
MIT Open Access Articles

Photonic Crystal Enabled Thermophotovoltaics 
for a Portable Microgenerator

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chan, Walker R; Stelmakh, Veronika; Waits, Christopher M; Soljacic, Marin; 
Joannopoulos, John D and Celanovic, Ivan. "Photonic Crystal Enabled Thermophotovoltaics for a 
Portable Microgenerator." Journal of Physics: Conference Series 660, conference 1: 1-6 © 2015 
IOP Publishing

As Published: http://dx.doi.org/10.1088/1742-6596/660/1/012069

Publisher: IOP Publishing

Persistent URL: http://hdl.handle.net/1721.1/109218

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 3.0 Unported license

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/109218
http://creativecommons.org/licenses/by/3.0/


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 18.51.1.63

This content was downloaded on 21/04/2017 at 19:27

Please note that terms and conditions apply.

Photonic Crystal Enabled Thermophotovoltaics for a Portable Microgenerator

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 660 012069

(http://iopscience.iop.org/1742-6596/660/1/012069)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Fabrication of an Omnidirectional 2D Photonic Crystal Emitter for Thermophotovoltaics

V Stelmakh, W R Chan, M Ghebrebrhan et al.

Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

Veronika Stelmakh, Walker R Chan, Michael Ghebrebrhan et al.

Thermophotovoltaics: the potential for power

Timothy J Coutts and Mark C Fitzgerald

Energy shift experiment in photonic crystal medium

A A Akhmadeev, R Kh Gainutdinov, G Hermann et al.

Microcavity properties of 2D photonic crystal made by silica matrix doped with magnetic

nanoparticles

R Moukhtari, A Hocini and D Khedrouche

Sol-gel fabrication of one-dimensional photonic crystals with predicted transmission spectra

V A Ilinykh and L B Matyushkin

Band structure of one-dimensional photonic crystal containing two negative index materials

K V Pravdin and I Yu Popov

Prototype of radioisotope thermophotovoltaic system using photonic crystal spectral control

X Wang, W R Chan, V Stelmakh et al.

Improvement of antigen detection efficiency with the use of two-dimensional photonic crystal as a

substrate

Dmitriy Dovzhenko, Vladimir Terekhin, Kirill Vokhmincev et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/660/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1742-6596/773/1/012037
http://iopscience.iop.org/article/10.1088/1742-6596/660/1/012080
http://iopscience.iop.org/article/10.1088/2058-7058/11/8/32
http://iopscience.iop.org/article/10.1088/1742-6596/613/1/012005
http://iopscience.iop.org/article/10.1088/1742-6596/667/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/667/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/741/1/012008
http://iopscience.iop.org/article/10.1088/1742-6596/769/1/012027
http://iopscience.iop.org/article/10.1088/1742-6596/660/1/012034
http://iopscience.iop.org/article/10.1088/1742-6596/784/1/012018
http://iopscience.iop.org/article/10.1088/1742-6596/784/1/012018


Photonic Crystal Enabled Thermophotovoltaics for a

Portable Microgenerator

Walker R. Chan1, Veronika Stelmakh1,2, Christopher M. Waits3,
Marin Soljacic4, John D. Joannopoulos1,4 and Ivan Celanovic1

1 Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge, MA 02139, USA
2 Department of Electrical Engineering, Massachusetts Institute of Technology, 77
Massachusetts Ave., Cambridge, Massachusetts 02139, USA
3 Sensors and Electron Devices Directorate, 2800 Powder Mill Rd., US Army Research
Laboratory, Adelphi, Maryland 20783, USA
4 Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, Massachusetts 02139, USA

E-mail: wrchan@mit.edu

Abstract. This work presents the design and characterization of a first-of-a-kind millimeter-
scale thermophotovoltaic (TPV) system using a metallic microburner, photonic crystal emitter,
and low-bandgap photovoltaic (PV) cells. In our TPV system, combustion heats the emitter
to incandescence and the resulting thermal radiation is converted to electricity by the low
bandgap PV cells. Our motivation is to harness the high specific energy of hydrocarbon fuels at
the micro- and millimeter-scale in order to meet the increasing power demands of micro robotics
and portable electronics. Our experimental demonstration lays the groundwork for developing
a TPV microgenerator as a viable battery replacement.

1. Introduction
For durations greater than one day, the energy demands of micro robotics and portable
electronics are too large to be comfortably supplied by batteries and yet too small to warrant
a gasoline or diesel generator. Microgenerators promise to fill the 1–100 W range in a compact
form factor by extending the high specific energy of hydrocarbon fuels into the millimeter
scale. Hydrocarbon fuels have specific energies close to 12.8 kWh/kg whereas state of the
art rechargeable batteries are closer to 180 Wh/kg. Thus, even a relatively inefficient generator
can significantly exceed the specific energy of batteries. To this end, researchers have explored
several possible energy conversion routes for providing next-generation portable power: micro
mechanical heat engines, fuel cells, thermoelectrics, and thermophotovoltaics [1, 2].

In this work, we present a thermophotovoltaic (TPV) approach to a hydrocarbon-fueled
microgenerator. TPV is the conversion of heat-to-electricity via the thermal emission of photons
and their subsequent absorption and conversion to electricity by low bandgap photovoltaic (PV)
cells. In our TPV system, shown in Fig. 1(a), propane is burned in a microburner to generate
heat which brings a photonic crystal emitter to incandescence and the resulting thermal radiation
drives a suitable low bandgap PV cell. This approach is extremely appealing for microgenerators
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Figure 1. (a) A labeled CAD model of the conceptual TPV microgenerator based on our
experimental setup comprised of an Inconel microburner to convert fuel into heat, a photonic
crystal emitter to convert the heat into spectrally confined infrared radiation, and PV cells to
convert the infrared spectrum into electricity. (b) A photograph of microburner interior with
visible channels. (c) A SEM micrograph of the photonic crystal depicting etched cavities. (d)
The microburner with attached tubes and photonic crystal.

because of its fully static conversion process, multifuel operation, and high specific power relative
to other static conversion processes.

Unfortunately, the demonstrated fuel-to-electricity efficiency of millimeter-scale TPV systems
has traditionally been limited to a few percent because of the need for high temperature
material performance and synchronization between chemical, thermal, optical, and electrical
domains [3–6]. One of the fundamental challenges to realizing a high efficiency is matching the
radiated spectrum to the quantum efficiency of the PV cell. The PV cell can convert in-band
radiation (photon energies above its bandgap) reasonably efficiently to electricity but out-of-band
(photon energies below its bandgap) are wasted. Thus, a selective emitter with high in-band
emissivity and low out-of-band emissivity is required. In this work we present a new approach
to TPV enabled by a photonic crystal selective emitter, capable of near perfect spectral control,
that promises to realize a high fuel-to-electricity efficiency. The low achieved efficiency is not
a fundamental limitation of TPV: fuel-to-electricity efficiency of 30% should be achievable with
this approach [7].

2. System demonstration
Although considerable technological barriers still need to be overcome to reach full performance,
we have performed a robust experimental demonstration that validates the theoretical framework
and the key system components. Our system was comprised of an Inconel microburner, 2D
photonic crystal, and low bandgap PV cells.

The microburner, shown in Fig. 1, was a 20×20×3 mm chip with an internal catalyst-loaded
serpentine channel suspended on tubes that doubled as fluidic connections [8]. Unmixed propane
and oxygen were flowed coaxially through the inlet tubes which contained an inner capillary in
a tube-in-tube configuration. Upon entering the channel, the gases mixed and reacted on the
alumina supported platinum catalyst washcoated on the walls to generate heat. The exhaust
gases exited through an outlet tube. The channel width and total length were designed for
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Figure 2. Fuel-to-electricity experimental results obtained from the TPV system. A
microburner with and without a photonic crystal emitter, shown to the right, was characterized.
Electrical power was scaled for a full set of cells.

complete combustion at the target fuel flow: the timescale for diffusive transverse transport of
unreacted gases to catalyst sites on the walls was much shorter than the residence time in the
channel. The microburner was fabricated from Inconel, which offers high temperature oxidation
resistance, by machining and welding. The tubes were welded into holes drilled into the edge of
the machined microburner, then the exposed channels were sealed by welding on a cover.

The 2D photonic crystal, shown in Fig. 1(c), was comprised of a square array of cylindrical
cavities defined by interference lithography and deep reactive ion etching in a polished tantalum
substrate [9]. The thermal emission spectrum was selectively enhanced through the introduction
of cavity resonances in a wavelength range controlled by the geometry of the structure. Outside
of the enhanced region, the thermal emission approached that of the metallic substrate. The
present photonic crystal, which was only optimized for emission at normal incidence, achieved
a hemispherically averaged in-band emissivity of εin = 0.59 and out-of-band emissivity of
εout = 0.16. With dielectric-filled cavities, the in-band emissivity is predicted to increase to
εin = 0.92 while maintaining the same out-of-band emissivity [10].

The microburner and photonic crystal were integrated by electron beam welding, as shown
in Fig. 1(d). The hot side assembly was partially surrounded with either InGaAsSb [11, 12]
or InGaAs [13] cells which were maintained at 20◦C with a chilled water loop. The distance
between the emitter and cells was approximately 1 mm. The microburner, emitter, and cells
were contained in a vacuum chamber (5 × 10−5 Torr base pressure) to prevent oxidation of the
photonic crystal and convective losses. A CaF window replaced cells on one side (the reported
electrical output was scaled for a full set of cells on the front and back of the microburner) in
order to allow for infrared temperature measurement and optical preheating.

To ignite the microburner, it was heated to approximately 400◦C with a halogen lamp.
Above that temperature, the propane kinetics over the catalyst were sufficient for autothermal
operation, and the lamp was shut off. The fuel and oxygen flows were increased in small
increments, maintaining an equivalence ratio of φ = 1.5. Once steady state was reached, the
electrical power output (at the maximum power point) was recorded and is reported in Fig. 2.
Initial trials with a welded photonic crystal fell short of expectations because the weld was
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only made around the perimeter resulting in poor heat transfer between the microburner and
photonic crystal. Measured electrical output was consistent with pure radiative heat transfer
between the microburner and emitter. We are currently brazing the photonic crystal to the
microburner for improved heat transfer. The electrical output for conductive heat transfer
between the microburner and photonic crystal is shown in Fig. 2.

3. Towards a TPV microgenerator
In order to move from this bench-top demonstration to a portable microgenerator, we need to
redesign the microburner and develop vacuum packaging. The first challenge is developing
a vacuum package to maintain a vacuum level sufficient to prevent convective losses and
degradation of the photonic crystal. While difficult, vacuum packaging has been successfully
demonstrated in MEMS devices and incandescent and fluorescent light bulbs.

The second challenge is to realize an air-breathing microburner capable of processing
conventional liquid fuels (gasoline, diesel, and JP-8 military logistics fuel). Transitioning
from a gaseous single component, light hydrocarbon fuel to a liquid multi-component, heavy
hydrocarbon fuels will require the microburner to compensate for overall longer diffusion times
in combustion dominated by surface reactions, fuel vaporization or atomization, and potentially
increased carbon formation due to the sulfur and aromatic content of the fuels. The transition
from pure oxygen to air-breathing will require the microburner to compensate for a higher flow
velocity that both decreases residence time and increases the exhaust heat loss. Excess enthalpy
through exhaust heat recirculation holds promise to counteract the variable thermodynamic
properties, longer diffusion times, higher flow velocity, and provide heat for vaporization by pre-
heating the fuel and air using heat exchanged from the exhaust. These challenges in microburner
design are not insurmountable and can leverage the extensive knowledge in microchannel heat
exchanger technology.

4. Conclusion
We performed an initial proof-of-concept demonstration of a TPV system as a step towards
a TPV microgenerator that could fill the 1–100 W gap between batteries and conventional
generators by extending the high specific energy hydrocarbon generators to the millimeter scale.
Our TPV demonstration used an Inconel microburner, 2D photonic crystal emitter, and low
bandgap TPV cells. Our initial results indicated that TPV can be used in a high specific
energy microgenerator, and with modest improvements (improved microburner-emitter heat
transfer, filled cavity photonic crystal) greatly improved fuel-to-electricity efficiency is possible.
Furthermore, we presented a path towards a TPV microgenerator.
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