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We study a chain of ferromagnetic sites, ie nano-particles, molecules or atoms, on a substrate of
fully gapped superconductors. We find that under quite realistic conditions, the fermion-number-
parity symmetry Zf

2 can spontaneously break. In other words, such a chain can realize a 1+1D
fermionic topologically ordered state and the corresponding two-fold topological degeneracy on an
open chain. Such a topological degeneracy becomes the so called Majorana zero mode in the non-
interacting limit.

I. INTRODUCTION

Recently, there has been a strong experimental and
theoretical effort to search for the Majorana zero
mode1–14 (which is often wrongly and misleadingly re-
ferred to as the Majorana fermion). However, the Majo-
rana zero mode is actually a feature of systems of non-
interacting fermions. So, strictly speaking, the Majorana
zero mode does not exist in any realistic systems where
electrons interact. In fact, what people are truly inter-
ested in is not the Majorana zero mode, but topological
degeneracy. Topological degeneracy is the ground state
degeneracy of a gapped Hamiltonian system in large sys-
tem size limit, which is robust against any perturbations
that can break any symmetry.15,16 Topological degener-
acy is a sign of topological order.17,18 So the search for
“Majorana fermions”19 is actually the search for topo-
logical degeneracy in topological order.

Topological order is a new kind of order in gapped
quantum systems that extends beyond the Landau sym-
metry breaking description.15–18 For bosonic systems,
topological order can only exist in 2+1-dimensions and
higher.20–22 Bosonic topological order can lead to topo-
logical degeneracy if the system lives on a torus15,16 or
has several disconnected boundaries.23,24 For fermionic
systems, fermionic topological order25 can even exist in
1+1D.26 Such 1+1D fermionic topological order can lead
to a two-fold topological degeneracy if the system lives
on an open line segment.26

Since fermionic systems always have a fermion-

number-parity (FNP) symmetry Zf2 which can never be
explicitly broken, the above 1+1D fermionic topological
order can be viewed as a spontaneous symmetry breaking

order of the FNP symmetry Zf2 (at least when the sys-
tems live on an open line segment).27–29 The above men-
tioned two-fold topological degeneracy is nothing but the

two-fold degeneracy of the Zf2 symmetry breaking. As a
result, we can study the 1+1D fermionic topological or-
der and its topological degeneracy on an open line using
Landau symmetry breaking theory.

In this paper, we will consider a chain of ferromag-
netic nano-particles or ferromagnetic molecule/atoms on

a substrate of superconductor. We find that under quite
realistic conditions, the FNP symmetry breaking state
can appear (or 1+1D fermionic topologically ordered
state can appear), which will lead to an experimental
realization of topological degeneracy. Our approach also
allows us to understand the relevant energy scales: the
energy splitting δEeo between the states of even and odd
electrons on a nano-particle, the hopping amplitude tij
between nano-particles, and the Josephson coupling Ji
between the superconducting substrate and the nano-
particle. We also understand when the topological de-
generacy can be observed at higher temperatures: (1)
|tij | ∼ |Ji| are large, (2) |tij | & δEeo, and (3) the phase
of Jit

2
ijJ
∗
j is not zero.

Chains of magnetic nano-particles on a substrate of
fully gapped superconductor have been studied theoreti-
cally by mapping the system to an effective free Majorana
fermion chain.11,12 In this paper, we study a different
parameter regime which leads to a different effective the-
ory. Chains of magnetic iron (Fe) atoms on a substrate of
superconducting lead (Pb) were recently studied exper-
imentally in Ref. 2, where features of the Majorna zero
mode was found.13,14

II. THE MODEL

We will use the following effective Hamiltonian to de-
scribe a chain of magnetic dots on a substrate of fully
gapped superconductor

H =
∑
i

[tĉ†i+1ĉi + Jĉiĉi + h.c.]

+
∑
i

[
U(n̂i − n0)2 + ∆

(−)n̂i − 1

2

]
, (1)

where n̂i is the fermion number operator and ĉi is the
effective (spinless) fermion operator acting on the Hilbert
space Vi on site-i. Vi is formed by states of n-fermions,
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n = 0,±1,±2, etc and n̂i and ĉi satisfy

{ĉi, ĉj} = {ĉi, ĉ†j} = [ĉi, n̂j ] = 0, i 6= j,

ĉi|n〉 = |n− 1〉.n̂i|n〉 = n|n〉. (2)

Note that the eigenvalue of n̂i can be any integer n, and
ĉi is not the standard fermionic operator.

In our effective Hamiltonian (1) (see Fig. 1), ∆ is the
induced pairing energy on the magnetic dot. U is the ef-
fective Coulomb repulsion on the dot. The effect of chem-
ical potential or gate voltage is summarized by n0. t is
the electron hoping amplitude between neighboring dots
and J is the Josephson coupling between the dots and the
superconducting substrate. Since the dots are magnetic,
the spin degree of freedom is assumed to be frozen. We
also assume the dots are ferro- or anti-ferro-magnetically
ordered, so that there is no spatial dependence in t.

To understand the phase diagram of the above inter-
action 1+1D fermionic system on an open chain, we may
perform a Jordan-Wigner transformation

ĉ†i =n̂+i
∏
j<i

(−1)n̂j ĉi = n̂−i
∏
j<i

(−1)n̂j , (3)

where the action of these operators are as follows

n̂i|n〉 = n|n〉
n̂+i |n〉 = |n+ 1〉 (4)

n̂−i |n〉 = |n− 1〉

Our bosonic effective Hamiltonian then takes the form

H =
∑
i

[
U(n̂i − n0)2 + ∆

(−1)n̂i − 1

2

+ (Jn̂+i n̂
+
i + h.c.) + (tn̂+i (−1)n̂i n̂−i+1 + h.c.)

] (5)

The FNP Zf2 transformation is generated by (−)
∑

i n̂i ,
which is a symmetry of the above effective Hamiltonian.

III. THE PHASE DIAGRAM

A. Small t limit

When t is small, we can solve the one-site Hamiltonian

Hi = U(n̂i − n0)2 + ∆
(−1)n̂i − 1

2
+ (Jn̂+i n̂

+
i + h.c.)

J
ijt

0
i

2
U(n−n )

SC

FM FMFMFM FM FM

FIG. 1. The geometry of the device: a chain of ferromagnetic
dots on a fully gapped superconductor.

even odd

δE
eo

FIG. 2. The many-body energy levels on a single dot, with
even and odd electron numbers.

first. Let us assume the the two lowest energy eigen-
states of Hi are formed by one even-fermion state | ↑〉
and one odd-fermion state | ↓〉 (see Fig. 2). In this
lowest energy subspace, Hi becomes Hi = hzσ

z
i , where

σx,y,zi are the Pauli matrices acting on | ↑〉, | ↓〉. In
the subspace | ↑〉, | ↓〉, (−)n̂i = σzi and n̂+i has a form
n̂+i = e iφ(hxσ

x
i + ihyσ

y
i ), where hx,y ∼ O(1) are real

and positive. Therefore, H in eqn. (5) becomes

H =
∑
i

[
hzσ

z
i + 2Re(t)hxhy(σxi σ

x
i+1 + σyi σ

y
i+1)

+ 2Im(t)(h2xσ
y
i σ

x
i+1 − h2yσxi σ

y
i+1)

]
(6)

We can use mean-field theory to find the phase diagram
of the above spin-1/2 Hamiltonian by assuming a uniform
spin order if Re(t) < 0:

σi = cos(φ) sin(θ)x+ sin(φ) sin(θ)y − cos(θ)z (7)

The corresponding average ground state energy per site
is given by

〈H〉
N

= −hz cos(θ) + 2Re(t)hxhy sin2(θ)

+ Im(t)(h2x − h2y) sin(2φ) sin2(θ) (8)

Assuming some typical values hx = 2/3, hy = 1/3, and
Re(t) = Im(t), we have

〈H〉
N

= −hz cos(θ) +
7

9
Re(t) sin2(θ), sin(2φ) = 1,

and the Zf2 symmetry breaking happens when −Re(t)
hz

>
9
14 .

We note that when t is real, the effective theory has

a U(1) symmetry generated by e iθ
∑

i σ
z
i , where Zf2 is

part of the U(1). In this case U(1) and Zf2 symmetry
breaking cannot happen when we include the quantum
fluctuations beyond the mean-field theory. Even when t
is complex, we still require hx − hy to be large which re-

quires |J | & |hz|. We conclude that Zf2 symmetry break-
ing or 1+1D topological order can appear if
(1) the electron hopping tij between dots is larger than
the energy splitting δEeo = 2hz between states of even
and odd electrons on a dot,
(2) the Josephson coupling Ji between the superconduct-
ing substrate and the dot satisfy |Ji| & δEeo,
(3) the electron hopping amplitude tij is complex, or
more precisely, the phase of the gauge invariant com-
bination Jit

2
ijJ
∗
j is not zero.
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FIG. 3. Ground state energy minimization model.

Note that we can tune the energy splitting between the
states of even and odd electrons to zero by tuning the gate
voltage. In this case, we only require the electron hopping
tij to be larger than the fluctuation of the energy splitting
between even and odd states (caused by randomness). In
other words, the electron hopping tij should overcome
the localization effect (at the Josephson coupling energy
scale).

B. Mean-field theory for generic case

In the small t limit, only two states per dot are in-
volved. For large t, we need to use the more general
model (5), where many states on each dot are included.
We can also employ a mean-field approximation for the
general model (5) by assuming that the trial ground state
of this Hamiltonian takes the form

|ψ〉 =
∏
j

|ψj〉

|ψi〉 =
∑
i

rin e iθin |n〉,
∑
n

(rin)2 = 1, rin ≥ 0. (9)

Since the total phase of the quantum wave function is
unphysical, |ψi〉 is actually labeled by (rin,∆θ

i
n) [not by

(rin, θ
i
n)], where

∆θin = θin+1 − θin (10)

It is straightforward to show that this assumption gives

FIG. 4. For U = 2, φt = π/2, J = 1, ∆ = 0, and n0 =
0, 0.2, 0.4, we find a phase transition at |t| = 0.5, 0.4, 0.15
respectively.

us the following energy expectation value:

〈H〉 =
∑
in

(
U(n− n0)2 + ∆

(−1)n − 1

2

)
(rin)2

+
∑
in

Jrin+2r
i
n cos(∆θin + ∆θin+1) (11)

+2t
∑
i,m,n

(−1)nrin+1r
i+1
m+1r

i
nr
i+1
m cos(∆θin −∆θi+1

m + φt),

where φt is the phase of the hopping amplitude t =
|t|e iφt .

We can visualize this as in Fig. 3, a 2 dimensional
classical system which extends infinitely in one direction
(z-direction in the case of Fig. 3), with interactions be-
tween the ∆θ sites, and the strength of those interactions
determined by the occupation of the r sites.

We note that the model (11) has the FNP Zf2 symme-
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FIG. 5. For U = 2, φt = 0, J = 1, ∆ = 0, and n0 = 0.4, we
find a phase transition at |t| = 0.2.

try

∆θin → ∆θin + π. (12)

When J = 0, the model also has the fermion-number
conservation U(1) symmetry

∆θin → ∆θin + φ. (13)

If we include quantum fluctuations, a U(1) symmetry
cannot be spontaneously broken in 1+1D. So, when

J = 0, the FNP symmetry Zf2 cannot be spontaneously

broken. However, when J 6= 0, we only have Zf2 symme-
try, which can be spontaneously broken in 1+1D. Such a

Zf2 symmetry breaking state is a 1+1D fermionic topolog-
ically ordered state, that has a topological ground state

degeneracy on an open line segment. The Zf2 symmetry
breaking order parameter can be chosen to be

FNP order =

( ∑
n=even

rin

)( ∑
n=odd

rin

)
(14)

Employing simulated annealing to find the ground
state of equation (11) we observe phase transitions in
this model. Choosing U = 2, φt = π/2, J = 1, ∆ = 0,
and n0 = 0, 0.2, 0.4 (note that in terms of our energy ex-
pression 11 n0 is defined modulo 0.5), we find a phase
transition at |t| = 0.5, 0.4, 0.15 respectively (see Fig. 4).

The Zf2 symmetry breaking appears for large t. Also

in this case, we observe that the Zf2 symmetry breaking
ground state is discrete.

Choosing U = 2, φt = 0, J = 1, ∆ = 0, and n0 = 0.4
(i.e. for real t), we can also find a phase transition at

|t| = 0.2 (see Fig. 5). But in this case, the Zf2 symmetry
breaking ground state is not discrete and is parametrized
by a phase variable φ. More specifically, by observing the
lowest energy configurations of our simulated system we
find that the lowest energy configuration for real t takes
the following approximate form:

|ψ〉 =
∏
j

|ψj〉 (15)

|ψj〉 =
∑

n=even

inE(n)|n〉+ (−1)j e iφ
∑
n=odd

in+1O(n)|n〉

V

σ

0

d   /dV

FIG. 6. The weight W of the zero-bias tunnelling peak is
represented by the shaded area.

In this case, after we include the quantum fluctuation of

φ, Zf2 symmetry breaking will be restored. So the Zf2
symmetry breaking observed in the real t case is an arti-

fact of the mean-field theory and there is no Zf2 symmetry
breaking beyond the mean-field theory for φt = 0.

IV. DISCUSSION

The Princeton group has constructed a chain of mag-
netic iron atoms on superconducting lead.2. The iron
atoms on the chain are separated by ∼4.2Å and there
is also 21Å-period modulation in the atomic seperations.
The superconducting coherent length of Pb is ξ = 830Å,
which is much longer than the total length of the chain
which is about 200Å. So the Josephson coupling should
have a non-local form

∑
i,j>i Jĉiĉj , instead of the local

form used in eqn. (1). Because of this, the results in this
paper do not apply to Princeton’s device. However, if
the iron chain is much longer than the superconducting
coherence length ξ and if the chain is formed by short
segments of length ξ (which can be viewed as dots), then
the chain can be viewed as coupled dots. In this case,
our approach can be applied to such a system of coupled
dots.

The weight W of the zero-bias tunnelling peak into an
end of the chain (see Fig. 6) measures the FNP symme-
try order parameter. If we can drive a zero-temperature
phase transition by tuning, for example, the gate voltage
V , we expect W ∼ (V − Vc)β near the transition with
β = 1/8 if there is no other gapless channel on the chain.
(β = 1/8 is the critical exponent of 2D Ising transition).
Such a feature can be used as a smoking gun to detect
the 1+1D fermionic topological order.
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NSF Grant No. DMR-1005541 and NSFC 11274192. He
is also supported by the BMO Financial Group and the
John Templeton Foundation Grant No. 39901. Research
at Perimeter Institute is supported by the Government
of Canada through Industry Canada and by the Province
of Ontario through the Ministry of Research.
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