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We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly
couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting
fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We
investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of
reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the
Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in
excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum
[Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient
means to characterize squeezing in cryogenic environments.

DOI: 10.1103/PhysRevX.6.031004 Subject Areas: Optics, Quantum Physics

I. INTRODUCTION

The accurate prediction of the fluorescence spectrum of a
single atom under coherent excitation, comprising canoni-
cal phenomena such as the Mollow triplet [1,2], is a
foundational success of quantum optics. As the Mollow
triplet provides a clear signature of coherent light-matter
coupling, in recent years such spectra have been widely
applied to probe quantum coherence in artificial atoms
based on quantum dots [3] and superconducting qubits
[4,5]. Resonance fluorescence is predicted to offer analo-
gous spectroscopic means to identify and characterize
atomic interactions with squeezed light [6–10], which is
known for its potential to enhance measurement precision
in applications ranging from gravitational wave detectors
[11] to biological imaging [12]. However, it remains a
challenge to demonstrate that exciting atomic systems with
squeezed light strongly modifies resonance fluorescence, in
part because of the stringent requirement that nearly all the
modes in the atom’s electromagnetic environment must be
squeezed [13].
Recently, the circuit quantum electrodynamics architec-

ture has emerged as a compelling platform for studying
squeezed light-matter interactions. The low dimensionality
of microwave-frequency electrical circuits naturally limits

the number of modes involved in atomic interactions [14],
such that squeezing a single mode can have a significant
effect. Experiments have thus demonstrated that micro-
wave-frequency squeezed light can modify the temporal
radiative properties of an artificial atom, leading to phase-
dependent radiative decay [15]. However, these experi-
ments lacked a means to probe the resulting fluorescence,
and predictions for the spectrum of resonance fluorescence
in both the weak [6] and strong [7,8] driving regimes
remain unexplored. Here, we employ two superconducting
parametric amplifiers, one to generate squeezing and one
to detect the resulting atomic fluorescence, to perform a
systematic study of the dependence of resonance fluores-
cence on the properties of squeezed vacuum. We observe
subnatural fluorescence linewidths and a strong depend-
ence of the Mollow triplet spectrum on the relative phase
of the driving and squeezed vacuum fields, in excellent
agreement with theoretical predictions. These results
enable experimental access to the many theoretical studies
on atomic spectra in squeezed reservoirs that have followed
[9,10] and demonstrate the utility of resonance fluores-
cence for the characterization of itinerant squeezed states,
an important capability for the development of proposed
schemes to enhance qubit readout with microwave-
frequency squeezed light [16,17].
Our experimental implementation integrates recent

advances in parametric amplifiers and superconducting
artificial atoms [Fig. 1(a)]. We produce itinerant squeezed
microwaves using a Josephson parametric amplifier (JPA)
[18], which can be understood as a frequency-tunable LC
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resonator [Figs. 1(b) and 1(c)]. A dilution refrigerator cools
the experiment to below 30 mK such that the microwave
field incident to the JPA is very nearly in its vacuum state.
Modulation of the JPA’s resonant frequency by a pump tone
at twice that frequency squeezes the vacuum fluctuations in
one quadrature of the resonator field while amplifying
those in the other. Ideally, the JPA’s output field is an ellipse
in phase space described by the parameters N and M, with
quadrature phase variances VðθÞ given by

VðθÞ ¼ 1

2

�
N þM cosð2ðθ − φÞÞ þ 1

2

�
; ð1Þ

where M2 ¼ NðN þ 1Þ. The squeezing axis lies along the
angle θ ¼ φþ π=2 in phase space, at which the minimum
quadrature variance occurs (see Appendix B for

definitions). In practice, N and M are diminished from
their ideal values by a factor η < 1 because of dilution of
the itinerant squeezed state with vacuum noise via micro-
wave component loss or other imperfections.
Our artificial atom consists of a transmon superconduct-

ing qubit coupled to an aluminum microwave waveguide
cavity [19]. As the qubit is nearly resonant with the cavity’s
fundamental mode, their strong coupling produces well-
separated polariton states described by the Jaynes-
Cummings Hamiltonian [Fig. 1(d)] [14,15,20]. When only
two of these states are coupled to squeezed radiation, the
system is expected to exhibit the same dynamics as a single
two-level atom in squeezed vacuum [21]. We drive the
system via two ports (antennas) coupled to the cavity mode,
where one port is coupled more than 4 times as strongly as
the other. Squeezed vacuum from the JPA is directed by a
circulator to the cavity’s strongly coupled port, while the
weakly coupled port allows for application of a coherent
tone to drive polariton Rabi oscillations. Relatively weak
coupling at the latter limits dilution of the squeezing by
vacuum fluctuations in the connecting transmission line,
such that the two inputs sum to a squeezed vacuum
displaced in phase space by the coherent drive. Most of
the resulting fluorescence exits the cavity through the
strongly coupled port. This fluorescence, in combination
with the squeezed radiation reflecting off of the strongly
coupled port, then passes through the circulator towards the
first stage of amplification.
To detect the fluorescence with high precision, we utilize

the recently developed Josephson traveling wave para-
metric amplifier (JTWPA) [22]. Previous polariton Mollow
triplet studies have relied on cross-correlation of two
measurement chains and data processing using a field-
programmable gate array (FPGA) to overcome the added
noise of following semiconducting amplifiers that would
otherwise necessitate prohibitively long averaging times
[20]. Here, the JTWPA acts as a superconducting pre-
amplifier with near-quantum-limited noise performance
that mitigates the effect of this added noise and thus
facilitates direct fluorescence measurements with a micro-
wave spectrum analyzer. Moreover, the high dynamic range
of the JTWPA ensures that squeezed vacuum power
reflecting off of the cavity does not cause compression
of the amplified fluorescence spectra. Figure 1(e) plots
resonance fluorescence spectra measured in ordinary vac-
uum over a 50-MHz span as a function of the coherent drive
amplitude applied at the upper polariton frequency ðω1;þÞ.
For large drive amplitudes, we see a three-Lorentzian
Mollow triplet spectrum, reflecting the polariton Rabi
oscillations.

II. RESONANCE FLUORESCENCE IN
SQUEEZED VACUUM

We next examine the artificial atom’s fluorescence when
the polariton is excited only by squeezed vacuum with no
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FIG. 1. (a) Simplified experimental setup. A qubit-cavity
system is driven by a coherent drive combined with squeezed
vacuum from a JPA. The resulting fluorescence is amplified by a
JTWPA. (b,c) False-colored photomicrograph and schematic of
the JPA. The port (red) at left flux-couples a pump tone to the
JPA, producing quadrature squeezing. (d) Coupling to the qubit
splits the cavity states into polariton states. Driving Rabi
oscillations between j0i and j1;þi splits each state into a doublet.
The three distinct transition frequencies produce the Mollow
triplet spectrum. (e) Mollow triplet spectra in ordinary vacuum,
normalized by the power spectrum with no coherent drive to
account for the JTWPA’s gain ripple.
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coherent drive. In the reflection geometry, nonclassical
correlations must exist in the driving field to observe any
fluorescence peak amidst the broadband noise. To quanti-
tatively analyze the power spectra, we adapt the prediction
of Gardiner [6,23] to the case of a two-port cavity measured
in reflection, leading to the expression

2πSRðωÞ ¼
N
ηc

þ γ

�
M − ð1 − ηcÞN

2N þ 1

�
γy

ω2 þ γ2y

�

−
M þ ð1 − ηcÞN

2N þ 1

�
γx

ω2 þ γ2x

��
: ð2Þ

Here, N andM describe the squeezed state inside the cavity
and γ is the radiative linewidth in ordinary vacuum. As
predicted for a single-port cavity [6,23], the spectrum is the
sum of a broad background representing reflected noise
power, a broad negative Lorentzian with half width
γx ¼ γð1

2
þ N þMÞ, and a narrow positive Lorentzian with

half width γy ¼ γð1
2
þ N −MÞ. The negative Lorentzian

represents absorption of correlated photon pairs at �ω
which are then reemitted at the atomic resonance frequency
to produce the positive Lorentzian. Thus, if all the incident
power is reflected, the areas of the two Lorentzians are
equal. However, in practice, some power escapes through
the second cavity port, which enhances the relative spectral
weight of the negative dip and couples in unsqueezed
vacuum modes that dilute the squeezing inside the cavity
by the factor ηc. Experimentally, we determine the total
linewidth γ ¼ 304 kHz from fits to the Mollow triplet
spectra in ordinary vacuum and the factor ηc ¼ 0.81
through reflection measurements of the polariton resonance
(see Appendix A 1 for details).
We observe reflection spectra in good agreement with

Eq. (2)—a representative spectrum for 1.4 dB of JPA signal
gain (GJPA, see Appendix A 2) and a corresponding fit are
shown in Fig. 2(a). From the fit, we determine γy, indicating
2.4 dB of squeezing below the standard vacuum limit for
these conditions. While the spectra exhibit negative dips as
expected, the small amplitudes and broad spectral range of
these features limit the reliable determination of γx through
this measurement. Notably, all of these spectral features
rapidly diminish when the squeezer pump is detuned by an
amount comparable to γ [Fig. 2(b)]. Although much
smaller than the squeezer bandwidth, the detuning causes
the squeezed state to appear as thermal noise in the frame of
the artificial atom. By removing the symmetry of two-mode
correlations about the atomic transition, the detuning
suppresses the two-photon process by which off-resonant
power can be absorbed and then resonantly emitted,
thereby suppressing the squeezing induced fluorescence.
We next drive the polariton to generate a Mollow triplet

spectrum [Fig. 3(a)]. The sideband splitting is kept small so
that when the JPA is pumped for gain, the squeezing
spectrum can be approximated as constant over the Mollow

triplet spectral range. As the polariton’s coherent drive and
the JPA’s flux pump are generated from the same micro-
wave source, their relative phase can be controllably varied
(Fig. 3 insets). This configuration facilitates observation of
the Mollow triplet’s strong dependence on this relative
phase as predicted by Carmichael, Lane, and Walls [7,8]: at
modest JPA gains, all three peaks can be resolved with the
center peak oscillating between subnatural [Fig. 3(b)] and
supernatural [Fig. 3(c)] half linewidths of γy and γx,
respectively. To further demonstrate the phase dependence,
we first fit the data with an approximate model of three
Lorentzian peaks; example fits appear as black dashed
curves in Fig. 3(a)–3(c). The results of these fits exhibit the
expected out-of-phase oscillations of the center peak and
sideband linewidths as a function of this relative phase
[Fig. 3(d)].
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FIG. 2. (a) Reflected power as a function of frequency for
excitation with only squeezed vacuum (GJPA ¼ 1.4 dB). The
spectrum is normalized by a measurement in ordinary vacuum to
account for the JTWPA’s gain ripple. Zero relative power
corresponds to the background level of the broadband squeezed
power. The red ellipses are phase-space representations of the
squeezed states inside and outside the cavity as inferred from the
fit to Eq. (2). (b) Reflected power measured over a constant
frequency span as the frequency of the JPA pump is varied. The
peak in the spectrum diminishes and broadens as the JPA pump is
detuned from the polariton resonance.
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III. SQUEEZING CHARACTERIZATION

While the approximate Lorentzian model clearly illus-
trates the phase dependence of the spectra, we quantita-
tively characterize the squeezing levels through fits to
analytic expressions for the power spectra having both
Lorentzian and small non-Lorentzian dispersive constitu-
ents [Appendix B, Eq. (B20)]. These expressions extend
the results of Refs. [7,8] to arbitrary relative phases and do
not assume observation through unsqueezed vacuum
modes. We find that these analytical expressions are able
to accurately model the measured power spectra even at
large GJPA when the sidebands are significantly broadened
and the frequency dependence of the squeezer background
becomes prominent.
Figure 4 plotsM-N, which indicates the squeezing level,

as a function of GJPA, comparing results from fits of the
Mollow triplet spectra (red points) to corresponding results
from fits of spectra measured with no Rabi drive (blue
points). Both measurements ofM-N are well described by a
one-parameter fit with overall efficiency η ¼ 0.55 (orange
dashed line), comprising losses due to both ηc and
component loss (see Appendix A 1). For the range of
GJPA measured here, we observe cavity squeezing levels as
high as 3.1 dB below the standard vacuum limit; factoring
out cavity losses corresponding to ηc suggests up to 4.4 dB
of squeezing in the itinerant squeezed state incident to the
cavity. While the results of the measurements with and
without a Rabi drive are in reasonable agreement, the
simplicity, speed, and relative insensitivity to back-
ground features of the measurements with no Rabi drive
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FIG. 3. Reflection spectra for excitation with a coherent drive
(a) in ordinary vacuum, (b) with Φ ¼ π=2 (GJPA ¼ 1.5 dB), and
(c) with Φ ¼ 0 (GJPA ¼ 1.5 dB), where Φþ π=2 is the phase
angle between the coherent drive and the squeezing axis (see
Appendix B for definitions). The spectra are normalized to
account for the JTWPA’s gain ripple such that the background
level in ordinary vacuum is 1; the parabolic backgrounds (orange
dashed line) in (b) and (c) result from the reflected JPA noise
power. (d) The black dashed curves are fit using an approximate
three-Lorentzian model; linewidths of this fit are plotted in (d) as
a function of Φ. Error bars reflect fit uncertainties. The two
dashed curves are out-of-phase sine functions fit to the central-
peak and sideband linewidths inferred from measurements in
squeezed vacuum, while the dashed horizontal lines indicate the
corresponding linewidths inferred from measurements in ordi-
nary vacuum.
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without (blue) a coherent Rabi drive. The error bars reflect fit
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to background effects and experimental drift. The dashed orange
curve is a one-parameter fit to the blue data points yielding
η ¼ 0.55.
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recommend that technique as a resource-efficient detector
of squeezing, which could be implemented in a single-port
cavity to further improve precision.
Both generating and characterizing the squeezing in a

superconducting qubit’s environment are of central
importance to proposed schemes for enhancing qubit
measurement via interferometric readout [16,24]. The
ratiometric methods presented here achieve this charac-
terization through spectral measurements that are consid-
erably simpler to implement than alternative detection
methods that require time-domain qubit control [15].
Moreover, as subnatural fluorescence linewidths are also
expected to occur in two-mode squeezed vacuum [25],
these metrological techniques are similarly relevant to
measurement schemes employing two-mode squeezed
light [17].
More generally, our results validate the canonical pre-

dictions for resonance fluorescence in squeezed vacuum
and exemplify the JTWPA’s broad utility in microwave
quantum optics. These experimental techniques directly
enable investigations of numerous predicted phenomena
including fluorescence in non-Markovian squeezed reser-
voirs [26] and in parameter regimes expected to produce
qualitatively distinct spectra [27]. Finally, while this area of
experimental study has long been led by theoretical
prediction, combining the fluorescence detection tech-
niques demonstrated here with the wide range of atomic
environments realizable in circuit quantum electrodynam-
ics enables the study of squeezing’s impact on resonance
fluorescence in previously unforeseen settings such as
multimode strong coupling [28] and the ultrastrong cou-
pling regime [29].
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APPENDIX A: EXPERIMENTAL METHODS

1. Qubit-cavity implementation

The qubit was composed of an aluminum transmon
circuit fabricated on double-side polished silicon charac-
terized by EC=h ¼ 200 MHz and EJ=h ¼ 33.1 GHz. The
transmon circuit was coupled to a three-dimensional (3D)
aluminum cavity with resonance frequency ωc=2π ¼
7.1051 GHz at rate g=2π ¼ 202 MHz. We calculate the
frequency of the bare qubit to be 7.091 GHz. To bring the
cavity close to resonance with the qubit, we placed extra
silicon chips in the cavity as a low-loss dielectric based on
finite-element simulation. Most of the final detuning of
14 MHz was due to aging of the qubit between exper-
imental cycles.
As mentioned in the main text, coupling to unsqueezed

vacuum modes dilutes the squeezing in the artificial atom’s
environment from that which is produced at the JPA output.
We probe the cavity contribution to this dilution by
measuring the j1;þi polariton resonance in reflection
through the strongly coupled cavity port. Through this
port, we measure external and internal quality factors of
Q1þ;ext ¼ 26; 500 and Q1þ;int ¼ 110; 000, the latter char-
acterizing the total loss rate due to the extra silicon
substrates and the weak coupling of the cavity’s second
port. This coupling to unsqueezed modes limits the
achievable squeezing, corresponding to ηc ¼ Q1þ;int=
ðQ1þ;ext þQ1þ;intÞ ¼ 0.81. Given that we experimentally
observe η ¼ ηlossηc ¼ 0.55, we infer ηloss ¼ 0.68. This
number is in reasonable agreement with expectations for
the combined effect of internal paramp loss and component
loss in the circulator, hybrid, and cables. In future experi-
ments, ηc could be optimized by reducing the coupling of
the weakly coupled port, with ηloss limiting the minimum
achievable linewidth.
Approximating our multilevel qubit-cavity system as a

two-level state requires the use of squeezed light with a
sufficiently narrow bandwidth to avoid exciting the sys-
tem’s higher levels. For a resonant Jaynes-Cummings
Hamiltonian, this imposes the restriction that κJPA < 0.6g
[21]. However, it is important to account for the fact that the
higher levels of the transmon qubit can perturb the
frequencies of the dressed states. We directly characterized
the relevant transition frequencies using two-tone spectros-
copy [30]. When resonantly driving the j0; gi to j1;þi
transition with a coherent tone, we find that the closest
transition is the j1;þi to j2;þi transition at 7.262 GHz,
corresponding to a detuning of -38 MHz. The JPA was
designed to have a single-sided bandwidth smaller than this
detuning.
To confirm that our qubit-cavity system was well

thermalized to the 30-mK base stage of our dilution
refrigerator and that thermal photons were not contami-
nating the vacuum environment, we measured the excited-
state population of the polariton states using a Rabi
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population measurement [31,32]. This measurement indi-
cates the excited state population was less than 1.2%,
corresponding to Nth < 0.01, thus negligibly impacting the
squeezing levels quoted in the main text.

2. Josephson parametric amplifier

The JPA used in this work was designed to provide a
high degree of squeezing despite operating over a narrow
bandwidth. The JPA’s squeezing performance is expected
to inversely correlate with the dimensionless nonlinearity
Λ=κJPA [33], where Λ is the Kerr nonlinearity and κJPA is
the resonator bandwidth. Here, κJPA was intentionally kept
small (κJPA;external=2π ¼ 21 MHz when ωJPA ¼ ω1;þ)
through the use of input coupling capacitors to avoid
exciting higher transitions in the qubit-cavity system. To
produce a weak nonlinearity, Λ was reduced through the
incorporation of geometric inductance, which reduces the
Josephson junction participation ratio (p ¼ LJ=Ltotal), and
through the use of a two-SQUID array. The former reduces
Λ by p3, whereas the latter reducesΛ by 1=N2

SQUID for fixed
LJ, where NSQUID is the number of SQUIDs. With these
modifications, we estimate Λ=κJPA ∼ 5 × 10−5 at the polar-
iton frequency. For comparison, Λ=κJPA ∼ 6 × 10−3 for an
ideal lumped-element JPA consisting of a capacitance
shunted by a single SQUID with a 100-Ohm input
impedance (set by the 180° hybrid launch). In addition,
the amplifier was pumped for gain by modulating the flux
through the two SQUID loops at twice the resonator
frequency. Relative to alternative methods such as double
pumping [15], flux pumping allowed us to minimize the
number of passive components between the JPA and the
artificial atom. All of the JPA circuitry, including the flux-
pump input and the hybrid, was shielded by an aluminum
box and cryoperm at the base stage of the dilution
refrigerator.
For each JPA pump amplitude, the JPA power gain

(GJPA) was characterized using a vector network analyzer.
These GJPA values refer to phase-preserving gain of the
amplifier, as the gain was characterized for a signal that was
slightly detuned such that the measurement bandwidth was
small compared to the detuning. For an ideal squeezed
state, GJPA is related to the power gain in the amplified and
squeezed quadratures by the expression

2

�
N �M þ 1

2

�
¼ ð

ffiffiffiffiffiffiffiffiffiffi
GJPA

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJPA − 1

p
Þ2: ðA1Þ

3. Data acquisition and analysis

Figure 5 displays a full schematic of the experimental
setup. The polariton drive and the JPA flux pump were
phase locked by generating them from the same micro-
wave source and doubling the flux-pump frequency. This

allowed the relative phase between the two tones to be
controllably varied by adjusting the bias voltages on an IQ
mixer. All spectra were directly acquired using a micro-
wave spectrum analyzer. As our analysis focuses on the
incoherent portion of the fluorescence spectrum, we kept
the spectrum analyzer resolution bandwidth much smaller
than any of the relevant spectral linewidths such that the
coherent portion of the spectrum could be omitted by
dropping a small number of points around the polariton
frequency. In addition, each spectrum was normalized by
an equivalent measurement with both the JPA pump and
coherent drive off in order to eliminate background trends
originating from the gain ripple of the JTWPA [22] and
following amplifiers. We note that, as we are working in
the photon blockade regime, we expect the fluorescence
intensity in the Mollow triplet measurements (not includ-
ing the background squeezed noise power) to be
approximately ℏωγ ¼ −140 dBm. For all measurements,
the JTWPA was pumped to provide roughly 20 dB of
power gain.
After normalizing the data, we determined the squeez-

ing levels using the analytic fit expressions outlined in the
main text. Here, we describe additional details of the
fitting procedures. For Fig. 2(a), the squeezing level was
inferred by fitting the data to Eq. (2) from the main text,
including an overall scaling and offset. In addition, the fit
includes a parabolic background term to account for the
frequency dependence of the squeezed noise power
produced by the JPA. Although small in Fig. 2(a), this
background becomes important when analyzing such
spectra at large gains as is done to determine the squeezing
levels presented in Fig. 4. To determine the total linewidth
(γ) used to constrain the inputs to Eq. (2) in the main text,
we fit the Mollow triplet spectra in ordinary vacuum using
the methodology described in Appendix B to account for
dispersive spectral features and the weakly coupled cavity
port. In Fig. 3, to illustrate the phase dependence of the
Mollow triplet, the spectra were approximated as the sum
of three Lorentzians and a parabolic background.
Approximating the peaks neglects the aforementioned
dispersive features. Therefore, to more rigorously char-
acterize the squeezing level through this measurement, we
perform nonlinear regression using the analytic expres-
sions in Appendix B. In Fig. 4, we focus on characterizing
M-N by measuring spectra at four relative phases between
the coherent drive and squeezed vacuum fields near the
phase that minimizes the center peak linewidth. For each
gain point, the four spectra were fit with joint parameters;
only background and scaling terms were allowed to vary
among the four traces to compensate for small experi-
mental drift. As in Fig. 2(a), for these fits, γ was
independently determined by fitting the Mollow triplet
spectrum in ordinary vacuum.
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APPENDIX B: NUMERICAL MODELING OF
FLUORESCENCE SPECTRA

In the papers of Carmichael, Lane, and Walls [7,8], an
expression for the resonance fluorescence spectrum of a
two-level atom driven by broadband squeezed light is given

or the limiting cases 2Φ ¼ 0, π, whereΦ is the relative phase
between the Rabi drive and the squeezing angle. Note that
here, as depicted in Fig. 6, an angular factor of 2 has been
introduced compared to Refs. [7,8] to simplify the phase-
space picture. In order to analyze the experimental data for
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FIG. 5. Experimental setup diagram. The JPA pump tone, which enters the cryostat at (1), is generated through a frequency doubler
followed by a voltage variable attenuator that allows programmatic control of the JPA gain. The gain can be measured by the VNA at (2).
Power from the same generator is split off before doubling to create the phase-locked coherent drive at (3). The relative phase of this
drive is controlled through dc voltages on the IQ mixer. Each time the phase is stepped, the two switches just before the spectrum
analyzer are thrown such that the analyzer samples the drive power, which is fed back on to ensure power flatness versus phase. These
switches are toggled back before measurement of fluorescence spectra on the spectrum analyzer.
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an arbitrary phase Φ, we generalize these analytical
expressions. In Appendix B 1, we define the notation used
and give the optical Bloch equations. In Appendix B 2, we
obtain the resonance fluorescence spectrum using the Bloch
equations and the quantum regression theorem. Finally, in
Appendix B 3, we discuss the calculation of the reflection
spectrum and the broadband squeezing approximation.

1. Definitions and steady-state solutions of the optical
Bloch equations

When an atom is strongly coupled to a cavity with dipole
coupling g, the eigenstates of the system are the dressed
states called polaritons formed by a superposition of the
bare atom and cavity states: jþ;ni¼½jg;niþje;n−1i�=ffiffiffi
2

p
;j−;ni¼½jg;ni− je;n−1i�= ffiffiffi

2
p

, with vacuum Rabi split-
ting 2g

ffiffiffi
n

p
. It has been shown that for a strong g, each

vacuum-Rabi resonance behaves as a two-level system
[34]. As described in the main text, the system is driven
at the upper polariton jþ; 1i ¼ ½jg; 1i þ je; 0i�= ffiffiffi

2
p

fre-
quency. As long as no other dressed states are excited,
the ground state jg; 0i and jþ; 1i behave as an effective
two-level system. The next-closest transition frequency
corresponds to the jþ; 1i to jþ; 2i transition, with
ωþ;2 − ωþ;1 ¼ ð2 − ffiffiffi

2
p Þg ∼ 0.6g. As a result, the two-level

approximation holds for κJPA, Ω ≪ 0.6g, where κJPA is the
linewidth of the JPA acting as the source of squeezing and
Ω the coherent drive amplitude.
Working in this limit, we only consider the two-level

system fjg; 0i; jþ; 1ig, driven in resonance in a broadband
squeezed vacuum environment, κJPA ≫ Ω, γ with γ the
linewidth of the two-level system. With this approximation
and working in the rotating frame of the drive, the master
equation describing the two-port system is [35]

_ρ¼ iΩ
2
½σþ þ σ−;ρ� þ γintD½σ−�ρþ γextð ~Nþ 1ÞD½σ−�ρ

þ γext ~ND½σþ�ρ− γext ~MS½σþ�ρ− γext ~M
�S½σ−�ρ; ðB1Þ

where ~N and ~M are the second-order moments of the
incoming squeezed field, and D½A�ρ ¼ AρA† − 1

2
ðA†Aρþ

ρA†AÞ and S½A�ρ ¼ AρA − 1
2
ðA2ρþ ρA2Þ are super-

operators.
In order to simplify the notation, we use the

quantum efficiency ηc ¼ γext=ðγint þ γextÞ to rewrite the
master equation as a two-level system coupled to a single
port

_ρ ¼ iΩ
2
½σþ þ σ−; ρ� þ γðN þ 1ÞD½σ−�ρ

þ γND½σþ�ρ − γMS½σþ�ρ − γM�S½σ−�ρ; ðB2Þ

with effective parameters N ¼ ηc ~N and M ¼ ηc ~M such
that γext ~N ¼ γN.
The optical Bloch equations in the presence of squeezing

for the effective single-port system can be obtained from
Eq. (B2), leading to

h _σxi ¼ −γþhσxi þ γMhσyi;
h _σyi ¼ γMhσxi − γ−hσyi − Ωhσzi;
h _σzi ¼ Ωhσyi − γNhσzi − γ; ðB3Þ

where σx;y;z are the standard Pauli matrices, γ� ¼
γðN � jMj cos 2Φþ 1

2
Þ, γM ¼ γjMj sin 2Φ, and γN ¼

γð2N þ 1Þ. The steady-state solutions of these
equations are

X1

X2

c

X1

X2

V( )

V( + /2)

(a) (b) (c)

X1

X2

1/2

FIG. 6. States of light can be fully described by quasiprobability distributions (here, Wigner functions) in phase space, where X1 and
X2 are the two quadratures of the light field. (a) The vacuum state is described by a circular Gaussian distribution of width 1=2 centered
at the origin. The red disk indicates the area in which the distribution is greater than its half-maximum value. (b) The distribution for a
squeezed vacuum state has an increased width along the amplification axis at angle φ and a decreased width along the squeezing axis at
angle φþ π=2. A slice of this distribution taken through the origin at angle θ has a variance given by Eq. (1) of the main text, with the
amplified variance given by 1=2ðN þM þ 1=2Þ and the squeezed variance given by 1=2ðN −M þ 1=2Þ. Note an angular factor of 2 has
been introduced in Eq. (1) in the main text compared to Refs. [7,8] to simplify the phase-space picture. (c) Similarly, Φ, as used in Fig. 3
of the main text, indicates the angle of the amplification axis of a displaced squeezed state relative to the displacement angle, φc.
Experimentally, φc is set by the phase of the coherent Rabi drive.
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hσxiss ¼
ΩγγM

γNγ
2
NM þ Ω2γþ

;

hσyiss ¼
Ωγγþ

γNγ
2
NM þ Ω2γþ

;

hσziss ¼ −
γγ2NM

γNγ
2
NM þ Ω2γþ

; ðB4Þ

with the rate γ2NM ¼ γ2½ðN þ 1
2
Þ2 −M2�.

2. Resonance fluorescence of a driven two-level
system in a squeezed environment

The resonance fluorescence spectrum is obtained from the
Fourier transform of a time-domain correlation function [35]

SðωÞ ¼ 1

π
Re

�Z
∞

0

dthσþðtÞσ−ð0Þisseiωt
�
: ðB5Þ

Noting that the correlation function of interest can be
expressed as [8]

hσþðtÞσ−ð0Þiss ¼ ½hσxðtÞσxð0Þiss þ hσyðtÞσyð0Þiss
þ ihσyðtÞσxð0Þiss − ihσxðtÞσyð0Þiss�;

ðB6Þ

we use Eq. (B3) and the quantum regression formula [35] to
obtain the linear system of equations,

∂t

0
BB@

hσxðtÞσx;yð0Þiss
hσyðtÞσx;yð0Þiss
hσzðtÞσx;yð0Þiss

1
CCA ¼ B

0
BB@

hσxðtÞσx;yð0Þiss
hσyðtÞσx;yð0Þiss
hσzðtÞσx;yð0Þiss

1
CCA − γ

0
BB@

0

0

hσx;yiss

1
CCA; ðB7Þ

with the matrix

B ¼

0
B@

−γþ γM 0

γM −γ− −Ω
0 Ω −γN

1
CA: ðB8Þ

The results of Refs. [7,8] are obtained for γM ¼ 0. Here, we generalize these results.
In order to solve this set of linear equations for arbitrary time t, we make use of the Laplace transform:

LffðtÞg ¼ R∞
0 e−stfðtÞdt. Performing this transformation on Eq. (B7), we obtain

L

8>><
>>:

0
BB@

hσxðtÞσx;yð0Þiss
hσyðtÞσx;yð0Þiss
hσzðtÞσx;yð0Þiss

1
CCA
9>>=
>>;

¼ ðs1 − BÞ−1

0
BB@

hσxσx;yiss
hσyσx;yiss

hσzσx;yiss − γ
s hσx;yiss

1
CCA; ðB9Þ

with the relations

ðs1 − BÞ−1 ¼ 1

DðsÞ

0
BB@

ðsþ γ−Þðsþ γNÞ þΩ2 γMðsþ γNÞ −γMΩ
γMðsþ γNÞ ðsþ γNÞðsþ γþÞ −ðsþ γþÞΩ

γMΩ ðsþ γþÞΩ ðsþ γ−Þðsþ γþÞ − γ2M

1
CCA; ðB10Þ

DðsÞ ¼ ðsþ γNÞ½ðsþ γ−Þðsþ γþÞ − γ2M� þ ðsþ γþÞΩ2:

ðB11Þ
In order to obtain the time-domain solution, an inverse

Laplace transform must be applied, which requires the
roots λ0;1;2 of the cubic polynomial DðsÞ. In the limiting
cases 2Φ ¼ f0; πg, the rate γM is zero, and the roots of
DðsÞ are easily obtained as [7,8]

λ0 ¼ −γþ;

λ1;2 ¼ −
γ− þ γN

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ− − γNÞ2 − 4Ω2

q
: ðB12Þ

However, for an arbitrary phase Φ, finding analytical
solutions requires the cubic-roots formula. As these ana-
lytical expressions are rather cumbersome, but easily
found, they are not reproduced here. With these expres-
sions, DðsÞ can be expressed as

DðsÞ ¼ ðs − λ0Þðs − λ1Þðs − λ2Þ: ðB13Þ

Using this factorization, the inverse Laplace transform
reads
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fnðtÞ ¼ L−1
�

sn

DðsÞ
�

¼ C0λ
n
0e

λ0t þ C1λ
n
1e

λ1t þ C2λ
n
2e

λ2t −
δn;−1
λ0λ1λ2

; ðB14Þ

with n ∈ f−1; 0; 1; 2g and where we have defined the
coefficients

C0 ¼
1

ðλ0 − λ1Þðλ0 − λ2Þ
;

C1 ¼
1

ðλ1 − λ0Þðλ1 − λ2Þ
;

C2 ¼
1

ðλ2 − λ0Þðλ2 − λ1Þ
: ðB15Þ

Hence, time-domain solutions are

0
BB@

hσxðtÞσx;yð0Þiss
hσyðtÞσx;yð0Þiss
hσzðtÞσx;yð0Þiss

1
CCA ¼ W

0
BB@

hσxσx;yiss
hσyσx;yiss
hσzσx;yiss

1
CCA − γhσx;yissv; ðB16Þ

with the matrix W ¼ L−1fðs1 − BÞ−1g and vector v given by

W ¼

0
BB@

f2 þ ðγ− þ γNÞf1 þ ðγ−γN þΩ2Þf0 γMf1 þ γNγMf0 −γMΩf0
γMf1 þ γNγMf0 f2 þ ðγN þ γþÞf1 þ γNγþf0 −Ωf1 −Ωγþf0

γMΩf0 Ωf1 þ Ωγþf0 f2 þ γNf1 þ γ2NMf0

1
CCA; ðB17Þ

v ¼ L−1
�
1

s
ðs1 − BÞ−1

�0B@
0

0

1

1
CA ¼

0
BB@

−γMΩf−1
−Ωf0 −Ωγþf−1

f1 þ γNf0 þ γ2NMf−1

1
CCA: ðB18Þ

Using properties of the Pauli matrices and Eq. (B16), we can write the correlation function of Eq. (B6) as

hσþðtÞσ−ð0Þiss ¼ K0eλ0t þ K1eλ1t þ K2eλ2t þ K; ðB19Þ

with

K ¼ −
ΩγðγM þ iγþÞ

λ0λ1λ2
hσ−iss;

Kj ¼ Cj

�
½2λ2j þ γNð3λj þ γNÞ þ Ω2�ð1þ hσzissÞ þΩ½γM þ iðγþ þ λjÞ�

�
1þ γ

λj

�
hσ−iss

�
: ðB20Þ

Finally, putting all of these results together, we obtain from
Eq. (B5) the resonance fluorescence spectrum

SðωÞ ¼ 1

π

X2
j¼0

�−½KR
j λ

R
j þ KI

jðωþ λIjÞ�
ðλRj Þ2 þ ðωþ λIjÞ2

�
þ KδðωÞ;

ðB21Þ
where we have defined real and imaginary parts such that
λj ¼ λRj þ iλIj and Kj ¼ KR

j þ iKI
j. Neglecting the last

term, we find that the resonance fluorescence spectrum
is the sum of three Lorentzians, each multiplied by a
function containing corrections that are linear in frequency.
Figure 7 displays experimental spectra exhibiting such
dispersive features. As we show below [see Eq. (B26)], in

the large-Rabi-drive limit, the spectrum is purely Lorent-
zian (ImfKig ∼ 0).

3. Reflection spectrum

The results of the previous section assume that the above
spectrum is directly measured by looking at the fluores-
cence of the qubit, i.e., ignoring the squeezed bath.
However, in the experiment described here, the measure-
ment is performed in reflection, implying that the signal
fluorescence is combined with radiation from the squeezer
reflected by the cavity. Following Ref. [6], with uðtÞ ¼ 0

for t < 0 and uðtÞ ¼ 1 for t > 0, the full reflection
spectrum from the strongly coupled port (coupling rate
γext) is related to the time-domain correlation function,
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hb†outðtÞboutð0Þi ¼ ~NδðtÞ þ γextuðtÞh½σþðtÞ; ~Nσ−ð0Þ − ~Mσþð0Þ�i þ γextuð−tÞh½ ~NσþðtÞ − ~Mσ−ðtÞ; σ−ð0Þ�i
þ γexthσþðtÞσ−ð0Þi; ðB22Þ

where ~M, ~N characterize the field in the transmission line. Hence, the reflection spectrum is given by

SRðωÞ ¼
1

π

Z
∞

0

hb†outðtÞboutð0Þidt ¼
~N
2π

þ γextSðωÞ þ
γext
π

Re

�Z
∞

0

dteiωth½σþðtÞ; ~Nσ−ð0Þ − ~Mσþð0Þ�i
�
; ðB23Þ

where SðωÞ is the resonance fluorescence spectrum defined in Eq. (B21). Following the standard conventions, the output-
field operator bout has units of root frequency, and thus the reflection spectrum SRðωÞ is unitless while SðωÞ has units of
inverse frequency. Equation (B23) assumes M to be real and a single decay channel γ. In the more general case
where M ¼ jMje2iΦ, and rewriting the equation in terms of the total damping rate γ ¼ γint þ γext and effective-field
moments M and N,

SRðωÞ ¼
N

2πηc
þ γðN þ ηcÞSðωÞ þ

γ

π
Re

�Z
∞

0

dteiωt½jMje2iΦhσþð0ÞσþðtÞi − jMje2iΦhσþðtÞσþð0Þi − Nhσ−ð0ÞσþðtÞi�
�
:

ðB24Þ

It is important to recall that the above expression is
obtained by using the broadband squeezing approxima-
tion. Since the two-level atom probes the field only in a
small frequency range, this approximation is valid for
the resonance fluorescence spectrum. The squeezer
background is, however, frequency dependent. We take
this into account in analyzing the experimental data by
replacing the first term of Eq. (B24) by the frequency-
dependent spectrum NðωÞ for the output field of a
parametric amplifier [36]. With this modification, the
analytical expression is found to be in excellent agree-
ment with cascaded master-equation simulations
(not shown).
In order to relate Eq. (B24) to the results of the main

text, we now examine useful limiting cases. First, we

consider the reflection spectrum in the absence of the
coherent Rabi drive (Ω ¼ 0). In this case, we obtain
[Eq. (2) of the main text]

SRðωÞ ¼
N

2πηc
þ 1

2π

γ

2N þ 1

×

�
γyðM − ð1 − ηcÞNÞ

ω2 þ γ2y
−
γxðM þ ð1 − ηcÞNÞ

ω2 þ γ2x

�
;

ðB25Þ

where γx;y ¼ γðN �M þ 1=2Þ. From this equation, we see
that for a lossless single-sided cavity ηc ¼ 1, a fluorescence
peak is observed in the reflection spectrum only if M ≠ 0.
The spectrum is a sum of narrow and broad linewidth
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FIG. 7. Mollow triplet spectra measured at GJPA ¼ 6.6 dB. The spectra are measured near Φ ¼ π=2, the relative phase between the
squeezed-vacuum and coherent-drive fields that minimizes the center-peak linewidth. Even though the Rabi frequency (1.2 MHz as in
Fig. 3) is small compared to the measured frequency range, the sidebands are broadened such that they are no longer apparent.
The dashed black line represents the best fit to the power spectra, taking into account both the fluorescence spectrum and the frequency-
dependent squeezer background. The spectra are simultaneously fit with γ fixed by measurements of the Mollow triplet in ordinary
vacuum and also constrained by the relative phase difference between each measurement. From these measurements, we inferM − N ¼
0.24 for these conditions.
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Lorentzians. However, for ηc ≠ 1, some of the incident
intensity is lost, which enhances the relative spectral weight
of the negative dip. Finally, in the large Rabi drive limit
Ω ≫ γ, γþ, γ−, γN , we obtain

SRðωÞ ¼
N

2πηc
þ ηc
2π

γγþ
ω2 þ γþ2

þ 1

8π

γðγN þ γ−Þ
ðω −ΩÞ2 þ ðγN=2þ γ−=2Þ2

þ 1

8π

γðγN þ γ−Þ
ðωþ ΩÞ2 þ ðγN=2þ γ−=2Þ2

: ðB26Þ

This equation indicates that for a strong Rabi drive, the
reflection spectrum is a sum of three Lorentzians centered
at 0, �Ω and of full widths 2γþ ¼ γð2N þ 2M cos 2Φþ 1Þ
and γN þ γ− ¼ γð3N −M cos 2Φþ 3=2Þ. This explains the
cosine dependence with opposite phases of the linewidths
as plotted in Fig. 3 of the main text.
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