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ABSTRACT
We present a new method for simulating phonon transport

at the nanoscale. The proposed approach is based on the re-
cently developed energy-based deviational Monte Carlo method
by the authors [Phys. Rev. B 84, 205331, 2011] which achieves
significantly reduced statistical uncertainty compared to stan-
dard Monte Carlo methods by simulating only the deviation from
equilibrium. Here, we show that under linearized conditions
(small temperature differences) the trajectories of individual par-
ticles simulating the deviation from equilibrium can be decou-
pled and can thus be simulated independently, without intro-
ducing any additional approximation. This leads to a particu-
larly simple and efficient simulation method that can be used to
treat steady and transient phonon transport problems in arbi-
trary three-dimensional geometries.

INTRODUCTION
We present an efficient method for solving the Boltzmann

transport equation (BTE) for phonons in the relaxation-time ap-
proximation, as needed, for example, for describing transport at
scales that are sufficiently small that Fourier’s law is no longer
valid, but sufficiently large to be out of the reach of molecular
simulation methods. The proposed approach belongs to a new
class of methods, referred to as deviational, in which compu-
tational particles simulate only the deviation from an appropri-
ately chosen equilibrium distribution, while the contribution of
the equilibrium component of the distribution is provided analyt-
ically.

Deviational methods were originally proposed as control-

variate variance-reduction formulations for solving the Boltz-
mann equation in the context of nanoscale gas flows [1]. In a re-
cent publication [2], the authors developed a deviational method
for simulating phonon transport which exhibits substantial com-
putational speedup compared to traditional Monte Carlo methods
in the limit of small temperature differences. As shown in [2],
this feature, coupled with the ability of deviational methods to
focus the computational effort in regions where it is most needed,
has enabled the simulation of complex multiscale problems that
would otherwise be intractable.

In the present article we show that problems for which
the BTE can be linearized can be solved by a new method in
which deviational computational particles can be treated as non-
interacting. This results in a simulation algorithm that is simpler,
does not use any approximation in space or time, and depending
on the application of interest, can be several orders of magnitude
faster than the one described in [2].

DEVIATIONAL APPROACH
The deviational approach [1–5] starts by writing the BTE in

terms of the deviation from equilibrium f d = f − f eq
Teq

in the form

∂ f d

∂t
+Vg ·∇ f d =

( f loc− f eq
Teq

)− f d

τ
(1)

where τ = τ(ω, p,T ) is the relaxation time, f = f (x,ω, p,θ,φ)
is the occupation number of phonon states, Vg is the phonon-
bundle group velocity and f eq

Teq
is a Bose-Einstein distribution at

1 Copyright c© 2012 by ASME

Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition 
IMECE2012 

November 9-15, 2012, Houston, Texas, USA 

IMECE2012-87547

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/76602/ on 03/02/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the “control” temperature Teq, namely

f eq
Teq

=
1

exp
(

h̄ω

kbTeq

)
−1

(2)

For phonon transport in particular, the authors have shown
[2] that the energy conserving properties of the simulation algo-
rithm are significantly improved if, instead, the following energy-
based BTE

∂ed

∂t
+Vg ·∇ed =

(eloc− eeq
Teq

)− ed

τ
(3)

is simulated, where ed = h̄ω f d . Deviational methods reduce
the computational cost by simulating only the distribution Ded

(D = D(ω, p) is the density of states) using deviational particles,
because the contribution of Deeq

Teq
is known analytically. The key

to creating deviational algorithms is to realize that (3) suggests
that during the scattering step, particles from the distribution
Ded/τ are removed and replaced by new particles with random
traveling directions and properties (frequency and polarization)
drawn from D(eloc − eeq

Teq
)/τ. In the following, we present an

improvement to this general simulation procedure that leads to
significant computational savings for problems where the BTE
can be linearized.

PROPOSED METHOD
For small temperature differences, the BTE can be linearized

to yield

∂ed

∂t
+Vg ·∇ed =

L(ed)− ed

τeq
(4)

where the particle generation term of the collision operator in (3)
can now be written in the form

L(ed) =
deeq

Teq

dT
(Tloc−Teq) (5)

and τeq = τ(ω, p,Teq). As discussed, for example, in [6], Tloc is
the pseudo-temperature, required in the relaxation time approx-
imation because of the frequency-dependence of the relaxation
time τ(ω, p,T ). Specifically, the pseudo-temperature Tloc is de-
fined via the energy conservation statement

∫
ω

(
∑
p

D(ω, p)
τeq

)
deeq

Teq

dT
∆Tlocdω=

∫
ω

∫
Ω

(
∑
p

D(ω, p)ed

4πτeq

)
dΩdω

(6)

which implies

∆Tloc =

[∫
ω

∫
Ω

∑
p

Ded

4πτeq
dΩdω/

∫
ω
∑
p

D
τeq

deeq
Teq

dT
dω

]
(7)

where deeq
Teq

/dT can be calculated analytically from the Bose-
Einstein distribution.

In [2], we exploited this form of the collision operator to
avoid sampling the local temperature in the far field where devi-
ational temperatures were small: because the distribution

(Tloc−Teq)
D(ω, p)

τ(ω, p,Teq)

deeq
Teq

dT
(8)

does not depend on (Tloc−Teq) once normalized, a particle which
undergoes a scattering event (at rate τeq) can be drawn from (the
normalized form of) this distribution without requiring any in-
formation on the local value of Tloc, while energy conservation is
simply ensured by conserving the particle.

Using this formulation throughout the computational do-
main results in considerable benefits: since knowledge of Tloc
is no longer needed for the scattering process, computational
particles can be considered as behaving independently. Hence,
trajectories are no longer integrated collectively; instead, they
are simulated sequentially, which requires significantly less stor-
age. Furthermore, integration timesteps and computational cells
as used in standard Monte Carlo approaches [7] are no longer
needed. Instead, for each independent particle trajectory, the
time between scattering events can be computed directly from
(4) thus avoiding the numerical error associated with timestep
based integration methods. This contributes significantly to re-
ducing the number of operations between scattering events and,
depending on the problem of interest, the resulting algorithm is
several orders of magnitude more computationally efficient.

The proposed algorithm for calculating an individual parti-
cle trajectory from t = 0 to t = t f is described below. Note that in
the interest of simplicity we have suppressed the particle index i.

I Draw the initial properties (sign s, position x0, frequency ω0,
polarization p0, direction Ω0, and the resulting group veloc-
ity vector Vg,0) of the particle. For time-dependent calcu-
lations, also set up the initial time t0 of the particle; this is
discussed in more detail below.

II Calculate the traveling time until the first scattering (relax-
ation) event, ∆t. Times between scattering events are drawn
from a decaying exponential with mean lifetime τ. This is
implemented by uniformly drawing a random number R be-
tween 0 and 1, and setting

∆t =−τ(ω0, p0,Teq) ln(R) (9)
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III Calculate x̃new = x0+Vg,0∆t. Search for collisions with sys-
tem boundaries along the line [x0, x̃new].

IVa If a collision with a system boundary occurs, say at xb, set
xnew = xb and update the internal time tnew = t0 + ||(xb −
x0)||/||Vg,0||. Depending on the nature of the reflection
(specular or diffuse), set the new traveling direction appro-
priately (as explained for example in [8]).

IVb If no collision with system boundaries occurs, the particle
undergoes scattering at position xnew = x̃new. The internal
time is updated to tnew = t0 +∆t. New frequency ωnew and
polarization pnew are then drawn from the distribution (8).
A new traveling direction is also chosen: in this work, we
consider isotropic scattering, but this can easily be general-
ized to non-isotropic scattering. From these parameters, a
new velocity vector Vg,new can be defined. The particle sign
remains unchanged by scattering.

V The contribution of segment [x0,xnew] to macroscopic prop-
erties is sampled. Sampling is discussed in more detail be-
low.

VI If tnew > t f , proceed to step I to begin simulation of the next
particle; otherwise, set {.}0 = {.}new, where {.} denotes the
set of all properties of particle i, and return to step II.

The total number of particles processed, N, can be cho-
sen arbitrarily, depending on the desired statistical uncertainty.
From this choice, the effective energy carried by each compu-
tational particle, Ee f f , can be calculated as the total amount
of deviational energy involved in the phenomenon of inter-
est divided by N. The total deviational energy includes
the magnitude of the deviational energy present in the ini-
tial condition MDEic = ∑p

∫
x,ω,Ω(4π)−1D|ed(t = 0)|dxdωdΩ,

as well as the magnitude of the deviational energy associ-
ated with boundary conditions or other source terms over the
course of the simulation; the former will be denoted here as
MDEbc = ∑p

∫ t f
t ′=0

∫
S,ω,Ω∈Vg·n̂>0(4π)−1DVg · n̂|ed |dxdωdΩdt ′,

where S denotes the surface area and n̂ the surface nor-
mal of the boundary, while the latter will be denoted by
MDEs = ∑p

∫ t f
t ′=0

∫
x,ω,Ω(4π)−1D|ėd

s |dxdωdΩdt ′; concrete exam-
ples of these quantities will be given below. The number of
particles associated with MDEi where i ∈ {ic,bc,s} is given by
MDEiN/(MDEic +MDEbc +MDEs). The initial time for par-
ticles due to the initial condition is set to t0 = 0, while t0 for
the remaining particles is drawn randomly in the interval [0, t f ]
and proportionally to the rate of deviational energy input/removal
from the simulation (e.g. for a source term, this can be achieved
by inverting the cumulative distribution function given by the
absolute value of the deviational energy input/removal function
∑p

∫ t
t ′=0

∫
x,ω,Ω(4π)−1D|ėd

s |dxdωdΩdt ′).
Let us illustrate these concepts with a 1D example, namely,

transient heat transfer between two walls at fixed and different
temperatures [9]; the walls are located at X = 0 and X = L, and
their temperatures are T1 and T2, respectively. In order to illus-

trate the implementation of initial conditions, we take the initial
system temperature to be

T0(X) =
T1 +T2

2
+

T1−T2

2
sin
(

πX
L

)
(10)

For |T1−T2| � (T1 + T2)/2, deviations from a suitably chosen
equilibrium temperature will be small. For example, an obvious
choice, is Teq = (T1+T2)/2; other equally valid choices are Teq =
T1 or Teq = T2. In our calculations, the first possibility, Teq =
(T1+T2)/2, was used, making the initial condition easier to treat.

The deviational energy terms introduced above reduce to:

MDEic =
∫ L

X=0

∣∣T0(X)−Teq
∣∣dX

∫
ω
∑
p

D
deeq

Teq

dT
dω

= |T1−T2|
L
π

∫
ω
∑
p

D
deeq

Teq

dT
dω

= |T1−T2|
L
π

CTeq (11)

MDEbc =
t f

4
(∣∣T1−Teq

∣∣+ ∣∣T2−Teq
∣∣)∫

ω
∑
p

DVg
deeq

Teq

dT
dω (12)

CTeq corresponds to the volumetric specific heat of phonons at
temperature Teq [10]. Since no other source terms are introduced
in this example, we have MDEs = 0. If a given particle is deter-
mined as being emitted from the initial condition, then its initial
internal time is t = 0, and its initial position (X0) is randomly
drawn between 0 and L according to the spatial distribution of
the initial condition, namely

P(X) = (T0(X)−Teq)CTeq (13)

which, once normalized and given the expression we chose
for Teq, can be written as p(X) = P(X)/

∫ L
0 P(X ′)dX ′ =

π(2L)−1 sin(πX/L). This can, for example, be implemented by
drawing a random number R uniformly between 0 and 1 and by
setting X0 such that R =

∫ X0
0 p(X)dX , or X0 = Lπ−1 cos−1(1−

2R). If the particle is emitted from the boundary condition, its
initial time is uniformly (randomly) drawn between 0 and t f ,
while its initial position is either 0 or L depending from which
wall it originates. The sign of the emitted particle is determined
by the sign of T1−Teq and T2−Teq at each wall, respectively.

SAMPLING
We now discuss the sampling process in more detail. Let

Ig(t) = ∑
p

∫
x,ω,Ω

(4π)−1Dged(t)dxdωdΩ (14)
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be the macroscopic property of interest (at time t) in terms of a
general microscopic property g = g(x,ω, p,Ω). Recalling that
the deviational simulation approximates the distribution ed in the
phase space using deviational (computational) particles [2]

Ded

4π
≈ Ee f f ∑

i
siδ

3(x−xi(t))δ(ω−ωi(t))δ2(Ω−Ωi(t))δp,pi(t),

(15)
the estimate of Ig(t) is given by

Ĩg(t) = Ee f f ∑
i

sig [xi(t),ωi(t), pi(t),Ωi(t)] (16)

where symbols have their usual meanings and si is the sign of de-
viational particle i. For example, if the quantity of interest is the
X-component of the heat flux vector in some region of space R
with volume µ(R) and defined by the characteristic function χR,
then g = Vg,0 · êX χR/µ(R) and thus particle i only contributes to
Ig(t) if xi(t) [its position at t—calculated by linear interpolation
between (x0,t0) and (xnew,tnew)] is in R. The contribution of such
a particle to Ĩg(t) is si[Vg,0]i · êX Ee f f /µ(R).

As in standard Monte Carlo methods, steady state problems
can be sampled by replacing ensemble averaging with time av-
eraging, provided sufficient time has passed for steady condi-
tions to prevail. The proposed method is particularly suited to
this type of problem because it can be used to directly solve for
the steady state without requiring relaxation of the system from
some initial condition, if the latter is of no interest. This can be
achieved by including only the steady particle sources (MDEbc
and MDEs) and considering each simulated particle to represent
a fixed amount of energy per unit time Ėe f f ; particles are emit-
ted from the time-independent sources and propagate according
to the rules explained above. Since the steady state is constituted
of particles at all stages of their time-history, one can sample the
values of interest by computing curvilinear integrals along the
complete particle trajectories, from their emission to their termi-
nation (for example, in a problem with isothermal walls, termi-
nation would occur when the particle is absorbed by a boundary).
In this case the estimate for Ĩg is:

Ĩg = Ėe f f ∑
i

si

∫
xi(t)∈R

g [xi(t),ωi(t), pi(t),Ωi(t)]dt (17)

The rigorous mathematical proof leading to expressions of
this type can be found in linear transport theory literature (see
for example [11]) and enables direct sampling of the steady state,
contrarily to methods based on timestep. The temperature can
for example be calculated by setting g = (µ(R)CTeq)

−1. Hence,
the estimate for the average temperature in a region R can be

expressed as

T̃R−Teq =
Ėe f f

µ(R)CTeq
∑

i
si

∫
xi(t)∈R

dt (18)

Although formulations (17) and (18) make use of an internal time
for each particle, keeping track of this former parameter in the
algorithm explained above is usually made unnecessary by the
steady-state nature of the problem. In the case of the temperature
(18), one simply needs to compute the total time spent by a given
particle in the region R over its trajectory. In the case of the heat
flux in the X-direction (g =VX/µ(R)) averaged over the domain
R, simplifying the integral (17) leads to a time-independent for-
mula:

J̃R =
Ėe f f

µ(R) ∑
i

siLi (19)

where Li is the total algebraic length traveled in the X-direction
by particle i while in R.

Figure 1 shows both transient and steady state solutions
of the one-dimensional problem described above. The steady
state solution is obtained as described above, rather than inte-
grating in time from an initial condition. In these simulations,
T1 = 301K, T2 = 299K, Teq = 300K leading to an initial con-
dition T0(X) = 300 + sin(πX/L), while L = 400nm; materials
parameters (dispersion relations, scattering rates) are the same
as in [2] (Note: phonon-phonon scattering coefficients AL and
AT given in the appendix A of [2] correspond to a set of units
where ω is measured in Hertz. For ω measured in rad/s, they
become AL = 2.09 · 10−19/(2π)2 = 5.29 · 10−21s/rad2/K1.49 and
AT = 1.23 · 10−19/(2π)2 = 3.12 · 10−21s/rad2/K1.65. The impu-
rity scattering coefficient AI = 3 · 10−45s3/rad4 and the bound-
ary scattering rate wb=1.2·106s−1 remain unchanged); optical
phonons were taken into account (with zero group velocity, as
described in [2]).

VALIDATION
The proposed algorithm has been extensively validated us-

ing a number of test problems including the thin film problem
described in [2] for which an analytical solution exists, and the
simple 1D problem mentioned above (Fig. 1), for which the com-
parison to results calculated with the timestep-based variance-
reduced method shows excellent agreement.

The thin film problem (see Fig. 2) can be simulated using the
periodic boundary conditions introduced in [6], and deviational
particles emitted by boundaries as in [2]. As explained in [2],
the hot (resp. cold) boundary at temperature T1 (resp. T2) emit
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Initial condition 

steady state 

t=0.2ns 

t=1.2ns 

Figure 1. TRANSIENT AND STEADY-STATE TEMPERATURE PRO-
FILES BETWEEN TWO WALLS AT ∆T = ±1K AND INITIAL CONDI-
TION (10). HERE, ∆T = T (X , t)−Teq WITH Teq = 300K. DOTS: ∆T
COMPUTED WITH THE METHOD PRESENTED IN [2]. SOLID LINE:
∆T COMPUTED WITH THE PROPOSED METHOD.

positive (resp. negative) particles according to the distribution

−
(

eeq
T1
− eeq

T2

) D(ω, p)
4π

Vg(ω, p)cos(θ) (20)

where θ is the angle with respect to the direction of the tempera-
ture gradient. This expression can be linearized by writing

(
eeq

T1
− eeq

T2

)
≈ (T1−T2)

deeq
Teq

dT
=

deeq
Teq

dT
dT
dy

L (21)

While the simulation could be conducted using the 2D
model shown in Fig. 2, since we are only interested in the heat
flux in the direction along the film (y−direction), we can arbi-
trarily reduce the distance between the two periodic walls while
keeping a constant temperature gradient (dT/dy), without modi-
fying the result. In other words, the formulation above is equiva-
lent to simulating particles in a 1D system (variations exist only
in the z−direction), where the effect of the temperature gradient
is accounted for by the volumetric (linear, 0≤ z≤ d) source:

−
deeq

Teq

dT
dT
dy

D(ω, p)
4π

Vg(ω, p)cos(θ) (22)

The signs of the particles are determined by the sign of cos(θ).
Note that as usual, when drawing the traveling direction of the

particle, the factor sin(θ), generally implicit in the expression for
the solid angle in spherical coordinate dΩ = sin(θ)dθdφ, need to
be accounted for (see [8]). Also, note that the factor L does not
appear in (22) because the latter describes an emitted power per
unit volume, in contrast to (20) which describes an emitted power
per unit boundary surface area. This approach of imposing tem-
perature gradients using source terms can be generalized [12] to
study transport in periodic nanostructures of arbitrary geometry.

Solution proceeds by using the algorithm explained above
over the 1D domain 0 < z < d, with diffuse reflection at z = 0
and z = d. However, due to the presence of the source term and
the lack of cancellation of deviational particles during the colli-
sion step, particle trajectories need to be tracked indefinitely (in
contrast to the algorithm presented in [2]). This issue can be cir-
cumvented by realizing that the expected value of the heat flux
after the first collision with a wall or after the first scattering event
is zero because these two types of events randomize the direc-
tion of a particle. In other words, because the expected contribu-
tion of the trajectory to the heat flux following a scattering event
is zero, trajectories can be terminated after their first scattering
event. This is verified by Fig. 3; Fig. 4 shows that the result-
ing simulation method is in good agreement with the theoretical
solution for a film of thickness 100nm. The proposed method
returns a thermal conductivity of 49.002± 0.001 Wm−1K−1. By
comparison, numerical integration (via rectangle rule) of the an-
alytical solution presented in [2] returns a thermal conductivity
of 48.95 Wm−1K−1.

We emphasize here that terminating deviational trajectories
after the first scattering event is only valid for this highly sym-
metric, 1D problem; a more complete discussion can be found
in [12]. The issue of infinite track lengths and a more general
criterion for terminating particles in periodic nanostructures is
also discussed in [12].

As an application, but also additional validation with our re-
sults in [2], we consider the transient thermo-reflectance experi-
ment presented in [13] and used in [14] as a thermal conductivity
spectroscopy technique. Using the algorithm described above,
we simulate the thermal response of a thin film of aluminum
on a substrate of silicon after a laser pulse irradiates the surface
and provides localized heating at t = 0; the system is initially
in equilibrium at T0 = 300K, making this a convenient control
temperature, i.e. Teq = T0. Initial positions for the computational
particles are determined from the experimentally derived initial
temperature distribution

Ti−T0 = (T1−T0)exp(−βz)exp
(
−2r2

R2
0

)
, z > 0 (23)

where r represents the radial coordinate measured from the pulse
center and z the depth into the aluminum substrate; as previ-
ously shown in the transient 1D example above, in the linear
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Figure 2. SIMULATION GEOMETRY. BOUNDARIES AT z = 0 AND
z = d ARE DIFFUSELY REFLECTING. (a) INFINITE DOMAIN IN THE
y-DIRECTION IS TERMINATED BY USE OF PERIODIC BOUNDARIES
SEPARATED BY A DISTANCE L. (b) REDUCED SIMULATION GEOME-
TRY.

approximation we can draw the initial properties of the devi-
ational particles from a distribution that is proportional to the
initial temperature distribution, or in other words ed(x,ω,Ω, t =
0) ∝ (Ti(x)−T0)deeq

Teq
/dT . Also, since the heating is impulsive

in time, each particle’s initial time is set to t = 0. Particle trajec-
tories are calculated with the procedure explained above.

The Al/Si interface is treated as follows: the probability of
a deviational particle crossing or being reflected at the interface
is calculated using the frequency dependent interface condition
detailed in [15, 16]. When a particle trajectory intersects the in-
terface, the particle is transmitted or reflected by comparing the
transmission/reflection probability with a uniformly drawn ran-
dom number. In case of crossing, a new traveling time until the
next scattering event needs to be calculated using (9) and the pa-
rameters of the new traveling medium. Reflection is treated as

Figure 3. AVERAGE HEAT FLUX CONTRIBUTIONS (Wm−2) BE-
TWEEN THE ( j− 1)-TH AND THE j-TH SCATTERING EVENT, FOR
THE CALCULATION OF THE THERMAL CONDUCTIVITY ALONG A
THIN FILM. AFTER THE FIRST COLLISION, THE EXPECTED HEAT
FLUX IS ZERO.

algorithm item [IVa] discussed above. These calculations used
T1 = 301K, β−1 = 7nm, R0 = 15µm and the same materials pa-
rameters as in [2].

Figure 5 shows that the proposed method yields results that
are in excellent agreement with the deviational method presented
in [2]. However, the additional speedup due to the present al-
gorithm allows us to calculate the response to a single pulse
up to 10µs [12], which represents a two to three order of mag-
nitude improvement compared to the deviational method pre-
sented in [2] which could only reach several nanoseconds. (For
comparison purposes, we note that due to the small temperature
differences involved, simulation of this problem using standard
Monte Carlo methods is essentially intractable.) Ultimately, we
expect this improvement to be invaluable towards the computa-
tional description of the phonon spectroscopy experiment dis-
cussed in [14].

CONCLUSIONS
We have presented a new method for simulating phonon

transport at the nanoscale valid for problems exhibiting suffi-
ciently small deviations from equilibrium that the BTE can be
linearized. Although the exact range of temperatures under
which linearization is valid depends on the error that can be toler-
ated, we expect linearization to be appropriate for ∆T/Teq . 0.1;
for Teq ∼ 300K, this translates to a requirement that ∆T . 30K,
which is satisfied by a wide range of applications of current inter-
est. Provided linearization is appropriate, in addition to improved
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Figure 4. VALIDATION OF THE PROPOSED ALGORITHM. SOLID
LINE: THEORETICAL HEAT FLUX IN A THIN FILM OF THICKNESS
100nm. DOTS: HEAT FLUX COMPUTED WITH THE PROPOSED
METHOD.

Figure 5. COMPARISON OF THE SURFACE TEMPERATURE (AVER-
AGED OVER A DEPTH OF 5nm IN A CYLINDRICAL REGION OF RA-
DIUS 2µm), CALCULATED BY THE METHOD DESCRIBED IN [2] AND
BY THE PROPOSED ALGORITHM. THE TWO METHODS GIVE ES-
SENTIALLY THE SAME RESULTS.

computational efficiency, the proposed algorithm is expected to
exhibit superior fidelity compared to standard timestep-based al-
gorithms since it requires no timestep or spatial discretization.

Due to the non-interacting nature of deviational particles un-
der this new formulation, the resulting mathematical and numer-
ical descriptions share many similarities with their neutron trans-

port counterparts. We expect the substantial literature on neutron
transport and its simulation [11] to prove very useful towards im-
proving the proposed method further.
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