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The technology readiness level (TRL) scale was introduced by NASA in the 1970s as a tool for 

assessing the maturity of technologies during complex system development. TRL data have been used to 

make multi-million dollar technology management decisions in programs such as NASA's Mars Curiosity 

Rover. This scale is now a de facto standard used for technology assessment and oversight in many 

industries, from power systems to consumer electronics. Low TRLs have been associated with 

significantly reduced timeliness and increased costs across a portfolio of US Department of Defense 

programs. However, anecdotal evidence raises concerns about many of the practices related to TRLs. We 

study TRL implementations based on semi-structured interviews with employees from seven different 

organizations and examine documentation collected from industry standards and organizational guidelines 

related to technology development and demonstration. Our findings consist of 15 challenges observed in 

TRL implementations that fall into three different categories: system complexity, planning and review, 

and validity of assessment. We explore research opportunities for these challenges and posit that 

addressing these opportunities, either singly or in groups, could improve decision processes and 

performance outcomes in complex engineering projects. 
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I. INTRODUCTION 

Whether we consider NASA’s future manned mission to Mars or next year’s popular electronic 

devices, cutting edge innovation is achieved in part through the application of new technologies. But with 

the performance advancements gained from using a new technology comes a great deal of uncertainty and 

risk regarding the technology’s capabilities, limitations, and development trajectory. When technologies 

are not ready on time, the consequence could be budget overruns, schedule delays, performance 

shortcomings or even project cancellation. A better understanding of the state of the technology maturity 

is critical in making good decisions about the injection, development and integration of these technologies 

in complex engineering projects. The most widely used tool for such maturity assessment is the 

technology readiness level (TRL) scale. 

The TRL scale was first developed at NASA in the 1970s to be a consistent measure of technology 

maturity. Today the TRL approach is being used in multiple industries and serves broader goals than 

originally intended. This paper reviews implementation practices and aims to highlight 15 challenges that 

have been encountered based on evidence collected at seven different organizations. We then discuss 

potential improvements to industry best practice and identify opportunities for future research. 

A. TRL History at NASA 

Following initial implementation within NASA in the ‘70s, the technology readiness concept was first 

published externally in 1989, as a 7-point scale [1]. In this paper, the TRLs are described as being 

motivated by “the differing perceptions of the researchers and the mission planners between the intended 

and actual proof of readiness,” with the promise that “a properly planned, thoroughly executed technology 

research and development program can provide substantive advances at acceptable risk levels.” In 1995, 

NASA published a refined 9-point scale, along with the first detailed descriptions of each level [2]. 

Shown in Table 1, the scale begins with a technology in a very basic scientific form, and progresses 

to a technology proven in the operating environment. Thus for a generic technology, the levels describe 

the demonstration requirement, including environment and technology assembly status, at increasing 
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fidelity to the final operating system. In common use, a technology is assessed on the TRL scale to better 

understand the progression in readiness of the technology towards eventual operation.   

Various definitions of “technology” exist at many different scales; the predominant conceptualization 

within the TRL-community, at NASA, and used in this paper, is that of a component-technology. The 

TRL scale is used to assess the maturity of a component (or a principle that will eventually be embodied 

in a component) that features new materials, scale, or working principles. 

Table 1: NASA Technology Readiness Level Scale [3] 

TRL Definition 

9 Actual system “flight proven” through successful mission operations 

8 Actual system completed and “flight qualified” through test and demonstration (ground or flight) 

7 System prototype demonstration in a target/space environment 

6 System/subsystem model or prototype demonstration in a relevant environment (ground or space) 

5 Component and/or breadboard validation in relevant environment 

4 Component and/or breadboard validation in laboratory environment 

3 Analytical and experimental critical function and/or characteristic proof-of-concept 

2 Technology concept and/or application formulated 

1 Basic principles observed and reported 

 

Government and commercial implementations of the TRLs are remarkably similar to NASA’s 

original 9-point embodiment. NASA’s most up-to-date TRL documentation is publicly available in their 

Systems Engineering Handbook, including the TRL scale as shown in Table 1 [3]. Perhaps the most 

detailed publicly available description of TRL assessment and decision-making comes in a white paper 

written by a consultant while working at the NASA Space Flight Center [4].   

B. TRL Usage Beyond NASA 

Starting in 2001, the United States Department of Defense required the use of TRLs in all of its new 

procurement programs, quickly expanding the adoption of the scale. A variety of industries have now 
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generated customized standard guidelines for using TRLs in complex systems development, including 

defense, oil and gas, and infrastructure [5]–[7]. 

Organizations are increasingly mapping TRL goals to their generic system development process, i.e., 

target TRLs are assigned to some or all gates in a development process. The Department of Defense, for 

example, has mapped the TRL scale to their System Acquisition Process, as represented in Figure 1 [6]. 

With such a TRL mapping, expectations of technology maturity are consistent and explicit across 

projects. This practice also ensures that technology maturity is considered in the decision to pass relevant 

gate reviews. These reviews are shown as milestones in Figure 1. 

 

Figure 1: Mapping of technology readiness levels to US Department of Defense System Acquisition Process. 

Technologies are expected to achieve TRL 4 by milestone A, TRL 6 by milestone B, and TRL 7 by milestone C. 

There are a number of reasons why organizations have widely adopted the TRL scale for technology 

development assessment. One key benefit, as highlighted in Sadin’s initial TRL publication, is a shared 

understanding of technology maturity and risk [1]. The levels are a standard language with which to 

discuss technology readiness across the organization and between disciplines. They are particularly useful 

in planning technology hand-offs between different groups, for example a research and development 

group and a project group. Additionally, the levels provide a systematic approach and model for 

technology-intensive system development, with the TRLs acting as basic guideposts and steps. 

Although limited, there exists some evidence to suggest that the mapping of TRLs to the system 

development lifecycle is a helpful best practice. A study of 62 US Department of Defense programs found 

that those programs which reached TRL 7 or higher by the start of system development finished 

practically on time and on budget, whereas those programs with technologies below a TRL 7 showed, on 

average, development cost growth of 32%, acquisition unit cost increase of 30%, and schedule delay of 
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20 months [8]. Another study of 37 Department of Defense weapon systems showed that technology 

maturity guidance had a statistically significant effect on the schedule overrun of these systems [9]. These 

findings encourage our further investigation of TRL usage in current practice. 

Safety critical industries like defense, oil and gas, and aerospace are increasingly focusing on TRLs as 

a tool for technology qualification, leading to expanded roles for independent consultants and accreditors, 

and the writing of new standards. This growth will likely continue, considering that TRL use is 

increasingly incentivized by grants and funding structures that use the scale as a basis for eligibility, for 

example the America Makes additive manufacturing initiative, or the European Commission’s Horizon 

2020 research and innovation programme [10], [11]. 

C. TRL-Related Literature 

Beyond the industry guidelines published on TRL usage, there exists some academic literature 

exploring technology readiness and related topics. Since his first TRL paper in 1995, Mankins has 

published further. One paper offers an extended methodology of TRL assessment for effective technology 

management [12]. Mankins also published a 30-year retrospective on the TRLs [13]. Our work aims to 

expand the scope of this retrospective, and provide more detailed observations based on evidence 

collected from diverse industries. 

System architecture-related extensions to the TRL include the integration readiness level (IRL) and 

system readiness level (SRL), introduced by Sauser and his colleagues [14], [15]. This work reflects the 

reality that technologies do not exist independently, but rather they are connected through interfaces in the 

system architecture. The IRL uses a 1-9 scale in the style of the TRL to assess the maturity of the 

interface connecting two components. The SRL is a 0-1 value computed from the system’s TRLs and 

IRLs. The authors mapped SRL values to standard systems engineering life cycles, including those of 

NASA and US Department of Defense. 

Jimenez and Mavris make a case against the use of SRLs based on concerns about the generalizability 

of the IRL, the assumption of independence of the TRL and IRL, and the mathematical averaging and 
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aggregation required to compute the SRL [16]. They address this criticism by proposing an alternative 

integration-focused extension to the TRL. This extension comes in the form of integration- and 

architecture- focused elaborations to the TRL descriptions at each readiness level. The authors argue that 

integration is an inherent sub-attribute of technology readiness and so the TRL levels themselves should 

reflect integration readiness. 

The visual combination of system architecture information with technology readiness metrics has 

been explored in two separate works as a tool for system assessment and management decision-making. 

Both build upon the system architecture design structure matrix [17]. Demonstrated with case studies of 

NASA’s Mars Pathfinder and Near Earth Asteroid Rendezvous, Brady introduced the technology risk 

design structure matrix [18]. For each of the system’s interfaces, this matrix indicates a product of the 

interface strength and inverted technology maturity for both of the interfacing technologies. A high entry 

in the matrix could indicate an important interface with high technical uncertainty. In the context of the 

oil and gas industry, Yasseri presents Sauser’s IRL in a system architecture design structure matrix [19]. 

He then uses the matrix to facilitate the calculation of Sauser’s SRL. 

Focusing on maturity assessment methodologies, the work of Azizian, Sarkani and Mazzuchi  

includes a discussion of the strengths and weakness of a variety of maturity-related techniques, such as 

the IRL, R&D degree of difficulty, and the SRL [20]. Related work on technology readiness assessments 

(TRA) from the same authors explored the relationship between the act of conducting a formal TRA and 

system quality or program performance, but found no significant correlation [21]. 

Cornfield and Sarsfield argue that current TRL measurement techniques are highly qualitative, and 

the importance of language and culture are generally greatly underestimated [22]. Therefore the authors 

present a new index linked to engineering requirements that aims to increase the accuracy of readiness 

estimations. 

Our work has been informed by the careful thought found in the literature cited above. We considered 

the shortcomings of TRL practice raised in these works, and reflected on the motivation for the various 

TRL extensions. Our study aims to provide empirical evidence for these, as well as previously 
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unpublished TRL-related challenges. In this paper we share the findings of a multi-industry study of state-

of-the-art use of TRLs. We present our findings as a set of 15 challenges derived from interviews and 

documentation review.  

II. METHOD 

Our study aims to identify and describe the most important challenges relating to use of TRLs in 

practice today. According to the methodological fit archetypes of Edmonson and McManus, this research 

fits the “nascent” archetype for field research, given the state of prior research on complex systems 

development and managers’ use of TRLs in industry [23]. The appropriateness of this choice is further 

confirmed by the open-ended nature of our research questions. We follow the recommended methodology 

where the type of data collected is qualitative, with a goal of pattern identification based on thematic 

content analysis of these data. 

A. Collection of Evidence and Data Analysis 

Evidence was collected from seven technology development organizations. The set of organizations 

in our study was selected with the aim of industry diversity. The variety of industries results in evidence 

based on processes of various development lifecycle lengths, regulatory oversight, and competitive 

environments. Further, the organizations studied reflected a spectrum of degree of maturity of their 

technology readiness processes, although all individuals interviewed had experience using TRLs. For 

example, one organization has only just considered formal readiness assessment within the past year, 

while NASA has been using the scale and refining and expanding its processes since the TRLs were 

developed there in the 1970s. 

Two main sources of data were pursued: (1) interviews, and (2) company- and industry-specific 

technology development guideline documents.  

Descriptive details of the interview participants are provided in Table 2. In all cases, we interacted 

with those parts of the organization concerned with hardware development; for instance, in the case of 
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Google, our contacts were not software developers but rather engineering managers working on consumer 

electronics in the Google X division.  

Table 2: Interview participants 

# Organization Industry TRL Experience Role of Interviewee 

1 NASA Space > 8 years Office of the Chief Engineer 

   
 Office of the Chief Technologist 

2 Raytheon Defense > 8 years Director of Engineering 

3 BP Oil & Gas 2 – 8 years Technology Leader 

   
 Engineering Manager 

   
 Technology Manager 

   
 Engineering Manager 

   
 VP Technology 

   
 Project Manager 

    Independent Consultant 

4 Bombardier Aircraft 2 – 8 years Senior Engineering Specialist 

   
 Systems Integration, Advanced Design 

5 John Deere Heavy Equipment 2 – 8 years Systems Engineer 

   
 Systems Engineering Manager 

6 Alstom Power Systems < 2 years System Engineer 

   
 Risk Expert 

   
 Process Expert 

7 Google Electronics < 2 years Program Manager 

   
 Product Design Lead 

 

Within each organization, we conducted semi-structured interviews with those individuals directly 

responsible for and involved in technology maturity assessment. In four cases we were able to speak with 

managers responsible for setting TRL usage guidelines at their organization. Whenever possible we 

interviewed employees from a variety of roles (project manager, systems designer, technical executive) 

within the organization to gain a complete perspective of the challenges. Additionally, when possible, we 

obtained documentation on formal procedures for technology readiness assessments or technology 

management decisions. 
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The evidence was coded and each indication of a TRL-related challenge was identified. The evidence 

was then grouped according to similarity of concept. We considered several different groupings, and 

ultimately chose a set of 15 groups of evidence that were thought to be most internally consistent and 

conceptually distinct. Several of the challenges that emerged are reflected in the previously discussed 

TRL-related literature. 

III. FINDINGS: CHALLENGES AND OPPORTUNITIES 

15 challenges of modern TRL implementation were identified from the collected evidence. For clarity 

of presentation, we grouped the challenges into three categories, as shown in Table 3: system complexity, 

planning and review, and assessment validity. In several cases where a challenge relates to more than one 

category, we have placed it according to our strongest evidence. In the next section we provide a brief 

description of each challenge and a representative sample of the supporting evidence. 

Table 3: Challenges encountered in modern TRL implementation 

System Complexity 
1. Integration and connectivity 
2. Interface maturity 
3. Scope of the TRL assessment 
4. Influence of new components or environment 
5. Prioritization of technology development efforts 
6. System readiness 
7. Visualization  

Planning and Review 
8. Aligning TRLs with system development gates 
9. Waivers 
10. Back-up plans 
11. Effort to progress 
12. Confidence to progress 
13. Product roadmapping 

Assessment Validity 
14. Subjectivity of the assessment 
15. Imprecision of the scale 

A. System Complexity 

The following challenges are those that relate to the complexity of the system under development, 

whether it be the component technologies, the architecture, or the system as a whole.  



 10 

Challenge 1 - Integration and connectivity 

Description: The TRL scale is designed to assess each component technology independently; 

however in reality, the components are integrated to work as a complete system. During development, 

demonstration escalates from evaluating an isolated component, to many components in a subsystem, and 

later the full system. Since components work together to achieve system functions, a component’s 

specification and design are likely to be coupled to those of its neighbors, meaning that changes in one 

component may require changes in connected components. Integration issues are a key cause of delay and 

budget overrun yet the TRL measurement does not give us specific integration guidance. 

Evidence: A systems engineer at Alstom described why he would like the TRL assessment to better 

consider integration: “As far as we’re concerned, the technology simply is not at a suitable readiness 

unless it integrates with what’s around it.” However they have not yet been able to formalize this 

integration concept in their TRL procedures. An engineer at Bombardier explained that “even though we 

didn’t necessarily have a problem with using TRL in a classic NASA way, we believe – whether it’s true 

or not – that commercial jet aircraft and business aircraft are particularly integral products. So many 

things affect other things and so integration is a big deal.”  

Challenge 2 - Interface maturity 

Description: Complex systems can be viewed as connected components, where each pair of 

connected components is joined via an interface. TRLs assess the components themselves but do not 

explicitly evaluate the maturity of the interfaces. Operational failures are known to sometimes occur at the 

interface, whether that interface is physical or signal. A challenge exists in effectively considering 

interface maturity in the technology readiness assessment process.  

Evidence: Interfaces between components are often the site of development issues. As a technology 

manager at BP put it, “In my experience, having worked in the industry for 18 years, a lot of the big 

mistakes or problems I’ve seen have been due to poor interface management.” Yet a consultant in the oil 

& gas industry described how in his experience TRL assessments are typically performed independently 

for each component without regard for interfaces. He explained that “it is not unusual that two pieces of 
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equipment mismatch or require several iterations to work together.” Despite their importance, 

consideration of the interfaces is lacking in technology readiness assessments. 

Challenge 3 - Scope of the TRL assessment  

Description: Two major scoping approaches prevail in TRL assessment in industry: 1-The Product 

Breakdown Structure (PBS) approach considers the complete system but requires review of each 

component, whether risky or not, and is therefore resource intensive. 2- The Critical Technology Element 

(CTE) approach is more efficient in review and information generated since it considers only components 

“that may pose major technological risk during development” [6]. However, there exists the chance that a 

risky technology is left out of the assessment. When establishing a process for TRL assessment, it is 

unclear how to decide which approach to take, and how this decision should be informed by the 

complexity of the system, the cost pressures of the project, or the risk of operation.  

Evidence: The PBS approach has been adopted in the oil & gas industry, and comes with some 

downside, as a consultant explained, “operators use TRL not to manage key technologies, but for tracking 

readiness of all equipment for installation. Every nut and bolt of every equipment is included in an Excel 

sheet. You can imagine such a spreadsheet will become very large.” 

At Raytheon, the CTEs are identified prior to the first technology readiness assessment, but less than 

expected efficiency is achieved since the list does not necessarily remain static, as we learned from a 

director: “if the system architecture has changed in a manner that introduces new subsystems or new 

implementation methods, then the team is required to look into those areas and determine if there are new 

CTEs.” 

For both approaches, the benefits and weaknesses of the manner in which scope is established remain 

unclear.  

Challenge 4 - Influence of new components or environment 

Description: Most TRL guidance is written in the context of a new system development project, 

where each component technology is assessed at the start and developed over the system lifecycle. In 

practice, systems are often incremental improvements from previous versions, with a proven system being 
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adjusted slightly to suit a new environment, or where one new component replaces an old component in a 

heritage system for added performance capability. Organizations struggle with the appropriateness and 

procedure of the TRL assessment on such development projects. 

Evidence: Both NASA’s Systems Engineering Handbook and Bilbro’s white paper agree that a 

component can only be TRL 9 (the highest level) if it has been demonstrated in the identical configuration 

in an identical environment [3], [4]. The NASA guidebook even includes a flowchart (part of which is 

shown in Figure 2) to elaborate on this point. In our interview with NASA, however, we learned that this 

challenge is not as resolved as it appears in the guidance, as we heard that “An item we’re considering is 

the effect of hierarchy to TRL – that is, if you have a TRL 9 vehicle but you replace something at the 

assembly, component or even piece part level with a lower TRL, does the entire system then become that 

lower TRL?” The NASA guidance suggests the answer is yes, the whole system becomes a lower TRL, 

but this is clearly not a commonly agreed upon conclusion. 

 

Figure 2: Top section of the decision flowchart from NASA Systems Engineering Handbook [3] emphasizing the 

change in a component’s TRL resulting in a change of operating environment 

Challenge 5 - Prioritization of technology development efforts 

Description: Today’s TRL assessments result in an evaluation of the maturity of dozens, or even 

hundreds of technologies. This takes time and effort. But the assessment is only information, not an 

action. How should the TRL information be interpreted? Should all low TRLs be addressed with equal 
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effort? Should you start with the lowest TRL? Published TRL guidance lacks procedures for how to 

interpret and act on the TRL information. 

Evidence: A popular current method for interpreting all of the component TRL information is called the 

“weakest link”, where the lowest TRLs are “rolled up” the system hierarchy. For example, a subsystem’s 

TRL is the lowest TRL of any component in the subsystem, and the system’s overall TRL is the lowest 

TRL of any subsystem.  

The weakest link method brings the lagging TRL component to the immediate attention of the 

manager, as explained by a director at Raytheon: “It quickly draws a red line around the low TRLs and 

suggests the program manager has to put some resources against them to fix it.” But the weakest link is 

not perfect, since not all low TRL technologies should be the target of development focus, as explained 

by an engineering manager at BP: “You need new choke-and-kill outlet valves, which haven’t been tested 

subsea, so they’re at TRL 3. That puts the whole blowout preventer at TRL 3. Management gets a minor 

stroke. But you could just put the valves in a hyperbaric chamber and move those up to TRL 5 very 

quickly, without much effort.” TRL users are not satisfied with the weakest link method. 

Challenge 6 - System readiness 

Description: Although the raw TRL information for each component is valuable to the developers as 

is, some have argued that there is a need for an overall system measure of technology maturity for the 

project. Ideally this system measure would indicate to the managers how the project as a whole is 

progressing from a technology development perspective. An effective means of displaying the portfolio 

of system readiness values is also lacking. This view would enable a readiness comparison to other 

projects in a portfolio.  

Evidence: As described earlier, Sauser and his team recognized this need and developed the system 

readiness level [15]. Yet many practitioners shared the desire for an alternative system level measure, for 

example a NASA technologist explained that “SRL… everybody wants to use it. People would like to be 

able to characterize the maturity level of the system. Nobody has come up with anything that’s useful 

yet.” At John Deere, the systems engineering team previously explored using Sauser’s SRL to measure 
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the system readiness of one of their projects. The team ultimately decided it was not appropriate, 

explaining that “in the literature they were trying to calculate them by doing some matrix multiplication 

between the rating, which fell apart right away. […] We started working on the math and it didn’t work.”  

Challenge 7 - Visualization 

Description: Given that TRL assessment may involve hundreds of components, what is the most 

informative way in which to review and make decisions based on these data? Should the TRL data be 

aggregated or overlaid with other information? TRL assessments take a great deal of effort and attention, 

and it would be inefficient for the detail and quality of the TRL data to be lost in its visual representation. 

Evidence: The most common means of sharing and reviewing TRL information is in a spreadsheet. 

As one engineer at Bombardier said, “we generate lists [of TRLs], and then pretty much use them 

listlessly.” NASA’s handbook shows a TRL spreadsheet with color coding to highlight low TRLs [3]. 

 

Figure 3: A summary of component TRL information for a complex project at BP, classified by both TRL and by 

development difficulty. (Note that the distribution of TRLs has been adjusted for confidentiality reasons.) 

Figure 3 shows the type of bar chart that was provided to management of a BP project with over 500 

component TRLs. Distinction between technologies as either low, medium or high development difficulty 

is included. This bar chart proved to be the most sophisticated visualization we discovered in our study. 
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B. Planning and Review 

The challenges we have categorized as “planning and review” have to do with the decisions made 

during system development based on technology readiness progression. These challenges reflect the lack 

of integration of TRLs into the organization’s existing business processes. 

Challenge 8 – Aligning TRLs with system development gates 

Description: In the introduction to this paper we described the practice of mapping the TRLs to the 

organization’s standard system development process, with minimum acceptable TRLs at certain gates. 

Despite the adoption of this practice in industry, there has been little scholarly discussion of how to 

design such a mapping, how to determine the frequency of assessments, and how to determine appropriate 

minimum acceptable TRLs. Further, once this mapping is established, there is still a lack of 

understanding of the trade-offs and consequence of failure to achieve the goal TRL, which is a common 

scenario.  

Evidence: A product design lead at Google described why establishing a mapping is a challenge for 

them, “Often times the product roadmap has a more regular cadence and a relatively short cycle. A lot of 

times the technology development that feeds into that, the cadence is not in synch.” Thus the NASA or 

Department of Defense mapping is not appropriate for Google, but there is no real alternative.  

At John Deere there is no formal standard mapping, despite the benefits being recognized: “[a 

mapping] helps people understand that they could not afford to be inventing new technology in a new 

product development program. [However, we were] on a new product development timeline and we were 

still doing technology invention.”   

Although formal mappings exist at some organizations, those that are new to TRLs encounter a 

challenge in establishing the appropriate mapping. 

Challenge 9 - Waivers 

Description: It is not uncommon when a decision gate is reached, that one or more technologies have 

not reached the minimum acceptable TRL. At that point, there are options: cancel the project, delay the 
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project’s advancement to the next stage until the lagging technologies are matured, or acknowledge the 

risk associated with the lagging technology, and move on to the next phase. Some organizations call this 

last option “dispensation”, while others refer to issuing a “waiver”. In either case, there is no commonly 

practiced method for giving such dispensation.  

Evidence: The waiver process at BP requires a dispensation report be submitted to management, then 

be signed by 15 different people, including engineers, the project lead, independent verifiers and vice 

presidents, in order for the waiver to be issued. 

According to the Department of Defense Technology Readiness Assessment Guidance [6], the 

decision to issue a waiver is made by the milestone decision authority, based on the project manager’s 

risk-mitigation plans. Part of the risk mitigation may involve attempting to work with the customer to 

relax program requirements, or the inclusion of an alternative more mature technology. No formal waiver 

procedures were found at the other organizations interviewed, despite the common scenario of low TRL 

at a decision gate. 

Challenge 10 - Back-up plans 

Description: When developing risky technology, developers and managers often identify and pursue 

alternative technologies and options. If one of the technologies fails to mature by a certain decision gate, 

or the requirements evolve outside of the technology’s performance range, there is a chance the 

alternative technologies will be appropriate and available (and necessary). There is no standard 

vocabulary with which to discuss back-up plans with respect to technology development and risk, and the 

concept is not reflected in technology readiness assessment guidelines. 

Evidence: In our interview, a NASA technology manager explained that “[having] the fallback or 

alternative path or plan B is a ‘best practice’ but not a requirement at NASA. Many projects don’t develop 

[such] exit ramps.” We consistently learned from engineers and managers in our interviews that keeping 

back-up plans in place is a basic strategy familiar to and implemented on many projects, however there is 

no formalized link between back-up plans decisions (e.g. what is the cost and acceptable risk level?), 

technology readiness, and reviews. 
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Challenge 11- Effort to progress 

Description: The TRL is a metric that reflects the technology’s current maturity at a particular 

moment in the development lifecycle. Practitioners have come to realize that this technology “snapshot” 

does not provide any information about achieving future TRLs. In particular, an understanding of the 

effort, time, and resources required to progress to the next TRL and subsequent TRLs is lacking, and 

could be informative when planning and evaluating technology options.  

Evidence: At Google the product design lead had practical questions about effort to progress: “What 

do we need to do to get it to the next stage of readiness? What do we really need to do to really have it 

secured in our back pocket, and put it on the shelves.” From an interview with NASA we learned that 

effort to progress metrics are not consistently used and there is no standard process within the agency. In 

fact, this is an issue that NASA has independently identified as something they would like to investigate 

and develop further. 

Challenge 12 - Confidence to progress 

Description: Closely related to the previous challenge of effort to progress is the need for a measure 

of likelihood of forward progress in the TRL scale. Such confidence measures are generally based on gut 

instinct, and lack a methodical assessment technique. 

Evidence: A risk expert at Alstom explained to us that the organization’s “innovation” team uses TRL 

information to inform the probability of technical success of a key technology when making long-term 

technology selection decisions. The TRL is one criteria used to determine the probability of technical 

success, plotted on the vertical axis of a risk-reward chart, as shown in Figure 4. This chart is the only 

example we came across of likelihood to progress being used in the organizations studied, despite the 

promise of such a measure. There lacks a clear formulation and application for confidence to progress.  
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Figure 4: Representative example of a risk-reward chart as used at Alstom, demonstrating a use for the likelihood to 

progress measure. Each circle represents a prospective key technology. 

Challenge 13 - Product roadmapping 

Description: Product roadmaps are used as a planning tool to chart future versions of the product. 

This allows a shared understanding across the organization and can align decision making with regards to 

future product lines. Selecting which technologies to include in the product roadmap poses a complex 

challenge; the challenge is similar to that of alignment between the TRLs and the development process 

milestones, but it adds another dimension – not only do developers need to decide if technologies are 

mature enough for the product currently under development, but they need to think ahead to future 

product lines, and ensure that appropriate technologies that match the expected market and technical 

needs will be available for those products. When should an organization consider a technology ready for a 

future product in its roadmap?  

Evidence: In the consumer electronics industry, it is common for a new product in a line to be 

launched within 12 months of its predecessor. New technologies need to be introduced to these products. 

But those technologies can take two or three years to develop. A product design lead at Google explained 

that “Right now it’s pretty haphazard, where we’re like ‘ok that looks great, do you think it’ll be ready by 
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the time we do the next product?’”, further stating that “we’re looking for ways to validate when the 

technology is ready for dropping into the product roadmap to help us guide our development plans.” The 

link between TRLs and roadmapping is not yet clear enough for actionable guidance. 

C. Assessment Validity 

The final category of challenges has to do with the quality of the TRL values achieved in a typical 

TRL assessment. Considering that critical development decisions are made on the basis of the assessed 

TRL, it is important that the values reached are valid and repeatable. 

Challenge 14 - Subjectivity of the assessment 

Description: The TRL is a 9-step scale with brief descriptions for each level. The levels are not 

perfectly distinct from one another, and for complex technologies it can be difficult for assessors to agree 

on precisely what level has been achieved. Assessors may have different expertise, experience and 

preconceptions. Since technologies can be highly complex, it is sometimes necessary for the technology 

lead (as the person best informed of the detail) to self-assess the technology readiness level. This creates 

an opportunity for bias due to optimism, competition for resources, avoidance of scrutiny, or merely 

awareness of their own sunk costs. 

Evidence: An engineering manager from John Deere shared that when TRLs are used to inform 

technology selection decisions “inevitably the person who favors the technology will interpret the TRL 

higher than everybody else.” An executive at BP summed up this challenge well, saying “if the three of us 

were working on a project together, do you think we’d assess all the equipment at the same TRL?” 

Challenge 15 - Imprecision of the scale 

Description: TRL definitions use the words “demonstration” and “validation” and “proven”. These 

words can be interpreted to imply different deliverables. Given the complexity of today’s technology, it is 

likely that a technology would be demonstrated in a series of tests. How should a developer deal with the 

common scenario where some tests are passed, and others are not? And is the test an operating test, or a 
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stretch (worst-case scenario) test? What are the necessary test conditions and performance requirements? 

These are questions that are not addressed by current TRL guidelines. 

Evidence: Alstom’s various divisions follow at least three different versions of a customized TRL 

scale. This is perhaps due to the desire of those adopting the TRL scale for increased specificity of the 

language to suit the particular technology domain. 

In the experience of a risk manager at Bombardier, the imprecision of the demonstration requirement 

inevitably leads to a discussion amongst the peer reviewers: “We go into a TRL review, and everyone 

comes in and has read the definition, but has not necessarily interpreted it in the same way. One might ask 

for a specific test to be done, while another says ‘no no, we can just do a simulation.” 

Some developers, like a systems engineering manager at John Deere, understand that the generic TRL 

descriptions are not appropriate, explaining “If you’re going to have an assessment and use this to make 

decisions, you’re going to need criteria that are not only industry specific, but even product-line or 

product-type specific.” Yet at this organization, there’s no standard process for tailoring the TRL 

definitions, or formalizing the demonstration criteria. 

IV. DISCUSSION 

TRL-based technology assessment has been widely adopted across industry in the 40 years since its 

invention, proving its potential for sustainable positive impact. A modern investigation of TRL 

implementation challenges is important since the scope of systems and the market environments present 

today are significantly different than those faced by NASA in the 1970s. The 15 challenges identified in 

this work are driven by the increasing technical complexity of modern system design, growing incentives 

for TRL use, and practitioners’ desire to expand the influence of TRLs to more decisions and 

organizational processes than were originally anticipated by NASA. 

Although there is little previous work that systematically evaluates the state of TRL implementations, 

the limited evidence of shortcomings does agree with our findings. For instance, in a 2009 TRL 

retrospective, Mankins concluded with a short discussion of TRL challenges and directions. He identified 
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the need for “practices and metrics that allow assessment of anticipated research and development 

uncertainty,” the challenge we termed likelihood to progress. Further, he described the difficulty in 

achieving the right level of maturity across subsystems and components, a concept that we found to be 

decomposable and is therefore represented by multiple challenges in the system complexity category. 

Finally, Mankins emphasized the need for consistent assessment, which we consider to be congruent with 

our challenges related to the validity of assessment. 

A. Improvement Opportunities 

Each of the challenges described in this paper can be seen as an opportunity for improvement, and we 

believe that potential solutions may exist for all 15 challenges. Some solutions are straightforward, and 

may be solved by the simple sharing and implementation of best practices across industries; other 

solutions are not obvious, and present the opportunity for academic research. In this section we will 

outline our preliminary thoughts on potential directions forward.  

1. System Complexity 

Some of the solutions in the system complexity category can be addressed by taking advantage of 

systems engineering and architectural knowledge. A better understanding of the impact of integration 

immaturity effects (challenge 1) on the system architecture could be achieved through a cascade model, 

similar to that used in studies of change prediction in product redesign and customization [24]. In such a 

model, the cost and schedule risk of a low-TRL component could be considered to affect the cost and 

schedule risk of its neighboring components in the architecture because of shared interfaces. This solution 

could be informed by the work of Smaling and De Weck and their concept of invasiveness visualized in 

the delta design structure matrix [25]. Such a model could require advancements to the interface readiness 

concept (challenge 2). We believe that there remains an opportunity to explore alternatives to Sauser’s 

integration readiness levels.  

With regards to scope of the TRL assessment (challenge 3), we envision that a system architecture 

model will allow consideration of the trade-off of completeness (high cost) versus efficiency (risk of 
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omitted issue) represented by the two approaches to TRL assessment. This could lead to insight regarding 

the conditions under which each method is appropriate. 

An opportunity exists to develop a standard approach for TRL assessments when the system 

experiences an incremental change of component or environment (challenge 4). Given that best practices 

guidance is available at NASA for this concern, we believe this challenge may be straightforward to 

address. In terms of prioritization of development efforts (challenge 5), an alternative to the weakest link 

method of TRL roll up could be created by extending the TRL assessment to include some information 

regarding the risk of unsuccessful development of the technology. This information could be derived in a 

manner similar to the effort and likelihood to progress measures. Guidance for project managers on how 

to interpret and act on the results of a technology readiness assessment is needed. 

Regarding the system readiness metric (challenge 6), the need for a simple measure to describe the 

system maturity should first be questioned. Is it reasonable that one simple number can appropriately and 

usefully describe a complex system? We are doubtful. This challenge may instead be best addressed with 

improved visualization (challenge 7) of all the component TRL information (and maybe IRL 

information), since a concise visualization of the full system technology readiness could provide the 

manager with an understanding of the system’s overall maturity. Existing academic TRL visualization 

forms have centered around the product architecture, for example using the design structure matrix [17], 

and we believe this is a useful view. Improvements to this view could include additional information 

about development risk (for example, development difficulty as shown in the bar chart of Figure 3). 

2. Planning and Review 

Although identified as a challenge, industry leaders have successfully mapped their system 

development lifecycles to the TRLs (challenge 8). Learning from this best practice should provide insight 

related to the trade-offs between selecting immature technologies (with high technical potential at high 

development risk) or mature proven technologies (with limited technical potential at low development 

risk). A dynamic model would allow us to further our understanding of the technology-related choices 

made at decision gates. This model could encompass the concepts of waivers and back-up plans 
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(challenges 9 and 10) and inform the choice between dispensations, delay, and cancel. A deeper 

understanding of what factors should be more highly considered by managers in their decision to grant or 

reject a waiver would be valuable. For example, should a waiver more readily be granted if a solid back-

up plan has been identified? Although on its surface, the formalization of the link between back-up plans 

and TRLs appears clear (a low TRL technology should have a clear back-up plan), the issue has some 

interesting details that should be considered. Shishko et al. have explored the use of real options in 

technology decision making, which should inform future work on this challenge [26].  

Such a model could benefit from reliable procedures and metrics for effort and likelihood to progress 

(challenges 11 and 12). A probabilistic model which considers confidence in the development success of 

the technology may help us better understand the answers to questions such as: When should technologies 

be developed in parallel as alternatives versus when should focus be placed on one major technology with 

a step-down technology identified? What should trigger the move to the step-down position? Present in 

the aerospace guidance, but not commonly practiced is the advancement degree of difficulty (referred to 

by NASA and Bilbro [3], [4]) or the research and development degree of difficulty (referred to by 

Mankins [12]). Neither of these measures is popular in industry and thus we believe there exists the 

opportunity to establish instead the confidence and effort to progress.  

The TRL provides information on the current state of the technology maturity; combined with a 

measure of effort or likelihood, the TRL could be a powerful tool for selecting technologies to complete 

the product roadmap (challenge 13). It could be fruitful to use the TRL lens to study the work of Phaal et 

al. and Kostoff and Scaller, which provide thorough discussions of technology road-mapping practice 

[27], [28].  

3. Validity of Assessment 

Given that the concern for the quality of the TRL information is fundamental to all subsequent 

analysis, evaluations, and decisions, we believe the validity of assessment challenges present an important 

opportunity to study the repeatability and reproducibility of the TRL assessment. In addressing 

subjectivity concerns (challenge 14), there exists some preliminary work that explores the application of 
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modern computing advances – such as computer document classification and big data – in assigning 

TRLs in a more automated way [29], [30]. The imprecision of the TRL scale (challenge 15) relates 

closely to the relationship between testing specifications and TRLs. A clearer understanding of this 

relationship may help to address some of the other challenges presented in this paper – a new 

environment or a new component will surely require different testing specifications, and a revisit of some 

TRLs. There is an opportunity to study the ad-hoc conversations and negotiations that occur while 

assigning TRLs at assessment meetings. This knowledge could inform the design of procedures or 

guidelines for tailoring the TRLs to match a specific project’s testing specifications.  

B. Observed Trends in TRL Process Maturity and Adoption 

The variability in observed TRL challenges speaks to the learning curve associated with TRL 

implementation maturity. Even the most accomplished practitioners such as NASA are not fully satisfied 

with their implementations and are trying to improve their processes.    

We plotted the number of challenges identified at each organization versus the length of time TRL 

processes have been used at each organization. We observed the resulting trend increase as organizations 

gained experience, and then decrease as practices gained maturity. NASA, for example, having used 

TRLs the longest, recognized being challenged by only a few concepts. Similarly, Google, new to TRL 

implementation, recognized a limited number of challenges. On the other hand, organizations like John 

Deere and Bombardier that have adopted TRL practices but are in the midst of making improvements 

identified the most challenges. 

The trend aligns with expectations from learning theory, where we expect to see S-curve dynamics in 

similar applications such as gaining skill competence, process improvement, or quality management [31]–

[33].    

Our work has not focused on the adoption and acceptance of TRLs within organizations, however 

given the increasing number of organizations that are adopting TRLs, we believe such an investigation 

could reveal even further challenges. Additionally, a better understanding of the way in which TRL 
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practices spread from industry to industry could help to anticipate future use-cases and challenges. Such 

studies have been done for similar processes in the past. In the context of software development maturity 

process innovations, Zeikowitz explores mechanisms for adoption of software innovation processes 

within NASA and across a segment in the aerospace industry [34]. Further relevant work is Repenning’s 

study of innovation implementation (one could consider the TRL scale as such an innovation), which 

includes a dynamic model of the long-term adoption of innovations [35]. Anecdotally, we learned in our 

interviews that TRL exposure occurred in some of the organizations studied because of contractual 

obligation, regulatory requirement, cross-industry employee recruitment, or executive education 

programs. 

V. CONCLUSIONS 

With this paper, we provide a broad based discussion of the state-of-the-art in TRL practices and then 

identify 15 challenges associated with TRL implementations. We studied these TRL implementations 

through semi-structured interviews with employees from seven different organizations from diverse 

industries and by examining documentation collected from industry standards and organizational 

guidelines related to technology development and demonstration. Although some organizations are 

lagging behind best practices, even the most advanced TRL users face difficulty related to three 

categories of challenges: system complexity, planning and review, and assessment validity. With the 

increasing adoption of the TRL scale by system development firms further and further from the initial 

NASA context, it is important to evaluate the limitations and opportunities for improvement of this 40-

year-old scale.  

This paper provides practical insight to technology developers and managers in the form of increased 

awareness to potential pitfalls, a discussion of industry-spanning best practices, and suggestions for 

process improvement.  
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Progress towards addressing the opportunities presented in this work shows promise of a major 

positive impact on decision making, and resultant performance outcomes, regarding the injection, 

development, and integration of technologies in complex engineering projects. 
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