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We study the consequences of superquantum nonlocal correlations as represented by the PR-box model
of Popescu and Rohrlich, and show that PR boxes can enhance the capacity of noisy interference channels
between two senders and two receivers. PR-box correlations violate Bell and CHSH inequalities and are thus
stronger—more nonlocal—than quantum mechanics, yet weak enough to respect special relativity in prohibiting
faster-than-light communication. Understanding their power will yield insight into the nonlocality of quantum
mechanics. We exhibit two proof-of-concept channels: First, we show a channel between two sender-receiver
pairs where the senders are not allowed to communicate, for which a shared superquantum bit (a PR box)
allows perfect communication. This feat is not achievable with the best classical (senders share no resources)
or quantum-entanglement-assisted (senders share entanglement) strategies. Second, we demonstrate a class of
channels for which a tunable parameter ε achieves a double separation of capacities; for some range of ε, the
superquantum-assisted strategy does better than the entanglement-assisted strategy, which in turn does better
than the classical one.

DOI: 10.1103/PhysRevA.95.052329

I. INTRODUCTION

Bell’s influential paper in 1964 [1] brought to light the
existence of correlations that can be obtained from bipartite
measurements of a quantum state, that cannot be reproduced
by a local theory. Quantum mechanics is a nonlocal theory
because it is able to predict such correlations, whereas a local
theory with spatially separated observers could never do so.
Such a local theory would prohibit physical measurements (of,
say, particle A’s spin) in one place from affecting the measure-
ment outcomes of another experimenter (who measures, say,
particle B’s spin) who is spacelike-separated from the first one,
if there is no field between them, whereas in a nonlocal theory,
to borrow an analogy from Popescu [2], “moving something
here, something else instantaneously wiggles there”.

Research into this area (see [3] for a review) has been
motivated by the desire to understand how the nonlocality of
quantum theory gives rise to the advantages of information
processing with quantum resources. One of the main results
in this research is the famous inequality of Clause, Horne,
Shimony, and Holt [4], which bounds the statistics of spatially
separated measurements by two experimenters on a physical
state in local hidden-variable (LHV) models. They define a
quantity

S := |〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉|, (1)

where A0 and A1 are local measurement operators correspond-
ing to spin up and spin down on experimenter A’s spin-half
particle, B0 and B1 are the analogous measurement operators
for Bob, and 〈.〉 denotes expectation value, and show that for
LHV models,

SLHV � 2. (2)

Since LHV theories must obey the inequality (2), while
quantum theories, which are nonlocal, need not, the quantity
in (2) has become a popular metric of the nonlocality of a given
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theory and is sometimes referred to as the “CHSH value”.
Quantum mechanics (QM), as a nonlocal theory, is exempt
from this bound. Measurements on an entangled state, such as
the state |0〉A|1〉B−|1〉A|0〉B√

2
, can satisfy

SQM � 2
√

2. (3)

Tsirelson [5] proved that with QM, 2
√

2 is the maximal
achievable violation of this inequality. But QM must also
respect the causality (nonsignaling) property of special rel-
ativity, which prohibits information transfer at a speed faster
than light. In fact, out of all our physical theories that are
currently in use, QM is special in being nonlocal and yet
satisfying the nonsignaling constraint: two spacelike-separated
observers may influence each other (nonlocality) and yet
cannot communicate with each other; the above-mentioned
“influence” must not allow for information transfer (relativistic
causality).

But note that even SQM falls short of its algebraic maximum
[see Eq. (1)], which is 4. In 1994, Popescu and Rohrlich [6],
asking “Why isn’t quantum theory more nonlocal?”, proved
that it is possible to construct causality-satisfying models
that are more nonlocal than QM. To unify these theories,
they proposed an abstraction to represent the probability
distribution that they induce on measurement outcomes: a
nonlocal box (PR box), visualized in Fig. 1. This is a bipartite
correlated box with two ends, one of which is held by Alice
and the other by Bob. Alice inputs x (respectively Bob inputs
y) and the box outputs a (respectively b) according to the
probability distribution P (a,b|x,y) (where x,y,a,b ∈ {0,1}):

P PR(a,b|x,y)

{
1/2, if a ⊕ b = xy,

0, otherwise. (4)

To calculate the CHSH value of the PR box, we now inter-
pret A0,A1 (respectively B0,B1) from Eq. (1) as the expected
value of the box’s output when Alice (respectively Bob) puts
in 0, 1 into her end of the PR box. This information-theoretic
formulation of Alice and Bob’s interaction with the theory
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FIG. 1. A PR, or nonlocal, box, whose inputs and outputs are
governed by the distribution in Eq. (4).

is completely analogous to our previous language of mea-
surements when construed within the measurement-operator
formalism: in making measurements of a two-level system,
Alice and Bob apply a set of measurement operators {�0,�1}
corresponding to the two possible outcomes, which correspond
exactly to the set of inputs {0,1} of both experimenters to the
PR box.

Thus, with such a PR box, we achieve the following
superquantum correlations:

SQM = 4, (5)

and we call a theory that predicts the correlations of PR boxes
a superquantum theory. This is one that produces even stronger
nonlocal correlations than quantum theory.

An important implication of this is that if they share a PR
box, Alice and Bob could always win the CHSH game. This
is because the condition for outputs a,b to be produced by the
PR box is exactly the winning condition of the CHSH game.
On the other hand, if Alice and Bob share an entangled pair,
they could win the CHSH game with a probability of at most
cos2(π

8 ). This illustrates the superquantum nature of the PR
box.

We summarize the theories under consideration in terms of
their locality properties (as measured by their CHSH value)
in Fig. 2. We also refer the reader to [7] for a comprehensive
review of PR boxes and nonlocal correlations.

A major push of quantum information research has been
to devise strategies that utilize quantum properties, such

FIG. 2. Types of theories grouped by their locality properties
(they must all not permit spacelike-separated observers to communi-
cate and hence all fall under the banner of nonsignaling).

FIG. 3. General model of a two sender-receiver pair communica-
tion system. Figure taken from [11].

as entanglement, to aid communication tasks—quantum key
distribution, quantum bit commitment, and so on. This raises
the question, could we use the maximally nonlocal correlations
of superquantum theories as a resource, and what tasks would
they facilitate?

Previously, PR boxes had been shown to allow Alice and
Bob to perform any two-party distributed computation by
transmitting only a single bit of information [8], as well
as the cryptographic primitives of unconditionally secure
bit commitment and oblivious transfer [9]. This paper is
a survey of how superquantum assistance could enhance
communication over an interference channel.

It is organized as follows: In Sec. II, we introduce notation
for the two-sender, two-receiver interference channel, as well
as the information quantity we optimize. In Sec. III, we present
our original result of a two-sender, two-receiver interference
channel over which communication is more efficient with the
aid of a PR box than with entanglement and/or a classical
strategy. In Sec. IV, we present a variant of the above: a class
of erasure channels characterized by a tunable parameter ε,
whose capacities show a strict separation given these three
classes of resources (classical, quantum assisted, and PR-box
assisted). We finally conclude with a summary of results and
suggestions for future research in Sec. V.

II. NOTATION

In the following sections, we will exhibit several two-
sender, two-receiver channels that demonstrate capacity sep-
arations. We use the Shannon model of channel communi-
cation [10] to describe these channels, for which we follow
the notation of [11] (in turn based on [12]). The basic model
of a two sender-receiver pair channel is depicted in Fig. 3.
Such a channel is denoted (X1 × X2,p(y1,y2|x1,x2),Y1 ×
Y2). A (2nR1 ,2nR2 ,n) code for this channel consists of the
following:

(1) Two message sets [1 : 2nR1 ] and [1 : 2nR2 ].
(2) Two encoders, where encoder 1 assigns a code word

xn
1 (m1) to each message m1 ∈ [1 : 2nR1 ] (respectively encoder

2 assigns xn
2 (m2) for m2 ∈ [1 : 2nR2 ]).

(3) Two decoders, where decoder 1 uses a decoding rule to
assign an estimate m̂1 or an error message e to each received
sequence yn

1 , and decoder 2 does the same (i.e., assigns m̂2 or
e).

A rate pair (R1,R2) is said to be achievable for this
channel if there exists a sequence of (2nR1 ,2nR2 ,n) codes
such that lim

n→∞[P (n)
e ≡ P {(M̂1,M̂2) 
= (M1,M2)}] = 0. For our

channels, we will be concerned with their sum capacity Csum
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TABLE I. Channel I: The senders each send two-bit code words,
X1 and X2 (code word choices are in bold, on the axes), and the
two-bit entries in the table (Y1Y2) correspond to the channel outputs;
one bit goes to each receiver. Thus, if sender 1 sends 01 and sender 2
sends 10, receiver 1 gets 1 and receiver 2 gets 0.

X1 X2 00 01 10 11

00 00 11 01 10
01 11 00 10 01
10 10 01 00 11
11 01 10 11 00

for classical information, which is the maximum over all
coding strategies of the sum of the rates for each sender-
receiver pair. That is,

Csum = max
coding strategy

(R1 + R2). (6)

Note that Csum 
= max
p(x1)

R1 + max
p(x2)

R2 in general, because the

rates must be attainable simultaneously. Whenever we speak
of the “capacity” of a channel, we shall refer to this information
capacity.

III. CHANNEL I

In 2005, Cerf, Gisin, Massar, and Popescu demonstrated
a sense in which superquantum nonlocality encompasses
quantum nonlocality; they showed that a PR box could
simulate the correlations obtained from any bipartite mea-
surement of a maximally entangled pair of qubits without
communication [13]. The reverse direction of simulation is
impossible because PR-box correlations are more nonlocal
than entanglement. Therefore, one expects that any commu-
nication task which is made more efficient with the aid of
entanglement could potentially benefit even more from PR
boxes. Table I represents a channel that demonstrates just such
a nonlocality separation.

In what follows, “classical” strategies are those where
senders are allowed to share no communication but may
discuss a strategy beforehand, and “entanglement-assisted”
(alternatively, “quantum-assisted”) strategies imply strategies
where the senders are allowed to share 2 × n quantum
entanglement—that is, a bipartite quantum state where each
half is an n-level system represented as a n-dimensional
Hilbert space. We make the usual assumption that the
senders are spacelike-separated from each other and from
any sources that they consult. This rules out any classical
simulations of the quantum and superquantum strategies we
mention.

The notation for this channel (which we shall call channel
I) is as follows: The senders and receivers shall be denoted
by Ai and Bi ; the bits they handle shall be denoted Xi (2-bit
message that Ai inputs to the channel) and Yi (1-bit message
that Bi receives from the channel). To prevent confusion, we
will try not to use A/B simultaneously with X/Y , unless it is
necessary to make such a distinction.

On each use of channel I, the senders send two bits out of
the alphabet {00,01,10,11} and the channel outputs one bit to

TABLE II. A uniform probability distribution results in a
perfectly randomizing channel, evident from taking the marginal
probability distributions for one sender-receiver pair (in this case,
the first).

X1 Y1 0 1

00 Pr = 0.5 Pr = 0.5
01 0.5 0.5
10 0.5 0.5
11 0.5 0.5

each receiver. Table I shows the output pairs that correspond
to each input pair.

By definition, the maximum possible sum capacity of
channel I (over all classes of resources) is 2: the two receivers
each receive one bit. In fact, Csum = 2 only if there exists
a strategy where the receiver always decodes the sender’s
bit perfectly. In fact, it will turn out we fall far short of
this maximum if the senders are restricted to using a purely
classical probabilistic strategy; in that case the capacity is
1. We now show that this channel demonstrates the capacity
separations

Cclassical, Cquantum < Csuperquantum.

A. Capacity of channel I with a classical strategy

Let us build up our intuition about channel I to understand
why the classical strategy capacity should be so small. Channel
I takes two-bit inputs but outputs only one bit to each receiver,
so if the senders can ultimately communicate only one bit, the
second bit seems redundant. Might the redundancy improve
communication? We could note the following:

(1) Consider a strategy where each sender sends code
words according to a uniform probability distribution over the
entire input alphabet, for both senders. Taking the marginal
probability distribution for the first pair (over the second pair)
results in the binary symmetric channel of Table II. It is the
same for the other pair. This channel has a bit-flip probability
p = 0.5. Since the capacity of the binary symmetric channel
is 1 − H (p), the best possible joint rate with this strategy is 0.

(2) The following coding strategy gives a joint rate of 1,
and therefore 1 is an inner bound on the sum capacity: A2

always sends 00 while A1 encodes message bit 0 as 00 and
message bit 1 as 01; then B1 receives exactly the bit that A1

intended to send. So the first sender pair always communicates
perfectly at the expense of the second pair.

The reader should persuade herself that other simple
strategies such as reducing the size of either sender’s alphabet
will not achieve perfect coding either. In fact, as Lemma 1
shows, it is not even possible to do better than R1 + R2 = 1.

Lemma 1 (classical capacity of channel I). If the senders
are limited to a classical (at most probabilistic) strategy with
no aid from communication (entanglement or PR boxes) on
the given channel the sum capacity is strictly outer bounded:

R1 + R2 < 2. (7)
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In fact, we may show computationally that

Cclassical = 1. (8)

Proof. Here we sketch a proof for Eq. (7). We show that
R1 := I (X1 : Y1) = 1 implies R2 := I (X2 : Y2) < 1.

Suppose I (X1 : Y1) = 1. Using the chain rule for mutual
information shows that I (X2 : Y1|X1) = 0:

I (X1 : Y1) = 1 = I (X1,X2 : Y1)

takes on maximal value, 1

− I (X2 : Y1|X1)

=0

. (9)

Information-theoretically, the condition I (X2 : Y1|X1) = 0
means that the first receiver’s bit, Y1, cannot possibly dis-
tinguish between the possibilities for the second sender’s 2-bit
message, X2, for every choice of X1—and this is a restriction
on what the the second sender’s alphabet set could be. Consider
the first row of Table I. The restriction says that if sender
1 sends 00 on a particular channel use, then there are only
two possible nontrivial choices for sender 2’s alphabet: a
uniform probability distribution over {00,10} (both resulting
in the output Y1 = 0) or a uniform probability distribution over
{01,11} (both resulting in the output Y1 = 1).

We similarly analyze the cases when sender 1 sends 01,10,
or 11. The conclusion is that one of the following must hold
(otherwise the restriction is never met):

(1) Sender 1’s alphabet is some subset of {00,01}; sender
2’s alphabet is either {00,10} or {01,11}.

(2) Sender 1’s alphabet is some subset of {10,11}; sender
2’s alphabet is either {00,11} or {10,01}.

Since the two senders are not allowed to communicate
during the sending of the messages, they must choose an
alphabet at the start and stick to it. Consequently, only one
of these four cases can hold, and bearing in mind the other
restriction that our coding strategy must fulfill the condition
I (X1 : Y1) = 1, we may show that R2 < 1 for all of them. For
an example of this analysis, refer to Appendix A. �

But it is still possible that if one of the sender-receiver
pairs is willing to accept a suboptimal (less than 1) rate, the
other pair could attain a high rate such that R1 + R2 > 1.
To show that this never happens, we ran an algorithm based
on modified gradient descent. This algorithm is given in
pseudocode here (Algorithm 1). The inputs to the algorithm
are two vectors �x1 := (a1,b1,c1,d1), �x2 := (a2,b2,c2,d2), such
that the square of the entries in the first vector {a2

1,b
2
1,c

2
1,d

2
1 }

represents the probabilities of sender 1 sending {00,01,10,11}
respectively, and correspondingly {a2

2,b
2
2,c

2
2,d

2
2 } for sender 2.

The modification to the usual gradient descent algorithm was
to respect the constraints

a2
1 + b2

1 + c2
1 + d2

1 = 1; a2
2 + b2

2 + c2
2 + d2

2 = 1.

To do this, we treated the problem of simultaneous gradient
descent where the component vectors had to lie on two 4-D
unit spheres. After running gradient descent 10 000 times with
a tol set to 1 × 10−6 and never observing a value of the joint
rate above 1, we concluded that the joint rate is, indeed, upper
bounded by 1. Equation (8) follows.

Modified gradient descent (�x)

Algorithm 1: Finds the maximum value of the function I (X1 :
Y1) + I (X2 : Y2) over all input distributions

f ( �x1, �x2) := −I (X1; Y1) − I (X2; Y2) (objective function)
�g1 := �∇x1f ; �g2 := �∇x2f

Initialize x1,x2,tol,maxiter

while iter < maxiter and dx > tol do
Evaluate �g1( �x1, �x2); �g2( �x1, �x2)
�h1 ← �g1 − ( �g1 · �x1) �x1; �h2 ← �g2 − ( �g2 · �x2) �x2

α1 ← h2
1

h2
1+h2

2
; α2 ← h2

2
h2

1+h2
2

�n1 ← �h1
| �h1| ; �n2 ← �h2

| �h2|
φ

′ ← arg min
φ

f ( cos(α1φ) �x1 + sin(α1φ) �n1, cos(α2φ) �x2

+ sin(α2φ) �n2)
�x ′
1 ← cos(α1φ

′
) �x1 + sin(α1φ

′
) �n1; �x ′

2 ← cos(α2φ
′
) �x2

+ sin(α2φ
′
) �n2

dx ←
√

x
′2
1 − x2

1 + x
′2
2 − x2

2

iter+ = 1
end while

B. Capacity of channel I with superquantum assistance

We introduce the notion of superquantum-assisted capacity
with a thought experiment: supposing that the two senders may
coordinate their input alphabets in real time, perhaps by using
a nonclassical resource. If we want both pairs to communicate
perfectly, that is I (X1 : Y1) = 1 and I (X2 : Y2) = 1, this
imposes 4 conditions on the actual encodings that go into
the channel:

(1) If X1 ∈ {00,01}, either X2 ∈ {00,10} or X2 ∈ {01,11}.
(2) If X1 ∈ {10,11}, either X2 ∈ {01,10} or X2 ∈ {00,11}.
(3) If X2 ∈ {00,01}, either X1 ∈ {00,10} or X1 ∈ {01,11}.
(4) If X2 ∈ {10,11}, either X1 ∈ {01,10} or X1 ∈ {00,11}.
That, is, only the shaded outputs in either the left or the

right subtable of Table III could be produced. Obviously, this
is not a set that can be produced with only classical resources.
Lemma 2 states that it is possible with a PR box.

Lemma 2 (capacity of channel I with superquantum
resources). If the senders are allowed to share a PR box,
the capacity of the given channel is exactly 2. This is the
algebraically maximal sum capacity of the channel.

TABLE III. Hypothetically, the demand that perfect coding
happen requires that only the shaded outputs be produced by the
channel. Only these two coding strategies will allow both I (X1 :
Y1) = 1 and I (X2 : Y2) = 1. Returning back to the classical realm,
since the senders cannot communicate with each other, they cannot
coordinate their inputs so as to only produce the shaded outputs,
so perfect coding is not possible classically. But if they share a
PR box, they can. Our superquantum strategy achieves exactly the
left-hand-side set of outputs.

X1 X2 00 01 10 11 X1 X2 00 01 10 11

00 00 11 01 10 01 00 11 01 10
01 11 00 10 01 00 11 00 10 01
10 10 01 00 11 11 10 01 00 11
11 01 10 11 00 10 01 10 11 00
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TABLE IV. The rightmost column shows all possible combina-
tions of the two senders’ inputs to the channel using the encoding
strategy described above: each sender’s PR-box output (either a or b)
is concatenated with her input mi .

(m1,m2) (a,b) Encoding
(PR-box input) (PR-box output) (Sender 1, Sender 2)

(0,0) (1,1) or (0,0) (01,01) or (00,00)
(0,1) (1,1) or (0,0) (01,11) or (00,10)
(1,0) (1,1) or (0,0) (11,01) or (10,00)
(1,1) (0,1) or (1,0) (10,11) or (11,10)

We have all but spelled out our superquantum strategy.
In this strategy, the senders can communicate only one bit m.
They encode this bit into a two-bit code word by concatenating
it with the single-bit output of the PR box which results from
feeding m into their respective sides of the box. That is, sender
1 sends X1 = “m1 a′′ and sender 2 sends X2 = “m2 b′′ where
a,b are the outputs of the PR box. This strategy guarantees
a ⊕ b = m1m2. The possible sets of encoded channel inputs
produced by this strategy are listed in Table IV. Comparing that
to Table III reveals that the resulting encoded message pairs
are special for our channel: they are exactly the combinations
whereby receiver 1 and receiver 2 respectively receive the
original 1-bit messages that sender 1 and sender 2 intended
to send. Hence, this superquantum strategy enables perfect
message transmission.

Corollary 1 (capacity of channel I with 1 bit of communi-
cation between senders). If senders are allowed to share one
bit of communication, they will achieve a joint rate of 2.

Proof. This strategy follows straightforwardly from the
technique described in the proof of the previous lemma. This
time, sender 1 encodes her message bit by duplicating it.
She then uses her one bit of communication by sending this
message bit to sender 2. Sender 2 uses this knowledge to
replicate the action of the PR box to pad his own one-bit
message, and Table IV shows that this is always possible.
Since this strategy achieves (deterministically) exactly the
same input sets as the PR-box-assisted strategy described
above, it too achieves a joint rate of 2. �

C. Capacity of channel I with quantum assistance

We saw that Alice and Bob can coordinate their inputs
using a nonclassical resource to achieve perfect coding. Does
a quantum resource suffice, or only a superquantum one?

Lemma 3 (capacity of channel I if senders share entangle-
ment). If the senders are allowed to share an entangled quantum
state |�〉 of dimension 2 × n,

Csum < 2.

Proof. For this proof, we borrow notation from [14]. Let
P denote the set of all positive-operator-valued measures
(POVMs) acting on a single qubit, and OP denote the set
of all outcomes for the POVM P . Let mi,Xi,Yi denote the
message bits, encoded message bits (input to channel), and
channel output bits, respectively, where the subscript i denotes
the respective sender-receiver pair. The two senders share an

FIG. 4. Model of a quantum communication system over this
channel.

entangled state |�〉:
C1 : m1 → P1, C2 : m2 → P2,

E1 : m1 × OP1|�〉 → X1, E2 : m2 × OP2|�〉 → X2,

channel : (X1,X2) → (Y1,Y2),

D : (Y1,Y2) → (m̂1,m̂2). (10)

Any quantum strategy for communication can be
mathematically represented as four consecutive mappings
(Ci ,Ei ,channel,D). The senders independently choose a
POVM (Ci) depending on their message bit mi , apply that
POVM to their share of the entangled state, and apply an
encoding function (Ei) that maps the measurement outcome
of the POVM to a 2-bit input to the channel. These bits go
through the channel and the output of the channel is decoded
(D) by the two receivers. This process is illustrated in Fig. 4.

This is indeed the most general form of a quantum commu-
nications strategy; Naimark’s theorem guarantees that a POVM
is mathematically equivalent to a general measurement, and
the most general decoder looks at both the channel outputs
(including as a special case a restricted decoding strategy
where receivers do not communicate). This model (and the
proof it inspires) is in very much the same spirit as the model
in [14], which was used to prove a similar result for two-player
pseudotelepathy games.

Our goal is to show that that if there exists a quantum
strategy that achieves rate 2 (i.e., perfect coding), there is a
classical strategy that achieves the same rate. But, since there
is not a classical strategy that achieves perfect coding, there
cannot be a quantum one.

We assume that any decoding strategy depends determinis-
tically, and solely, on the bits that the receivers receive. That is,
every time a particular (Y1,Y2) is received, the decoding step
infers a fixed, corresponding, m̂1 and m̂2. Demanding a rate of 2
rules out any probabilistic decoding strategy, so the inferred m̂1

and m̂2 have to be the right ones. The question is now whether
there exist functions (E1 ⊗ E2) ◦ (C1 ⊗ C2) such that the overall
map from m1 × m2 to (X1 × X2)/(Y1 × Y2) is injective. This
means we can group the 16 options for (X1,X2) based on the
resulting (Y1,Y2) and stipulate that the entanglement-assisted
(E1 ⊗ E2) ◦ (C1 ⊗ C2) must achieve the map given in Table V.

Therefore, all we are asking of our copycat classical strategy
is that, for any combination of message bits, it should encode
them as some subset of the allowed encodings in the right
column of the corresponding row, since this suffices for perfect
decoding. Note that the assumption that our quantum strategy
is perfect is key; our classical strategy only needs to never
produce an illegal output, even though some legal outputs may
never occur. It turns out that it is entirely possible to devise a
classical strategy that never produces an output that is illicit
from a POVM, and this is proved in Appendix B. �

052329-5



YIHUI QUEK AND PETER W. SHOR PHYSICAL REVIEW A 95, 052329 (2017)

TABLE V. Entanglement-assisted map between message
bits and their encoding. (m1,m2)a,(m1,m2)b,(m1,m2)c,(m1,m2)d
must correspond to some permutation of the message set
{(0,0),(0,1),(1,0),(1,1)}.

(m1,m2) (X1,X2)

(m1,m2)a (00,00),(01,01),(10,10),(11,11)
(m1,m2)b (00,01),(01,00),(10,11),(11,10)
(m1,m2)c (00,10),(01,11),(10,01),(11,00)
(m1,m2)d (00,11),(01,10),(10,00),(11,01)

IV. CHANNEL II

In this section, we present a class of related channels to
channel I that displays yet stronger capacity separations:

Cclassical < Cquantum < Csuperquantum.

To get channel II, we modify channel I by allowing now
two types of outputs. Consider the cells in Table VI. The cells
with ee are outputs that always get erased. All other cells
are outputs that are erased with probability 1 − ε, but with
probability ε output the two bits stated. We will see later that
the parameter ε can be tuned to change the magnitude of the
capacity separations. We prove the desired inequalities for this
channel when ε is taken to be small.

A. Superquantum- and entanglement-assisted
capacities of channel II

Lemma 4 (capacity of channel II with superquantum
resources). There exists a superquantum-assisted strategy on
channel II that achieves R1 + R2 = 2ε.

Proof. Encoding proceeds exactly as in in the previous
section. Why this works is best visualized by comparing our
channel in Table VI to the set of encoded messages produced
by the PR-box strategy from the previous section, summarized
in the left half of Table III: the encoding only produces the
channel inputs whose outputs are erased with probability 1 − ε

by channel II. Since preserved outputs contain exactly the
first bits of each sender’s message, they are perfectly decoded
by each receiver. This therefore amounts to a binary erasure
channel for each sender-receiver pair with erasure parameter
1 − ε. This gives a joint rate of 2ε. �

This intuition is this: Any classical choice of input alphabets
for the two senders results in at least one combination of inputs
that is always erased by the channel. Using a PR box helps us

TABLE VI. Channel II: A variation on channel I in which the
channel outputs not corresponding to the PR-box-encoded joint inputs
are erased with probability 1, and the channel outputs corresponding
to the PR-box-encoded joint inputs are erased with probability 1 − ε.
Erased bits are denoted by e.

X1 X2 00 01 10 11

00 00/ee ee 01/ee ee

01 ee 00/ee ee 01/ee

10 10/ee ee ee 11/ee

11 ee 10/ee 11/ee ee

avoid these “bad” input combinations, and using entanglement
helps us avoid them with probability cos2(π

8 ) ≈ 0.854, as we
will see next.

Lemma 5 (achievable rate with senders sharing entan-
glement). There exists an entanglement-assisted strategy on
channel II that achieves R1 + R2 = [2 cos2(π

8 )]ε.
Proof. We will describe such a strategy. The encoding step

is a simple extension of the previous one: in place of the
PR box, let the two senders share the CHSH entangled pair,
|�〉 = |00〉+|11〉√

2
. This is the same state that they can use to

win the CHSH game with higher-than-classical probability.
The essence of the strategy is that they play a CHSH game to
communicate. Recall that the winning condition of the CHSH
game is that

a ⊕ b = r ∧ s, (11)

where r := player 1’s question, s := player 2’s question, a :=
player 1’s response, b := player 2’s response. With a shared
Bell state, the two players can perform measurements on
their state in such a way that their question and response
bits fulfill Eq. (11) with probability cos2(π

8 ). But observe that
this is exactly the equation that always holds true for all licit
input-output pairs (inputs: r,s, outputs: a,b) from a PR box.
Therefore, instead of concatenating the PR-box output with
their message bit, the senders now concatenate a or b with
their message bit, where a and b are obtained by measurements
on their shared entangled state. That is, a and b are their
“response” bit in the CHSH game if their desired message had
been their “question” bit from the referee.

This encoding strategy allows for pretty good communica-
tion. We may observe that we obtain a “good” encoding (one
that lands on the double-valued cells in Table VI) with proba-
bility cos2 (π

8 ) ≈ 0.854; we obtain a “bad” encoding (one that
lands on the single-valued cells, thus always gets erased) with
probability sin2 (π

8 ) ≈ 0.147. Hence, each sender gets his input
bit erased with probability α = sin2(π

8 ) + (1 − ε) cos2(π
8 ), and

transmitted perfectly with probability ε cos2(π
8 ). This amounts

to each sender-receiver pair experiencing a binary erasure
channel with erasure probability α. Since the capacity of a
binary erasure channel is 1 − α, the joint rate achieved by
such a strategy is 2(1 − α) ≈ 1.707ε. �

B. Capacity separations for channel II

Finally, we reach the capstone lemmas of this section:
Lemma 6 (classical vs quantum capacities of channel II).

For sufficiently small ε,C(ε)
classical < C(ε)

quantum.
Proof. In Appendix C we prove a lemma that upper-

bounds C(p)
classical by 1.255ε + O(ε2). This proof rests on the

following lemma.
Lemma 7. Suppose the inputs to a channel are five symbols,

1, 2, 3, 4, and ?. The first four symbols are replaced by ? with
probability 1 − ε and transmitted intact with probability ε,
and the last symbol is always sent as ?. Furthermore, suppose
that these symbols must be sent with probabilities p1, p2, p3,
p4, and p?, with these probabilities adding up to 1. Then the
capacity of this channel is

−ε(p1 log2 p1 + p2 log2 p2 + p3 log2 p3 + p4 log2 p4) + O(ε2).

(12)
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This lemma is perfectly mappable to our problem; we need
only consider the pis to be the probabilities of an xx/ee

state being sent, where xx is one of {00,01,10,11}. That is,
eventually we wish to make the replacement

p1 ← pqα,

p2 ← p(1 − q)β,

p3 ← (1 − p)qγ,

p4 ← (1 − p)(1 − q)δ). (13)

Proof. The probability of the output symbol ? is

p? + (1 − ε)(p1 + p2 + p3 + p4) = p? + (1 − ε)(1 − p?)

= 1 − ε + εp?.

We simply plug into Shannon’s formula (X = channel input,
Y = channel output)

I (X; Y ) = H (Y ) − H (Y |X),

where

H (Y |X) =�4
i=1piH (ε),

H (Y ) = − �4
i=1εpi log2(εpi)

− (εp? + 1 − ε) log2(εp? + 1 − ε).

The second term of these goes to zero as ε → 0, so we ignore
it henceforth:

H (Y ) − H (Y |X)

= �4
i=1 − pi[ε log2(εpi) + H (ε)]

= �4
i=1 − pi[ε log2(εpi) − ε log2(ε) − (1 − ε) log2(1 − ε)]

= �4
i=1 − εpi log2(pi) + (1 − ε)pi log2(1 − ε).

Taking the limit as ε → 0, the last term of the above disappears
and we get the desired expression. �

Please refer to Appendix C for the rest of the proof
that C(p)

classical < 1.255ε + O(ε2). We have also seen an
entanglement-assisted strategy that achieves a joint rate of
1.707ε, which must therefore be a lower bound for the
entanglement-assisted capacity. Therefore, if ε is chosen small
enough such that the second-order terms can be ignored, we
may achieve C(p)

classical < C(p)
quantum. This is suffices to prove

the desired capacity separation. �
The following is a corollary of Lemma 7:
Lemma 8 (quantum vs superquantum capacities of channel

II). For sufficiently small ε,C(ε)
quantum < C(ε)

superquantum.
Proof. This statement follows straightforwardly from

Eq. (12), which gives us an expression (up to first order in
ε) for the capacity of the channel in terms of the probabilities
of the xx/ee and ee states being sent. This expression is valid
for any coding strategy, no matter what types of resources are
used.

We also know that even with entanglement, the maximum
percentage of time that an xx/ee state is sent is 0.8536, and
this follows from CHSH (refer to the proof of Lemma 5 for
why). Using our convention for defining the pis, this translates
to the constraint that

�ipi = 0.8536. (14)

Therefore, the entanglement-assisted capacity is upper
bounded by the maximum value of the left-hand side of
Eq. (12),

−ε(p1 log2 p1 + p2 log2 p2 + p3 log2 p3 + p4 log2 p4) + O(ε2).

Under the constraint of Eq. (14), this is strictly less than 2ε (the
superquantum capacity). Furthermore, the bound holds even if
the senders are allowed to share other types of entanglement
than just 2 × n entanglement, since that does not affect the
maximum success probability of the CHSH game [from which
we derived the constraint (14)]. �

V. DISCUSSION

This work continues in the vein of many studies (including
but not limited to [8,9,15]) exploring the implications of
superquantum theories (as represented by nonlocal boxes)
for communication. In both types of channels that we have
proposed, all the PR boxes are assumed to be perfect. We
would like to see a rigorous proof that these separations can
be maintained even if the senders are provided a noisy PR box
and allowed multiple uses of it for nonlocality distillation.

We have also only considered interference channels operat-
ing on discrete-variable bits because this is a proof of concept.
In real life, many communication scenarios where multiple
uncoordinated links share a common communication medium
can be represented as interference channels (albeit ones where
transmitted messages take on continuous values inC subject to
Gaussian noise). Therefore, some work is needed to replicate
the above separations on an general interference channel, or
at the very least, characterize channels and coding strategies
in a way that optimizes them for each of the three classes of
resources.

Our choice to limit our channel to handling only classical
information (as opposed to density matrices representing
quantum information) proved fruitful, as it paved the way
for proofs that rely on classical information theory, as well as
some results from pseudotelepathy games where the referee,
too, accepts only a discrete (albeit distributed) set of outcomes.
In hindsight, this connection seems natural; pseudotelepathy
games exhibit the twin boons of being known to demonstrate
superquantum-to-quantum separations, and having had win-
ning strategies (in a few cases) characterized and generalized to
an arbitrarily large number of parties [16,17]. For this reason,
the literature on pseudotelepathy and XOR games is therefore
a natural starting point for the task of mapping the capacity
separations described in this paper to the multisender (n � 3)
case.

VI. CONCLUSION

We have exhibited two types of interference channels that
show the following separations in classical capacity on the
given classes of resources:

(1) Channel I: Cclassical,Cquantum < Csuperquantum.
(2) Channel II: Cclassical < Cquantum < Csuperquantum.
The takeaway point from this research is that PR boxes

shared between a set of transmitters can be used for better
channel communication—a task for which they have never
been considered.
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APPENDIX A: REMAINDER OF PROOF OF LEMMA 1
FOR CHANNEL I

Here we show that if sender 1 uses the alphabet {00,01} and
sender 2 uses {00,10} (Table VII depicts this schematically),
then the second sender-receiver pair cannot communicate
perfectly, and therefore R2 < 1 as we asserted. The same turns
out to be true for the other 3 cases.

To get I (X1 : Y1) = H (X1) − H (X1|Y1) = 1 when there
are only two options for X1, the first term must take its
maximal value of 1, which can only happen if X1 is uniformly
distributed over {00,01}. Let X2 send 00 with probability c

and 01 with probability 1 − c. This is shown on the left in
Table VII. Since we will be interested in calculating I (X2 : Y2),
we also calculate the input-output probability distribution
experienced by sender-receiver pair 2, shown on the right in
Table VII.

Referring to the right side of Table VII, we obtain

I (X2 : Y2) = H (X2) + H (Y2) − H (X2,Y2)

= [−c log2 c − (1 − c) log2(1 − c)] + 1

−
[

2

(
− c

2
log2

c

2

)
+ 2

(
− 1 − c

2
log2

1 − c

2

)]

= 0. (A1)

We have therefore shown that I (X1 : Y1) = 1 implies that
I (X2 : Y2) = 0, so that I (X1 : Y1) + I (X2 : Y2) = 2 will never
be achieved. Put another way, perfect coding between one
pair implies that the other pair can do no better than random
guessing.

APPENDIX B: A CLASSICAL STRATEGY THAT
PERFORMS AS WELL AS A HYPOTHETICAL PERFECT

ENTANGLEMENT-ASSISTED STRATEGY ON CHANNEL I

The strategy will follow after the subsequent lemmas:
Lemma 9. For any two-sender-receiver pair communication

strategy that relies on the senders sharing some state |�〉 of
dimension 2 × 2, there exists a communication strategy that
achieves the same rate where the senders are restricted to

TABLE VII. Left: Reduced alphabets of senders and resulting
output to the receivers (in the format Y1Y2). Right: Joint probability
distribution experienced by the second sender-receiver pair on this
coding scheme.

X1 X2 00 10 X2 Y2 0 1

00 00 01 00 c

2
c

2

01 11 10 10 1−c

2
1−c

2

sharing a state of the form |�〉 = α|00〉 + β|11〉, where α and
β are well-chosen positive real numbers.

Proof. The key idea is to rewrite |�〉 in terms of its Schmidt
decomposition, and then apply a unitary transformation to
get |�〉. Then, the senders may apply the quantum strategy
whose existence we have assumed. More precisely, there exist
orthogonal bases {|A0〉,|A1〉} for sender 1 and {|B0〉,|B1〉} for
sender 2 such that |�〉 can be rewritten as

|�〉 = α|A0〉|B0〉 + β|A1〉|B1〉.

From there it is easy to see that sender 1 may apply the unitary
transformation |A0〉〈0| + |A1〉〈1|, and sender 2 may apply the
unitary transformation |B0〉〈0| + |B1〉〈1|, to their qubits, to
transform |�〉 into |�〉. Any such unitary U is completely
accounted for in our model of communication in 10 by
applying it to the POVMs Mi that the senders choose for their
states (which preserves its POVM properties), that is, using
the property U |�〉 = |�〉 → 〈�|Mi |�〉 = 〈�|UMiU

†|�〉. �
Since the following two lemmas are almost identical to the

ones in [14], we merely cite them and leave the reader to refer
to [14] for their proofs.

Lemma 10. For any two-party quantum communication
protocol that uses an entangled state of dimension dA × dB ,
there exists a two-party quantum communication protocol that
uses a state of dimension d × d where d := min(dA,dB ).

This justifies the audaciously general claim made in
Lemma 3 that no quantum state of dimension 2 × d could
possibly enable a perfect joint rate for communication. The
proof is similar to the proof of Lemma 9 and relies on the
following fact from the Schmidt decomposition: if H1 and H2

are Hilbert spaces of dimensions n,m respectively, and we
assume without loss of generality that n � m, for any vector
w ∈ H1 ⊗ H2, there exist orthonormal bases {ui,1 � i � n}
for H1 and {vj ,1 � j � m} for H2 such that

w = �m
i=1αiui ⊗ vi. (B1)

Lemma 11. Any POVM can be written in a way such that
all its elements are proportional to one-dimensional projectors.
Each such projector can be rewritten in the form

P =
(

cos2(θ ) e−iφ sin(θ ) cos(θ )
eiφ sin(θ ) cos(θ ) sin2(θ )

)
(B2)

for appropriate angles 0 � θ � π
2 and 0 � φ � 2π . Since

this representation is unique, we may associate each
such projector with a three-dimensional unit vector �v =
( sin(2θ ) cos(φ), sin(2θ ) sin(φ), cos(2θ )).

Finally, the classical strategy promised three lemmas ago is
described. Thanks to Lemma 9, we may assume that the two
senders are using an entangled state of the form |�〉 = α|00〉 +
β|11〉, where α and β are strictly positive real numbers.

Suppose a quantum strategy exists and the POVMs ap-
plied by the two senders, Mx := X (x) = {γ x

i P x
i } and Ny :=

Y(y) = {γ y

j Q
y

j }, have been fixed beforehand for each x,y ∈
{0,1}. We will show that any measurement outcome (i,j ) on
|�〉 as described in the first row of Eqs. (10) can be replicated
perfectly classically. The probability of getting the tuple (i,j )
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is

Pr[i,j ] = 〈�|(γ x
i P x

i

) ⊗ (
γ

y

j Q
y

j

)|�〉
= γ x

i γ x
j

{
α2 cos2

(
θx
i

)
cos2

(
θ

y

j

)
+ 2αβ

[
cos

(
φx

i + φ
y

j

)
sin θx

i cos θx
i sin θ

y

j cos θ
y

j

]
+β2 sin2

(
θx
i

)
sin2

(
θ

y

j

)}
= γ x

i γ x
j (a2 + b2 + 2abc), (B3)

where a := α cos(θx
i ) cos(θy

j ), b := β sin(θx
i ) sin(θy

j ), and c :=
cos(φx

i + φ
y

j ). Using the AM-GM inequality and the fact that
|c| � 1 we may show that Pr[i,j ] can only vanish if one of the
following two things are true of the POVMs used by the two
senders ({γ x

i P x
i },{γ y

j Q
y

j }):
(1) a = b = 0, attained if θx

i = 0 ,θ
y

j = π/2 or vice versa;
that is, either P x

i or Q
y

j belongs to neither hemisphere.
(2) a = b and c = −1, attained if φx

i + φ
y

j = π (both
projectors in eastern hemisphere) or φx

i + φ
y

j = 3π (both
projectors in western hemisphere).

But all our classical strategy needs to do is to choose a
classical tuple, (i,j ), such that the corresponding quantum
POVM elements, P x

i and Q
y

j , would not fulfill either of
these conditions. To do this, it suffices for sender 1, knowing
Mx := {γ x

i P x
i }, to choose an i such that P x

i belongs to the
eastern hemisphere and for sender 2, knowing Ny := {γ y

j Q
y

j },
to choose a j such that Q

y

j belongs to the western hemisphere
(without actually measuring anything). This is always possible
since POVM elements have to sum to the identity. They may
then carry out the (classical) mappings A and B on their
message bits and POVM “outcomes” as per normal.

APPENDIX C: A PROOF OF AN UPPER BOUND ON THE
CLASSICAL CAPACITY OF CHANNEL II

Channel II has been replicated in Table VIII for your
convenience. We would like to prove that for some values
of the parameter ε, the entanglement-assisted capacity beats
the classical capacity.

Let the probability of X1 sending 00 or 01 be p, and the
probability of X2 sending 00 or 01 be q.

The proof proceeds in three steps. We aim to show that
the parameter ε governing the rate for the best classical
strategy can be tuned small enough that that quantum-assisted
capacity is larger than the classical capacity. Therefore, we
first establish a relation that constrains the probabilities of
the various possible output symbols for any classical strategy.

TABLE VIII. Channel II, reproduced here. In bold are the
senders’ inputs, and the table shows the resulting channel outputs.
Erased bits are denoted by e, and the ee has probability 1 − ε in the
squares it shares with numerical values.

X1 X2 00 01 10 11

00 00/ee ee 01/ee ee

01 ee 00/ee ee 01/ee

10 10/ee ee ee 11/ee

11 ee 10/ee 11/ee ee

Next, we find an expression for the classical capacity of the
channel up to first order in ε. Using this relation, we find
an upper bound on the classical capacity in terms of ε. This
completes the proof.

The first thing to prove is the following:
Lemma 12. There are numbers α, β, γ , and δ with

α + β + γ + δ � 3 and α,β,γ,δ < 1,

such that if we look at the output,

Pr(00) = εpqα,

Pr(01) = εp(1 − q)β,

Pr(10) = ε(1 − p)qγ,

Pr(11) = ε(1 − p)(1 − q)δ. (C1)

Proof. First, let us assume that Alice and Bob input a product
distribution. The most general thing they can do is input a
convex combination of product distributions, and the result for
convex combinations follows straightforwardly from the result
for product distributions.

Now, let Alice’s input be expressed as a vector:

(p00,p01,p10,p11),

meaning that with probability pij Alice inputs bit string ij .
Note that p00 + p01 = p and p10 + p11 = 1 − p. We can
decompose this vector into a sum of “basis vectors” {ui},
each with two nonzero entries ai and bi . We may stipulate
ai/bi = p/(1 − p):

(p00,p01,p10,p11) = �4
i=1ui

= (a1,0,b1,0) + (a2,0,0,b2) + (0,a3,b3,0)

+ (0,a4,0,b4).

Similarly, we decompose Bob’s input distribution into {vi}
such that ci/di = q/(1 − q):

(q00,q01,q10,q11) = �4
i=1vi

= (c1,0,d1,0) + (c2,0,0,d2) + (0,c3,d3,0)

+ (0,c4,0,d4).

This notation permits the senders’ joint inputs to be written
as a linear combination of 16 terms, �i,juivj . Each such term
induces a probability distribution over channel outputs, which
we shall express using the same naming convention for the
proportionality factors as in Eq. (C1), but with an additional
subscript i,j . We claim that for each basis vector of the joint
input distribution (indexed by i,j ), αij + βij + γij + δij � 3.

For instance, if we take the vectors u2 = (a2,0,0,b2) and
v1 = (c1,0,d1,0), we know that Pr(u2) = a2 + b2 and a2 =
p Pr(u2), b2 = (1 − p) Pr(u2) by our convention for choosing
the entries of the basis vectors. Similarly, c1 = q Pr(u2,v1) and
d1 = (1 − q) Pr(u2,v1). Then we have

Pr21(00) = εa2c1 = εpqα21 Pr(u2,v1),

Pr21(01) = εa2d1 = εp(1 − q)β21 Pr(u2,v1),

Pr21(10) = 0 = ε(1 − p)qγ21 Pr(u2,v1),

Pr21(11) = εb2d1 = ε(1 − p)(1 − q)δ21 Pr(u2,v1),
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where each αij ,βij ,γij ,δij is 1 if the corresponding probability
is nonzero and 0 otherwise. In this instance, α21 = β21 = δ21 =
1, γ21 = 0. In particular, α21 + β21 + γ21 + δ21 � 3 and we
can easily check that this is true for all choices of i,j . It is
straightforward to extend this property to α + β + γ + δ. We
have

α = �ij Pr(ui,vj )αij

and so on for the other Greek letters. So

α + β + γ + δ

= �ij Pr(ui,vj )(αij + βij + γij + δij )

� 3[�ij Pr(ui,vj )] = 3.

�
The next step is to find an upper bound to the classical

capacity of this channel up to first order in ε. It follows from
Lemma 7 a channel with these probabilities cannot send much
more than

−ε{pqα log2(pqα) + p(1 − q)β log2[p(1 − q)β]

+ (1 − p)qγ log2[(1 − p)qγ ]

+ (1 − p)(1 − q)δ log2[(1 − p)(1 − q)δ]} (C2)

information. Now, we relax the problem. We no longer require
that we have a product distribution. Choose pi as described in
Eqs. (13) and choose α, β, γ , δ with α + β + γ + δ � 3 as in
Eq. (C1). The capacity of our channel, by the above lemma, is
at most

− ε(αk00 log2 αk00 + βk01 log2 βk01

+ γ k10 log2 γ k10 + δk11 log2 δk11) + O(ε2), (C3)

where we have further defined k00 = pq,k01 = p(1 −
q),k10 = (1 − p)q,k11 = (1 − p)(1 − q) such that �i,j kij =
1.

Our aim now is to find values of (k00,k01,k10,k11) and
(α,β,γ,δ) which maximize this expression, which would give
us an upper bound on the classical capacity. We can do this in
several steps, which we outline below.

First, we observe that one of αk00, βk01, γ k10, δk11 is at
most 3/16, and recall that α,β,γ,δ < 1. But f (x) = x log2 x

is maximized when x = 1/e. These two facts let us assume
that

α + β + γ + δ = 3

at the point where Eq. (C3) is maximized because of the
following: suppose αk00 < 3

16 (and therefore < 1
e
). Then if

α + β + γ + δ < 3, we could increase the capacity, Eq. (C3),
by increasing α, and therefore our original choice could not
have maximized the capacity.

Next, we show that at the maximum α = 3k00, β = 3k01,
γ = 3k10, δ = 3k11.

Proof. This eventually falls out from formulating the
problem with Lagrange multipliers with the constraints α +
β + γ + δ = 3 and k00 + k01 + k10 + k11 = 1. But we take a
quicker tack: we show that we can increase the rate if this is
not the case.

Suppose α − 3k00 = δ1 and β − 3k01 = −δ2. Let ε be
1
2 min(δ1,δ2). We can increase αk00 and βk01 by replacing

α′ = α − ε,

β ′ = β + ε,

k′
00 = k00 + ε/3,

k′
01 = k00 − ε/3,

which respects the constraints while leaving the other four
variables unchanged. Since the probability of getting a faith-
fully transmitted output increases with both αk00 and βk01

(recalling how kij was defined), so should the rate increase.�
Finally, we need to show that the capacity is maximized

when k00 = k01 = k10 = k11 = 1/4 and α = β = γ = δ =
3/4.

Proof. Let

f = −3x2 log2 3x2.

We need to find

max
kij

f (k00) + f (k01) + f (k10) + f (k11)

s.t. �i,j kij = 1.

Define

L(kij ,λ) = f (k00) + f (k01) + f (k10) + f (k11)

+ λ(k00 + k01 + k10 + k11 − 1),

and we would like to get ∇ij,λL = 0, so we need f ′(k00) =
f ′(k01) = f ′(k10) = f ′(k11).

Looking at the graph of f ′ shows that for any t , there
are at most two points x1 and x2 with 0 < x1 � x2 < 1
where f ′(x1) = f ′(x2) = t . This shows that in the maximum
of f (k00) + f (k01) + f (k10) + f (k11), there are at most two
different values of kij . However, the asymmetry of the graph
for the portions where 0 < x < 1 and f ′(x) > 0 makes it clear
that one cannot assign more than one value to kij in such a way
that �kij = 1. We may thus conclude that there is only one
value of kij that maximizes this expression, and that must be
kij = 1/4.

Putting the numbers into Eq. (C3), we may conclude that
the upper bound on the classical capacity is 1.255ε + O(ε2).
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