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Abstract

We define a fairness solution criterion for multi-agent decision-making
problems, where agents have local interests. This new criterion aims
to maximize the worst performance of agents with a consideration on
the overall performance. We develop a simple linear programming ap-
proach and a more scalable game-theoretic approach for computing an
optimal fairness policy. This game-theoretic approach formulates this
fairness optimization as a two-player zero-sum game and employs an
iterative algorithm for finding a Nash equilibrium, corresponding to an
optimal fairness policy. We scale up this approach by exploiting prob-
lem structure and value function approximation. Our experiments on
resource allocation problems show that this fairness criterion provides a
more favorable solution than the utilitarian criterion, and that our game-
theoretic approach is significantly faster than linear programming.

Introduction

Factored multi-agent MDPs [4] offer a powerful mathematical framework for studying multi-agent
sequential decision problems in the presence of uncertainty. Its compact representation allows us to
model large multi-agent planning problems and to develop efficient methods for solving them. Ex-
isting approaches to solving factored multi-agent MDPs [4] have focused on the utilitarian solution
criterion, i.e., maximizing the sum of individual utilities. The computed utilitarian solution is opti-
mal from the perspective of the system where the performance is additive. However, as the utilitarian
solution often discriminates against some agents, it is not desirable for many practical applications
where agents have their own interests and fairness is expected. For example, in manufacturing plants,
resources need to be fairly and dynamically allocated to work stations on assembly lines in order
to maximize the throughput; in telecommunication systems, wireless bandwidth needs to be fairly
allocated to avoid “unhappy” customers; in transportation systems, traffic lights are controlled so
that traffic flow is balanced.

In this paper, we define a fairness solution criterion, called regularized maximin fairness, for multi-
agent MDPs. This criterion aims to maximize the worst performance of agents with a consideration
on the overall performance. We show that its optimal solution is Pareto-efficient. In this paper, we
will focus on centralized joint policies, which are sensible for many practical resource allocation
problems. We develop a simple linear programming approach and a more scalable game-theoretic
approach for computing an optimal fairness policy. This game-theoretic approach formulates this
fairness optimization for factored multi-agent MDPs as a two-player, zero-sum game. Inspired by
theoretical results that two-player games tend to have a Nash equilibrium (NE) with a small sup-
port [7], we develop an iterative algorithm that incrementally solves this game by starting with a
small subgame. This game-theoretic approach can scale up to large problems by relaxing the ter-
mination condition, exploiting problem structure in factored multi-agent MDPs, and applying value
function approximation. Our experiments on a factory resource allocation problem show that this
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fairness criterion provides a more favorable solution than the utilitarian criterion [4], and our game-
theoretic approach is significantly faster than linear programming.

Multi-agent decision-making model and its fairness solution

We are interested in multi-agent sequential decision-making problems, where agents have their own
interests. We assume that agents are cooperating. Cooperation can be proactive, e.g., sharing re-
sources with other agents to sustain cooperation that benefits all agents, or passive, where agents’
actions are controlled by a thirty party, as with centralized resource allocation. We use a factored
multi-agent Markov decision processes (MDP) to model multi-agent sequential decision-making
problems [4]. A factored multi-agent MDP is defined by a tuple 〈I,X,A, T, {Ri}i∈I , b〉, where

I = {1, . . . , n} is a set of agent indices.

X is a state space represented by a set of state variables X = {X1, . . . , Xm}. A state is defined
by a vector x of value assignments to each state variable. We assume the domain of each
variable is finite.

A = ×i∈IAi is a finite set of joint actions, where Ai is a finite set of actions available for agent i.
The joint action a = 〈a1, . . . , an〉 is defined by a vector of individual action choices.

T is the transition model. T (x′|x,a) specifies the probability of transitioning to the next state x′

after a joint action a is taken in the current state x. As in [4], we assume that the transition
model can be factored and compactly represented by a dynamic Bayesian network (DBN).

Ri(xi,ai) is a local reward function of agent i, which is defined on a small set of variables xi ⊆ X
and ai ⊆ A.

b is the initial distribution of states.

This model allows us to exploit problem structures to represent exponentially-large multi-agent
MDPs compactly. Unlike factored MDPs defined in [4], which have one single reward function rep-
resented by a sum of partial reward functions, this multi-agent model has a local reward function for
each agent. From the multi-agent perspective, existing approaches to factored MDPs [4] essentially
aim to compute a control policy that maximizes the utilitarian criterion (i.e., the sum of individual
utilities). As the utilitarian criterion often provides a solution that is not fair or satisfactory for some
agents (e.g., as shown in the experiment section), it may not be desirable for problems where agents
have local interests.

In contrast to the utilitarian criterion, an egalitarian criterion, called maximin fairness, has been
studied in networking [1, 9], where resources are allocated to optimize the worst performance. This
egalitarian criterion exploits the maximin principle in Rawlsian theory of justice [14], maximizing
the benefits of the least-advantaged members of society. In the following, we will define a fairness
solution criterion for multi-agent MDPs by adapting and combining the maximin fairness criterion
and the utilitarian criterion. Under this new criterion, an optimal policy for multi-agent MDPs aims
to maximize the worst performance of agents with a consideration on the overall performance.

A joint stochastic policy π : X ×A → < is a function that returns the probability of taking joint
action a ∈ A for any given state x ∈ X. The utility of agent i under a joint policy π is defined as its
infinite-horizon, total discounted reward, which is denoted by

ψ(i, π) = E[

∞∑
t=0

λtRi(x
t,at)|π, b]. (1)

where λ is the discount factor, the expectation operator E(·) averages over stochastic action selection
and state transition, b is the initial state distribution, and xt and at are the state and the joint action
taken at time t, respectively.

To achieve both fairness and efficiency, our goal for a given multi-agent MDP is to find a joint control
policy π∗, called a regularized maximin fairness policy, that maximizes the following objective
value function

V (π) = min
i∈I

ψ(i, π) +
ε

n

∑
i∈I

ψ(i, π), (2)
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where n = |I| is the number of agents and ε is a strictly positive real number, chosen to be arbitrary
small. 1 This fairness objective function can be seen as a lexicographic aggregation of the egalitarian
criterion (min) and utilitarian criterion (sum of utilities) with priority to egalitarianism. This fairness
criterion can be also seen as a particular instance of the weighted Tchebycheff distance with respect
to a reference point, a classical secularization function used to generate compromise solutions in
multi-objective optimization [16]. Note that the optimal policy under the egalitarian (or maximin)
criterion alone may not be Pareto efficient, but the optimal policy under this regularized fairness
criterion is guaranteed to be Pareto efficient.
Definition 1. A joint control policy π is said to be Pareto efficient if and only if there does not exist
another joint policy π′ such that the utility is at least as high for all agents and strictly higher for at
least one agent, that is, @π′,∀i, ψ(i, π′) ≥ ψ(i, π) ∧ ∃i, ψ(i, π′) > ψ(i, π).

Proposition 1. A regularized maximin fairness policy π∗ is Pareto efficient.

Proof. We can prove by contradiction. Assume regularized maximin fairness policy π∗ is not Pareto
efficient. Then there must exist a policy π such that ∀i, ψ(i, π) ≥ ψ(i, π∗) ∧ ∃i, ψ(i, π) > ψ(i, π∗).
Then V π = mini∈I ψ(i, π)+ ε

n

∑
i∈I ψ(i, π) > mini∈I ψ(i, π∗)+ ε

n

∑
i∈I ψ(i, π∗) = V π

∗
, which

contradicts the pre-condition that π∗ is a regularized maximin fairness policy.

In this paper, we will mainly focus on centralized policies for multi-agent MDPs. This focus is
sensible because we assume that, although agents have local interests, they are also willing to co-
operate. Many practical problems modeled by multi-agent MDPs use centralized policies to achieve
fairness, e.g., network bandwidth allocation by telecommunication companies, traffic congestion
control, public service allocation, and, more generally, fair resource allocation under uncertainty.
On the other hand, we can derive decentralized policies for individual agents from a maximin fair-
ness policy π∗ by marginalizing it over the actions of all other agents. If the maximin fairness policy
is deterministic, then the derived decentralized policy profile is also optimal under the regularized
maximin fairness criterion. Although such a guarantee generally does not hold for stochastic poli-
cies, as indicated by the following proposition, the derived decentralized policy is a bounded solution
in the space of decentralized policies under the regularized maximin fairness criterion.

Proposition 2. Let πc
∗

be an optimal centralized policy and πdec
∗

be an optimal decentralized
policy profile under the regularized maximin fairness criterion. Let πdec be an decentralized policy
profile derived from πc

∗
by marginalization. The values of policy πc

∗
and πdec provides bounds for

the value of πdec
∗
, that is,

V (πc
∗
) ≥ V (πdec

∗
) ≥ V (πdec).

The proof of this proposition is quite straightforward. The first inequality holds because any decen-
tralized policy profile can be converted to a centralized policy by product, and the second inequality
holds because πdec

∗
is an optimal decentralized policy profile. When bounds provided by V (πc

∗
)

and V (πdec) are close, we can conclude that πdec is almost an optimal decentralized policy profile
under the regularized maximin fairness criterion.

In this paper, we are primarily concerned with total discounted rewards for an infinite horizon, but
the definition, analysis, and computation of regularized maximin fairness can be adapted to a finite
horizon with an undiscounted sum of rewards. In the next section, we will present approaches to
computing the regularized maximin fairness policy for infinite-horizon multi-agent MDPs.

Computing Regularized Maximin Fairness Policies

In this section, we present two approaches to computing regularized maximin fairness policies for
multi-agent MDPs: a simple linear programming approach and a game theoretic approach. The
former approach is adapted from the linear programming formulation of single-agent MDPs. The
latter approach formulates this fairness problem as a two-player zero-sum game and employs an
iterative search method for finding a Nash equilibrium that contains a regularized maximin fairness
policy. This iterative algorithm allows us to scale up to large problems by exploiting structures in
multi-agent MDPs and value function approximation and employing a relaxed termination condition.

1In some applications, we may choose proper large ε to trade off fairness and the overall performance.
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A linear programming approach

For a multi-agent MDP, given a joint policy and the initial state distribution, frequencies of visiting
state-action pairs are uniquely determined. We use fπ(x,a) to denote the total discounted probabil-
ity, under the policy π and initial state distribution b, that the system occupies state x and chooses
action a. Using this frequency function, we can rewrite the expected total discount rewards as fol-
lows, using fπ(x,a):

ψ(i, π) =
∑
x

∑
a

fπ(x,a)Ri(xi,ai), (3)

where xi ⊆ x and ai ⊆ a.

Since the dynamics of a multi-agent MDPs is Markovian, as it is for the single-agent MDP, we can
adapt the linear programming formulation of single-agent MDPs for finding an optimal centralized
policy for multi-agent MDPs under the regularized maximin fairness criterion as follows:

max
f

min
i∈I

∑
x

∑
a

f(x,a)Ri(xi,ai) +
ε

n

∑
i∈I

∑
x

∑
a

f(x,a)Ri(xi,ai)

s.t.
∑
a

f(x′,a) = b(x′) +
∑
x

∑
a

λT (x′|x,a)f(x,a), ∀x′ ∈ X

f(x,a) ≥ 0, for all a ∈ A and x ∈ X. (4)

Constraints are included to ensure that f(x,a) is well-defined. The first set of constraints require
that the probability of visiting state x′ is equal to the initial probability of state x′ plus the sum of
all probabilities of entering into state s′. We linearize this program by introducing another variable
z, which represents the minimum expected total discounted reward among all agents, as follows:

max
f

z +
ε

n

∑
i∈I

∑
x

∑
a

f(x,a)Ri(xi,ai)

s.t. z ≤
∑
x

∑
a

f(x,a)Ri(xi,ai), ∀i ∈ I∑
a

f(x′,a) = b(x′) +
∑
x

∑
a

λT (x′|x,a)f(x,a), ∀x′ ∈ X

f(x,a) ≥ 0, for all a ∈ A and x ∈ X. (5)

We can employ existing linear programming solvers (e.g., the simplex method) to compute an opti-
mal solution f∗ for problem (5) and derive a policy π∗ from f∗ by normalization:

π(x,a) =
f(x,a)∑

a∈A f(x,a)
. (6)

Using Theorem 6.9.1 in [13], we can easily show that the derived policy π∗ is optimal under the
regularized maximin fairness criterion. This linear programming approach is simple, but is not scal-
able for multi-agent MDPs with large state spaces or large numbers of agents. This is because the
number of constraints of the linear program is |X| + |I|. In the next sections, we present a more
scalable game-theoretic approach for large multi-agent MDPs.

A game-theoretic approach

Since the fairness objective function in (2) can be turned to a maximin function, inspired by von
Neumann’s minimax theorem, we can formulate this optimization problem as a two-player zero-
sum game. Motivated by theoretical results that two-player games tend to have a Nash equilibrium
(NE) with a small support, we develop an iterative algorithm for solving zero-sum games.

Let ΠS and ΠD be the set of stochastic Markovian policies and deterministic Markovian policies,
respectively. As shown in [13], every stochastic policy can be represented by a convex combination
of deterministic policies and every convex combination of deterministic policies corresponds to a
stochastic policy. Specifically, for any stochastic policy πs ∈ Πs, we can represent πs =

∑
i piπ

d
i

using some set of {πd1 , . . . , πdk} ⊂ ΠD with probability distribution p.
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Algorithm 1: An iterative approach to computing the regularized maximin fairness policy

1 Initialize a zero-sum game G(Π̄D, Ī) with small subsets Π̄D
s ⊂ ΠD and Ī ⊂ I ;

2 repeat
3 (p∗, q∗, V ∗)← compute a Nash equilibrium of game G(Π̄D, Ī) ;
4 (πd, Vp)← compute the best-response deterministic policy against q∗ in G(ΠD, I) ;
5 if Vp > V ∗ then Π̄D ← Π̄D ∪ {πd} ;
6 (i, Vq)← compute the best response against p∗ among all agents I;
7 if Vq < V ∗ then Ī ← Ī ∪ {i} ;
8 if G(Π̄D, Ī) changes then expand its payoff matrix with U(πd, i) for new pairs (πd, i) ;
9 until game G(Π̄D, Ī) converges;

10 return the regularized maximin fairness policy πsp∗ = p∗ · Π̄D ;

Let U(π, i) = ψ(i, π) + ε
n

∑
j∈I ψ(j, π). We can construct a two-player zero-sum game G(ΠD, I)

as follows: the maximizing player, who aims to maximize the value of the game, chooses a deter-
ministic policy πd from ΠD; the minimizing player, who aims to minimizing the value of the game,
chooses an agent indexed by i in multi-agent MDPs from I; and the payoff matrix has an entry
U(πd, i) for each pair πd ∈ ΠD and i ∈ I . The following proposition shows that we can compute
the regularized minimax fairness policy by solving G(ΠD, I).
Proposition 3. Let the strategy profile (p∗, q∗) be a NE of the game G(ΠD, I) and the stochastic
policy πsp∗ which is derived from (p∗, q∗) with πsp∗(x,a) =

∑
i p
∗
i π

d
i (x,a), where p∗i is the ith

component of p∗, i.e., the probability of choosing the deterministic policy πdi ∈ ΠD. Then πsp∗ is a
regularized maximin fairness policy,

Proof. According to von Neumann’s minimax theorem, p∗ is also the maximin strategy for the zero-
sum game G(ΠD, I).

min
i
U(πsp∗ , i) = min

i

∑
j

p∗jU(πdj , i) (let πsp∗ =
∑
j

p∗jπ
d
j )

= min
q

∑
j

∑
i

p∗jqiU(πdj , i) (there always exists a pure best response strategy)

= max
p

min
q

∑
j

∑
i

pjqiU(πdj , i) (p∗ is the maximin strategy)

≥ max
p

min
i

∑
j

pjU(πdj , i) (consider i as a pure strategy)

= max
πp

min
i
U(πp, i) (let πp =

∑
j

pjπ
d
j )

By definition, πsp∗ is a regularized maximin fairness policy.

As the game G(ΠD, I) is usually extremely large and computing the payoff matrix of the game
G(ΠD, I) is also non-trivial, it is impossible to directly use linear programming to solve this game.
On the other hand, existing work, such as [7] that analyzes the theoretical properties of the NE of
games drawn from a particular distribution, shows that support sizes of Nash equilibria tend to be
balanced and small, especially for n = 2. Prior work [11] demonstrated that it is beneficial to exploit
these results in finding a NE, especially in 2-player games. Inspired by these results, we develop an
iterative method to compute a fairness policy, as shown in Algorithm 1.

Intuitively, Algorithm 1 works as follows. It starts by computing a NE for a small subgame (Line 3)
and then checks whether this NE is also a NE of the whole game (Line 4-7); if not, it expands the
subgame and repeats this process until a NE is found for the whole game.

Line 1initializes a small sub game of the original game, which can be arbitrary. In our experiments, it
is initialized with a random agent and a policy maximizing this agent’s utility. Line 3 solves the two-
player zero-sum game using linear programming or any other suitable technique. V ∗ is the maximin
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value of this subgame. The best response problem in Line 4 is to find a deterministic policy π that
maximizes the following payoff:

U(π, q∗) =
∑
i∈Ī

q∗i U(π, i) =
∑
i∈Ī

q∗i [ψ(i, π) +
ε

n

∑
j∈I

ψ(j, π)] =
∑
i∈I

(q∗i +
ε

n
)ψ(i, π)

Solving this optimization problem is equivalent to finding the optimal policy of a regular MDP with
a reward function R(x,a) =

∑
i∈I(q

∗
i + ε

n )Ri(xi,ai). We can use the dual linear programming
approach [13] for this MDP, which outputs the visitation frequency function fπd(x,a) represent-
ing the optimal policy. This representation facilitates the computation of the payoff U(πdi , i) using
Equation 3. Vp =

∑
i q
∗
i U(πd, i) is the maximizing player’s utility of its best response against q∗.

Line 5 checks if the best response πd is strictly better than p∗. If this is true, we can infer that p∗ is
not the best response against q∗ in the whole game and πd must not be in Π̄D, which is then added
to Π̄D to expand the subgame.

Line 6 finds the minimizing player’s best response against p∗, which minimizes the payoff of the
maximizing player. Note that there always exists a pure best response strategy. So we formulate this
best response problem as follows:

min
i∈I

U(πp∗ , q) = min
i∈I

∑
j

p∗jU(πdj , i), (7)

where πp∗ is the stochastic policy corresponding to probability distribution p∗. We can solve this
problem by directly searching for the agent i that yields the minimum utility with linear time com-
plexity. Similar to Line 5, Line 7 checks if the minimizing player strictly preferred i to q∗ against p∗
and expands the subgame if needed. This algorithm terminates when the subgame does not change.
Proposition 4. Algorithm 1 converges to a regularized maximin fairness policy.

Proof. The convergence of this algorithm follows immediately because there exists a finite number
of deterministic Markovian policies and agents for a given multi-agent MDP. The algorithm termi-
nates if and only if neither of the If conditions of Line 5 and 7 hold. This situation indicates no
player strictly prefers a strategy out of the support of its current strategy, which implies (p∗, q∗) is
a NE of the whole game G(Π̄D, Ī). Using Proposition 3, we conclude that Algorithm 1 returns a
regularized maximin fairness policy.

Algorithm 1 shares some similarities with the double oracle algorithm proposed in [8] for itera-
tively solving zero-sum games. The double oracle method is motivated by Benders decomposition
technique, while our iterative algorithm exploits properties of Nash equilibrium, which leads to a
more efficient implementation. For example, unlike our algorithm, the double oracle method checks
if the computed best response MDP policy exists in the current sub-game by comparison, which is
time-consuming for MDP policies with a large state space.

Scaling the game-theoretic approach

Both linear programming and the game-theoretic approach suffer scalability issues for large prob-
lems. In multi-agent MDPs, the state space is exponential with the number of state variables and
the action space is exponential with the number of agents. This results in an exponential number of
variables and constraints in linear program formulation. In this section, we will investigate methods
to scale up the game-theoretic approach.

The major bottleneck of the iterative algorithm is the computation of the best response policy (Line
4 in Algorithm 1). As discussed in the previous section, this optimization is equivalent to finding
the optimal policy of a regular MDP with reward function R(x,a) =

∑
i(q
∗
i + ε

n )Ri(xi,ai). Due
to the exponential state-action space, exact algorithms (e.g., linear programming) are impractical in
most cases. Fortunately, this MDP is essentially a factored MDP [4] with a weighted sum of partial
reward functions. We can use existing approximate algorithms [4] to solve factored MDPs, which
exploit both factored structures in the problem and value function approximation. For example, the
approximate linear programming approach for factored MDPs can provide efficient policies with up
to an exponential reduction in computation time.
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#C #R #N Time-LP Time-GT Sol-LP Sol-GT
4 12 7E4 68.22s 11.43s 157.67 154.24
4 20 3E5 22.39m 35.27s 250.59 239.87
5 10 4E5 89.77m 48.56s 104.33 97.48
5 20 6E6 - 4.98m - 189.62
6 18 5E7 - 43.36m - 153.63

Table 1: Performance in sample problems
with different cell sizes and total resoureces

C MPE Utilitarian Fairness
1 180.41 117.44 250.59
2 198.45 184.20 250.59
3 216.49 290.69 250.59
4 234.53 444.08 250.59

Min 108.22 68.32 157.67

Table 2: A comparison of three criteria
in a 4-agent 20-resource problem

A few subtleties are worth noting when approximate linear programming is employed. First, the best
response’s utility Vp should be computed by evaluating the computed approximate policy against q∗,
instead of directly using the value from the approximate value function. Otherwise, the convergence
of Algorithm 1 will not be guaranteed. Similarly, the payoff U(πd, i) should be calculated through
policy evaluation. Second, existing approximate algorithms for factored MDPs usually output a
deterministic policy πd(x) that is not represented by the visitation frequency function fπ(x,a). In
order to facilitate the policy evaluation, we may convert a policy πd(x) to a frequency function
fπd(x,a). Note that fπd(x,a) = 0 for all a 6= πd(x). For other state-action pairs, we can compute
their visitation frequencies by solving the following equation:

fπd(x′, πd(x′)) = b(x′) +
∑
x

T (x′|x,a)fπd(x, πd(x)). (8)

This equation can be approximately but more efficiently solved using an iterative method, similar
to the MDP value iteration. Finally, Algorithm 1 is still guaranteed to converge, but may return a
sub-optimal solution.

We can also speed up Algorithm 1 by relaxing its termination condition, which essentially reduces
the number of iterations. We can use the termination condition Vp−Vq < ε, which turns the iterative
approach into an approximation algorithm.
Proposition 5. The iterative approach using the termination condition Vp − Vq < ε has bounded
error ε.

Proof. Let V opt be the value of the regularized maximin fairness policy and V (π∗) be the value of
the computed policy π∗. By definition, V opt ≥ V (π∗). Following von Neumann’s minimax theorem,
we have Vp ≥ V opt ≥ Vq . Since Vq is the value of the minimizing player’s best response against π∗,
V opt ≥ V (π∗) ≥ Vq ≥ Vp + ε ≥ V opt + ε.

Experiments

One motivated domain for our work is resource allocation in a pulse-line manufacturing plant. In a
pulse-line factory, the manufacturing process of complex products is divided into several stages, each
of which contains a set of tasks to be done in a corresponding work cell. The overall performance
of a pulse line is mainly determined by the worse performance of work cells. Considering dynamics
and uncertainty of the manufacturing environment, we need to dynamically allocate resources to
balance the progress of work cells in order to optimize the throughput of the pulse line.

We evaluate our fairness solution criterion and its computation approaches, linear programming (LP)
and the game-theoretic (GT) approach with approximation, on this resource allocation problem. For
simplicity, we focus on managing one type of resource. We view each work cell in a pulse line as an
agent. Each agent’s state is represented by two variables: task level (i.e., high or low) and the number
of local resources. An agent’s next task level is affected by the current task levels of itself and the
previous agent. An action is defined on a directed link between two agents, representing the transfer
of one-unit resource from one agent to another. There is another action for all agents: “no change”.
We assume only neighboring agents can transfer resources. An agent’s reward is measured by the
number of partially-finished products that will be processed during two decision points, given its
current task level and resources. We use a discount factor λ = 0.95. We use the approximate linear
programming technique presented in [4] for solving factored MDPs generated in the GT approach.
We used Java for our implementation and Gurobi 2.6 [5] for solving linear programming and ran
experiments on a 2.4GHz Intel Core i5 with 8Gb RAM.
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Table 1 shows the performance of linear programming and the game-theoretic approach in different
problems by varying the number of work cells #C and total resources #R. The third column #N
= |X||A| is the state-action space size. We can observe that the game-theoretic approach is signif-
icantly faster than linear programming. This speed improvement is largely due to the integration of
approximate linear programming, which exploits the problem structure and value function approx-
imation. In addition, the game-theoretic approach is scalable well to large problems. With 6 cells
and 18 resources, the size of the state-action space is around 5 · 107. The last two columns show the
minimum expected reward among agents, which determines the performance of the pulse line. The
game-theoretic approach only has a less than 8% loss over the optimal solution computed by LP.

We also compare the regularized maximin fairness criterion against the utilitarian criterion (i.e.,
maximizing the sum of individual utility) and Markov perfect equilibrium (MPE). MPE is an exten-
sion of Nash equilibrium to stochastic games. One obvious MPE in our resource allocation problem
is that no agent transfers its resources to other agents. We evaluated them in different problems,
but the results are qualitatively similar. Table 2 shows the performance of all work cells under the
optimal policy of different criteria in a problem with 4 agents and 20 resources. The fairness pol-
icy balanced the performance of all agents and provided a better solution (i.e., a greater minimum
utility) than other criteria. The perfection of the balance is due to the stochasticity of the computed
policy. Even in terms of the sum of utilities, the fairness policy has only a less than 4% loss over
the optimal policy under the utilitarian criterion. The utilitarian criterion generated a highly skewed
solution with the lowest minimum utility among the three criteria. In addition, we can observe that,
under the fairness criterion, all agents performed better than those under MPE, which suggests that
cooperation is beneficial for all of them in this problem.

Related Work

When using centralized policies, our multi-agent MDPs can be also viewed as multi-objective
MDPs [15]. Recently, Ogryczak et al. [10] defined a compromise solution for multi-objective MDPs
using the Tchebycheff scalarization function. They developed a linear programming approach for
finding such compromise solutions; however, this is computationally impractical for most real-world
problems. In contrast, we develop a more scalable game-theoretic approach for finding fairness so-
lutions by exploiting structure in multi-agent factored MDPs and value function approximation.

The notion of maximin fairness is also widely used in the field of networking, such as bandwidth
sharing, congestion control, routing, load-balancing and network design [1, 9]. In contrast to our
work, maximin fairness in networking is defined without regularization, only addresses one-shot
resource allocation, and does not consider the dynamics and uncertainty of the environment.

Fair division is an active research area in economics, especially social choice theory. It is concerned
with the division of a set of goods among several people, such that each person receives his or
her due share. In the last few years, fair division has attracted the attention of AI researchers [2,
12], who envision the application of fair division in multi-agent systems, especially for multi-agent
resource allocation [3, 6]. Fair division theory focuses on proportional fairness and envy-freeness.
Most existing work in fair division involves a static setting, where all relevant information is known
upfront and is fixed. Only a few approaches deal with dynamics of agent arrival and departures [6,
17]. In contrast to our model and approach, these dynamic approaches to fair division do not address
uncertainty, or other dynamics such as changes of resource availability and users’ resource demands.

Conclusion

In this paper, we defined a fairness solution criterion, called regularized maximin fairness, for multi-
agent decision-making under uncertainty. This solution criterion aims to maximize the worse per-
formance among agents while considering the overall performance of the system. It is finding appli-
cations in various domains, including resource sharing, public service allocation, load balance, and
congestion control. We also developed a simple linear programming approach and a more scalable
game-theoretic approach for computing the optimal policy under this new criterion. This game-
theoretic approach can scale up to large problems by exploiting the problem structure and value
function approximation.
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