrium Constraints (cf. Luo et al. (1996)). These problems are notoriously challenging.

Namely, the problem of finding a best response strategy for each supplier is defined by a bi-level

mathematical program: each supplier chooses a pricing schedule to maximize her expected revenue

— the expectation is taken with respect to the realizations of the capacity of the other supplier —

and given the price schedules, the retailer optimizes over the quantities to be purchased from each

supplier (the lower level program).

To the extent of our knowledge, this is the first work on competition in a supply chain context

that considers a setting where the leaders of the game are privately informed.

Existence of Equilibrium: We present pricing strategies where each (infinitesimal) unit of

the supply is assigned a marginal price which is independent of the capacities and depends only

on the valuation function of the retailer and the distribution of the capacities. Using these pricing

strategies, our main result, Theorem 1, establishes the existence of a symmetric pure strategy

Nash equilibrium, under certain assumptions on the valuation function of the retailer and the

distributions of the private information of the suppliers.
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We provide examples of the equilibrium pricing strategies for commonly used valuation functions

of the retailer that satisfy our assumptions. Examples include environments in which the retailer

sells goods to a mass of consumers represented by a linear or constant-elasticity demand curves.

Properties of the Equilibrium: We show that at the equilibrium, the retailer purchases

supply from both suppliers. He buys all the available quantity from the supplier with the larger

capacity. The amount of supply purchased by the retailer from the supplier with the smaller

capacity is decreasing in the capacity of the other supplier as well as in the production cost. In

addition, we show that the revenue of each supplier is increasing in her capacity.

Furthermore, we observe that the equilibrium may not be efficient — an equilibrium is efficient

if it maximizes the (combined) social welfare of the suppliers and the retailer. Namely, even though

the retailer has strictly positive valuations for (at least a portion of) the remaining supply of

the supplier with the smaller capacity, he may not purchase it because of the high price. This

inefficiency is attributed to the asymmetry of information among suppliers; see Section 6.1.

Methodology: We simplify the problem of finding best-response strategies using a mapping

from pricing strategies to allocation functions (where a supplier decides how much supply to allocate

to the retailer based on the capacity and the pricing strategy of the other supplier). Our techniques

for finding best response strategies can be viewed as a reduction of the equilibrium analysis, for

games with incomplete information, to a mechanism design problem.

Organization After a brief overview of the related literature in Section 1.1, we formally present

our model and discuss our assumptions in Section 2. The main results of the paper are presented

in Section 3, followed by examples of settings that satisfy our assumptions. In Section 4, we discuss

the best response strategies. The proof of Theorem 1 is presented in Section 5. In Section 6, we

discuss some of the aspects of our problem in more details; namely, the efficiency of the equilibrium,

the effects of marginal production cost on the pricing strategies, and our methodology. The proofs

of the lemmas and propositions, unless stated otherwise, are relegated to the appendix.

1.1. Related Work

A related line of work to ours is the literature of supply function equilibria; see Grossman (1981),

Hart (1985), Klemperer and Meyer (1989), Anderson and Hu (2008), Johari and Tsitsiklis (2011).

In a supply function competition, competing firms sell a substitutable good to a market consisting

of a mass of consumers. A supply function determines the quantity of the good that would be

produced by the firm given the (per-unit) market price. In a supply function equilibrium, each firm

announces a supply function, then the demand (usually stochastic) is realized and a market clearing

price is determined, i.e., supply function si(p) implies that if the market clearing price is determined

to be p, then firm i would produce amount si(p). See also Baldick and Hogan (2001), Wilson
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(2008), Holmberg (2008), Genca and Reynoldsb (2011) for capacity constrained supply-function

equilibria mainly motivated by applications in electricity markets. To the extent of our knowledge,

the only work in this context with privately informed firms is by Vives (2011) where each supplier

receives a private signal which conveys information about her own and other suppliers’ costs. Vives

(2011) argues that private cost information with supply function competition may provide a better

explanation for patterns observed in the electricity markets compared to other theories. The main

difference between the supply function equilibrium and the solution concept studied in this paper

is that in supply function equilibrium the firms sell to a mass of consumers where in our model the

firms sell to a single buyer and are able to charge non-linear prices for consumption. Furthermore,

the market may not clear. This complicates the problem even further since the buyer solves an

optimization problem to determine how much to purchase from each supplier.

Our model can be thought of as a (delegated) common agency setting (Bernheim and Whinston

(1986), Laussel and Le Breton (2001), Martimort and Stole (2002), Calzolari and Scarpa (2008)),

where the suppliers are the principals and the retailer is the agent. The closest work to ours in

this context is by Martimort and Stole (2009) who consider a model where the retailer (agent)

has private information regarding his valuation function, and there are two suppliers (principals

with no private information). The suppliers simultaneously offer menus of price-quantity contracts

to the retailer who subsequently chooses the best set of contracts. What distinguishes our paper

is that in the setting we consider the principals, not the agent, have private information and the

contracts and the equilibrium depends on their private information.

In our setting, dual-sourcing is an implication of the capacity constraints. Several recent works

study dual-sourcing motivated by disruption and risk management; see Tomlin and Wang (2005),

Babich et al. (2007), Yang et al. (2012), Gümüs et al. (2010). In these works, usually the capacity

of each supplier is modeled with a Bernoulli random variable, with some probability the supplier

fails to produce any supply and with the remaining probability yields a certain quantity.

2. Model

There are two suppliers, S1 and S2, of a substitutable good that they are selling to a retailer. The

valuation function of the retailer is represented by v :R+→R+, i.e., the retailer get value v(q) from

obtaining quantity q of the good. The capacity of the retailer is denoted by κ̄≥ 1. This valuation

function is known by the suppliers.

The amount of capacity of supplier Si is denoted by κi and is distributed with c.d.f. F : [0,1]→

[0,1] (and p.d.f. f). Each supplier Si knows her own capacity but only the distribution of the other

supplier’s capacity. Note that the maximum capacity of each supplier is (normalized to be) at most

1.
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We consider the following incomplete information game between suppliers: The suppliers lead the

game. First, each supplier Si chooses a pricing strategy pi : R+×R+→R+ where pi(q,κi) denotes

how much the retailer should pay to supplier i for quantity q of supply, when the capacity of Si is

equal to κi. Then, each supplier Si (privately) learns her own capacity, κi, which is (independently)

drawn from distribution F . Simultaneously, each supplier Si offers to the retailer price schedule

pi(·, κi), where as mentioned before pi(q,κi) represents how much the retailer should pay for q

amount of capacity.

The Retailer’s Problem: Given price schedules p1(·, κ1) and p2(·, κ2), the retailer chooses q1

and q2, the amount of the supply he buys from each supplier, such that they maximize his utility:

(q1, q2)∈ argmaxy1,y2
{v(y1 + y2)− p1(y1, κ1)− p2(y2, κ2)}. (1)

For the simplicity of the presentation, we assume pi(0, κi) = 0 and pi(qi, κi) =∞, if x > κi, for

all κi.
2 In addition, we normalize the marginal production cost to be 0. In Section 6.2, we explain

how the pricing strategies change when the marginal production cost is positive.

Each supplier chooses a strategy to maximize her own (expected) revenue.

Definition 1 (Best-Response Strategy of a Suppler). Pricing strategy p1 is a best

response strategy for supplier S1 to the pricing strategy of supplier S2, given by p2, if it maximizes

the expected revenue of S1, for any realization of her capacity, where the expectation is taken with

respect to the capacity of S2.

When the strategy of S2 is given by price schedule p2 and the capacity of S1 is equal to κ1, the

best response of S1 is to offer a price schedule that is a solution of the optimization problem below:

Maximizep1(·,κ1):[0,κ1]→R+ Rev1(κ1) =E[p1(q1(κ1, κ2), κ1)] =

∫ 1

0

p1(q1(κ1, κ), κ1)f(κ)dκ (2)

Subject To: q1(κ1, κ) = argmaxy1≤κ1,y2≤κ

{
v(y1 + y2)− p1(y1, κ1)− p2(y2, κ)

}
In the above optimization problem, κ represents the capacity of S2 and q1(κ1, κ) corresponds to

the amount of supply the retailer purchases from S1; namely, in the lower level program, q1 is the

solution of the retailer’s problem given by Eq. (1). 3 The goal of supplier S1 is to design a pricing

function that maximizes her expected revenue equal to E[p1(q1(κ1, κ2), κ1)], where the expectation

is taken with respect to the capacity of S2.

Definition 2 (Equilibrium). Strategies p1 and p2 define a Nash equilibrium if for all κi ∈ [0,1],

pi(·, κi) is a best response to the strategy of the other supplier.

2 Note that the supplier would not be able to deliver quantities beyond her capacity, unless she incurs a large cost or
penalty (by negating on the contract). Therefore, we assume that suppliers do not offer price schedules for quantities
larger than their capacities since the retailer may call them upon that.

3 To be more precise, when there exist multiple solutions to the retailer’s problem, let q1(κ1, κ) =

inf
{
q1

∣∣∣∃(q1, q2)∈ argmaxy1≤κ1,y2≤κ

{
v(y1 + y2)− p1(y1, κ1)− p2(y2, κ)

}}
.
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2.1. Assumptions

In this section, we present and discuss the assumptions that are made throughout the paper:

Assumption 1. The valuation function of the retailer, v : R+ → R+, is twice differentiable,

concave, and strictly increasing in [0, κ̄] where κ̄≥ 1 represents the capacity of the retailer; v(0) = 0

and v(q) = v(κ̄), q > κ̄.

Note that v(q) = v(κ̄), q > κ̄, corresponds to the standard free-disposal assumption. 4 The

assumption that the capacity of the retailer is at least equal to 1 captures the large, possibly infinite,

capacity of the retailer so that he would purchase from both suppliers.

An example of valuation functions that satisfies Assumption 1 is v(q) = q − 1
2
q2 with κ̄= 1. It

corresponds to a setting where the retailer sells goods to a mass of consumers represented by a

linear demand curve. See Section 3.1 for details and other examples.

Assumption 2. The distribution of capacity, F : [0,1]→ [0,1], is differentiable (with density f),

strictly increasing, and log-concave.

Log-concavity implies that f(x)

F (x)
is decreasing and is a standard assumption in the context of

mechanism design and revenue management, cf. Bagnoli and Bergstrom (2005). Assumption 2 is

satisfied by many distributions including uniform, many of the beta family distributions, as well as

the exponential and Normal distributions truncated and scaled to finite intervals. We mainly use

this assumption to prove Lemma 6 in Section 3.

Assumption 3. For all κ ∈ [0,1], function h(y) = v(κ+ y) + F (κ)

f(κ)
v′(κ+ y) is quasi-concave 5 in

y ∈ [0,1]. 6

The quasi-concavity property implies that function h is unimodal. Note that every concave function

is quasi-concave (the reverse is not true). The function is strictly quasi-concave if the inequality

holds strictly. The assumption above, as it will become clearer later, corresponds to a regularity

condition similar to the monotonicity of virtual values in auction design (cf. Myerson (1981)). For

the aforementioned example of v(q) = q− 1
2
q2, the assumption above is satisfied since h′′(y) =−1

(i.e., h is concave). It is easy to see that the assumption above is satisfied if v satisfies Assumption 1

and the 3-rd derivative of v is negative.

We now define α as argmaxy{h(y)} defined above in Assumption 2.

Definition 3 (α). Define α(κ) = minz

{
z ∈ argmax0≤y≤min{1,κ̄−κ}

{
v(κ+ y) + F (κ)

f(κ)
v′(κ+ y)

}}
.

4 The assumption implies that having more supply cannot decrease the retailer’s utility because the retailer can
discard “extra” supply at no cost.

5 Function h : R×R→R is quasi-concave if for any x, y ∈R and λ∈ [0,1] we have h(λx+ (1−λ)y)≥min{h(x), h(y)}.
6 To simplify the presentation, with slight abuse of notation, we have dropped the dependence of h on κ.
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By Assumption 3, h(y) is increasing in y≤ α(κ) and decreasing in y≥ α(κ).

In a setting where v(q) = q− 1
2
q2 with κ̄= 1, and F is the uniform distribution, we have α(κ) =

1− 2κ, κ∈
[
0, 1

2

]
, and α(κ) = 0, κ∈

[
1
2
,1
]
.

We need a couple of more definitions before presenting out next, and final, assumption. Let

α = maxκ{κ|α(k) = α(0)}. Observe that since v is strictly increasing (Assumption 1), we have

α(0) = 1. In addition, in Appendix A.1, using Assumption 2, we show that α is a decreasing

function. Furthermore, we denote the inverse of function α by α−1 and let α̃ to be the fixed point

of α, i.e., α̃ is the solution of α(κ) = κ; see Appendix A.1 for details.

Quasi-concavity is a common assumption in the literature on the equilibrium analysis (cf. Arrow

and Enthoven (1961), Greenberg and Pierskalla (1971), Ginsberg (1973)) and incomplete informa-

tion games (cf. Athey (2001), Milgrom and Shannon (1994)).

Assumption 4. For κ∈ [0,1], pricing function p(q,κ) is strictly increasing in q ∈ (0, κ). In addi-

tion, function v(q+ y)− p(q,κ) is quasi-concave in q ∈ (α,κ), for y ∈ [α,1]. 7

In the assumption above, we consider the range in [α,1] because, for κ≤ α, we have α(κ) = 1.

This follows from definition of α and Lemma 6 that shows α is a decreasing function. In addition,

we point out that the assumption above would be imposed only on the pricing strategy p? defined

in the following section(see Eq. (4)). In other words, we do not limit the strategy space of the

suppliers to lie within the pricing functions defined by the assumption above.

3. Equilibrium Pricing Strategies

In this section, we present our main result. We start with defining γ : [0,1]→ [0,1] as follows

γ(y) =

{
v′(y+α−1(y)) 0≤ y≤ α̃
v′(y+α(y))− f(y)

F2(y)

∫ y
α̃
F (z)(1−α′(z))v′(z+α(z))dz α̃ < y≤ 1

(3)

Below, we present the main result of this paper. The following theorem shows that at the equi-

librium each (infinitesimal) unit dy of the supply is assigned a marginal price γ(y) (which is

independent of the capacity).

Theorem 1. Define p? :R+×R+→R+ as:

p?(q,κ) =

{∫ q
0
γ(y)dy q≤ κ

∞ q > κ
(4)

7 For instance, we observe that the above assumption holds for the wholesale price contracts — defined as p(q,κ) =
qµ(κ) where µ is a function of the capacity — as long as v is strictly concave. Another example is quadratic valuations
and quantity-discount price contracts. Quantity-discount price contracts can be defined as p(q,κ) = q− q2µ(κ) where
µ is a function of the capacities, cf. Cachon and Kök (2010); see Section 3.1.
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Suppose Assumptions 1, 2, and 3 hold and p? satisfies Assumption 4. The pricing strategies p1 =

p2 = p? define a symmetric equilibrium such that the retailer purchases quantities q?1(κ1, κ2) and

q?2(κ1, κ2) from suppliers S1 and S2, respectively, where

q?1(κ1, κ2) =

{
min{α(κ2), κ1} κ1 ≤ κ2

κ1 κ1 >κ2

(5)

q?2(κ1, κ2) =

{
κ2 κ1 ≤ κ2

min{α(κ1), κ2} κ1 >κ2

In other words, q1 = q?1(κ1, κ2) and q2 = q?2(κ1, κ2) maximize the utility of the retailer v(q1 +q2)−

p?(q1)− p?(q2); see Eq. (1). Note that each supplier either sells all her supply to the retailer or

a small (less than α̃) part of it. By Eq. (5) and since α is decreasing (Lemma 6), we obtain the

following results.

Corollary 1. At the equilibrium, the supplier with the larger capacity sells all her supply. In

addition, the quantity that the retailer purchases from the other supplier is decreasing in the capacity

of the supplier with the larger capacity.

Corollary 2. The amount of good the retailer purchases from a supplier and the revenue of

the supplier are increasing in her capacity.

Although the result above seems intuitive, it may not always be the case, for instance, Talluri

and Martinez de Albéniz (2011) present a (full information) model for dynamic pricing competition

and show that having a larger capacity may not be favorable. In their model, the seller with the

lower capacity would sell her supply first. Our results suggest that the predictions of these models

may change if the capacities of the sellers are private information.

The proof of Theorem 1 is given in Section 5. We divide the proof into two parts. First, we show

that if p? satisfies Assumption 4, then allocation q? will be implemented at equilibrium. Then, we

show that p? is a best response to itself. To do so, first in Section 4, we discuss the best-response

strategies in our model and show how they can be simplified under our assumptions.

3.1. Examples

In this section, we present examples of valuation functions and distributions that satisfy the

assumptions of Theorem 1. The proofs of the results in this section are given in Appendix ??.

Quadratic Valuation: We call the valuation function of the retailer quadratic if for a constant

ρ> 0, we have v(q) = q−ρq2, κ̄= 1
2ρ

. This valuation function models a retailer who sells to a mass

of consumer represented by a linear demand curve. To observe this, consider a linear demand curve

defined with a parameter a. Namely, when the price is equal to p, mass q= a− p of the consumers
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Figure 1 Price p? (y-axis) for linear and quadratic valuations, respectively for ρ= 1
6
and 1

4
.

would buy the good. Hence, if the retailer has quantity q ≤ a
2

of the good, the price would be

equal to p = a− q (the retailer does not obtain additional value from the good beyond quantity

a/2). Therefore, the retailer’s valuation for quantity q≤ a
2

of the good is equal to v(q) = q(a− q) =

a(q− 1
a
q2). The claim follows by letting ρ= 1

a
.

Note that for quadratic valuations and ρ≤ 1
2
, Assumption 1 holds since v is increasing in q ∈ [0,1].

Also, as we mentioned earlier, Assumption 3 is satisfied because v(κ+y) + F (κ)

f(κ)
v′(κ+y) is concave

in y.

Proposition 1. Suppose the valuation of the retailer is quadratic and F is the uniform distri-

bution. For 0<ρ≤ 1
6
, we have α(κ) = 1 and γ(y) = v′(y+ 1)− v′(y). For 1

6
≤ ρ≤ 1

4
, we have

α(κ) =


1 0≤ κ≤ 1−2ρ

4ρ
1−4ρκ

2ρ
1−2ρ

4ρ
≤ κ≤ 1

4ρ

0 1
4ρ
≤ κ≤ 1

γ(y) =


1− 2ρ− 2ρy 0≤ y≤ 1−2ρ

4ρ
1
2
− ρy 1−2ρ

4ρ
≤ y≤ 1

6ρ
1

108ρ2y2 min{ 1
6ρ
,1} ≤ y≤ 1

(6)

The corresponding pricing strategy p? satisfies Assumption 4 and, using Theorem 1, implements

equilibrium q?.

For ρ≤ 1
6
, since α(κi)≥ κi, both suppliers always sell all their supply at price equal to p?(κi, κi) =

v(κ+ 1)− v(1). See Figure 1 for a depiction of γ and p? for ρ equal to 1
6

and 1
4
. Note that since

the (marginal) valuation of the retailer is decreasing in ρ, the suppliers are able to charge higher

prices for ρ= 1
6

compared to those with ρ= 1
4
.

Linear Valuations: Linear valuations refer to the setting where v(q) = q in [0, κ̄]. An example

for such valuations comes from display advertising (cf. Feldman et al. (2009)). It is rather easy to

see that Assumption 1 holds and it yields Assumption 3.
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For κ̄≥ 2, observe that the retailer could buy all the supply of both suppliers and the problem

decomposes into two separate problems each with only one supplier. We now consider the case

where κ̄ < 2.

Proposition 2. Suppose κ̄ < 2 and F satisfies Assumption 2 and F ( κ̄
2
)≥ 1

2
. For linear valua-

tions we have α(κ) = κ̄−κ and

γ(y) =

{
1 0≤ y≤ κ̄

2

1− 2f(y)

F2(y)

∫ y
α̃
F (z)dz κ̄

2
< y≤ 1

p?(q) =

{
q 0≤ q≤ κ̄

2

1− q+
2
∫ q
α̃
F (z)dz

F2(q)
κ̄
2
< q≤ 1

The corresponding pricing strategy p? satisfies Assumption 4 and, by Theorem 1, it defines an

equilibrium.

Corollary 3. If the valuation of the retailer is linear, κ̄= 1, and F is the uniform distribution,

then

γ(y) =

{
1 0≤ y≤ 1

2
1

4y2
1
2
< y≤ 1

p?(q) =

{
q 0≤ q≤ 1

2

1− 1
4q

1
2
< q≤ 1

See Figure 1 for a depiction of γ and p?. Note that for y≤ 1
2
, the marginal price γ(y) is equal to

the marginal valuation of the retailer. Suppose κ1 ≥ κ2. If κ1 ≤ 1
2
, supplier S1 does not have to give

any discount to the retailer because even if she has the larger capacity, still there is more demand

than supply. But, for κ1 ≥ 1
2
, the supplier should give larger discounts to “win” the competition

and sell all her capacity to the retailer. As κ1 ≥ 1
2

becomes larger, S1 decreases the marginal price.

Monomial Valuations: We call the valuation function of the retailer monomial if v(q) = qρ, for

a constant ρ∈ (0,1), and κ̄=∞ (i.e., the retailer does not have capacity constraints). This valuation

function represents a retailer who sells to a mass of consumer with constant price elasticity.8

Proposition 3. Suppose F is the uniform distribution. Then p?(y,κ) = v(y+1)−v(1), 0≤ y≤

κ, satisfies Assumption 4. As implied by Theorem 1, pricing strategies p1 = p2 = p? implement an

equilibrium.

Note that in this case, both suppliers always sell all their supply.

8 The constant elasticity demand function is given by q = apε (equivalently p=
(

1
a
q
) 1

ε ), where a is a constant and ε

is the elasticity parameter. Let v(q) =
(

1
a

) 1
ε q(1+ 1

ε ) and ρ= 1 + 1
ε
. For ε <−1, we have 0≤ ρ≤ 1.
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4. Best-Response Strategies

An important step in analyzing the equilibrium is computing the best-response strategies defined

by the bi-level mathematical program in Eq. (2). In this section, Proposition 4 presents a rather

simple condition that identifies whether a pricing strategy of a supplier is a best-response to the

strategy of the other supplier. We obtain this best response condition by simplifying the bi-level

program (2). To do so, we use Lemma 1 which provides a mapping from allocation q1 to payment

p1. In order to simplify the presentation, we assume that supplier S2 uses pricing strategy p2 = p?;

however, our results can be extended to a broad class of pricing strategies.

Let W (q,κ2) be the value that the retailer obtains from the allocation of quantity q from supplier

S1 when the capacity of supplier S2 is equal to κ2. Note that if S1 allocates capacity q to the

retailer, he can buy additional capacity from S2. Namely,

W (q,κ2) = max
y≤κ2

{
v(q+ y)− p?(y)

}
(7)

where p? is defined in Eq. (4).

The following lemma establishes a mapping from allocations to payments via the envelope the-

orem; see Section 6.3 for more details.

Lemma 1 (Mapping Payments to Allocations). Suppose supplier S2 uses pricing strategy

p2 = p? and consider q1 : [0,1]× [0,1]→ [0,1], defined in Eq. (2), that is implemented at equilibrium.

Then, for the pricing strategy of supplier S1 we have

p1(q1(κ1, κ2), κ1) = W (q1(κ1, κ2), κ2) +

∫ 1

κ2

∂W (q, z)

∂z

∣∣∣∣
x=q1(κ1,z)

dz

In addition, p(q1(κ1,1), κ1) =W (q(κ1,1),1).

Note that W is decreasing in κ2. Therefore, p1(q1(κ1, κ2), κ1) ≤W (q1(κ1, κ2), κ2). Now let us

define ψ as follows:

ψ(q,κ) = W (q,κ) +
F (κ)

f(κ)

∂W (q,κ)

∂κ
(8)

We are now ready to define the best-response condition.

Proposition 4 (The Best-Response Condition). Allocation function q1 and corresponding

pricing strategy p1, defined in Lemma 1, are a best-response to pricing strategy p2 = p? if

q1(κ1, κ2)∈ argmaxq≤κ1

{
ψ(q,κ2)

}



Nazerzadeh and Perakis: Non-Linear Pricing Competition with Private Capacity Information
12 00(0), pp. 000–000, c© 0000 INFORMS

Proof: Using Lemma 1, we obtain the following expression for the expected revenue of S1,

denoted by Rev1(κ1).

Rev1(κ1) =

∫ 1

0

p1(q1(κ1, y), κ1)f(y)dy

=

∫ 1

0

(
W (q1(κ1, y), y) +

∫ 1

y

∂W (x, z)

∂z

∣∣∣∣
x=q1(κ1,z)

dz

)
f(y)dy

=

∫ 1

0

(
W (q1(κ1, y), y) +

F (y)

f(y)

∂W (x, y)

∂y

∣∣∣∣
x=q1(κ1,y)

)
f(y)dy

=

∫ 1

0

ψ(q1(κ1, y), y)f(y)dy (9)

The claim follows since supplier S1 is maximizing her expected revenue. �

As we discuss later in Section 6.3, function ψ corresponds to the virtual value (or marginal

revenue) of allocation of quantity q of supply to the retailer when the capacity of the other supplier

is equal to κ.

5. Proof of Theorem 1

In this section, we prove Theorem 1 when Assumptions 1, 2, 3 hold and p? satisfies Assumption 4.

First, using Lemma 3, we show that if both suppliers use pricing strategy p?, then allocation q?,

Eq. (5), is implemented at the equilibrium. In other words, q1(κ1, κ2) and q2(κ1, κ2) are optimal

solutions to the retailer’s problem (Eq. (1)). In the second part, using Lemma 5, we show that this

allocation function satisfies the best-response strategy conditions given by Proposition 4.

Part I: Allocation at the Equilibrium. Suppose supplier S2 uses pricing strategy p?. To

simplify the presentation, we use p?(q) instead of p?(q,κ1 = 1). We start with the retailer’s problem.

Define β as follows:

β(q) = argmax0≤y≤min{1,κ̄−q}

{
v(q+ y)− p?(y)

}
. (10)

Note that using the first order conditions, if 0<β(q)<min{1, κ̄− q}, we have:

v′(q+β(q))− γ(β(q)) = 0 (11)

In the appendix, we prove the following properties of β.

Lemma 2. For q≤ α, function v(q+ y)− p?(y) is increasing in y ∈ (0,1) and we have β(q) = 1.

For q ∈ (α, α̃), we have β(q)> q. For q ∈ (α̃,α), we have β(q) = α(q).

We now present the solution to the retailer’s problem in terms of function β. The following is

the main technical lemma of this section. The proof is given in the appendix.
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Lemma 3 (Equilibrium Allocation). Suppose pricing strategy p? defines a symmetric equi-

librium. At the equilibrium, the following allocation is optimal for the retailer:

q1(κ1, κ2) =

{
min{β(κ2), κ1} κ1 ≤ κ2

κ1 κ1 >κ2

(12)

q2(κ1, κ2) =

{
κ2 κ1 ≤ κ2

min{β(κ1), κ2} κ1 >κ2

In the appendix, for κ1 ≤ κ2, we show that min{β(κ2), κ1}= min{α(κ2), κ1} which gives rise to

the following lemma that corresponds to the allocation part of Theorem 1.

Lemma 4 (Retailer’s Problem). If both suppliers S1 and S2 use pricing strategy p? and p?

satisfies Assumption 4, then allocation q? will be implemented at the equilibrium.

Part II: Satisfying the Best-Response Conditions. We now consider the optimality con-

ditions for a best response strategy given by Proposition 4. As the first step, using Assumption 4,

we obtain the following:

W (q,κ2) =

{
v(q+κ2)− p?(κ2) κ2 <β(q)

v(q+β(q))− p?(β(q)) κ2 ≥ β(q)
(13)

and

ψ(q,κ2) =

{
v(q+κ2)− p?(κ2) + F (κ2)

f(κ2)
(v′(q+κ2)− γ(κ2)) κ2 <β(q)

v(q+β(q))− p?(β(q)) κ2 ≥ β(q)
(14)

Lemma 5 (The Best-Response Condition). For all capacities κ1 and κ2, under the assump-

tions of Theorem 1, we have that given κ2

q?1(κ1, κ2)∈ argmaxq≤κ1

{
ψ(q,κ2)

}
(15)

Note that due to the symmetry, we get q?2(κ1, κ2) ∈ argmaxq≤κ2

{
ψ(q,κ1)

}
. In the rest of this

section, we prove the above lemma.

Proof of Lemma 5: As shown by Lemma 7 in the appendix, β is a decreasing function. We

consider the following cases:

1. If κ2 <β(q), then ∂ψ(q,κ2)

∂q
= v′(q+κ2)+ F (κ2)

f(κ2)
v′′(q+κ2). Assumption 3 implies that v(q+κ2)+

F (κ2)

f(κ2)
v′(q + κ2) is increasing in q ≤ α(κ2) and takes its maximum at α(κ2). Therefore, ψ(q,κ2) is

increasing in q ∈ [0, α(κ2)), takes its maximum at α(κ2), and is decreasing in q afterwards as long

as κ2 <β(q).
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2. If κ2 >β(q), then ψ is increasing in q, i.e., ∂ψ(q,κ2)

∂q
≥ 0. The reason is that for β(q)< κ̄− q, we

have

∂ψ(q,κ2)

∂q
= v′(q+β(q)) +β′(q) (v′(q+β(q))− γ(β(q))) = v′(q+β(q))≥ 0.

The equality follows from the first order conditions in Eq. (11). Also, if β(q) = κ̄ − q, then

∂ψ(q,κ2)

∂q
= v′(κ̄)− (v′(κ̄)− γ(κ̄)) = γ(κ̄)≥ 0.

3. By construction, for κ2 ≥ α̃, we have ψ(α(κ2)) =ψ(κ2): Plugging into Eq. (14), we have

ψ(α(κ2), κ2)−ψ(κ2, κ2) =
(
v(κ2 +α(κ2))− p?(κ2) +

F (κ2)

f(κ2)
(v′(α(κ2) +κ2)− γ(κ2))

)
−
(
v(κ2 +α(κ2))− p?(α(κ2))

)
= p?(α(κ2))− p?(κ2) +

F (κ2)

f(κ2)
(v′(α(κ2) +κ2)− γ(κ2))

Eq. (3)⇒ = − 1

F (κ2)

∫ κ2

α̃

F (y)(1−α′(y))v′(y+α(y))dy

+
F (κ2)

f(κ2)

(
f(κ2)

F 2(κ2)

∫ κ2

α̃

F (z)(1−α′(z))v′(z+α(z))dz

)
= 0

Therefore, if κ2 > κ1, ψ is maximized at min{κ1, α(κ2)}; otherwise, for k1 > κ2, the maximum is

taken at κ1. �

We conclude section with the following remark. The best response condition in Lemma 5 implies

that for pricing strategy p? to implement an equilibrium, we should have ψ(α(k), κ) =ψ(κ,κ). With

algebraic manipulation, this equality leads to the following differential equation (the solution of

which gives us pricing strategy p?)

p(κ) +
F (κ)

f(κ)
p′(κ) = v(α(κ) +κ) +

F (κ)

f(κ)
v′(α(κ) +κ) (16)

As we discuss later in Section 6.2, the above equation, or its extensions, can be used to find

equilibrium pricing strategies in more general settings.

6. Discussions & Extensions

In this section, we first discuss the efficiency of the equilibrium corresponding to pricing strategies

p?. Then, we present an extension of our result with production costs. Finally, we discuss the

connection between the best-response condition of Proposition 4 and ideas from mechanism design

for optimal auctions.



Nazerzadeh and Perakis: Non-Linear Pricing Competition with Private Capacity Information
00(0), pp. 000–000, c© 0000 INFORMS 15

6.1. Efficiency

In this section, we consider the efficiency of the equilibrium corresponding to pricing strategies p?.

An equilibrium is efficient if it maximizes the (total) social welfare that is the sum of the utilities

of the suppliers and the retailer.

In our model, in an efficient equilibrium, either both suppliers sell all their supplies (i.e.,

q1(κ1, κ2) = κ1 and q2(κ1, κ2) = κ2) or all the demand of the retailer is satisfied (i.e., q1(κ1, κ2) +

q2(κ1, κ2) = κ̄). Therefore, by Eq. (5), we observe that the equilibrium corresponding to pricing

strategies p? is efficient if α(κ) = κ̄−k. By this observation, and plugging α(κ) = κ̄−k into Eq. (3),

we obtain the following proposition.

Proposition 5 (Efficient Equilbrium). Suppose Assumptions 1, 2, and 4 hold and in addi-

tion, v(κ+y)+ F (κ)

f(κ)
v′(κ+y) is increasing in y ∈ (0,min{1, κ̄−κ}) for κ∈ [0,1]. Then, α(κ) = κ̄−k

and

γ(y) =

{
v′(κ̄) 0≤ y≤ κ̄

2

v′(κ̄)
(

1− 2f(y)

F2(y)

∫ y
α̃
F (z)dz

)
κ̄
2
< y≤ 1

(17)

Furthermore, the equilibrium corresponding to pricing strategies p1 = p2 = p? is efficient.

Recall that Assumption 3 requires that v(κ+ y) + F (κ)

f(κ)
v′(κ+ y) to be quasi-concave in y. The

stronger monotonicity assumption in the above proposition, by the definition of α, implies that

α(κ) = κ̄− k. For instance, this assumption holds for linear valuations.

6.2. Marginal Production Cost

We now consider the case when the marginal production cost is equal to c > 0. More precisely, the

utility of a supplier from selling q unit of supply at price p to the retailer is equal to p− cq. We

start with the following generalizations of our previous definitions. Define

αc(κ) = argmax0≤y≤min{1,κ̄−κ}

{
v(κ+ y) +

F (κ)

f(κ)
v′(κ+ y)− cy

}
(18)

and let marginal prices be equal to

γc(y) =


v′(y+α−1

c (y)) 0≤ y≤ α̃c
v′(y+αc(y)) + f(y)

F (y)
(c(y−αc(y))) α̃c < y≤ 1

− f(y)

F2(y)

(∫ y
α̃c

(
F (z)(1−α′c(z))v′(z+αc(z)) + (c(z−αc(z)))f(z))

)
dz
)

We obtain the following generalization of Theorem 1. The proof is omitted due to its similarity

to Theorem 1.



Nazerzadeh and Perakis: Non-Linear Pricing Competition with Private Capacity Information
16 00(0), pp. 000–000, c© 0000 INFORMS

Proposition 6 (Pricing Strategies with Production Cost). Define p?c as follows:

p?c(q,κ) =

{∫ x
0
γc(y)dy q≤ κ

∞ q > κ
(19)

Suppose Assumptions 1, 2, and 3 hold and p?c satisfies Assumption 4. The pricing strategies p1 =

p2 = p?c define a symmetric equilibrium such that the retailer purchases quantities q?1(κ1, κ2) and

q?2(κ1, κ2) from suppliers S1 and S2, respectively, where

q?1(κ1, κ2) =

{
min{αc(κ2), κ1} κ1 ≤ κ2

κ1 κ1 >κ2

(20)

q?2(κ1, κ2) =

{
κ2 κ1 ≤ κ2

min{αc(κ1), κ2} κ1 >κ2

For instance, for the example discussed in Section 3.1, with linear valuations and uniform dis-

tributions, we have αc(x) = α(x) = 1−κ, for c≤ 1. Therefore, we get

γc(y) =

{
1 0≤ 1

2
1−c
4y2 + c 1

2
< y≤ 1

p?c(q) =

{
q 0≤ 1

2

(1− c)(1− 1
4q

) + cq 1
2
< q≤ 1

Note that as marginal cost c increases, γc gets closer to c and the marginal profit of each supplier

decreases.

The proof of the proposition above is very similar to Theorem 1 and is omitted; instead, we

present a sketch of the proof. First observe that the results in Section 4 (Lemma 1 and Proposition 4)

still hold. Using Eq. (9), we obtain the expression below for the expected profit of a supplier (with

production cost).∫ 1

0

(
p1(q1(κ1, y), κ1)− cq1(κ1, y)

)
f(y)dy=

∫ 1

0

ψc(q1(κ1, y), y)f(y)dy (21)

where

ψc(x,κ) =W (x,κ) +
F (κ)

f(κ)

∂W (x,κ)

∂κ
− cx=ψ(x,κ)− cx

Subsequently, the definition of α (see Definition 3) is extended to Eq. (18). Similar to Eq. (16), the

differential equation for the pricing strategies is given by:

p(κ) +
F (κ)

f(κ)
p′(κ) = v(αc(κ) +κ) +

F (κ)

f(κ)
v′(αc(κ) +κ) + c(κ−αc(κ))

Solving the equation above, we obtain Eq. (21).

We conclude this section with the following corollary.

Corollary 4. As the production cost increases, the suppliers sell smaller quantities to the

retailer.

The result holds because αc is decreasing in c. This follows from Assumption 3 using the first order

conditions.
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6.3. Revisiting Our Methodology

In this section, we explain how our techniques for finding the best response strategy can be inter-

preted as a reduction of the equilibrium analysis to a mechanism design problem. In other words,

the problem of finding the best response strategy, under some conditions, can be solved using the

ideas developed for optimal auction design.

To show this, we first consider the hypothetical case where the retailer knows the capacity of

the suppliers, i.e., κ1 and κ2. Fixing the strategy of S2, supplier S1 faces the following mechanism

design problem: the retailer is privately informed of κ2, which corresponds to the capacity of S2.

The valuation function of the retailer for the supply of S1 is given by W (Eq. (7)). The goal of S1

is to find an allocation and pricing mechanism that maximizes her expected revenue.

The revelation principle (cf. Gibbard (1973)) allows us to focus only on direct (incentive com-

patible) mechanisms. 9 A mechanism M is defined with an allocation rule q : R+×R+→R+ and

pricing scheme p :R+×R+→R. The mechanism asks the retailer to report the capacity of S2. An

allocation rule q(z,κ1) determines how much capacity should be allocated to the retailer given that

he reports z and S1’s capacity is equal to κ1. The pricing scheme p(q,κ1) determines how much

should be charged for allocation q. A mechanism is called incentive compatible if the utility of the

retailer is maximized by reporting truthfully (i.e., z = κ2) to the mechanism. Then, using tech-

niques similar to Myerson (1981), Milgrom and Segal (2002), one can establish results resembling

Lemma 1 and Proposition 4 that map the payment of any incentive compatible mechanism to its

allocations.

We now revisit the hypothetical scenario where the retailer knows the capacities and complete

the reduction. Note that if the price schedule each supplier offers uniquely maps to her capacity,

then the retailer learns the capacity of each supplier. Moreover, the revelation principle still holds

even though S1 has private information. This follows from Maskin and Tirole (1990), because the

utility of the retailer depends only on the allocation he receives (private value setting) and is

quasi-linear in the payments.

7. Conclusions

Non-linear pricing competition with asymmetric or incomplete information, in the contexts of

supply chains or revenue management, is not yet well-understood mainly due to challenges in

analyzing their equilibria. In this paper, we studied a setting where the capacities of the suppliers

are private information. We observe that quasi-concave pricing strategies emerge at the equilibrium

even when no restriction is imposed on the pricing strategies.

9 The revelation principle implies that any mechanism can be converted to a direct mechanism.
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To analyze the equilibrium, we presented an approach that allows us to think about equilibrium

strategies as allocation rules rather than more complicated pricing functions. We believe that the

ideas developed in this work can be extended to other problems, for instance where the cost, quality,

or reliability of the suppliers are private information.
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Appendix A: Proofs

A.1. Appendix to Section 2

We start by formally defining the inverse function of α, denoted by α−1. First observe that since v is strictly

increasing, we have α(0) = 1. We show that α has the following shape: it is constant in an interval, denoted

by [0, α] (possibly α= 0), then it is decreasing, and then constant again in an interval [α,1] (possibly α= 1).

More precisely, define α= maxκ{κ|α(k) = α(0)} and α= minκ{κ∈ argminα≤z≤1{α(z)}}. Furthermore, define

α̃ as follows: if there exists κ∈ [α,α] such that α(κ) = κ, let α̃= κ; otherwise let α̃= 1.

Lemma 6. α(κ) is strictly decreasing in κ∈ (α,α).

Proof: Suppose α(κ), κ ∈ (0,1), is positive. Consider 0 < δ < α(κ). We show that α(κ+ δ) < α(κ)− δ.

Define h(y,κ) = v(κ+ y) + F (κ)

f(κ)
v′(κ+ y). We have

∂h(κ+ δ, y)

∂y

∣∣∣∣
y=α(κ)−δ

= v′
(

(κ+ δ) + (α(κ)− δ)
)

+
F (κ+ δ)

f(κ+ δ)

(
v′′(κ+ δ) + (α(κ)− δ)

)
= v′(κ+α(κ)) +

F (κ+ δ)

f(κ+ δ)
v′′(κ+α(κ))

≤ v′(κ+α(κ)) +
F (κ)

f(κ)
v′′(κ+α(κ)) =

∂h(κ, y)

∂y

∣∣∣∣
y=α(κ)

= 0

The third inequality follows from Assumption 2; since F (κ) is log-concave, F (κ+δ)

f(κ+δ)
≥ F (κ)

f(κ)
. Since h(κ+ δ, y)

is non-increasing at α(κ)− δ, we have α(κ+ δ)<α(κ)− δ. �

Note that by the above lemma, the inverse of α, denoted by α−1, is well-defined over [α,α]. With slight

abuse of notation, we define α−1(κ) = 1, κ∈ [0, α].

A.2. Proofs from Section 3.1

Proof of Proposition 1: Note that Assumption 2 holds immediately for the uniform distribution. Also,

we have

v(κ+ y) +
F (κ)

f(κ)
v′(κ+ y) = (κ+ y)− ρ(κ+ y)2 +κ(1− 2ρ(κ+ y))
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and the first and the second derivatives with respect to y are respectively equal to 1− 2ρy− 4ρκ and −2ρ.

Note that the function above is (strictly) concave and hence (strictly) quasi-concave. Therefore, Assumption 3

holds.

Using the first and the second order derivatives, for ρ≤ 1
4
, it is easy to see that α= 1−2ρ

4ρ
, α= min

{
1
4ρ
,1
}

,

and

α(κ) =


1 0≤ κ≤ 1−2ρ

4ρ
1−4ρκ

2ρ
1−2ρ

4ρ
≤ κ≤ α

0 α≤ κ≤ 1

For ρ≤ 1
6
, α(κ)≥ κ for κ∈ [0,1]. For 1

6
≤ ρ≤ 1

4
, we have α̃= 1

6ρ
. In addition, α−1(κ) = 1−2ρκ

4ρ
, for κ∈ [α,α].

We now consider the following cases and find γ.

• By Eq. (3), for y≤ 1−2ρ
4ρ

, we get γ(y) = v′(y+ 1) = 1− 2ρ(y+ 1) = 1− 2ρ− 2ρy.

• For 1−2ρ
4ρ
≤ y≤min

{
1
6ρ
,1
}

, we have

γ(y) = v′
(
y+

1− 2ρy

4ρ

)
= v′

(
1 + 2ρy

4ρ

)
= 1− (1 + 2ρy)/2 =

1

2
− ρy.

• We now consider y ∈
[

1
6ρ
,min

{
1
4ρ
,1
}]

.We have

γ(y) = v′
(
y+

1− 4ρy

2ρ

)
− 1

y2

∫ y

α̃

3zv′
(
z+

1− 4ρz

2ρ

)
dz.

Note that v′
(
y+ 1−4ρy

2ρ

)
= v′

(
1
2ρ
− y
)

= 1 − 2ρ
(

1
2ρ
− y
)

= 1 − 1 + 2ρy = 2ρy and
∫ y
α̃

3zv′(z + 1−4ρz
2ρ

)dz =∫ y
α̃

6ρz2dz = 2ρ (y3− α̃3). Hence, for 1
6ρ
≤ y≤ 1, we get

γ(y) = 2ρ

(
y− 1

y2

(
y3− α̃3

))
= 2ρ

(
α̃3

y2

)
=

1

108ρ2y2
.

We now verify Assumption 4. For y ≤ 1−2ρ
4ρ

, we get γ′(y) =−2ρ and v′′(x+ y)− γ′(y) = 0. For 1−2ρ
4ρ
≤ y ≤

min
{

1
6ρ
,1
}

, we have γ′(y) = −ρ and v′′(x+ y)− γ′(y) = −ρ. Hence, v(x+ y)− p?(y) is concave. We now

consider y ∈
[

1
6ρ
,min

{
1
4ρ
,1
}]

.In this case γ′(y) = −1
54ρ2y3 . We now show that v(x+ y)− p?(y) is increasing in

y ∈
[

1
6ρ
,min

{
1
4ρ
,1
}]

. Note that in this interval, the derivative of v′(x+ y)− γ(y) = 1− 2ρ(x+ y)− 1
108ρ2y2

with respect to y is equal to −2+ 1
54ρ2y3 ≤−2+ 1

54ρ2 ≤−1. Therefore, v′(x+y)−γ(y) is (strictly) decreasing

in y ∈
[

1
6ρ
,min

{
1
4ρ
,1
}]

. Since y≥ 1
6ρ

we have

v′(x+ y)− γ(y)≤ v′
(
x+

1

6ρ

)
− γ

(
1

6ρ

)
≤ 1− 2ρx− 1

3
− 1

108× 1
36

=
1

3
− 2ρx

If v′(x+y)−p?(y) is decreasing in y, at the end of interval y ∈ [ 1−2ρ
4ρ

, 1
6ρ

], then it is decreasing afterwards (and

hence quasi-concave). On the other hand, if 1
3
− 2ρx > 0, then we have that v′(x+ y)− p?(y, ·) is increasing

in y, for y ∈ [ 1−2ρ
4ρ

, 1
6ρ

], then it takes its maximum in [ 1
6ρ
,1].

�

Proof of Proposition 2: First, we observe that for linear valuations α(κ) = κ̄−κ since v(κ+y)+ F (κ)

f(κ)
v′(κ+

y) = κ+ y+ F (κ)

f(κ)
is increasing in y ∈ [0, κ̄− k].
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We now show that p? is strictly increasing or equivalently γ is positive. The claim is trivial for x≤ κ̄
2
. Now

consider, x≥ κ̄
2
. If F is log-concave, for y≤ x, we have f(x)F (y)

F (x)
≤ f(y). Hence, we get

1

F (x)

∫ x

κ̄
2

f(x)F (y)

F (x)
dy ≤ 1

F (x)

∫ x

κ̄
2

f(y)dy=
F (x)−F ( κ̄

2
)

F (x)
= 1−

F ( κ̄
2
)

F (x)

Thus, γ(x)≥ 1− 2
(

1− F ( κ̄
2

)

F (x)

)
which is positive if 2F ( κ̄

2
)≥ 1.

We now show that v(x+z)−p(x,κ) is increasing in x∈ [0, κ̄−z] which implies the quasi-concavity property.

Note that for linear valuation we have v′(x+ z)− ∂p(x,κ)

∂x
= 1− γ(x). The claim follows since γ(x)≤ 1. �

Proof of Proposition 3: For monomial valuations, we observe that v(κ + y) + F (κ)

f(κ)
v′(κ + y) is

always increasing in y if κ ≥ (1 − ρ)F (κ)

f(κ)
, κ ∈ [0,1] because ∂

∂y

(
(κ+ y)ρ + ρF (κ)

f(κ)
(κ+ y)ρ−1

)
= ρ(κ +

y)ρ−2
(
y+κ− (1− ρ)F (κ)

f(κ)

)
. This inequality holds for the uniform distribution. Therefore, α(κ) = 1, for all

κ, and by definition α = α = α̃ = 1. Now by Equations (3) and (4), we get γ(y) = v′(y + 1) and p?(y, ·) =

v(y+ 1)− v(0), 0≤ y≤ 1.

Note that p? satisfies Assumption 4. It is concave in y. Also, we have

∂2

∂y2
(v(x+ y)− v(1 + y)) = ρ(ρ− 1)

(
(x+ y)ρ−2− (1 + y)ρ−2

)
.

The inequality holds because for ρ≤ 1, (ρ− 1)≤ 0 and (x+ y)ρ−2 ≥ (1 + y)ρ−2. �

A.3. Proofs from Section 4

Proof of Lemma 1: Fixing κ1, define g(x,κ2) =W (x,κ2)− p1(x,κ1). Also, let U1(κ2) denote the utility

the retailer obtains from S1 (with capacity κ1). Observe that

U1(κ2) = max
x≤κ1

{g(x,κ2)}= g(q1(κ1, κ2), κ2)

The last equality follows from the definition of q1 since it is the solution of the retailer’s problem Eq (1).

Also, note that W (x,κ2) is absolutely continuous in κ2 for all x. In addition, ∂W (x,κ)

∂κ

∣∣
κ=κ2

is bounded

for all x and almost all κ2. Hence, g and U1 are absolutely continuous in κ2. Therefore, U1 is differentaible

almost everywhere and by Milgrom and Segal (2002), Theorem 2, we have

U1(κ2) =U1(1)−
∫ 1

κ2

∂g(x,k)

∂κ

∣∣∣
x=q1(κ1,κ2)

dκ=U1(1)−
∫ 1

κ2

∂W (x,k)

∂κ

∣∣∣
x=q1(κ1,κ2)

dκ (22)

Also, by the definition of U1, we have U1(κ2) =W (q1(κ1, κ2), κ2)− p1(q1(κ1, κ2), κ1). Therefore,

p1(q1(κ1, κ2), κ1) =U1(1) +W (q1(κ1, κ2), κ2) +

∫ 1

κ2

∂g(x,k)

∂κ

∣∣∣
x=q1(κ1,κ2)

dκ (23)

Finally, using contradiction, we now show that U1(1) = 0, i.e., p1(q1(κ1,1), κ1) =W (q(κ1,1),1) . Let ∆ =

W (q(κ1,1),1)−p1(q1(κ1,1), κ1). Consider pricing strategy p̃1 such that p̃1(x,κ) = p1(x,κ)+∆. Note that the

utility of the retailer still remains non-negative. Also, observe that the first order conditions have not changed.

Therefore, q1 and q2 remain the same. However, the revenue of the supplier has increased since p̃1 > p1.

This is in contradiction with p1 being a best-response (revenue-maximizing) strategy. This contradiction

completes the proof. �
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A.4. Proofs from Section 5

We use the following lemma in the proofs of Section 5.

Lemma 7. Function β(q) is decreasing in q ∈ (0,1), for κ ∈ [0,1]. Also, for 0< q1 ≤ q2 < 1, if q1 ≤ β(q2),

then q2 ≤ β(q1).

Proof of Lemma 7: Consider 0< q1 < q2 < 1. We observe that

v′(q1 +β(q2))− γ(β(q2))≥ v′(q2 +β(q2))− γ(β(q2))≥ 0

The first inequality follows from the concavity of v and the second one follows from Eq. (11). Since v(q +

·)− p(·) is (strictly) quasi-concave, we have β(q2)<β(q1).

We now prove the second part of the lemma. If α≤ q≤ α̃, then q2 ≤ β(q2). Since β is decreasing, we have

q2 ≤ β(q1). Otherwise, if α̃≤ q2 ≤ α, by the quasi-concavity property of pricing strategies (Assumption 4), it

suffices to show that v′(q1 + q2)− γ(q2)≥ 0. We observe that

v′(q1 + q2)− γ(q2)≥ v′(q2 +β(q2))− γ(q2) = v′(q2 +α(q2))− γ(q2)≥ 0

The first inequality follows from q1 ≤ β(q2) and concavity of v. The second equality is implied by Lemma 2

and the last inequity, for q2 ≥ α̃, follows from Eq. (5). �

Proof of Lemma 2: By Eq. (5), for q ≤ α, we get p?(q) =
∫ q

0
γ(y)dy =

∫ q
0
v′(y + 1)dy = v(q + 1)− v(1).

Therefore, for any x≤ 1, we have v(q+x)− p?(x) = v(q+x)− (v(q+ 1)− v(1))≥ v(q) + v(1)− v(q+ 1)≥ 0.

The first inequality holds since v is increasing and the second follows from concavity of v.

For q ∈ (α, α̃), we have

v′(q+α−1(q))− γ(α−1(q))

= v′(q+α−1(q))−
(
v′(α−1(q) +α(α−1(q)))− f(q)

F 2(q)

∫ q

α̃

F (y)(1−α′(y))v′(y+α(y))dy

)
=

f(q)

F 2(q)

∫ q

α̃

F (y)(1−α′(y))v′(y+α(y))≥ 0

Hence, by Assumption 4, in this case we have β(q)≥ α−1(q)≥ α̃ > q.
We now consider q ∈ (α̃,α). Since α(q)≤ α̃≤ q, we get

v′(q+α(q))− γ(α(q)) = v′(q+α(q))− v′(α(q) +α−1(α(q))) = v′(q+α(q))− v′(α(q) + q) = 0. (24)

Therefore, by Assumption 4, in this case we have β(q) = α(q). �

Proof of Lemma 3: Let q1 and q2 denote the amount of the good that the retailer purchases from S1 and

S2. Hence, the utility of the retailer is equal to v(q1 + q2)− p?(q1)− p?(q2).

If q1 ≤ α, then by Lemma 2, we have q2 = κ2. By the quasi-concavity of p? (Assumption 4), we have

q1 = min{κ1, β(κ2)}. A similar argument holds when q2 ≤ α.

We now consider the case where q1 and q2 are at least equal to α.

Due to the quasi-concavity property, fixing q1, we observe that if κ2 ≥ β(q1), we have q2 = β(q1); otherwise,

we have q2 = κ2. Similarly, if κ1 ≥ β(q2), we have q1 = β(q2); otherwise, we have q1 = κ1.

Without loss of generality, assume κ1 <κ2. We consider the following cases:
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1. q1 = κ1 and q2 = κ2: By the above argument, this implies that κ1 <β(κ2) and κ2 <β(κ1).

2. q1 = κ1 and q2 = β(κ1): This implies that κ1 <β(κ2) and κ2 >β(κ1). Note that the first two cases are

exclusive.

3. q1 = β(κ2) and q2 = κ2: This implies that κ1 >β(κ2) and κ2 <β(κ1). Recall that we assumed κ2 <κ1.

If κ2 <β(κ1), by Lemma 7, we have κ1 ≤ β(κ2)≤ β(κ2). This contradiction eliminates this case.

4. q1 = β(q2) and q2 = β(q1): We consider the following cases

(a) If q1 ≥ q2, then the utility of the retailer can be written as v(q + β(q))− p?(q)− p?(β(q)), where

q > β(q). The derivative of the utility of the retailer with respect to q is equal to

v′(q+β(q))− γ(q) +β′(z)

∣∣∣∣
z=y

(
v′(q+β(q))− γ(β(q))

)
=

(
1 +β′(z)

∣∣∣∣
z=y

)(
v′(q+β(q))− γ(β(q))

)
We now prove that the expression above is equal to 0. Note that by Lemma 2, q > β(q) implies that q ≥ α̃.

Therefore, α(q) = β(q). The claim follows from Eq. (24).

Since expression (25) is non-negative, the utility of the retailer is increasing in y. Therefore, it is maximized

at y= κ1. Note that this reduces the forth case either to the first or to the second case.

(b) Suppose q1 < q2. Note that q1 ≤ q2 ≤ κ2 and q2 ≤ κ2 ≤ κ1 — recall that we assumed κ1 ≥ κ2.

Therefore, the retailer could have purchased q1 from S2 and q2 and obtain the same utility. Therefore, this

case will be reduced to the previous one.

�

Proof of Lemma 4: Note that it suffices to only consider the case when κ1 ≤ κ2. The proof follows from

the following observations:

• If α(κ2)≤ κ1 ≤ κ2, then β(κ2) = α(κ2). The reason is y= α(κ), κ> α̃, satisfies the first order conditions

given by Eq. (11), i.e., v′(κ+α(κ)) = γ(α(κ)).

• If κ1 <α(κ2)≤ κ2, then β(κ2)≥ κ1 and α(κ2)≥ κ1, i.e., min{β(κ2), κ1}= min{α(κ2), κ1}= κ1. Observe

that with a similar argument as the previous case, v(κ+ y)− p?(y), for κ > α̃, is increasing in y ∈ [0, α(κ)],

takes its maximum at α(κ), and is decreasing afterwards.

• If κ1 <κ2 ≤ α(κ2), then β(κ2)≥ κ2. The reason is that v(κ+ y)− p?(y) is increasing at y = κ2, κ2 ≤ α̃.

We observe that v′(κ2 +κ2)− p?(κ2) = v′(κ2 +κ2)− v′(κ2 +α−1(κ2))≥ 0. The last inequality holds because

v is concave and α−1(κ2)≥ κ2 — recall that by Lemma 6 α is decreasing.

�
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