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We study the shift of rotational levels of a diatomic polar molecule due to its van der Waals interaction with a
gently curved dielectric surface at temperature T , and submicron separations. The molecule is assumed to be in its
electronic and vibrational ground state, and the rotational degrees are described by a rigid rotor model. We show
that under these conditions retardation effects and surface dispersion can be neglected. The level shifts are found
to be independent of T , and given by the quantum state averaged classical electrostatic interaction of the dipole
with its image on the surface. We use a derivative expansion for the static Green’s function to express the shifts
in terms of surface curvature. We argue that the curvature induced line splitting is experimentally observable,
and not obscured by natural linewidths and thermal broadening.

DOI: 10.1103/PhysRevA.94.022509

I. INTRODUCTION

The van der Waals (vdW) interaction of neutral particles
like atoms and molecules with macroscopic surfaces underlies
many surface induced processes in physics, chemistry, and
biology [1]. Also appearing in the guises of London and
Casimir-Polder forces [2,3] these interactions originate from
quantum dipole fluctuations of the particle that induce corre-
lated fluctuations on the surface. While generally attractive,
resonant coupling to surface excitations can lead to repulsive
forces [4]. These fluctuation induced forces have typically been
measured for macroscopic bodies, while the vdW interaction
of a free atom or molecule is less studied.

Vacuum fluctuations of the electromagnetic field not only
give rise to Casimir forces between bodies, but also have
observable effects on isolated particles; notably they modify
energy levels of an atom, an effect known as the Lamb shift.
When a quantum particle is brought near a surface, the vdW
interaction perturbs its energy levels. It has been shown that
surface curvature leads to small corrections to the interaction
of the particle with the surface [5,6]. Hence, one can expect
also small corrections to the level shifts due to curvature. Here
we shall demonstrate and explicitly quantify these shifts for
the rotational levels of polar molecules.

For a flat metallic surface, the attractive vdW interaction
potential was measured with high precision for a sodium atom
in 1992 by looking at the shifts of spectral lines using laser
spectroscopy in the micrometer distance range [7]. More re-
cently, for a sapphire surface supporting polariton excitations,
a repulsive vdW potential acting on excited cesium atoms was
observed in the 100-nm distance range, by using selective
reflection spectroscopy that allows for the observation of
short-lived states [4]. Thermal fluctuations within a hot surface
can excite surface-polariton modes which can cause a strong

temperature dependence of the vdW interaction. Indeed, an up
to 50% increase was measured spectroscopically for a cesium
atom at short distances of 100 nm away from a sapphire surface
in the 500–1000-K temperature range [8].

Unlike atoms, polar molecules have rotational and vi-
brational states that can be excited by radiation, or via
the interaction with fluctuations in macroscopic bodies. The
corresponding transition energies are often small compared
to thermal energies. The resulting rotational and vibrational
heating of cold diatomic molecules placed near a hot surface
can impose severe lifetime limits to the trapping of these
particles which is relevant to the development of “molecular
chips” using structured surfaces [9]. These and other specially
designed nano- or microstructured surfaces provide another
tool to control vdW interactions. Hence, it is important to
understand the influence of nontrivial surface geometries on
the internal dynamics of polar molecules which is governed
by their spectral transitions. Recently, the nonequilibrium vdW
force on a polar molecule near a metallic surface was computed
and shown to saturate for high temperatures, making it distinct
from the interaction for atoms [10].

The paper is organized as follows: In the next section
we review the general theory for the finite temperature
Casimir-Polder interaction between a quantum particle in an
excited state and a dielectric surface. In Sec. III we compute
shifts of the rotational levels of a diatomic molecule in terms
of the static Green’s function, and summarize characteristic
parameters for experimentally relevant molecules and surface
materials. A derivative expansion for the Green’s function
of curved surfaces is presented in Sec. IV, and this result
is then used in Sec. V to estimate the curvature corrections
to the energy levels of a simple rigid rotor model for a
diatomic polar molecule. Finally, in the last section the
magnitude and curvature dependence of the transition lines
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molecule

FIG. 1. Parametrization of the profile of a gently curved dielectric
surface near an atom or molecule.

of the modified rotational spectrum is estimated, and their
experimental observability is discussed.

II. CASIMIR-POLDER INTERACTION:
GENERAL FORMULAS

We consider a quantum particle in a nondegenerate state
|a〉, placed at a point r having (minimum) distance d from a
dielectric surface S at temperature T (see Fig. 1). We assume
the separation d to be much larger than the particle’s size,
such that the particle can be modeled as a dipole. The material
constituting the surface is assumed to be homogeneous and
isotropic, described by (complex) dynamic permittivity ε(ω).
The Casimir-Polder (CP) interaction of the particle with the
surface engenders a shift �Fa in the free energy of state |a〉.
As shown in Refs. [11,12], �Fa can be conveniently expressed
as a sum of two terms,

�Fa = �F nr
a + �F r

a . (1)

The first term, �F nr
a , is a nonresonant contribution having

a form similar to the familiar expression of the CP energy
shift for a particle in equilibrium with a surface at temperature
T [13]:

�F nr
a = −kBT

∞ ′∑
n=0

α
(a)
ij (i ξn) G

(S)
ij (r,r; i ξn), (2)

while the second term represents a resonant out-of-equilibrium
contribution:

�F r
a =

∑
b �=a

n(ωab,T )μab
i μba

j Re
[
G

(S)
ij (r,r; |ωba|)

]
. (3)

In these equations ωab = (Eb − Ea)/� are the particle’s tran-
sition frequencies, ξn = 2πnkBT /� are the (imaginary) Mat-
subara frequencies, μba

i = 〈b|μ̂i |a〉 are the matrix elements of
the Cartesian components (labeled by the latin index i) of the
dipole moment operator μ̂, n(ω,T ) = [exp(�ω/kBT ) − 1]−1

is the Bose-Einstein distribution function, the prime symbol in
the sum over n in Eq. (2) indicates that the n = 0 term is taken
with weight 1/2, and α

(a)
ij (i ξ ) is the polarizability (relative to

the state |a〉) of the particle:

α
(a)
ij (i ξn) = 2

�

∑
b �=a

μab
i μba

j

ωab

ξ 2
n + ω2

ab

. (4)

Finally, G
(S)
ij (r,r′,ω) denotes the (Fourier transform of the)

surface contribution to the electromagnetic Green’s function,
which is constructed as follows. Recall that the Green’s

function Gij (r,r′,ω) provides the electric field E(r) at point r
sourced by an oscillating dipole p(ω) = p0e

−iωt placed at the
point r′, as

Ei(r) = Gij (r,r′,ω) pj (ω). (5)

The surface Green’s function G
(S)
ij (r,r′,ω) is defined by the

following decomposition of Gij (r,r′,ω):

Gij (r,r′,ω) = G
(0)
ij (r,r′,ω) + G

(S)
ij (r,r′,ω), (6)

where G
(0)
ij (r,r′,ω) is the free-space Green’s function. Thus

G
(S)
ij (r,r′,ω) can be physically interpreted as describing the

field generated by the induced dipoles on the surface S. We
note that in the coincidence limit r = r′, the surface Green’s
function G

(S)
ij (r,r′,ω) attains a finite limit [unlike from the

free space contribution G
(0)
ij (r,r′,ω) which diverges in this

limit], which ensures that the CP energy shift in Eq. (1) is well
defined. It is also important to bear in mind that the frequency
dependence of the surface Green’s function G

(S)
ij (r,r′,ω) is

twofold: besides an explicit frequency dependence, due to
retardation effects, there is the implicit frequency dependence
due to dispersion in the response function ε(ω) of the surface.

III. SHIFTS OF ROTATIONAL LEVELS
OF DIATOMIC MOLECULES

We shall use Eqs. (1)–(3) to estimate the shifts �Fa of the
rotational levels of a polar diatomic molecule with a closed
electronic shell (i.e., in a 1�+ state), in its ground electronic
and vibrational state (for a review of rotational spectroscopy
of diatomic molecules see Ref. [14]).

Some characteristic parameters (the angular frequency ωr

and the wavelength λr corresponding to transitions from the
ground state to the first excited rotational state, and the dipole
moment μ) of typical polar molecules are listed in Table I.
The computation of the shifts of rotational levels of diatomic
molecules is indeed very simple, thanks to the simplifying
circumstance that in the evaluating Eqs. (1)–(3) both sources
of frequency dependence in the dynamic Green’s function
G

(S)
ij (r,r′,ω), i.e., retardation effects and surface dispersion,

can be neglected.
Let us consider retardation effects first. We will see later

on that measurable shifts of the rotational levels occur only
for submicron separations between the molecule and the
surface. For such small separations, we can safely neglect
retardation effects. This is so because for a polar diatomic
molecule the largest matrix elements μba

i of the dipole moment
operator are relative to transitions between adjacent rotational

TABLE I. Characteristic parameters of some polar diatomic
molecules with closed electron shells.

ωr (109 rad/s) λr (mm) μ (10−30 C m)

LiH 2790 0.7 19.6
LiRb 83 22.7 13.5
LiCs 73 25.8 21.0
NaRb 25.5 73.8 11.7
NaCs 22.2 84.8 19.5
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levels [14], which have characteristic frequencies of order
ωr . This implies at once that both the resonant and the
nonresonant contributions to the shift �Fa are dominated by
frequencies of order ωr or smaller. This is obvious for the
resonant contribution �F r

a , because from Eq. (3) we see that
the frequency argument of G(S)(r,r; |ωba|) is indeed of order
ωr . As to the nonresonant contribution, we see from Eq. (2) that
�F nr

a receives its dominant contribution from the Matsubara
modes ξn such that the molecule’s polarizability α

(a)
ij (i ξn) is

significant. In view of Eq. (4) it is clear that this is the case
only if ξn is of order ωr or smaller. It follows from these
considerations that retardation effects become important only
for separations of the order of λr = 2πc/ωr or larger. As seen
from Table I, the wavelength of transitions between rotational
states of diatomic molecules is of the order of millimeters,
showing that for experimentally relevant distances retardation
effect are indeed negligible.

Dispersion effects within the surface can also be ignored
as the angular motion of diatomic molecules is much slower
than relaxation processes characterizing typical dielectric ma-
terials. Common dielectrics used in experiments are sapphire,
CaF2, BaF2, and SiC. Among these, sapphire is frequently
employed in atom-surface interaction experiments, while SiC
is normally used in experiments on near-field heat transfer.
The common feature of these materials is that their optical
properties is well described by a single-resonance model over
a wide range frequencies extending to visible range. In this
model, the complex permittivity ε(ω) is described by

ε(ω) = εinf + (εst − εinf) ω2
T

ω2
T − ω2 − i
ω

, (7)

where εst and εinf represent the static and optical dielectric
constants respectively, 
 is a phenomenological relaxation
frequency, and ωT is the transverse optical (TO) phonon
frequency. Values of these parameters for the materials
considered are listed in Table II [12].

According to Eq. (7) the frequency-dependent permittivity
ε(ω) is well approximated by the static dielectric constant εst

for frequencies ω � ωT . The shifts �Fa of the rotational levels
of a molecule arise mostly from transitions between adjacent
rotational states, with characteristic frequencies of the order
of ωr . By comparing Table I with Table II, we see that for
all considered molecules and dielectrics ωr � ωT , and thus
the static permittivity εst of the surface can be safely used to
estimate the shifts �Fa .

Summarizing the above considerations, for experimentally
relevant molecule-surface separations and for realistic di-
electric materials, the CP energy shifts of rotational levels
of diatomic molecules can be estimated by substituting into

TABLE II. Parameters for complex permittivity of sapphire,
CaF2, BaF2, and SiC.

εst εinf ωT (1012 rad/s) 
(1012 rad/s)

BaF2 7.16 2.12 33.9 0.4
CaF2 6.82 2.02 48.7 0.8
Sapphire 9.32 3.03 97.6 0.5
SiC 10 6.7 149.4 0.14

Eqs. (1)–(3) the static Green’ function Ḡ
(S)
ij (r,r; εst) for the full

dynamical Green’s function G
(S)
ij (r,r; i ξn) or G

(S)
ij (r,r; i |ωba|).

In what follows, we shall denote by Ḡ
(S)
ij (d,εst) ≡ Ḡ

(S)
ij (r,r,εst)

the static Green’s function of the surface S evaluated at
the position r occupied by the molecule. After substituting
G

(S)
ij (r,r; i ξn) by Ḡ

(S)
ij (d,εst), the expression for �Fa

nr simpli-
fies considerably. Summing over the Matsubara frequencies,
�F nr

a is obtained as

�F nr
a = −1

2
Ḡ

(S)
ij (d,εst)

∑
b �=a

μab
i μba

j coth

(
�ωab

2kBT

)
. (8)

Similarly for �F r
a , using the identity

n(ω,T ) = 1

2

[
coth

(
�ωab

2kBT

)
− 1

]
, (9)

and noting that Re[Ḡ(S)
ij (d,εst)] = Ḡ

(S)
ij (d,εst) since εst is real,

we find

�F r
a = 1

2
Ḡ

(S)
ij (d,εst)

∑
b �=a

μab
i μba

j

[
coth

(
�ωab

2kBT

)
− 1

]
. (10)

Adding Eqs. (8) and (10) now leads to the compact form [see
also Eq. (10) of Ref. [10]]

�Fa = −1

2
Ḡ

(S)
ij (d,εst)

∑
b �=a

μab
i μba

j

= −1

2
Ḡ

(S)
ij (d,εst) 〈a|μi μj |a〉. (11)

The final result is very simple: it shows that the energy shift of
the rotational state |a〉 of a diatomic molecule is independent
of the surface temperature, and coincides with the classical
electrostatic interaction energy of the dipole with its image on
the surface [15], averaged over the quantum state |a〉 of the
molecule. The temperature independence of the nonretarded
Casimir-Polder potential for a molecule placed near a dielectric
surface has been noted before in the literature, as a result of
cancellations between nonresonant potential components and
those due to evanescent waves [10,16].

IV. DERIVATIVE EXPANSION OF THE
STATIC GREEN’s FUNCTION

The static Green’s function Ḡ
(S)
ij (d,εst) for a dielectric

surface S, even if simpler than the dynamic Green’s func-
tion G

(S)
ij (r,r′,ω), still cannot be determined for surfaces of

arbitrary shapes. Analytical expressions for Ḡ
(S)
ij (r,r′,ε) are

known only for simple geometries of the surface such as planes
and spheres [17], while for general shapes the problem has
to be attacked numerically. Here we show that a derivative
expansion can be used to obtain the asymptotic small-distance
form of Ḡ

(S)
ij (d,εst) for any gently curved dielectric surface. The

derivative expansion has been recently applied successfully
to estimate curvature corrections to the Casimir interaction
between two gently curved surfaces [18–20], and to the CP
interaction of a nanoparticle with a curved surface [5,6]. Here,
we apply it to the CP interaction of a quantum particle with a
surface.
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Let us denote by �1 (see Fig. 1) a plane through the
molecule which is orthogonal to the distance vector (which
we take to be the ẑ axis) connecting the molecule to the point
P of the surface S closest to the molecule. We assume that the
surface S is described by a smooth profile z = H (x), where
x = (x,y) is the vector spanning �1, with the origin at the
molecule’s position. In what follows latin indices i,j,k . . .

shall label all coordinates (x,y,z), while greek indices α,β, . . .

shall refer to coordinates (x,y) on the plane �1.
In the present context, the key idea behind the gradient

expansion is simple to explain: As dipole-dipole interaction
falls off rapidly with distance, it is reasonable to expect
that for small separations d the Green’s function Ḡ

(S)
ij (d) is

mainly determined by the shape of the surface S in a small
neighborhood of the point P closest to the molecule. This
physically plausible idea suggests that for small separations the
Green’s function can be expanded as a series in an increasing
number of derivatives of the height profile, evaluated at the
molecule’s position. Up to second order, and assuming that
the surface is homogeneous and isotropic, the most general
expression that is invariant under rotations of the (x,y)
coordinates, and that involves at most two derivatives of H

[but no first derivatives, since ∇H (0) = 0], has the form

Ḡ
(S)
αβ (d) = Ḡ

(plane)
αβ (d) + 1

32πε0 d2

{
β

(2)
2 ∇2Hδαβ

+ β
(2)
3

(
∂α∂βH − 1

2
δαβ∇2H

)}
, (12)

Ḡ(S)
zz (d) = Ḡ(plane)

zz (d) + β
(2)
1

32πε0 d2
∇2H, (13)

Ḡ(S)
αz (d) = Ḡ(S)

zα (d) = 0. (14)

Here, ∇ is the gradient in the plane �1, ε0 is the vacuum
permittivity, Ḡ

(plane)
ij (d) is the well-known Green’s function

for a planar dielectric surface, while the coefficients β(2)
q are

dimensionless functions of the permittivity ε. The geometric
significance of the expansion in Eqs. (12) and (13) becomes
more transparent when x and y are chosen to be coincident
with the principal directions of S at P , in which case the
local expansion of H takes the simple form H (x,y) = d +
x2/(2R1) + y2/(2R2) + . . . , where R1 and R2 are the radii of
curvature at P . To be definite, we assume that d/R1 � d/R2.
In this coordinate system, the derivative expansion of Ḡ

(S)
ij (d,ε)

reads

Ḡ(S)
zz (d) = Ḡ(plane)

zz (d) + β
(2)
1

32πε0 d3

(
d

R1
+ d

R2

)
, (15)

Ḡ
(S)
xx/yy(d) = Ḡ

(plane)
xx/yy (d) + 1

32πε0 d3

[
β

(2)
2

(
d

R1
+ d

R2

)

±β
(2)
3

2

(
d

R1
− d

R2

)]
. (16)

The procedure to determine the coefficients β(2)
q is explained in

detail in Refs. [5,6], and based on the following: The derivative
expansion in Eqs. (12) and (13) is valid for surfaces of small
slope, i.e., for d/R � 1 where R is a characteristic radius
of curvature. However, for height profiles of small amplitude
H (x,y) = d + h(x,y) such that h(x,y)/d � 1, the Green’s

function Ḡ
(S)
ij (d) can also be Taylor expanded in powers of

h(x,y). It is sufficient to consider the latter expansion to first
order in h(x,y),

Ḡ
(S)
ij (d) = Ḡ

(plane)
ij (d) +

∫
d2k

(2π2)
Ḡ

(2)∗
ij (k,d)h̃(k), (17)

where k is the in-plane wave vector and h̃(k) is the Fourier
transform of the h(x,y). After the kernel Ḡ

(2)
ij (k,d) is com-

puted, the coefficients β(2)
q are determined by matching, in

the common domain of validity, the derivative expansion of
Ḡ

(S)
ij (d) in Eqs. (13) and (12) with the Taylor expansion in

Eq. (17). By following these steps one arrives at the following
small-distance expansion:

Ḡ
(S)
xx/yy(d) = 1

32πε0 d3

ε − 1

ε + 1

{
1 − 5 + 3ε

4(ε + 1)

(
d

R1
+ d

R2

)
∓ 1 + 3ε

8(ε + 1)

(
d

R1
− d

R2

)
+ O

[(
d

R

)2]}
, (18)

Ḡ(S)
zz (d) = 1

16πε0 d3

ε − 1

ε + 1

{
1 − 3 + ε

4(ε + 1)

(
d

R1
+ d

R2

)
+ O

[(
d

R

)2]}
. (19)

V. A SIMPLE MODEL: THE RIGID ROTOR

In this section we use Eq. (11), together with Eqs. (18)
and (19), to estimate the shifts �Fa of the rotational levels of
a diatomic polar molecule, near a gently curved surface. To
estimate the matrix elements of the dipole-moment operator
in the rotational states of the molecule in its ground electronic
state, we shall model the diatomic polar molecule as a simple
rigid rotor [14]. In what follows, we shall neglect the hyperfine
structure of the rotational spectrum. For molecules in a 1�+
state the hyperfine structure is mainly due to the electric
quadrupole interaction between the nuclear quadrupole mo-
ment and the electric-field gradient at the nucleus [14]. The
nuclear quadrupole hyperfine splitting in 1�+ states typically

ranges from tens of kHz to one or two hundred kHz. We
shall see later on that the level splitting determined by the
CP interaction can be as large as several MHz, which justifies
neglecting the hyperfine structure.

According to the rigid rotor model, far from the surface, the
Hamiltonian operator Ĥ describing the molecule is

Ĥ = L̂2

2 I
, (20)

where L̂ is the rotational angular momentum, and I is the
moment of inertia. The energy eigenstates |l,m〉 are labeled
by the quantum numbers l = 0,1,2, . . . and m, with −l �
m � l corresponding, respectively, to the rotational angular
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momentum and to its z component L̂z (we choose as the z axis
the line connecting the molecule to the point P of the surface
S closest to the molecule; see Fig. 1), such that

L̂2|l,m〉 = �
2 l (l + 1)|l,m〉, (21)

L̂z|l,m〉 = � m|l,m〉. (22)

Then,

Ĥ |l,m〉 = El|l,m〉, (23)

where

El = � ωr

2
l (l + 1), (24)

and we set ωr = �/I . The level of energy El consists of 2l +
1 degenerate states, distinguished by the azimuthal quantum
number m.

When the molecule is brought near the surface, the CP
interaction perturbs its energy levels. To analyze the effect
of the interaction with the surface, we consider that for a
gently curved surface such that d/R � 1, curvature effects
are expected to cause a small correction to the perturbation
determined by a planar surface. This suggests to split the
computation of the energy shifts �Fa in two steps: in the
first step, we study the planar problem, and then we consider
how the energy levels for a planar surface are further modified
by curvature effects. As we shall see below, this procedure has
the advantage that it allows us to use the theory of CP energy
shifts for nondegenerate quantum states, presented in Sec. II.

A. A planar surface

For a planar surface (and more generally for any axisym-
metric surface) the Green’s function Ḡ

(S)
ij (d) is invariant under

rotations around the ẑ axis, and therefore the azimuthal label m
remains a good quantum number in the presence of the surface.
The CP interaction does not mix states with different values
of m, and therefore we can straightforwardly use the results in
Sec. II to compute the shifts �Fl,m. Using the relations

〈l,m|μ̂2
x |l,m〉 = 〈l,m|μ̂2

y |l,m〉

= μ2 l(l + 1) + m2 − 1

4l(l + 1) − 3
, (25)

and

〈l,m|μ̂2
z |l,m〉 = μ2 2l(l + 1) − 2m2 − 1

4l(l + 1) − 3
, (26)

we find

�F
(plane)
l,m = −E 3l(l + 1) − m2 − 2

4l(l + 1) − 3
, (27)

where

E = μ2

32πε0 d3

εst − 1

εst + 1
. (28)

According to Eq. (27), the CP interaction of the molecule
with a plane splits the (2l + 1)-fold degenerate level El into
l distinct levels of energies E

(plane)
l,|m| = El + �F

(plane)
l,m , labeled

by the absolute value of the azymuthal quantum number |m|.

free space plane curved surf.

l=0

l=1

l=2

m=0

m=± 1

m=0

m=± 1
m=± 2

2

1
(+)

1
(−)

2

1

r

FIG. 2. Qualitative structure of the energy levels of a diatomic
polar molecule in free space (left), near a planar surface (middle),
and near a curved surface with different radii of curvature (right).

Of these levels, only m = 0 is nondegenerate, while those with
m �= 0 form degenerate doublets (see Fig. 2).

B. Curvature corrections

Having determined the structure of the energy levels E
(plane)
l,|m| of

a diatomic molecule near a planar surface, we now study how
the levels E

(plane)
l,|m| are affected by the surface curvature. As we

pointed out above, we consider that for d/R � 1 curvature
corrections are small, compared to the CP energy shift for a
planar surface. This suggests that we take the (possibly) doubly
degenerate levels E

(plane)
l,|m| determined in the previous step as

our unperturbed states, and compute curvature corrections to
their energies using again Eq. (11). The following remark is
crucial: to the order d/R that we consider, the Green’s function
Ḡ

(S)
ij (d) in Eqs. (18) and (19) is no longer invariant under

rotations around the z axis. However Ḡ
(S)
ij (d) is still invariant

under reflections of the x and y coordinates. In order to take
advantage of this reflection symmetry, within each doublet
E

(plane)
l,|m| , m �= 0 we replace the two states |l, ± m〉 by the new
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BIMONTE, EMIG, JAFFE, AND KARDAR PHYSICAL REVIEW A 94, 022509 (2016)

states |l,|m|,s〉, with s = ±1, given by

|l,|m|,±〉 = 1√
2

(|l,m〉 ± (−1)|m| |l, − m〉),

m = 1, . . . ,l, (29)

which possess definite parity under independent reflections of
the coordinates x and y. For the m = 0 singlets, we just set

|l,0,+〉 ≡ |l,0〉. (30)

Since

R̂x |l,m〉 = |l, − m〉, (31)

R̂y |l,m〉 = (−1)m|l, − m〉, (32)

it is easy to verify that the states |l,|m|,±〉 indeed have definite
parity under reflections of x and y:

R̂x |l,|m|,±〉 = ± (−1)|m| |l,|m|,±〉, m = 0, . . . ,l, (33)

R̂y |l,|m|,±〉 = ±|l,|m|,±〉, m = 0, . . . ,l. (34)

Since to order d/R the Green’s function is reflection invariant,
the CP interaction does not mix rotational states of different
parity, and therefore in the basis |l,|m|,s〉 we are allowed to
use the nondegenerate theory underlying Eq. (11) to compute

the leading curvature correction to the energy levels E
(plane)
l,|m| .

The matrix elements of μ̂2
i in the new basis are

〈l,|m|,s|μ̂2
x |l,|m|,s〉 = 〈l,|m|,s|μ̂2

y |l,|m|,s〉

= μ2 l(l + 1) + m2 − 1

4l(l + 1) − 3
, |m| �= 1, (35)

〈l,1, + |μ̂2
x |l,1,+〉 = 〈l,1, − |μ̂2

y |l,1,−〉

= 3 μ2 l(l + 1)

8l(l + 1) − 6
, (36)

〈l,1, − |μ̂2
x |l,1,−〉 = 〈l,1, + |μ̂2

y |l,1,+〉

= μ2 l(l + 1)

8l(l + 1) − 6
, (37)

and

〈l,|m|,s|μ̂2
z |l,|m|,s〉 = μ2 2l(l + 1) − 2m2 − 1

4l(l + 1) − 3
. (38)

Using the above relations, the leading curvature correction �F
(curv)
l,|m|,s to the rotational energy levels is found to be

�F
(curv)
l,|m|,s = E

(
d

R1
+ d

R2

)
l(l + 1)(11 + 5εst) + m2(εst − 1) − 4(2 + εst)

4(εst + 1)[4l(l + 1) − 3]
, |m| �= 1, (39)

�F
(curv)
l,1,± = E

{(
d

R1
+ d

R2

)
l(l + 1)(11 + 5εst) − 3(3 + εst)

4(εst + 1)[4l(l + 1) − 3]
±

(
d

R1
− d

R2

)
l(l + 1)(1 + 3εst)

16(εst + 1)[4l(l + 1) − 3]

}
. (40)

We see that for |m| > 1 surface curvature just determines
an extra overall shift in the energy of the doublets E

(plane)
l,|m| ,

without lifting their twofold degeneracy. By contrast, the
|m| = 1 doublets split into two distinct levels, whose spacing
is proportional to (d/R1 − d/R2) (see Fig. 2). The splitting
of the |m| = 1 rotational levels constitutes the characteristic
signature of curvature effects on the CP interaction of the
molecule with the surface.

VI. STRUCTURE OF THE ROTATIONAL SPECTRUM

In a polar molecule, rotational transitions between adjacent
rotational levels (�l = ±1) are electric-dipole allowed [14].
Let us consider as an example the emission lines corresponding
to transitions from l = 1 states to the rotational ground
state l = 0, i.e., l = 1 → 0. When the molecule is far from
the surface, these transitions correspond to a single spectral
line of frequency νr = ωr/(2π ) (see Table I). As the molecule
approaches the surface, this line splits into several components.
The precise number of lines depends on whether the surface
is planar or curved. Let us consider first the case of a planar
surface. According to Eq. (27), the free-space line 1 → 0 splits
in two components corresponding to the transitions

ν1: |1, ± 1〉 → |0,0〉, and ν2: |1,0〉 → |0,0〉.

Suppose that we observe the molecule from a point along
the z axis, i.e., in a direction perpendicular to the planar surface.
Since the x and y components of the dipole-moment operator
μ̂x and μ̂y do not couple two m = 0 states, it follows that in
the dipole approximation the line ν2 cannot be seen from this
observation direction, and only the line ν1 is detected. When
the observation line is instead in the plane of the surface,
both lines are visible, and is it easy to verify that the line ν1

is polarized in the plane of the surface, while the line ν2 is
polarized along the normal direction to the surface. According
to Eq. (27), the difference �ν12 = ν1 − ν2 between the two
lines is

�ν12 = ν1 − ν2 = E
5 h

, (41)

with E as defined in Eq. (28).
For a curved surface, Eqs. (39) and (40) indicate that the

line ν1 of the planar surface splits into two components ν
(±)
1

corresponding to the transitions (see Fig. 2)

ν
(+)
1 : |1,1,+〉 → |0,0,+〉,

ν
(−)
1 : |1,1,−〉 → |0,0,+〉. (42)

According to Eq. (40) the difference �ν± between the
frequencies ν

(+)
1 and ν

(−)
1 of these two lines is proportional

022509-6



SPECTROSCOPIC PROBE OF THE VAN DER WAALS . . . PHYSICAL REVIEW A 94, 022509 (2016)

to the difference in radii of curvature, as

�ν± = ν
(+)
1 − ν

(−)
1 = E

h

(
d

R1
− d

R2

)
1

20

3 εst + 1

εst + 1
. (43)

In addition to the two lines ν
(±)
1 , we of course have a third line,

corresponding to the line ν2 of the planar surface:

ν2: |1,0,+〉 → |0,0,+〉,
Thus, the single l = 1 → 0 line of free-space splits (in general)
into three lines, when the molecule is brought near a curved
surface.

Suppose again that we observe the molecule from a point
along the z axis. Reasoning as before, we see that in the
dipole approximation the line ν2 cannot be detected from this
observation direction, and only the lines ν

(+)
1 and ν

(−)
1 are

visible. Using Eqs. (31) and (32) it is easy to verify that ν
(+)
1

and ν
(−)
1 are linearly polarized along the x and the y axes,

respectively.
Similarly, it is possible to verify that when the observation

direction is along the x axis (y axis), the visible lines are
ν

(−)
1 (ν(+)

1 ) and ν2; the former linearly polarized in the y

direction (x direction), and the latter along the z axis. Up to
small curvature corrections, the frequency differences �ν

(±)
12 =

ν
(±)
1 − ν2 coincide with the frequency difference �ν12 for

the planar surface in Eq. (41). By comparing Eq. (43) with
Eq. (41) we thus see that the curvature-induced splitting �ν±,
is suppressed by factor of order d/R, compared to the splittings
�ν

(±)
12 . From our perspective, though, the most interesting

quantity to observe is �ν± since it represents a pure curvature
effect. Using Eq. (28), we estimate the magnitude of �ν± for a
polar molecule with an electric dipole moment μ = 2 × 10−29

C m (see Table I), as

�ν± � 3 μ2

640 π ε0 h d3

(
d

R1
− d

R2

)

= 100 kHz

(
100 nm

d

)3 (
d

R1
− d

R2

)
. (44)

Note that our derivation only assumes that d/|R1| � 1
and d/|R2| � 1. However it does not assume that |R1 −
R2|/|R1| � 1. In particular, in the case of a cylindrical
surface R1 → ∞ and |R1 − R2|/|R1| = 1. To determine if
the frequency difference �ν± is potentially measurable, it is
important to compare �ν± with the typical width of rotational
spectral lines. Their natural width �ν can be estimated by the
simple formula [14]

�ν = ν3|μ|2
3 ε0 � c3

. (45)

For the molecules listed in Table I, the natural linewidth
ranges from a maximum of 4 × 10−4 Hz for LiH to a
minimum of 1.2 × 10−10 Hz for NaRb, and is thus many
orders of magnitude smaller than �ν±, for reasonable values
of the separation d, and of d/R. Next we consider the
thermal Doppler broadening, which for a gas of molecules
in equilibrium at temperature T is given by [14]

�ν = 2ν

c

√
2NAkBT ln2

M
= 7.15 × 10−7 (T/Mr)

1/2 ν, (46)

where NA is Avogadro’s number, M and Mr are the mass
and the relative molecular mass of the molecule, respectively.
Using the above formula, we estimate that at room temperature
T = 300 K, the Doppler broadening ranges from a maximum
of 2 MHz for LiH, to a minimum of 5 kHz for NaRb and NaCs.
So, while for the light molecule LiH the large thermal Doppler
broadening prevents observation of the frequency shift �ν±
even at cryogenic temperatures, in the case of the heavier
molecules listed in Table I the thermal Doppler broadening is
favorably smaller than �ν± even at room temperature.
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