Universal relations between non-Gaussian fluctuations in heavy-ion collisions

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Chen, Jiunn-Wei; Deng, Jian; Kohyama, Hiroaki and Labun, Lance. “Universal relations between non-Gaussian fluctuations in heavy-ion collisions.” Physical Review D 95, no. 014038 (January 2017): 1-7 © 2017 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.95.014038</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/109174</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Universal relations between non-Gaussian fluctuations in heavy-ion collisions

Jiunn-Wei Chen, Jian Deng, Hiroaki Kohyama, and Lance Labun

1Department of Physics, CTS and LeCosPA, National Taiwan University, Taipei 10617, Taiwan
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Key Laboratory of Particle Physics and Particle Irradiation (MOE), School of Physics, Shandong University, Jinan 250100, China
4Department of Physics, The University of Texas, Austin, Texas 78746, USA

We show that universality near a critical end point implies a characteristic relation between third- and fourth-order baryon susceptibilities \(\chi_3 \) and \(\chi_4 \), resulting in a banana-shaped loop when \(\chi_4 \) is plotted as a function of \(\chi_3 \) along a freeze-out line. This result relies only on the derivative relation between \(\chi_3 \) and \(\chi_4 \), the enhancement of the correlation length and the scaling symmetry near a critical point, and the freeze-out line near the critical point not too parallel to the \(\mu_B \) axis. Including the individual enhancements of \(\chi_3 \) and \(\chi_4 \) near a critical point, these features may be a consistent set of observations supporting the interpretation of baryon fluctuation data as arising from criticality.

DOI: 10.1103/PhysRevD.95.014038

I. INTRODUCTION

Determining the existence of a critical point in the QCD phase diagram would provide invaluable information on the behavior of nuclear matter at high density, indicating the existence of a first-order phase transition line extending to higher density and lower temperature [1]. Models of chiral symmetry breaking suggest a critical end point (CEP) may exist at high enough temperature and low enough density to be accessible to heavy-ion collisions at small center-of-mass energy per nucleon \(\sqrt{s_{NN}} \), motivating the beam energy scan at RHIC [2–6] and future work at FAIR. Predicting signals of a critical point in QCD is made challenging by strong coupling in analytic theory and the sign problem on the lattice. The motivated hypothesis of a critical point allows us to use the universality of critical phenomena to study the impact of a CEP on some observables.

One universal characteristic of a critical point is diverging correlation length \(\xi \rightarrow \infty \), due to the order parameter field becoming massless. Higher-order fluctuation moments of observables coupled to the order parameter also diverge, in particular baryon number and transverse momentum [7,8]. These susceptibilities can be measured by event-by-event fluctuations in heavy-ion collision experiments [9]. The approach via universality requires assuming the existence of a critical point. It yields robust qualitative features which are supported by model calculations near the CEP [10–14]. However, it remains a challenge to predict quantitatively the magnitude of a signal in heavy-ion collisions.

We show that a diverging correlation length implies a strict ordering of features in the third- and fourth-order baryon number susceptibilities, which offers a robust qualitative signature of criticality. Baryon number is conserved in QCD reactions. The baryon susceptibilities are calculated as the derivatives of the logarithm of the partition function \(\chi_n = -\partial^n \ln Z/\partial \mu_B^n \) and measured as event-by-event fluctuation in heavy-ion collisions [15,16]. The third order (skewness) and fourth order (kurtosis)

\[
\chi_3 = \frac{\partial \chi_2}{\partial \mu_B}, \quad \chi_4 = \frac{\partial^2 \chi_3}{\partial \mu_B^2}
\]

are expected to provide stronger signals of criticality because they diverge with a larger power of \(\xi \) than the second-order susceptibility [7]. As indicated, they are related to each other and the second-order susceptibility by a \(\mu_B \) derivative. For comparison to experimental observables, volume dependence is eliminated in the ratios

\[
m_1 = \frac{T \chi_3}{\chi_2}, \quad m_2 = \frac{T^2 \chi_4}{\chi_2}
\]

In the vicinity of a critical point, these ratios exhibit divergences and nonmonotonic behavior and differ from the analogous ratios of net proton number susceptibilities only by nonsingular contributions, which should be subleading [17]. Therefore, in the scaling region the behavior of \(m_1, m_2 \) (baryon) should predict qualitatively the behavior

\[\text{DOI: 10.1103/PhysRevD.95.014038} \]
of net proton susceptibilities \(m_1, m_2\) (proton), which have been measured in experiments.

Using the 3D Ising model which is in the same universality class as QCD, we show that (a) universality implies that, along a freeze-out line passing near a critical end point, third- and fourth-order fluctuation moments are strictly ordered,

\[
T_{\min,m_1} > T_{\max,m_1} > T_{\max,m_2} > T_{\text{CEP}},
\]

and (b) obtaining signatures of criticality does not require the experiment achieving freeze-out at temperature equal to or lower than \(T_{\text{CEP}}\). Scaling may be visible at significantly higher \(T\), similar to the hypothesized quantum critical point in the phase diagram of high-\(T_c\) superconductors which is at \(T = 0\) and masked by a superconducting regime \([18]\). The magnitudes of \(m_1\) and \(m_2\) may provide a handle on the distance from the critical point. This will be demonstrated in the Nambu–Jona-Lasinio (NJL) model with deformed couplings.

Taken together with measurements of \(\chi_3\) and \(\chi_4\) which are expected to exhibit independently particular divergences and functional dependences, this correlation of \(\chi_3\) and \(\chi_4\) along a freeze-out line is a consistency check that would support interpretation of the experimental data as bona fide signatures of criticality. Our discussion focuses on the equilibrium susceptibilities, but the real system created in heavy-ion collisions is an expanding gas that may or may not be in local equilibrium. In particular, long wavelength modes are subject to critical slowing, with the result that the expansion generally reduces the correlation length from its equilibrium expectation value \([19]\). This slowing of the correlation length induces a memory effect: the correlation length and higher-order susceptibilities reflect the state of the system at an earlier time in the expansion \([20, 21]\).

Notably, even with the memory effect, the relative distribution of positive and negative regions of kurtosis (Fig. 3 of \([20]\)) appears to preserve its equilibrium relation to the skewness, Eq. (1), and it will be interesting to see how our equilibrium results are modified by the memory effect.

II. INTERPLAY BETWEEN SKEWNESS AND KURTOSIS

As we will show in the next section, the qualitative relation between \(\chi_3\) and \(\chi_4\) in QCD only relies on (a) the derivative relation between \(\chi_n\) in Eq. (1), and (b) the enhanced correlation length and corresponding scaling symmetry near a CEP. Here we start by studying order parameter fluctuations in the 3D Ising model, which belongs to the same universality class as QCD, just to illustrate our points. Our analysis does not rely on the mapping between the Ising model and QCD. However, we will also see that if the CEP is too close to the \(T\) axis, such that the phase boundary and freeze-out line near the CEP parallel the \(\mu_B\) axis, the signature banana shape of the \(m_1-m_2\) plot becomes degenerate and can even change qualitatively.

In the Ising model, the general coordinates are \((H, t)\) with \(H\) the external magnetic field and \(t \equiv (T - T_c)/T_c\), the reduced temperature. The order parameter, the magnetization \(M = -\partial \ln Z/\partial H\), is an odd function of \(H\). \(M\) is discontinuous at \(H = 0\) for \(t < 0\). The CEP is at the origin where the correlation length \(\xi\) diverges. The nonanalytic (long-distance) behavior near the CEP is universal among systems of the same universality class while the analytic (short-distance) behavior is model dependent. The nonanalytic part of the equation of state \(M = M(H, t)\) near the CEP has the scaling symmetry: if \(M\) is known for a specific positive (negative) \(t\), then \(M\) for all positive (negative) \(t\) is known.

The susceptibilities are derivatives with respect to \(H\),

\[
\kappa_2 \equiv \frac{\partial M}{\partial H}, \quad \kappa_3 = \frac{\partial^2 M}{\partial H^2}, \quad \kappa_4 = \frac{\partial^3 M}{\partial H^3}.
\]

Paralleling the relation of \(\chi_{n+1}\) to \(\chi_n\), each \(\kappa_{n+1}\) is related to \(\kappa_n\) by one derivative with respect to the classical source. We first concentrate on susceptibilities at \(t = 0.2\), obtaining susceptibilities at all \(t > 0\) by the scaling symmetry mentioned above. We expect that \(\kappa_2 \propto \xi^2\) is a decreasing function of \(|H|\) since \(\xi\) is larger when closer to the CEP. Also, \(\kappa_3\) is a smooth function of \(H\) since \(t = 0.2\) is in the crossover region. Therefore, \(\kappa_2\) should have a smooth peak centered at \(H = 0\) and then asymptote to zero as \(H \to \infty\) as shown in the upper panel of Fig. 1, which is computed using the nonanalytic part of the equation of state of Ref. \([22]\).

Once \(\kappa_2\) is obtained, its derivatives yield \(\kappa_3\) and \(\kappa_4\), also shown in the upper panel of Fig. 1. It is easy to see that, for \(H < 0\), the peak of \(\kappa_3\) coincides with \(\kappa_4 = 0\) while the peak of \(\kappa_4\) is at a larger \(|H|\) than the peak of \(\kappa_3\). Then by scaling symmetry, the peaks of \(\kappa_3\) and \(\kappa_4\) lie on lines A and B, respectively, in the lower panel of Fig. 1. At constant \(t < 0\), however, \(\kappa_{2-4}\) are decreasing functions of \(|H|\) with no inflection points. The density plots of \(\kappa_{3(4)}\) are shown in the upper panels of Fig. 2 with an \(H\)-odd (\(H\)-even) heart-shaped pattern.

In QCD, the story is very similar. We expect the most singular, nonanalytic behavior near the CEP has scaling symmetry as well. For a constant \(T > T_{\text{CEP}}\), \(\chi_2\) has the same single peak behavior as \(\kappa_2\) in the Ising model at \(t = 0.2\) shown in Fig. 1. Then \(\chi_3\) and \(\chi_4\) are obtained by taking derivatives of \(\chi_2\), similar to the analysis of the Ising model. Therefore, we expect that \(\chi_3\) and \(\chi_4\) contours in the scaling region in QCD behave as depicted in the lower panel of Fig. 2, analogous to what happens in the Ising model. This feature is robust and is confirmed in model calculations \([10-14]\). We will show that the anticlockwise loop in the \(\kappa_3, \kappa_4\) plane corresponds to an anticlockwise loop in the \(m_1-m_2\) plane. Moreover, the loop and its direction only
depend on the relation between \(m_1 \) and \(m_2 \) (paralleling that between \(\kappa_3 \) and \(\kappa_4 \)) and the existence of a critical end point at \(\mu_B > 0 \), whether or not the CEP is accessible to experiment.

III. SCENARIOS IN ENERGY SCAN EXPERIMENTS

In experiments, one does not know whether the CEP exists and even if it does, what its location is \textit{a priori}. Therefore, the question is, what can one learn from the susceptibilities measured on the freeze-out line?

To answer this question, we consider the following scenarios for the phase boundary between the hadronic phase and the quark gluon plasma phase: (1) a crossover at higher \(T \) and a first order at lower \(T \) connected by a CEP (this is the typically assumed scenario), (2) purely crossover, or (3) purely first order. (2) and (3) can be considered as generalizations of (1), with the CEP for (2) located in the “fourth quadrant” of the phase diagram \((T < 0, \mu_B > 0)\)

while the CEP of (3) located in the “second quadrant” \((T > 0, \mu_B < 0)\).

A. SCENARIO 1: CEP AT \(T > 0 \)

In this scenario, contours of \(\chi_3 \) and \(\chi_4 \) near the CEP are as depicted in the lower panel of Fig. 2. The location of the CEP is not known precisely and neither are the contours. The boundary of \(\chi_4 = 0 \) is determined by the cancellation of the leading singular structure and can be shifted by subleading, model-dependent, analytic contributions. Our strategy is to draw a few generic freeze-out lines, depicted in the lower panels of Fig. 2 and Fig. 1, and then ask whether there are common features of susceptibilities on those lines. In Fig. 1, we assume that the freeze-out line is a function of \(t \). Going from high to low \(t \), the simplest case is FO1, which crosses lines A and B once each. The corresponding \(\kappa_3, \kappa_4 \) curve is shown in Fig. 3 with the curve going anticlockwise, forming a “banana” shape from high to low \(t \). This figure shows that the ordering

\[
t_{\min, \kappa_4} > t_{\max, \kappa_3} > t_{\max, \kappa_4} > 0
\]
necessarily arises from the derivative relation between κ_n and κ_{n+1}. All features occur at temperatures higher than the critical point temperature. As the fluctuations become larger closer to the CEP, and the freeze-out line moves closer to the CEP, the banana becomes larger and more elongated.

In Fig. 1, we also consider a freeze-out line $FO2$ that crosses line B twice. The corresponding κ_4-κ_3 plot in Fig. 3 also has the banana shape but has two local maximum peaks in κ_4. Those features remain when one plots m_2-m_1 instead of κ_4-κ_3, since κ_2 changes slowly when $\kappa_3(4)$ changes rapidly.

One can draw other possible freeze-out lines, but the feature of an anticlockwise loop remains, provided the line remains in the $H<0$ half-plane as is physically sensible for freeze-out in the hadronic phase. This can be seen from the fact that at high t, the freeze-out line can start from the regime above line A, between lines A and B, or below line B, while at low t, it goes below line B. This implies these freeze-out lines at high and low t will look very similar to FO1 and FO2 in Fig. 3 near the origin. This is enough to decide the loop is anticlockwise which is a feature in common with experimental data [15,16,23].

B. SCENARIO II: CEP AT $T<0$

As we argue above, the banana shape in m_2-m_1 is due to the scaling symmetry governed by the CEP. But could this connection be so strong such that the banana shape is observable even if the CEP is at $T=0$ or even $T<0$? One example is high-T_c superconductors [18]. It is hypothesized that there is a quantum critical point at $T=0$ that controls the scaling symmetry at finite T but is masked by a superconducting regime. If this is also the case in QCD, then seeing the banana shape in m_2-m_1 might just suggest the existence of scaling symmetry, which is likely due to a critical point, even while the critical point is at $T<0$ and hence technically not on the phase diagram.

To study this interesting scenario, we vary the K parameter that controls the anomaly-induced six-fermion interaction in the NJL model [24] away from the most-used value K_0 to reduce T_{CEP}. We find that when $K = 0.65K_0$, $T_{\text{CEP}} \approx 0$ and when $K = 0.4K_0$, T_{CEP} effectively becomes negative by extrapolation. The phase boundaries for $K = 1.0, 0.65, 0.4K_0$ are shown in the insets in Figs. 4, 5 and 6, respectively, together with the hypothetical freeze-out lines which are obtained by rescaling μ_B of the phase boundaries by factors of 0.98, 0.95, and 0.915 for the red, green, and blue curves, respectively. We have also plotted the corresponding m_2-m_1 plots in Figs. 4–6 which exhibit the following features:

1. The anticlockwise banana behavior could survive even $T_{\text{CEP}} \leq 0$. If freeze-out can occur at or below T_{CEP}, all three features are visible: the minimum in m_2, maximum in m_1 and maximum in m_2. However, if T_{CEP} is too low to be reached by the experimental conditions, only a subset of these features appears in the data. This subset provides a rough guide to how
Although excluded by experiment, this scenario is inter-
understood by analyzing the effective potential, or
shown in Fig. 7. We see a clockwise behavior. This can
the phase boundary becomes more parallel to the

(Scenario I), we can infer how the
the freeze-out
of the susceptibilities also changes
significantly with the distance from a critical point.
This is because the dimensionless $m_{1,2}$ scales with
positive powers of ξ divided by typical scales in the
system set by μ_B and T, and m_2 scales with more
powers of ξ than m_1. Therefore when the freeze-out
line is far away from the CEP, both m_1 and m_2 are
limited to small values $\lesssim 1$ and m_2 is the same
magnitude as m_1. Nearer a critical point, m_2 achieves
values significantly greater than 1. This is the reason
m_1-m_2 banana plots become larger and more elon-
gated for freeze-out lines in closer proximity to a
critical point.

C. SCENARIO III: CEP FORMALLY AT $\mu_B < 0$

In the limit of very small quark masses, the QCD phase
transition is first order in the physical region $\mu_B, T > 0$.
Although excluded by experiment, this scenario is inter-
resting because it helps reveal the effect of the mapping
from QCD variables to universal Ising coordinates $(\mu_B, T) \rightarrow (H, t)$. In this limit, the phase boundary typically becomes
increasingly parallel to the μ_B axis as $\mu_B \rightarrow 0$. Approaching
this limit smoothly from having the CEP at $\mu_B, T > 0$
(Scenario I), we can infer how the m_1-m_2 plot changes as
the phase boundary becomes more parallel to the μ_B axis
even while the CEP remains in the first quadrant.

The NJL model calculation of the m_2-m_1 plot in this limit
is shown in Fig. 7. We see a clockwise behavior. This can
be understood by analyzing the effective potential, or
equivalently the log of the partition function, near
$\mu_B = 0$. In this region, a Taylor expansion $\ln Z = z_0 +
z_2\mu_B^2/2 + z_4\mu_B^4/4! + \cdots$ involves only even powers of μ_B
due to particle-antiparticle symmetry. This implies that
$m_1 \propto (z_4/z_2)\mu_B$ while $m_2 \propto (z_4/z_2)\mu_B \rightarrow 0$. We expect
the negative m_2 region exists only in the second quadrant;
therefore, $z_4/z_2 > 0$, and the freeze-out curve in the m_2-m_4
plane starts at $m_1 \rightarrow 0, m_2 > 0$ at the high collision energy/
low μ_B end. At the other end of the curve, we consider the
$T \rightarrow 0$ limit, where fluctuations are increasingly Gaussian
due to the increasing distance from the phase boundary and
the dominance of the quadratic term near the bottom of the
potential. Thus, at low collision energy/high μ_B end of the
curve, we expect $m_1, m_2 \rightarrow 0$. Since $m_1 \gg 0$ everywhere in
between, the curve connecting these two limits must follow
a clockwise trajectory in the m_1-m_2 plane, in stark contrast
to the anticlockwise loop seen above.

Seeing that the loop changes from anticlockwise to
clockwise as $\mu_{CEP} \rightarrow 0$, the loop must become increasingly
narrow, passing through the degenerate case in which the
loop collapses to a line or crosses itself, in order to change
its orientation between the two limits. This agrees with our
numerical experiments in the NJL model, which we are
able to move from Scenario I toward Scenario III by tuning
the bare quark mass to very small values. More systematic
exploration of the quark mass dependence of the observ-
ables may be taken up in future publications.

IV. SUMMARY

Putting these observations together, we may formulate
rough criteria for evidence of proximity to a critical point. If
m_2 achieves maximum $\gtrsim 2$, accompanied by m_1 maximum
$\gtrsim 1$, and the maxima obey the ordering Eq. (3), then freeze-
out is occurring near enough to a critical point for
universality to provide the leading-order dynamics.

The important feature of scaling in determining this
behavior is the nonmonotonic behavior of the correlation
length along a freeze-out line. Different hypothetical
freeze-out lines are best discussed in Ising coordinates:
for μ_B increasing ($\sqrt{s_{NN}}$ decreasing) the freeze-out line
must proceed from high $t \gg 0$ to low $t < 0$. Then, whether
curved as in Fig. 1, the correlation length reaching as low as predicted above are expected to be no stronger than thermal length and higher moments vanish, and the features associated scaling, the enhancements of the correlation dynamics. On the other hand, without a critical point and should be robust in the presence of other, model-dependent and the ratios maximum is the sought-after signature of singular behavior, maximum along the line. Moreover, by hypothesis this freeze-out line is taken at constant H as in Ref. [8] or curved as in Fig. 1, the correlation length $\kappa^2 \sim \kappa_2$ has a maximum along the line. Moreover, by hypothesis this maximum is the sought-after signature of singular behavior, implying that the skewness and kurtosis are also enhanced and the ratios m_1, m_2 should be $\gg 1$. This enhancement should be robust in the presence of other, model-dependent dynamics. On the other hand, without a critical point and associated scaling, the enhancements of the correlation length and higher moments vanish, and the features predicted above are expected to be no stronger than thermal fluctuations and other dynamics of the system.

Preliminary data for m_1 and m_2 [23] shown in Fig. 8 suggest that the lowest collision energies may be entering the scaling region, seeing that $m_2/m_1 \sim 4 \gg 1$, but not reaching as low as T_{cEP}, seeing that the banana shape is not complete. With the present data, we cannot yet know whether the lowest energy point at $\sqrt{s_{NN}} = 7.7$ GeV belongs to the upper branch of the banana seen in the preceding figures. Acquiring data in the range $7.7 \leq \sqrt{s_{NN}} \leq 11.5$ GeV could help determine the relative location of a critical point by clarifying the shape and magnitude of the banana and comparing to the different scenarios depicted in Figs. 4–6.

There are of course experimental challenges associated with measuring χ_3 and χ_4, such as effects from dynamics of the fireball expansion [19] and beam-energy-dependent final-state hadron-gas interactions. These effects must be understood and accounted for in the data as well as possible to enhance any signal of criticality. Our purpose has been to argue that, if freeze-out occurs near enough to a critical point (in the scaling region) for non-Gaussian fluctuations to be impacted as predicted in preceding work, then the qualitative relation between the higher-order fluctuation moments Eq. (3) could hold. This can serve as a first check that the experimentally observed peaks in m_1 and m_2 arise from an underlying divergence of the correlation length in the fireball. We anticipate that several more such consistent sets of characteristics should be found in order to prove that the experimental data do reflect the presence of a critical point.

ACKNOWLEDGMENTS

J.D. is supported in part by the Major State Basic Research Development Program in China (Contract No. 2014CB845406) and the National Natural Science Foundation of China (Projects No. 11105082). J.-W.C. is supported in part by the MOST and the NTU-CASTS of ROC. H.K. is supported by the Ministry of Science and Technology (Taiwan, ROC), through Grant No. MOST 103-2811-M-002-087. L.L. is supported by NNSA cooperative agreement de-na0002008, the Defense Advanced Research Project Agency’s PULSE program (12-63-PULSE-FP014), the Air Force Office of Scientific Research (FA9550-14-1-0045) and the National Institutes of Health SBIR 1 LPT_001.