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Abstract 

Transport properties of semiconductors are keys to the performance of many solid-state devices 

(transistors, data storage, thermoelectric cooling and power generation devices, etc.).  

Understanding of the transport details can lead to material designs with better performances. In 

recent years simulation tools based on first-principles calculations have been greatly improved, being 

able to obtain the fundamental ground state properties of materials (such as band structure and 

phonon dispersion) accurately. Accordingly, methods have been developed to calculate the transport 

properties based on an ab initio approach. In this review we focus on the thermal, electrical, and 

thermoelectric transport properties of semiconductors, which represent the basic transport 

characteristics of the two degrees of freedom in solids – electronic and lattice degrees of freedom. 

Starting from the coupled electron-phonon Boltzmann transport equations, we illustrate different 

scattering mechanisms that change the transport features and review the first-principles approaches 

that solve the transport equations. We then present the first-principles results on the thermal and 

electrical transport properties of semiconductors. The discussions are grouped based on different 

scattering mechanisms including phonon-phonon scattering, phonon scattering by equilibrium 

electrons, carrier scattering by equilibrium phonons, carrier scattering by polar optical phonons, 

scatterings due to impurities, alloying and doping, and phonon drag effect. We show how the 

first-principles methods allow one to investigate the transport properties with unprecedented details 

and also offer new insights to the electron and phonon transport. Current status of the simulation is 

mentioned when appropriate and some of the future directions are also discussed. 
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1. Introduction 

The transport property of solids is an old but enlightening problem. Many insightful ideas emerge 

from such studies, such as the superconductivity, localization, etc., which in some sense reflect 

the modern development of the condensed matter physics. It is intriguing also because most of 

our daily “machines” rely on such transport, either of charge, mass, or of energy. Examples 

include transistors (mobility), phase change medium for data storage (thermal conductivity), 

thermoelectric cooling and power generation devices (electrons and phonons), and so on. Better 

materials are constantly sought after for improving the overall performance of the working 

device. Improvement of existing and discovery of new materials thus require a clear 

understanding of the underlying physics of the transport properties. Theoretical models combined 

with experiments have offered great insights into the different mechanisms that affect the 

transport properties. However some details have been ignored in order for the theories to be 

tractable. For example, the simple kinetic formula, 
1

v
3

c   , describes the electrical 

conductivity   in terms of three averaged parameters of the energy carriers: carrier energy ( c ), 

velocity ( v ) and mean free path ( ). In reality, however, these parameters can vary significantly 

among different carriers and even the same type of carriers. Such information has been difficult 

to obtain within traditional methods because experiments normally probe transport properties that 

are averaged over all the carriers, while the theoretical models are intractable without certain 

approximations thus lack accuracy and in many cases, predictive power. The development of the 

first-principles computational techniques in recent decades enables one to study materials’ 

physical properties accurately without adjustable parameters[1]. The merit of the first-principles 

methods lies in that they are easily justifiable and useful for a wide range of problems. Since the 

invention[2,3], they have been widely used for studying and also predicting the physical 

properties of many materials, such as equilibrium crystal structure, electronic band structure, 

phonon dispersion, etc[4]. We will briefly describe how the first-principles calculations can be 

utilized for studying the transport properties. We do not discuss how the first-principles methods 

work but refer readers to some of the books that already exist and the references therein[4,5]. 

We want to be cautious that “first-principles” is sometimes a misleading name due to the fact that 



the underlying theory (which should be referred to as density functional theory, aka DFT) also 

involves approximations to the quantum mechanical governing equation - Schrodinger equation 

(including relativistic corrections derived from Dirac equation). For example, only the ground 

state properties are calculated and the strongly-correlated systems cannot be well described 

without the introduction of some tuning parameters[4]. In this light, there are also other quantum 

mechanics-based algorithms which are more accurate for such problems but are also much more 

time-consuming[6]. In the following the main results are obtained using DFT, which describes 

many properties of solids very well and currently is sufficient for the transport phenomenon 

study in commonly-used semiconductors. However, we will also point out that some other 

formalisms (to more accurately describe the many-body effect of electrons) will be desired along 

the path of developing first-principles tools for more complex materials. 

In this review we focus on the studies of semiconductors, and in particular, their thermal, 

electrical and thermoelectric properties. Semiconductors, though only a portion of the family of 

solids, play important roles in various applications such as microelectronics, photovoltaics, 

optoelectronics and thermoelectrics. Although extensive studies into semiconductors from 

theoretical models to experiments have revealed many physical mechanisms for describing their 

transport behaviors, so far it is hard to predict a material’s transport property (for example, 

mobility) without performing experiments. A computational technique that has the predictive 

power will thus greatly facilitate the optimization of existing materials and the search of better 

ones[7]. The first-principles methods have been traditionally applied to study the electronic 

structure and phonon dispersion, both of which are eigenstates of the system. In a particle picture, 

each eigenstate corresponds to one or several particles (electrons or phonons) that carry certain 

energy with some velocity. To describe the transport property such as mobility and thermal 

conductivity, one must know how these particles evolve under the influence of other states. This 

process is formalized by the famous Boltzmann transport equation (BTE) and will be the 

cornerstone of our following discussions. One of the major challenges of solving BTE is to know 

how the particles are scattered by each other (or by the defect and boundary). The scattering 

process is determined by the coupling between different eigenstates. The calculation of such 

coupling strengths has been computationally prohibitive and only becomes accessible recently 



thanks to a series of developments for an efficient extraction of the interaction strengths between 

different eigenstates (electrons and phonons). In the next section, different types of interaction 

along with their calculation will be discussed under the BTE formalism. 

Among all the transport properties, the thermoelectric transport presents a particular challenge, 

firstly because it is affected by three transport phenomena as shown by the figure of merit 

2 /zT S T   which characterizes material’s thermoelectric efficiency, where , , ,S T   are 

the electrical conductivity, Seebeck coefficient, thermal conductivity and absolute temperature, 

respectively. For semiconductors, the electrical conduction and Seebeck effect are mostly related 

to the electronic properties while the thermal conduction must consider the phonons. Therefore 

for the thermoelectric transport as a whole, one must consider both of electrons and phonons, as 

well as the coupling between them. Secondly, the thermoelectric materials are often complex due 

to the alloying and doping procedure involved, which always poses a challenge for 

first-principles simulations. In this review, we briefly summarize the recent efforts towards a 

first-principles calculation of the thermal, electrical and thermoelectric properties of 

semiconductors, particularly group IV and III-V semiconductors. In section 2 we first introduce 

the formalism of the coupled electron-phonon Boltzmann transport equations, which serve as the 

starting point of our discussions. Under the BTE formalism, basic concepts are explained and the 

corresponding computational techniques are discussed. The following two sections are devoted to 

the first-principles results on the transport property: section 3 deals with the thermal transport and 

section 4 examines the electrical transport. In the final section we briefly discuss the possible 

future directions that help to improve the first-principles simulations. We anticipate that the 

development of the computational tools will further extend the calculations to more complex 

materials. 

 

2. Coupled Electron-phonon Boltzmann Equations 

The electron and phonon properties of a solid are normally described by the band structure and 

phonon dispersion, respectively. For convenience we would like to think of these eigenstates as 

particles without considering their phase. These particles carry certain charge or energy dictated 



by quantum mechanics. This semiclassical picture is not always valid but can be justified if the 

variation of the external field occurs in a larger scale than the wave packet associated with this 

particle and the field is relatively weak compared to the periodically varying atomic potential[8]. 

A particle in an eigenstate with finite group velocity implies that it keeps moving without being 

deflected under the dynamics of the system, since the Hamiltonian acting on the eigenstate gives 

itself. In other words, the eigenstate has an infinite lifetime. Practically, this cannot be achieved 

because there are always perturbations to the system, which causes finite transition probabilities 

between different states. In a particle picture, the perturbations lead to the scattering of the 

particle by other particles or impurities, which give rise to the “resistance” for the charge or 

energy flow. To describe such process, one must have a way to treat the great amount of particles 

that are moving inside the material with the interactions that lead to their scatterings. 

Rigorously, a (6N+1)-dimensional phase space (3N for positions, 3N for momenta and one for 

time) is used to describe the dynamics of N particles. Such description is adopted by the 

molecular dynamics technique, and has been used to calculate phonon properties as well as the 

lattice heat conduction[9,10]. However, the molecular dynamics method lacks the predictive 

power due to the empirical interatomic potentials involved, while a first-principles calculation 

with a large system of N particles is formidable. Alternatively, one could use a single-particle 

distribution function to represent all the particles in the system. This function has only 7 

independent variables (3 for positions, 3 for momenta and one for time) and describes how many 

particles stay in the state characterized by given position and momentum at each time. The 

crucial step towards describing the transport of the system is to rewrite the dynamics of N 

particles into a governing equation for the distribution function. This is achieved by the 

introduction of the BTEs. For the electron and phonon systems in the steady state, the BTEs read 

as[8,11–13] 
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where  is the reduced Planck constant, F  is the external force exerting on this particle 

(electrostatic field in our case, which affects electrons but not phonons) and the velocity vectors 



v  for electrons ( ( )v k ) and for phonons ( ( )v q ) are specified with wave vectors k (for 

electrons) and q (for phonons), as well as band number   and branch number  . f and n

represent the distribution functions for electrons and phonons, respectively, with equilibrium state 

described by Fermi-Dirac and Bose-Einstein statistics: 
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The first equation of Eq. (1) is for electrons and will be denoted as electron-BTE while the 

second equation is for phonons and will be called phonon-BTE. Here we skip the derivation of 

Eq. (1), which can be found in many textbooks[8,11–13]. We instead want to pay more attention 

to the meanings of each term and their explicit forms. Briefly speaking, the BTEs describe the 

balance of the change of the particle number in various available states. There are two major 

causes for these changes. One is coming from the external field exerting on the particles, with 

examples including electric field for electrons (second term of electron-BTE) and temperature 

gradients for both electrons (included in first term of electron-BTE) and phonons (first term of 

phonon-BTE). The other originates from the scatterings between the particles. For convenience, 

the terms of the former type in the Boltzmann equation are often called drift terms while those of 

the latter type are referred to as collision terms[8]. 

In equilibrium, the distribution functions for electrons and phonons are described by Fermi-Dirac 

and Bose-Einstein statistics, respectively. As the macroscopic fields start to drive the system, 

electrons and phonons will move away from the equilibrium, until they are balanced by the 

collision terms, which rebuild their distribution functions. The degree of the non-equilibrium is 

thus determined by the strength of the scatterings. For both electrons and phonons, there are 

various mechanisms that can make transitions from one state to another, such as phonon-phonon 

interaction, electron-phonon interaction and electron-electron interaction. Besides, due to the 

impurities involved (for example, by alloying or doping procedure), we can also have impurity 

scatterings for both electrons and phonons. In general, the collision terms can be described as 
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where each term represents the scattering probabilities into and out of certain state, added up 

together according to the Matthiessen’s rule[8]. We neglect the electron-electron scattering 

because within most temperature ranges it is hardly as effective as other mechanisms in 

scattering the electrons[11,14]. However we will mention the necessity of considering the 

electron-electron interaction into the transport calculations as a step beyond current status. 

The central problem to the BTEs is to solve the distribution functions. If we know the 

distribution function, the transport properties can be easily calculated by summing up all the 

states with corresponding energies and velocities. For this purpose, we need to explicitly describe 

the collision terms. These scatterings depend on the available states of electrons and phonons, 

and typically involve the distribution functions in a non-linear way. At moderate external fields, 

however, the distribution functions only have small deviations from the equilibrium distribution. 

Consequently, one can expand the distribution function near the equilibrium condition in the 

BTEs and take the lowest order terms, which results in the linearized BTEs[11]: 
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where T  is the temperature, e  is the electron charge (negative), E  is the electronic energy 

level and   is the electrochemical potential (incorporating electrostatic potential   and 

chemical potential  ). Note that we have replaced the distribution functions in the 

left-hand-side of Eq. (1) with the equilibrium values. By doing so, the first term of electron-BTE 

is split into two terms including temperature gradient and chemical potential gradient, 

respectively, the latter of which, when combined with the electrostatic force term in electron-BTE, 

leads to the second term in the electron-BTE of Eq. (4), by defining / e    [15]. 

The collision terms, under the linearized BTE formalism, can be generally expressed as 



 
,

,

( )
( ) ( ) ( )

( )
( ) ( ) ( )

coll

coll

f
A f A f B n

t

n
C n C n D f

t


     

 


     

 









   
        

   


              

 

 

k k q

k k q

q q k

q q k

k
k k q

q
q q k

             (5) 

where the collision terms linearly depend on (with the proportionality factors denoted by 

, , ,A B C D ) the deviations of the distribution functions from the equilibrium: 
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Note that the first-order deviation in the drift terms and the second-order deviation in the 

collision terms have been ignored because they are higher order contributions to the BTEs. For 

quasi-ballistic transport, however, these higher order contributions cannot be neglected because 

the deviation of the distribution function from the equilibrium is relatively large[15]. In Eq. (5) 

we have also separated the collision terms into two parts. One is directly proportional to the 

distribution deviation of the state of interest (k or q), and the remaining parts rely on the 

distribution of other states. The linearized BTE has been the starting point for most of the 

theoretical work on transport properties. There could be situations where the small deviation of 

the distribution function is not well justified, which however also poses question to the use of the 

BTE formalism[8]. Overall the linearized BTE has been shown to be applicable to a wide range 

of conditions and will be the basis of our following discussion. 

A linear system as determined by Eq. (4) generally implies that the distribution function for given 

state depends on those of other states. To obtain the exact results, numerical techniques that solve 

large linear systems are usually applied, such as direct or iterative methods. One important but 

not necessary step here is to neglect the dependence of the collision terms for given state on any 

other state, which means that the terms in the bracket are ignored in Eq. (5). In other words, this 

assumes that when considering the scatterings of a given state, all other states appear to be at 

equilibrium. By doing so, the only term left in the collision terms is (take electrons as an 

example) 
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where we replace the proportionality factor with the inverse of a characteristic time (the minus 

sign is for introducing a properly defined positive time constant as will be clear in the explicit 

forms). Considering the meaning of the collision, this characteristic time represents how fast the 

non-equilibrium distribution functions return to the equilibrium due to scatterings. For this reason, 

they have been called the relaxation times[8]. Using Eq. (7), Eq. (4) can then be readily solved 

yielding 
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Such approximation largely simplifies the procedure of solving the BTE and has been called the 

relaxation time approximation (RTA). However, the crude analysis above has totally removed the 

coupling between the electron and phonon system, which will be incorrect for certain transport 

phenomena[11]. We will see that some of the terms inside the bracket in Eq. (5), depending on 

different situations, must be taken into account to capture the necessary physics with as less 

computational difficulty as possible. In those cases, the collision term proportional to the given 

state can still be described using the relaxation time and we regard this also as an example of 

using the RTA. In essence, the RTA specifically considers the relaxation of the non-equilibrium 

distribution of a given state, or its decay into other available states. In the particle picture, it can 

be viewed as the averaged time between the two scattering events of a particle at given state. Its 

product with the particle’s velocity v  gives rise to the concept of mean free path (MFP) 

v  , the averaged distance the particle travels before being scattered. In the following we 

discuss three major scattering mechanisms that contribute to the collision terms and the 

corresponding numerical framework that solves them. 

 

2.1 phonon-phonon interaction 

A phonon mode describes a collective atomic movement where each atom vibrates according 

to certain displacement pattern. Each phonon mode is associated with a wave vector and also 



frequency, describing the vibration as a wave propagating in the medium. This classification 

assumes that the change of the total potential energy with respect to the displacements of the 

atoms can be written in a homogeneous quadratic form[8] 
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where R ( R ) is the equilibrium position of each atom in the crystal, u  is the atomic 

displacement,  ( ) represents the three directions in the Cartesian coordinate, and D  is 

the dynamical matrix. We note that the first order derivative of the potential energy with 

respect to the atomic displacement is the force. The derivatives of the force with respect to 

the displacement are usually called force constants, which are natural generalizations of 

spring constants from mechanics. The nth order derivatives of the energy (n-1th order 

derivative of force) are denoted as nth-order force constants. The form assumed by Eq. (9) 

therefore implies that all the force constants vanish except for the 2nd-order force constants 

(essentially dynamical matrix). This is the harmonic crystal approximation to real solids[8], 

which justifies the concepts of phonons. It is valid for studying heat capacity since 

higher-order effects are often negligible when the atomic displacements are small[8]. 

However, as we have mentioned, if the eigenstates are the true states of the system, a particle 

in a state with finite group velocity will keep moving without being deflected, implying an 

infinite phonon thermal conductivity. It is the higher-order effect that limits the intrinsic 

thermal conduction[8,11]. For this reason, we usually call the 2nd-order force constants the 

harmonic force constants, while referring to the 3rd-order force constants and above as 

anharmonic force constants. 

We can understand the anharmonic force constants that lead to thermal resistance as follows. 

Since phonon modes are only derived from the harmonic force constants, they are not the 

exact eigenstates of the system when anharmonic force constants exist. However, one can still 

use these phonons to describe the dynamics of the system by introducing the transition 

probabilities between different modes. Classically, it can be understood by a model where 

spring constants can vary with the displacements, and as a result the original eigenmodes will 

convert to other modes due to the non-linear vibration dynamics. Quantum mechanically, this 



is because the higher-order effects introduce the perturbations to the original system, which 

manifest as the coupling between the eigenmodes that lead to the transition processes (time 

dependent perturbation theory)[11]. 

Among the interactions between phonons, the dominant scattering comes from the 

three-phonon process[11]. There are mainly two different types of them. In one case two 

phonons merge into one phonon, creating a new particle with higher energy. In another case 

one phonon transfers its energy into two phonons. Note that in the phonon-phonon scattering 

process the phonon number is not conserved. There are also higher-order processes such as 

four phonon scattering. These typically rarely happen and in most situations can be safely 

ignored. 

For a given phonon state, there are several ways to change its distribution function. This state 

can decay into two phonons, or can be combined with another phonon and merge into a new 

phonon. These describe the out-scattering terms. Besides, two other phonons can also scatter 

and merge into this phonon, resulting in an increase of its distribution function, which are 

called in-scattering terms. Considering all these processes, one can use the Golden Rule to 

calculate the transition rates of a given state (corresponding to the proportionality factor C q  

in Eq. (5)) due to three-phonon scatterings based on the three phonon interaction matrix 

elements under the linearized BTE formalism[11,16,17] 
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where the three phonon interaction matrix is explicitly related to the anharmonic force 

constants via (in the following we only consider up to the 3rd-order, or cubic, force constant): 
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In the above expressions, Nq  is the number of the discrete points in the reciprocal space 

mesh ( 1q  and 2q  go over the same mesh), 
0n q  is the Bose-Einstein distribution of 



phonons (Eq. (2)), q  is the phonon frequency, e q  describes the displacement pattern for 

the phonon eigenmodes and M  is the atomic mass on the sublattice site  . The cubic 

force constant 
1 1 2 20 , ,


   R R  is defined as the third order derivative of the total energy with 

respect to the displacements of three atomic sites 1 1 2 2(0 , , )  R R  along the corresponding 

directions ( , , )   , for which ( )R  represents the atom at the sublattice site   in the unit 

cell R  away from the origin and i  are in Cartesian coordinates. For phonons, we have 

intentionally ignored the non-equilibrium distribution of other states when evaluating the 

scattering of a given state (see Eq. (5)). As a result, the collision term due to phonon-phonon 

interaction in Eq. (3) can be written as 
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with the relaxation times given by Eq. (10). During these scatterings, energy and crystal 

momentum conservation need to be satisfied, which impose the conditions on which 

processes are allowed, as shown by the delta functions in Eq. (10). The crystal momentum 

conservation requires that the three phonon wave vectors involved in the scattering add up to 

zero or up to an integer number of reciprocal lattice vectors. Phonon wave vectors are usually 

defined in the first Brillouin zone (FBZ). As shown by Fig. 1, when two of the phonon wave 

vectors are small the third wave vector is just their summation and the total crystal 

momentum is not changed. This is called normal process. On the other hand, when two of the 

phonon wave vectors are large, their summation will fall outside the FBZ and reciprocal 

lattice vectors have to be involved to bring it back. Such case is called Umklapp process and 

causes the change of total crystal momentum. It is these Umklapp processes that scatter 

phonons back to the equilibrium (reduce the net crystal momentum when they are set up by 

the driving force) and essentially create the thermal resistance[18]. 



 

Figure 1. (a) Normal phonon-phonon scattering process where q1+q2+q3=0 and (b) Umklapp process 

where q1+q2+q3=G. A hexagonal cell is used here as an example for the 1st Brillouin zone. 

In fact the phonon-phonon interaction is the main contribution to the thermal resistance for 

the semiconductors in most temperature ranges. Using RTA, we can write the phonon 

collision term as 
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where the relaxation time includes phonon-phonon scatterings and also other terms due to 

impurities or electrons when necessary. Combined with Eq. (1), the phonon distribution 

function can be readily solved: 
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The thermal conductivity as the ratio of the heat current and the temperature gradient is then 

obtained 
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where   is the unit cell volume and Nq  is the number of the discrete points in the 

reciprocal space. It is clear from the discussion above that the key ingredients for describing 

the phonon-phonon interaction are the cubic force constants in Eq. (11). Harmonic force 

constants involve two independent atomic variables and are routinely calculated to obtain the 

phonon dispersion by the use of the density functional perturbation theory (DFPT)[19]. 

Anharmonic force constants, however, involve three independent atomic variables and are 

much harder to obtain due to their larger number involved. There are mainly two ways to 

(a) (b) 



obtain the anharmonic force constants. One is based on a real space approach and the other 

starts from the reciprocal space. The real space approach starts by creating many different 

atomic configurations in a supercell (one that includes many primitive cells) where one or 

more atoms are displaced from the equilibrium positions along certain directions[20]. The 

first-principles results for the forces on all the atoms are recorded. These forces can be written 

in an expansion expression in terms of the force constants and the displacements (here only 

up to third order contributions are explicitly shown): 
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where 
1 1

,

,

 
 R R  is the harmonic force constant and 

1 1 2 2

, ,

, ,

  
  R R R  is the cubic force constant, 

F
R  describes the force along   direction exerted on the atom at ( )R  and u

R  is its 

corresponding displacement. The different real space approaches differ in that how the force 

constants are fitted from the above equation. It has been shown by Esfarjani et al [20] that 

using the symmetry (permutation, translation, rotation and Huang symmetry) the number of 

force constants that are required to fit can be largely reduced. They have shown the extraction 

of force constants up to 4th-order that compare reasonably well with the exact results when an 

artificial interaction potential is used. Other methods such as those based on compressive 

sensing or slave mode expansion are also employed to recognize the most important 

anharmonic terms so as to further reduce the number of anharmonic force constants that one 

has to deal with and simplify the analysis [21–23]. The advantage of the real space approach 

is that one can treat the DFT package as a black box and only produce his own 

post-processing code, thus reducing the programming complexity. However, it has been 

known from the phonon dispersion calculation that, the real space approach is not as accurate 

as the reciprocal space method (DFPT) at a given wave vector q  because the former one 

introduces errors when truncating the force constants beyond the size of the supercell while 

the latter rigorously treats the infinite size of the crystal[19]. The power of DFPT relies on the 

“2n+1” theorem[19,24], which states that in order to know the 2n+1th-order derivatives of the 

total energy only the information of the nth-order derivatives of the wavefunctions is required. 



For phonon dispersion calculation, the first order derivatives of the wavefunctions are already 

obtained, which can be used to calculate up to 3rd-order force constants. This formalism 

directly calculates the phonon modes at given q  and do not rely on supercells. However, its 

programming complexity is greater than the real space method, and up to now the 

calculations that used this approach are only restricted to single-element materials such as Si, 

diamond and graphene[17,25–30]. We want to note that a further development on the 

reciprocal space method towards more complicated materials can provide an evaluation of the 

accuracy of the first-principles method as we move from well-known materials to unexplored 

ones. 

 

2.2 electron-phonon interaction 

The BTEs as shown by Eq. (1) will be decoupled without the interaction between the electron 

and phonon systems[11]. This interaction behaves as a perturbation to each of them from the 

other system, and cause scatterings for both electrons and phonons. Electronic band structures 

are derived assuming atoms are at their equilibrium positions. In practice, the atoms vibrate 

according to the phonon modes and are seldom at equilibrium positions. The phonon modes 

change the environment (potential energy) the electrons experience and therefore perturb the 

electron’s movements. In a particle picture, such coupling means that electrons can collide 

with phonons, making transition from one state to another. These processes need to satisfy the 

energy and crystal momentum conservation. For the electron-phonon interaction, 

Born-Oppenheimer approximation is often assumed, which states that as the atoms vibrate, 

electrons respond so fast that they almost see a static atomic configuration and therefore finds 

the lowest energy corresponding to that configuration. This simplifies the problem because 

electrons and phonons still have their own eigenstates, and are only coupled to each other via 

the coupling matrix element. In an intuitive way, Bloch proposes an analytic form for the 

electron phonon coupling as follows[31] 
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                       (17) 



where u  is the atom displacement and 
,

V





 Ru
 is the perturbed potential of electrons due to 

the atomic movements. In this expression we regard , Ru  as operator acting on the phonon 

eigenstates while 
,

V





 Ru
 as operator acting on the electron states. A simple explanation of 

this equation is that, as the atoms in the system move around, the electrons will adjust 

themselves to find the lowest energy for that atom configuration and therefore the potential 

energy also changes. It has been shown by Ziman that Eq. (17) can be derived following a 

more rigorous quantum mechanical treatment[32]. The resulting matrix element is 

 1n n V     q q qu k k                          (18) 

where we have transformed the change of the energy due to the displacement of one single 

atom 
,

V





 Ru
 to the potential change Vq  

due to a collective atomic motion corresponding 

to a phonon mode ( , )q . k  and k  are different electron states that are coupled 

through the perturbation, and n q
 represents the phonon state (Note that it is characterized 

by the number of phonons and the final state can only differ by one). The scatterings can be 

grouped into two main processes. In one case the electron is scattered into another state by 

absorbing one phonon and thus increases its energy. Alternatively, the scattering can emit one 

phonon and the electron energy is lowered. These two processes are distinguished by the first 

term in Eq. (18) which, depending on if the phonon is absorbed or emitted, gives different 

proportionality factors to the magnitude of the coupling[11]. 

The second term in Eq. (18), which includes electron states and perturbed potential, is the key 

element that is required to calculate the scattering rates and thus the transport properties. For 

convenience, we define the electron-phonon interaction matrix element as 
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which only differs from Eq. (18) by a prefactor inversely proportional to the square root of 



the phonon frequency. In Eq. (19) 0m  is the electron mass. Under the linearized BTE 

formalism, it can be shown by using the Golden Rule that the collision terms (Eq. (5)) due to 

the electron-phonon interaction take the following form[33] 
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where the coefficients F and G only depend on the equilibrium distribution functions: 
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with   
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denoting phonon absorption and emission processes, respectively. During these scattering 

processes, the energy and crystal momentum conservation need to be satisfied, as clear in Eq. 

(22). Similar to the phonon interaction case, the electron phonon scattering processes can also 

be classified into normal and Umklapp types. Normal processes occur for electrons and 

phonons with relatively small wave vectors while Umklapp processes happen for those with 

large wave vectors[11]. 

For the phonon-phonon interaction, we have ignored the dependence of the collision terms on 

the states except the state of interest, implying that when considering the scattering of one 

phonon state, other states are assumed to be at equilibrium. For the electron-phonon 



interaction, we will however show that the dependence of the electron scattering on other 

phonon states cannot be neglected in some situations. To simplify Eq. (20), we see that there 

are terms directly proportional to the state of interest (just as the case for phonon-phonon 

interaction), which can be rewritten by defining new relaxation times due to the 

electron-phonon coupling 
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The first relaxation time e ph

 

k  describes the scattering of electrons by equilibrium phonons, 

and is the dominant scattering mechanism for the mobility of lightly-doped semiconductors 

near room temperature or above[11,13]. For normal electrical property (electrical 

conductivity and Seebeck coefficient) calculation, one uses the RTA and assumes 0f  k  

and 0n  q  in Eq. (20), and therefore the collision term can be written in the form as Eq. 

(7), where the relaxation time includes the electron-phonon relaxation time defined by Eq. 

(23) and also the relaxation time due to impurities when necessary[13]. The treatment of the 

impurity scattering will be given below. The distribution function is then readily solved 

giving Eq. (8). The electrical conductivity is obtained by summing up all the electron states 

and dividing the total electrical conduction by the electrochemical potential gradient (assume 

temperature is uniform): 
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where Nk  is the number of the discrete points for electrons in the reciprocal space. Note that 

we have used the deviation of the distribution since at equilibrium the electrical conduction 

will be zero. The Seebeck coefficient measures the induced voltage difference across a 

sample in response to a given temperature gradient. In this case we keep the term in f  k  

that is proportional to the temperature gradient and obtain 
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We call this Seebeck coefficient as diffusive because it originates from the diffusion of 

electrons. This is also distinguished from another contribution to the Seebeck effect which 

will be clear later. We can also obtain the electronic contribution to the thermal conductivity  

2

0e T S                                     (26) 

where 
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The second relaxation time 
e ph

 

q  in Eq. (23) describes the scatterings of phonons by 

equilibrium electrons[34]. As we have mentioned, typically this is not as significant as the 

phonon-phonon scattering. However, if we carefully examine its dependence on the electron 

state, we will see that this type of scattering strongly increases as the Fermi level increases (or 

increased carrier concentration). This implied that, in heavily-doped semiconductors, the 

phonon scattering by electrons might play a non-negligible role. We will clarify this point 

more when discussing the first-principles results. 

In evaluating the electrical property, we have assumed 0f  k  in Eq. (20). We should note 

that this is neglected essentially because the terms containing f  k  sum up to approximately 

zero. In metals and for elastic scattering with impurities, this approximation is not valid and 

therefore an extra correction term (1 cos )  is often added to the electron-phonon 

relaxation time to take into account the terms containing f  k , leading to the so-called 

momentum relaxation time[13,35] 
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where   is the angle between the two velocity directions of the initial and final electron 

state. In semiconductors, however, it has been proven, based on deformation potential models, 



that for nearly isotropic scattering, the neglect of f  k  will not cause much difference[13]. 

We will also show that without considering terms containing f  k , good agreement for the 

electrical properties in silicon with experiments can be achieved[36–38]. In essence, the 

momentum relaxation time is only an approximation to the full expression in Eq. (20), and 

further work should be done to evaluate the accuracy associated with the use of the two 

relaxation times for calculating the transport property of semiconductors within the 

first-principles approach. 

Another important simplification we have made when evaluating the electrical property is 

0n  q , for the reason that the frequent phonon-phonon Umklapp scatterings normally 

restrict the phonon distribution function close to the equilibrium[39]. This assumption makes 

non-equilibrium phonons have no effect on the electron system. However, below the Debye 

temperature, phonons have larger deviations from the equilibrium because the phonon 

scatterings are largely suppressed by the decreased temperature. These non-equilibrium 

phonons (non-zero n  q
) in the electron system (Eq. (20)) then contribute to an extra 

scattering for the electron’s collision terms. Under a given temperature gradient, we use the 

RTA for the phonon system and write 
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q

q q qv . The electron-BTE can then be 

solved giving the electron distribution function (here we only consider the non-equilibrium 

part that results from the non-equilibrium phonons): 
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Considering the resulting electrical current per temperature gradient, we arrive at an extra 

contribution to the Seebeck coefficient due to the non-equilibrium phonons 
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This effect describes an extra current generated when there is a phonon heat flow due to the 

non-equilibrium phonons, as if the electrons were “dragged” by phonons. Therefore it has 



been dubbed the phonon drag effect[33,39,40]. We will have more discussions on this effect 

in section 4. Here we want to mention that the above picture describing the phonon drag 

effect is based on the Seebeck effect, where a temperature gradient induces a phonon heat 

flow, which delivers its momenta to the electron system and creates the electrical current. 

Because of the Kelvin relation TS  [15,41,42], an extra contribution to the Seebeck 

coefficient also implies an extra Peltier coefficient. This can be understood by the first two 

terms of the collision terms for phonon in Eq. (20), which transfer the momenta of the 

electron system to phonons when there is an electrical current and thus non-zero f  k . We 

will not examine this second case but point out that the derivation based on the Peltier picture 

will lead to the same result as shown by Eq. (30). 

All of the above transport properties are contained in Eq. (20), of which the key element is 

the electron-phonon interaction matrix element given by Eq. (19). In evaluating the 

electron-phonon coupling matrix, besides the electron wavefunctions and phonon modes, the 

change of the electron potential energy with respect to the atomic displacements is required. 

One way is to use the deformation potential model[11,13], which connects the magnitude of 

the perturbed potential to the change of the band edge energy with respect to the lattice 

dilation. By using the deformation potential, the large amount of the coupling matrix 

elements are not needed, thereby greatly saving the computational cost. However the use of 

this parameter ignores the dependence of the electron-phonon coupling on the electron states, 

and is only valid for band edge states and long wavelength phonons, which cannot be 

accurate for materials in general. A more accurate way is to use DFPT, because when 

calculating the phonon dispersion, DFPT already obtains the perturbed potential and therefore 

provides the electron-phonon coupling matrix as a by-product. However, different from the 

use of real space force constants in calculating the phonon-phonon coupling matrix, direct 

electron-phonon coupling matrix calculations using DFPT are time-consuming. It will thus be 

favorable to develop methods to reduce the DFPT calculation and uses formulas similar to Eq. 

(11) to obtain the electron-phonon coupling matrix for any state, since a fine mesh is 

necessary for the convergence of the transition rates. Such an approach has recently been 

developed[43,44], which utilizes the maximally-localized Wannier functions[45] to transform 



the DFPT results from the reciprocal space to the real space. In the real space, the electron 

states can be described by orbital-like states while the perturbed potential is centered around 

the displaced atom, both of which are localized in real space[43]. These essentially serve as 

the tight-binding basis and can be used to construct the electron and phonon states as well as 

their coupling matrix for any given states. In fact, this whole process can be understood as a 

generalization of the tight-binding model. Efficient calculation of electron-phonon coupling 

matrix can then be done with DFPT results on a coarse mesh only. This method has allowed 

the electron-phonon coupling constant to be examined for many materials, especially 

superconductors[46–48]. We refer readers to the literature for more details on the Wannier 

states[45] and the extraction of electron phonon matrix elements[43,44]. We also want to note 

that, as pointed out by the original work[43], the Wannier interpolation for the 

electron-phonon coupling matrix will be less accurate if there are long range interactions in 

the system, such as the electric filed accompanied by the longitudinal optical phonon near the 

zone center in polar semiconductors. For these materials, these long range forces need to be 

separately treated, as what has been done for the LO-TO splitting in the phonon dispersion 

calculation using DFPT[19,49,49]. Recently these long-range effects have been incorporated 

into the Wannier interpolation scheme by using a rigid ion model (assigning effective charges 

to each atom and consider their Coulomb interactions with electrons) [50] to approximate the 

electron-phonon matrix element for long-wavelength LO phonons [51,52]. This development 

thus further extends the efficient computation of electron-phonon couplings towards polar 

semiconductors. 

 

2.3 Impurity scattering 

In semiconductor engineering, external methods that modify the physical properties of the 

materials are indispensable, with examples including doping and alloying. For the 

thermoelectric property in particular, doping changes the carrier concentration and is used to 

find the optimal carrier concentration for achieving a higher efficiency. On the other hand the 

alloying provides a way to modify the band structure for higher Seebeck coefficient[53] or to 

create more phonon scatterings for lower thermal conductivity[54]. In general, these material 



processing techniques break the translational symmetry of the periodic crystal, leading to 

further scatterings of electrons and phonons. In most cases they are treated as perturbations to 

the pristine crystal, therefore the scattering rates can be studied by a perturbative approach. 

Generally we regard them as impurity scattering because they introduce irregularities into the 

host material and have similar treatment for the scattering rate calculation. 

First we consider neutral impurities of a single type embedded in a medium. The key idea of 

the perturbative approach is to replace the real material with a pristine one, therefore 

justifying the use of the eigenstate[55]. In a more general sense, when considering a 

disordered crystal, one can replace that with an ordered virtual crystal that has an averaged 

property (structure, force constant, electron potential, etc.), which is also known as the virtual 

crystal approximation (VCA)[55,56]. The disorder is then treated as a perturbation to the 

system. For relatively long wavelength phonons, this approximation is reasonable because 

these phonons mainly see an averaged potential[55]. It is questionable when the wavelength 

of phonons is comparable to the characteristic length of the disorder. It has been shown by 

using a full-order scattering theory that, the VCA fails for high frequency phonons and 

predicts incorrect phonon density of state[57]. However, such high frequency phonons are 

shown to have large scattering rates[57], which make VCA still a good approximation in 

evaluating the heat transport of alloys. 

The perturbation due to the introduction of the impurities leads to scatterings between the 

original states. Using the Golden Rule, we can write the scattering rates of phonons due to the 

impurity scattering as[58] 
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where f  is the volume fraction of the impurity, sV  is the volume of the scatterer, q  

describes the phonon eigenmode normalized to the unit cell volume   and T  is the matrix 

that describes the perturbation induced by a single impurity that couples different phonon 

modes. Note that in Eq. (31) we have assumed dilute limit for which the interaction between 

impurities is ignored. In most cases, the T-matrix is approximated by the perturbation matrix, 



known as the Born approximation, which can be shown to give rise to a scattering rate 

proportional to the frequency to the fourth power[59,60] (Rayleigh scattering). Similarly, for 

electrons we can write down the scattering rates based on the potential difference V  

between the pristine material and the one with impurity: 
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where c  is the density of the impurity, k  describes the electron eigenstates and   is 

the angle between the group velocity vectors of the initial and final state. This perturbative 

approach has been widely applied to study the influence of neutral defects on material’s 

physical property. The calculation is usually performed in a supercell where an atom is 

replaced by the defect. By comparing the results with those obtained in the same supercell of 

pristine crystal, defect-induced perturbation can be extracted and used for understanding how 

the defect modifies material’s property. A common example is the calculation of formation 

energy of different substitutes in some host materials[61]. We will see that this method has 

been combined with the first-principles calculation to study the defect scattering of electrons 

and phonons. This perturbative thinking can also be applied to the transport studies of alloys 

using the VCA (instead of constructing a supercell) as we have mentioned. We will see that 

good agreements have been achieved for the electrical and thermal conductivity of SiGe 

alloy[62,63], as well as the thermal transport in some other alloys[64–66], thereby justifying 

the applicability of the VCA. It should be noted that, the perturbed potential (either for 

electrons or phonons) in the above situations are relatively short-ranged and therefore a 

supercell in which the perturbed potential decays to zero is possible within the DFT capability. 

In fact, the recovering of bulk potential at distances away from the defect has been used to set 

the correct energy reference shift in some calculations[62]. 

However, when the impurities introduced into the material are not charge-neutral (for 

example ionized dopants), they will create long-range Coulomb interaction, which decays 

much slower and makes the supercell approach inappropriate due to the interaction between 

the dopant and its artificial images entailed by the periodic boundary condition. Besides, 

when modeling the charged impurity in a supercell, the net charge density would lead to the 



divergence of the total energy. The way to overcome this difficulty is to introduce a uniform 

jellium charge background, making the whole system charge-neutral. This trick however 

introduces the spurious interaction between the electron and the background charge. Though 

the spurious interactions decay to zero as the supercell size increases to infinity, within the 

current DFT capability such a large supercell is almost impossible. 

For comparison between dopant elements in the same column, a supercell can still be used in 

spite of the long-range Coulomb potential[67]. This is because the elements have same charge 

and therefore the incorrect treatment on the Coulomb interactions will not affect their 

comparison. To quantitatively evaluate the electron scattering by the charged impurities, one 

must find ways to extend the screened Coulomb potential beyond the supercell. Rurali et 

al[68] have found in the silicon nanowire transmission calculation that the perturbed potential 

induced by a single charged impurity converges quickly around the dopant, and its values in 

the outer region of the dopant, though varying as the system size increases, can be reproduced 

by a simple screened electrostatic model. Therefore the potential corresponding to a long 

nanowire is constructed by connecting the converged potential in the inner region and the 

screened electrostatic potential in the outer region. Similarly, a screened Thomas-Fermi 

potential was used by Restrepo et al to extend the potential obtained from the first-principles 

calculation beyond the supercell, and the perturbed potential in the whole space is then used 

to calculate the electron impurity scattering rates in silicon[36]. However, we find that there 

has not been a consensus on which physical model is better suited for extending the screened 

Coulomb potential beyond the supercell and how accurate these methods are in different 

situations. Regarding the thermodynamic information (e.g. formation energy) of the point 

defects in solids, there have been great developments on the correction schemes for the 

spurious interactions due to the long-ranged forces[69]. It will be desirable to see how similar 

ideas can be used to facilitate the calculation of electron scattering rate due to the charged 

impurities, which has the control over the mobility of heavily-doped semiconductors. 

 

3. Thermal Transport in Semiconductors 



From this section on, we discuss the first-principles results on the transport properties of 

semiconductors. We first examine the thermal transport properties. Some previous review papers 

have discussed the first-principles calculations of the thermal conductivity, mainly for illustrating 

the power and accuracy of the first-principles methods [70,71], by comparing with the 

experimental data. In the following our discussions will specifically focus on the column IV and 

III-V semiconductors. To give a unified picture for both phonons and electrons, we will discuss 

their relaxation times and mean free paths from pure crystals to alloys. We show that the 

first-principles calculation not only enables us to investigate the thermal transport properties in a 

variety of materials with unprecedented details, but also provides new insights into some of the 

old topics, for which traditional perspectives may not be entirely correct. 

3.1 Phonon relaxation times 

Among all the semiconductors, silicon is probably the best-studied one. It can serve as a 

testbed for the first-principles computational tools and also provides insightful details into the 

phonon transport properties in general. However, a first-principles prediction of its thermal 

conductivity has been challenging, because of the requirement of obtaining accurate 

harmonic and anharmonic force constants that lead to phonon dispersion and phonon 

scattering rates. Force constants extracted from the empirical interatomic potential have been 

shown to give qualitative agreement with experiments but the accuracy is far from being 

satisfactory[72]. The thermal conductivity result also largely depends on the empirical 

potential chosen to use, therefore questioning such an approach as a quantitative tool for 

evaluating the thermal transport. By using the BTE formalism with force constants extracted 

from the DFT calculations, Broido et al were able to first show that the first-principles 

approach can predict the thermal conductivity of silicon and germanium within 5% of the 

experimental value at room temperature without any adjustable parameter[17], where a 

reciprocal space method is used to extract force constants. The real space approach, 

developed by Esfarjani et al[16,20], further allows an easy extraction of force constants in 

more complex materials, and is soon applied by many groups to other materials, including 

III-V semiconductors[73–75], II-VI binary compounds[76], typical thermoelectric 

materials[64–66,77–85] and 2D materials[86–93]. We should note that not all of these work 



used the RTA. In fact, in materials where normal processes are more frequent compared to 

Umklapp processes like graphene, it was shown that an exact solution of the full BTE is 

necessary to obtain quantitative agreement with experiments[87,94], which is also used in the 

original work on silicon[17]. However for silicon, germanium and III-V semiconductors, 

Umklapp scatterings are relatively strong and as a result the use of RTA only introduces small 

errors compared to an exact calculation[16,74]. 

The first-principles approach allows us to look into the details of each phonon mode in 

contributing to the thermal transport. In Si and Ge, it has been found that more than 90% of 

the heat is carried by acoustic phonons at room temperature[17]. While the optical phonons 

carry much less heat than acoustic phonons, they provide significant scattering channels for 

the acoustic phonons. For Si and Ge, it was found that more than 50% of the scattering 

processes of the acoustic phonons involve at least one optical phonon[26]. Therefore, 

neglecting the optical branch (in the sense that their scatterings with acoustic phonons are 

also neglected) will largely overestimate the thermal conductivity. Similar results have also 

been obtained in GaAs, where over 90% of the heat is carried by acoustic phonons over a 

temperature range from 100K to 400K[75]. These results thus quantified our qualitative 

understanding based on the theoretical models.   

From the first-principles method, we can further examine the mode-dependent relaxation 

times. It has been found that in Si and Ge the normal process scattering rate scales with 2  

while the Umklapp process scattering rate scales with 3~4 [16,26]. Figures 2a and 2b show 

the frequency-dependence of the relaxation times in Si. Normal scattering usually dominates 

for relatively low frequency phonons and the squared frequency dependence agrees with the 

commonly-used form, while the Umklapp process starts to dominate at higher frequencies, 

giving rise to a higher-order frequency dependence. However such higher order frequency 

dependence has been neglected in many recent room temperature RTA calculations. The 

first-principles results thus highlight the importance of using the correct scaling behavior of 

the relaxation time, which directly affects the estimation of the thermal conductivity[26]. The 

relaxation times of GaAs are also shown in Fig. 2, exhibiting similar frequency scaling 

behavior[75]. The majority of the relaxation times at high symmetry points at 300K are 



within the range of 3~10ps, while TO modes at L and X points have longer relaxation times 

of ~30ps, as shown in Fig. 3. The quantitative determination of these relaxation times 

therefore provides critical information for hot-phonon effects in many optoelectronic devices. 

 
Figure 2. Phonon relaxation times from first-principles with respect to the phonon frequency for (a) 

Umklapp processes in Si, (b) normal processes in Si, (c) Umklapp processes in GaAs and (d) normal 

processes in GaAs. Note that for the low frequency phonons, the normal process relaxation time has been 

fitted with ω2 while the Umklapp process relaxation time is fitted using ω3. (Si results reprinted with 

permission from Esfarjani et al [16]. Copyright (2015) American Physical Society; GaAs results reprinted 

with permission from Luo et al [75]. Copyright (2015) Institute of Physics) 

 

Figure 3. Phonon scattering rates in GaAs as a function of temperature for (a) LO phonon at Г-point, (b) 

TO phonon at Г-point, (c) TO phonon at L-point and (d) TO phonon at X-point. Shown in the figure is the 



total scattering rate as well as its decomposition into different types of three-phonon scattering processes 

(op: optical phonon; ac: acoustic phonon). The obtained first-principles results (lines) are compared to 

previous first-principles calculations (Ref. (A) from Ref. [95] and Ref. (C) from Ref. [96], only performed 

at Г-point) as well as experimental data (Ref. (B) from Ref. [97,98]). (Reprinted figure with permission 

from Luo et al [75]. Copyright (2015) Institute of Physics) 

Such first-principles calculation has also been applied to study the heat conduction in 

superlattice[99], where one obtains the force constants from a virtual crystal calculation with 

averaged masses and the masses of different atoms are included via Eq. (11). For an infinite 

GaAs/AlAs superlattice, it has been found that by treating the interface roughness as a 

random mixing of Ga and Al atoms in a narrow range, the low frequency phonons dominate 

the heat conduction and are mainly affected by phonon-phonon scatterings, while higher 

frequency phonons are also scattered due to the interfacial disorder[99], as shown in Fig. 4. 

 

Figure 4. Phonon relaxation times from first-principles with respect to the phonon frequency for an infinite 

GaAs/AlAs superlattice. The plot shows the intrinsic phonon scattering rates at two different temperatures 

(100K and 300K) as well as the temperature-independent interfacial scattering. It is clear that for low 

frequency phonons (less than 1THz) the anharmonic scattering dominates while for higher frequency 

phonons the interfacial scattering starts to play an important role. (Reprinted figure with permission from 

Luckyanova et al [99]. Copyright (2015) American Association for the Advancement of Science) 

The origin of some thermal transport features can also be understood by studying the 

scattering channels for each phonon branch. Work has been done to systematically examine 

the temperature dependent thermal conductivity of III-V semiconductors using 

first-principles[74], including all the binary compounds determined by (Al, Ga, In)-(P, As, 

Sb). The effects of different elements on the phonon properties can then be conveniently 

compared. It was found that the gap between the acoustic and optical branch will modify the 



scattering processes of the acoustic phonons (due to the requirement of the energy 

conservation), and therefore consistently affect the thermal conductivity when the V-element 

moves downwards in the periodic table. By taking into account the phonon-isotope scattering 

(the treatment essentially uses Eq. (31) but with Born approximation, which reduces to the 

Tamura model[60]), good agreements with the experiments can be achieved in these 

materials[74]. A further study into GaN reveals that the isotope scattering is relatively strong 

compared to the intrinsic phonon-phonon scattering, and an isotopic enrichment should 

increase the thermal conductivity of GaN by ~65% at room temperature [73]. This large 

“isotope effect” was claimed to result from (1) a large gap between the acoustic and optical 

branch and (2) a large phonon energy scale, both of which reduce the phonon-phonon 

scattering rates and make the isotope scattering relatively more significant [73]. These 

calculations offered new insights into the isotope effect in semiconducting materials and have 

implications for engineering the thermal transport properties. 

 

3.2 Phonon mean free path distribution 

The first-principles method can also provide details into the mean free path distribution of 

phonons, which is important information for nanoscale applications due to the size effect. To 

clarify the contribution to the heat conduction from different phonon modes, a thermal 

conductivity accumulation function has been introduced by Dames and Chen[100], which is 

defined as the contribution to the thermal conductivity from all phonons with mean free paths 

below certain value. Although a kinetic formula 
1

v
3

vc    typically uses a single mean 

free path, the real crystal can have a mean free path distribution spanning across several 

orders of magnitude from submicron to hundreds of microns. For example, an analysis based 

on the kinetic formula predicts a mean free path of 41 nm in Si [101]. The spectral phonon 

property analysis based on the molecular dynamics simulation, however, shows that the 

phonon mean free paths in Si span from 30 nm to 100 μm at room temperature[102]. This 

emphasizes the importance of recognizing the broad mean free path distribution when 

considering the nanostructures where long-mean-free-path phonons will be more frequently 



scattered by interfaces and boundaries, for which a diffusive transport model will break down 

and ballistic effects must be considered. 

Compared to the molecular dynamics simulation, we regard the first-principles calculation as 

a more accurate way to look into the spectral phonon properties of materials. It has been 

shown that, at room temperature more than 50% of the heat is carried by phonons with mean 

free paths longer than 1μm in Si [16]. This fraction will become larger at lower temperatures. 

It should also be noted that in Si the mean free path of most phonons span almost four orders 

of magnitude, from 10 nm to 100 μm at room temperature (Fig. 5a). Similarly in GaAs, the 

mean free paths span over three orders of magnitude from 10 nm to more than 30 μm[75]. It 

was also found that more than 50% of the thermal transport comes from phonons with mean 

free paths longer than 350 nm at room temperature, and at a lower temperature (95K) 50% of 

the heat is carried by phonons with mean free paths longer than 4 microns (Fig. 5b). In an 

infinite GaAs/AlAs superlattice, phonons with mean free paths longer than 216 nm were 

found to contribute 87% (at 100K) and 71% (at 300K) to the total heat conduction[99] (Fig. 

5c). We want to briefly mention that, the recent development in the phonon mean free path 

spectroscopy has opened up the possibility of reconstructing such mean free path 

accumulated thermal conductivity information from the experimental data based on the 

quasi-ballistic heat transport[103–105]. Good agreement has been achieved in Si between the 

reconstructed accumulation curve and the first-principles results[106–108]. Clearly such 

understanding of the mean free path distribution is crucial for modeling and engineering the 

nanostructures, and the first-principles calculation provides an accurate evaluation for these 

information.  

 



Figure 5. Accumulated contribution to thermal conductivity from first-principles with respect to the 

phonon mean free path for (a) Si, (b) GaAs and (c) GaAs/AlAs superlattice. The results for Si are 

evaluated at 277K while the other two materials are evaluated at both room temperature and cryogenic 

temperatures. The “sawtooth” features for long MFP phonons are due to the finite mesh size used. (Si 

results reprinted with permission from Esfarjani et al [16]. Copyright (2015) American Physical Society; 

GaAs results reprinted with permission from Luo et al [75]. Copyright (2015) Institute of Physics; 

GaAs/AlAs superlattice results reprinted with permission from Luckyanova et al [99]. Copyright (2015) 

American Association for the Advancement of Science) 

 

3.3 Effect of alloying and doping 

First-principles calculation on an alloy system was first performed for SiGe alloy using the 

virtual crystal approximation by Garg et al[63]. It was uncovered that more than 50% of the 

heat conduction is carried by phonons with mean free path longer than 1 μm, as shown in Fig. 

6. Besides, the large reduction of the thermal conductivity with only a small fraction of Ge 

added into Si is well captured by the first-principles calculation and agrees reasonably well 

with the experiment at room temperature. Compared to the pristine crystals, the mass disorder 

more strongly scatter high frequency phonons and make low-frequency (long-wavelength) 

phonons more significant in the thermal transport. Similar materials, including PbTexSe1-x, 

Mg2SixSn1-x and BiSb alloy, have also been studied using the same VCA [64–66]. These 

results provide a deeper understanding of the thermal transport in alloy system and also 

guidelines for engineering the thermal performance of an alloy structure. 

 

Figure 6. Accumulated thermal conductivity from first-principles with respect to phonon mean free path in 

Si0.5Ge0.5 alloy. (Reprinted figure with permission from Garg et al [63]. Copyright (2015) American 

Physical Society) 



Doping procedure introduces ionized dopants and electrons into the host material, which also 

increase the scattering rates for phonons. It has long been thought that the reduction of the 

thermal conductivity of semiconductors is mainly due to the impurity scatterings from the 

dopants. The electron scattering of phonons, though formalized and discussed in metal 

systems[34,109,110], was regarded as insignificant for semiconductors. With the 

first-principles approach, one can now incorporate the phonon scattering rate due to electrons 

(the second line in Eq. (23)) into the intrinsic phonon-phonon scattering rate (Eq. (10)) using 

the Matthiessen’s rule 1/ 1/ 1/ph ph e ph

      q q q . The effect of electron scattering of 

phonons can then be evaluated at different temperatures and doping levels. Surprisingly, it 

has been found in Si that the thermal conductivity starts to decrease as the carrier 

concentration goes beyond 19 310 cm  and the reduction reaches 45% in p-type silicon at 

around 21 310 cm [111], as shown by Fig. 7a. The major scatterings due to electron-phonon 

coupling are found in low frequency acoustic phonons and optical phonons, as shown in Fig. 

7b. In fact, based on the deformation potential model, it can be found that the phonon 

scattering rates due to electrons linearly scales with phonon frequency[111] while as we have 

discussed above the intrinsic phonon-phonon scattering is dominated by the normal process 

for low frequency phonons, with a frequency dependence as frequency to the second power. 

The latter therefore drops faster than the former and as the carrier concentration increases 

low-frequency phonons will be more strongly scattered by the electrons. This finding has 

great implications for thermoelectric applications, which typically involve heavily-doped 

semiconductors, and also provide a modern understanding into the effect of the 

electron-phonon coupling on the thermal transport. 



 

Figure 7. (a) Reduction of lattice thermal conductivity due to the phonon scattering by electrons for both 

n-type (blue curve) and p-type (red curve) silicon at 300K, and (b) the comparison between 

phonon-phonon scattering rates (red dots) and phonon-electron scattering rates (blue dots) for n-type 

silicon. The carrier concentration for part (b) is assumed to be 1021cm-3. (Reprinted figures with permission 

from Liao et al [111]. Copyright (2015) American Physical Society) 

 

4. Electrical Transport of Semiconductors 

While the first-principles calculation for the phonon thermal transport has been largely improved 

in the past decade, most of the evaluations of the electrical transport properties still require the 

use of parametrized models such as constant relaxation time approximation or deformation 

potential approximation[112]. These parametrized models for the electron scattering process have 

helped to understand the electron transport properties in certain thermoelectric materials and give 

qualitative agreement with the experiment [113–117]. However, such methods lack the accuracy 

if the band structure becomes complicated, in which case the electron phonon coupling no longer 

satisfies a simple parametrized model. Therefore it is necessary to have an accurate description 

for the electron phonon scattering through the first-principles approach. Only till very recently 

has the first-principles method been applied to study the electrical properties including mobility 

and Seebeck coefficient in silicon[36,37]. For the first-principles calculation of electrical 

properties using parametrized models for electron scattering, readers can refer to Ref. [112]. Here 

only the work that has applied the full calculation of the electron-phonon scattering rates will be 

discussed in detail. As a widely-studied material, silicon still presents a challenge to the electrical 

property calculation and can offer new perspectives to the thermoelectric application with 



detailed study into its electrical transport as we will show. In the following we will discuss this 

material and some other efforts on III-V semiconductors, and also explain the difficulties 

involved in these calculations. 

 

4.1 Electron relaxation times, mean free paths and mobility 

Lying in the center of the electrical property calculation is the electron relaxation time. For 

semiconductors there are two main mechanisms that lead to the scatterings of electrons: 

electron-phonon scattering and electron-impurity scattering. In lightly-doped silicon, the 

electron-phonon scattering dominates over most of the temperature range. As the doping level 

increases, the electrons near the band edge are strongly scattered by the ionized dopants, 

resulting in a decreased mobility. Traditionally, the scattering has been treated by making 

approximations for the interaction matrix. For example, the electron-phonon interaction 

matrix element is readily described by the use of deformation potential while the 

electron-impurity interaction is approximated using screened Coulomb potential model[13]. 

By considering both electron-phonon and electron-impurity scattering in solving the BTE 

formula, good agreements have been achieved for the carrier concentration dependent 

mobility compared to the experiment[113]. However, the use of the parametrized model 

neglects details of the electron transport such as the dependence of the electron-phonon 

coupling on the electron energy and wave vector, and therefore is not satisfactory as a 

quantitative predictive tool. The first-principles approach provides such information with no 

adjustable parameters, and is more accurate and suitable for studying the contribution to the 

electrical transport from each electron state. The first-principles method was first applied to 

study the intervalley scatterings between certain electron pockets in Ge, GaAs and GaP 

[118,119]. The results obtained agree well with the experiments, justifying the use of 

first-principles approach in evaluating the electron-phonon scattering rate. These results also 

have implications for high-field electrical transport and the relaxation of hot carriers. 

However, to accurately predict the electrical transport property, we must recognize the 

difference of the relaxation times between different electron states. Such an analysis based on 

first-principles calculation was given by Restrepo et al[36], who showed that the electron 



scattering rates in silicon on a large energy scale (several electron volts) follow the shape of 

the electron density of state. This general feature comes from the fact that at energy levels 

away from the band edge, the scattering rates are mainly limited by the available states that 

one electron can be scattered into, and therefore higher density of state provides more 

scattering channels and reduce the scattering time. In their original work, only the energy 

dependence of the scattering rate is explicitly given[36]. A further detailed study into Si and 

Ge shows that the electron-phonon coupling strength varies significantly along different 

crystallographic directions, which causes wave-vector dependence of the scattering rates as 

well[120], as shown in Figs. 8a and 8b. We note that such a full examination of the 

electron-phonon scattering over the whole Brillouin zone has enabled the analysis of the 

phonon-assisted optical absorption as well as hot carrier relaxation process in silicon[14,121], 

and is also crucial for a first-principles prediction of the electrical property. Hot carrier 

relaxation has also been examined in GaAs with the electron scattering times being studied 

over the whole Brillouin zone[122] (Fig. 8c). It was suggested that the polar optical phonon 

scattering is not as strong as what had been previously believed and does not dominate over 

the acoustic phonon scattering for hot electrons. 

 

Figure 8. Electron-phonon scattering rates compared with the electron density of state for (a) Si, (b) Ge 

and (c) GaAs. It is shown that the scattering rate profile in a larger energy scale closely follows the density 

of state profile. The wave-vector-dependence of the scattering rates can be seen by the scatter of the data at 

the same energy level. The above calculations assume pure crystals and therefore the Fermi level lies 

inside the band gap. (Si and Ge results reprinted with permission from Tandon et al [120]. Copyright (2015) 

American Institute of Physics; GaAs results reprinted with permission from Bernardi et al [122]. Copyright 

(2015) United States National Academy of Sciences) 

These calculations based on the first-principles approach have offered insights into the 

regimes where old models cannot reach or reliably analyze, such as the relaxation of hot 



electrons with a wide distribution of lifetimes and the transition probabilities between 

different pockets examined independently. For the transport property such as low-field 

mobility and Seebeck coefficient, the electrons near the band edge (within a few Bk T  from 

the band edge) are the dominant players, because only these electrons are notably thermally 

excited due to the Fermi-Dirac statistics. Their mode-dependent scattering rates are more 

sensitively affected by the environment such as impurities, and require a closer examination. 

Figure 9a shows the electron scattering rates in silicon close to the band edge[38]. The “kink” 

at an energy around 0.06eV above the conduction band edge is due to the phonon emission 

process (note that the electron needs to have some energy above the conduction band edge to 

emit a phonon). It is shown that a fine mesh and an adaptive Gaussian broadening parameter 

for approximating the delta functions when evaluating the energy conservation are required to 

resolve this “kink” feature [38]. As the doping level increases, the band edge electrons will be 

scattered more strongly by ionized dopants, causing a U-shape scattering rate profile as 

shown in Fig. 9b. Band edge electron relaxation times have also been calculated in GaAs, 

where “kinks” in the scattering rate profile can be associated with different electron pockets 

(Fig. 9c), and a GW calculation (including electron many-body effect) was used to accurately 

describe the band structure[122]. 

 
Figure 9. Electron scattering rates for (a) pure Si and (b) doped Si, as well as (c) electron relaxation times 

for pure GaAs. These plots consider electrons that are close to the conduction band edge. The results for 

pure Si and pure GaAs are evaluated at room temperature, while those for doped Si are shown from 100K 

to 400K. (Pure Si results reprinted with permission from Li et al [38]. Copyright (2015) American Physical 

Society; Doped Si results reprinted with permission from Qiu et al [37]. Copyright (2015) Institute of 

Physics; GaAs results reprinted with permission from Bernardi et al [122]. Copyright (2015) United States 

National Academy of Sciences) 

In addition to the relaxation times, electron mean free path is another important piece of 



information for nanoscale modeling and engineering. Figure 10a shows the electron mean 

free path as a function of the electron energy. At lower doping concentrations, there is a 

maximal electron mean free path with respect to the electron energy. This is because at higher 

energies electrons suffer more scatterings (Fig. 9) and have smaller relaxation times, while 

near the band edge the group velocity tends to be zero. The competence between the 

relaxation time and the group velocity gives rise to the maximal electron mean free path. 

Figure 10b further shows the accumulated contribution to the electrical conductivity with 

respect to the electron mean free path[37]. Compared to the phonon mean free path 

distribution, we see that electron mean free paths span over a smaller range than those of 

phonons, from 10 nm to 100 nm for lightly-doped silicon and from 1 nm to 10 nm for 

heavily-doped silicon. The sharp cut-off of the accumulation curve for the electrical 

conductivity is due to the maximal electron mean free path as we have discussed above. The 

clear difference between the phonon mean free path and electron mean free path can be used 

to quantitatively examine the effect of nanostructuring techniques in reducing the phonon 

thermal conductivity while maintaining the electrical transport properties[37]. However such 

detailed mean free path information based on first-principles calculations has not been 

reported for other semiconducting materials. We anticipate that along the path more materials 

can be studied with detailed examination into their electron scattering mechanisms and mean 

free path distributions. 

 

Figure 10. (a) Electron mean free path as a function of the electron energy and (b) accumulated 

contribution to the electrical conductivity with respect to the electron mean free path compared to the 

accumulated thermal conductivity contribution (with respect to phonon mean free path) in silicon from 

100K to 400K. In part (b), two different doping levels (lightly-doped and heavily-doped) are shown. 

(Reprinted figures with permission from Qiu et al [37]. Copyright (2015) Institute of Physics) 



Given the relaxation time of each electron state, mobility can be calculated based on the BTE 

solution (Eq. (24)). An accurate prediction of the transport property will involve integration 

over the whole Brillouin zone, thereby requiring a large amount of relaxation time data, 

which in turn depend on the scattering processes between many electron and phonon states. 

As a result, scattering rates between certain pockets are not sufficient in describing the 

transport property and the first-principles calculation of mobility has always been challenging 

due to the large mesh entailed. Restrepo et al first reported the mobility calculation for silicon 

including both electron-phonon and electron-impurity scattering[36]. The phonon-limited 

mobility (neglect the impurity scattering) for n-type Si is calculated to be 1970 cm2/Vs at low 

carrier concentration, which agrees reasonably well with the experimental mobility (~1700 

cm2/Vs [123]) of lightly-doped silicon but slightly larger. The mesh density was not reported 

in their work but a more accurate calculation will inevitably require a dense mesh. A linear 

interpolation scheme [38] that obtains the electron-phonon matrix elements on a fine mesh 

has been shown to give rise to a mobility value (~1860 cm2/Vs) closer to the experimental 

result. The linear interpolation works well in this case essentially because the 

electron-phonon coupling matrices do not vary much in the first Brillouin zone for Si. As 

more complicated materials are considered, however, we consider the Wannier interpolation 

[43] as a more accurate approach for extracting the electron-phonon coupling matrix. 

 

4.2 Seebeck coefficient 

On the other hand, the Seebeck coefficient requires a more careful look. This is because in 

lightly-doped silicon the phonon drag effect has been found to be significantly strong at low 

temperatures[39,124]. Therefore when considering the Seebeck coefficient we should add up 

both the diffusive contribution (Eq. (25)) and the phonon drag contribution (Eq. (30)). We 

note that in the expression for the phonon drag Seebeck coefficient both relaxation times for 

electrons and phonons are required, thereby making the calculation even more challenging 

than the mobility calculation. The calculation using first-principles-extracted deformation 

potential was able to describe the diffusive Seebeck coefficient[113], which is obtained by 

removing an empirical phonon drag contribution from the measured data. Recently Mahan et 



al combined the first-principles phonon relaxation times with the deformation potential 

model to describe both the diffusive and phonon drag contribution to the Seebeck coefficient, 

and has seen a good agreement with experiments across a wide temperature range[125]. 

However, it was found that the phonon drag from the simulation increases faster with 

decreased temperature than the experimental value, which could result from the use of the 

deformation potential model. In a later study using a full first-principles calculation with both 

electron and phonon relaxation times extracted from DFT calculations, the Seebeck 

coefficient including the phonon drag was predicted with excellent agreements compared to 

the experiment [126], as shown in Fig. 11a. This emphasizes the use of a first-principles 

approach for better description of coupled electron-phonon transport. These calculations 

[125,126] quantitatively investigated the temperature dependence of the phonon drag effect: 

although it dominates at low temperatures, it has influences even beyond the room 

temperature. It was shown that at room temperature in lightly-doped n-type (p-type) silicon 

the phonon drag contribute to 30% (40%) of the total Seebeck coefficient [126]. As we have 

mentioned, phonon drag effect can be understood as the momentum transfer from 

non-equilibrium phonons with long mean free paths to the electron system. In such processes, 

the phonons are the key players and one important information will be how much are the 

contributions from different phonons. Figure 11b shows the accumulated contribution to 

phonon drag with respect to the phonon mean free path. It can be seen that the phonons that 

contribute to the phonon drag mostly have long mean free paths (small wave vectors) 

compared to those thermal phonons that carry heat. This is essentially because of the 

momentum and energy conservation for the electron-phonon scattering process, which 

restricts the wave vector of phonons to be small so that they can scatter band edge electrons 

(normal process). Clearly, we see from Fig. 11b that there is a spectral difference between the 

contributions to the thermal conductivity and to the phonon drag from phonons. Such 

quantitative information can be used to engineer the material’s property by modifying the 

phonon spectrum. For example, one can enhance the thermoelectric performance by filtering 

out short-mean-free-path phonons, in which case the phonon drag will be retained but the 

thermal conductivity can be reduced, a strategy recently proposed in Ref. [126]. 



 
Figure 11. (a) First-principles calculation of the temperature dependent Seebeck coefficient in pure Si and 

(b) the accumulated contribution to the phonon drag. In part (a) the total Seebeck coefficient is also 

decomposed into the diffusion part and the phonon drag part, the latter of which dramatically increases as 

the temperature decreases. The results agree well with the experimental data[124]. In part (b) the 

accumulated curves are shown for three temperatures (solid lines for 300K, dashed lines for 200K and 

dotted lines for 100K). The first-principles results are from Ref. [126]. 

Furthermore, by considering the phonon scattering by electrons in the phonon relaxation time 

calculation, the reduction of the phonon drag effect at higher carrier concentrations, known as 

the saturation effect[39], can also be captured by the fully first-principles approach[126], with 

a good agreement with the experiment shown in Fig. 12. This reduction comes from the 

increased scatterings of phonons with long wavelengths by electrons. As shown above, 

phonons that contribute to phonon drag mostly have small wave vectors and thus low 

frequencies. For these low frequency phonons, the electron scattering becomes appreciable as 

we have discussed in section 3. The impurity scattering is in fact insufficient to strongly 

affect these phonons despite of their effect on the mobility, because it scales as 4  and 

decreases quickly as the phonon frequency becomes small. It was further uncovered that[126], 

though the phonon drag is largely reduced due to the saturation effect, it is not negligible for a 

heavily-doped silicon. In fact its contribution is comparable to the diffusive Seebeck 

coefficient at 1019 cm-3 even at room temperature (Fig. 12). This result challenges the 

previous belief that the phonon drag effect vanishes in heavily-doped samples, and provides 

new perspectives into the electron-phonon coupled transport of the decades-old material - 

silicon. 



 

Figure 12. Carrier-concentration-dependent Seebeck coefficient from first-principles in doped n-type Si. 

The results are shown at two different temperatures (solid lines for 300K and dashed lines for 200K). The 

total Seebeck coefficient (black curves) is also decomposed into the diffusion part (green curves) and 

phonon drag part (red curves). The phonon drag at low carrier concentration does not depend on the doping 

level. The dotted lines assume that this value is used throughout the whole doping range. Clearly for high 

doping concentrations the dotted line overestimate the Seebeck coefficient, and the difference is due to the 

scattering of phonons by electrons, leading to a reduction of the phonon drag part. The first-principles 

results are from Ref. [126]. 

We have seen that the use of the first-principles method has provided us insightful details into 

the electrical transport properties in silicon. However, up to now there are only few materials 

whose mobility or Seebeck coefficient has been calculated using a parameter-free 

first-principles approach, with examples including silicon, MoS2 and phosphorene [36–

38,126,127]. Here we deem the use of the deformation potential model (even with 

deformation potential extracted from the first-principles) as an complementary but not a 

predictive method, because it neglects the electron-state-dependence of the electron-phonon 

coupling, which is hardly justified for general materials, especially considering the fact that 

the material search has been going towards more complex ones. Large discrepancy has also 

been seen between different studies using similar deformation potentials extracted from DFT 

calculations for the same material. We however believe that a detailed study into the validity 

of the deformation potential by comparing that with first-principles results will help to 

elucidate its applicability in the wide range of many new and unexplored materials. 

One difficulty associated with the first-principles electrical property calculation of other 

materials is that, efficient interpolation of the electron-phonon matrix elements from a coarse 

onto a dense mesh, necessary for the integration to obtain the relaxation times, requires the 

force constant (or the perturbed potential) to be short-ranged in real space[43]. However in 



materials with more than two elements, accompanied with the longitudinal optical (LO) 

phonon near the zone center there will be a polarization field, which induces an electric field 

that can cause scatterings for electrons. This scattering due to the long-range electric field 

induced by polar LO phonon is usually called polar optical phonon scattering. Therefore, the 

interpolation scheme as we have discussed before will be less accurate if the transport 

property of the material is governed by such scatterings. For a finite phonon wave vector, 

DFPT exactly solves the eigen-equation and therefore automatically includes such long-range 

effect. This merit of DFPT is also used in the study of hot electron relaxations in GaAs[122]. 

The interpolation method for the electron-phonon coupling matrix, however, needs to be 

modified to correctly capture the long-range effect. Work has been down to use the 

first-principles band structure combined with scattering time models to evaluate the electrical 

property of other materials. For example the mobility of SrTiO3 was modeled using the 

Fröhlich model for the interaction matrix[128]. Such approach however does not differentiate 

the importance of different scattering mechanisms in affecting the transport property. 

Recently Sjakste et al and Verdi et al incorporated the polar optical phonon scattering into the 

Wannier interpolation scheme by using a rigid ion model to treat the long-range effect, where 

each atom carries certain effective charge due to their ionic character and the polar scattering 

mainly comes from the Coulomb interaction between them and the electrons [51,52]. The 

interpolated electron-phonon matrix elements agree well with those obtained from direct 

DFPT calculations [51,52]. We believe the inclusion of the polar scattering will facilitate the 

study of the electrical transport of more complicated semiconductors and provide more 

possibilities for engineering material’s electrical property. 

 

4.3 Effect of alloying 

Using a perturbative approach with information extracted from DFT calculations, 

Murphy-Armando and Fahy examined the alloying scattering for electrons in SiGe alloy[62]. 

They quantified the contribution to the electron scattering rates from intervalley scattering 

and intravalley scatterings, and found that they are comparable with each other, contrary to 

some previous modeling results claiming that intervalley scattering is negligible. They have 



also obtained good agreements with the experimental value by incorporating the 

deformational potential model for describing the electron-phonon scattering. Particularly, the 

first-principles results correctly captured the abrupt change of the mobility in Si1-xGex alloy at 

~ 0.85x , which is due to the L  band crossing[62]. We note that the perturbed potential 

V  in this case is the potential difference between the pristine Si and pristine Ge, while the 

electron wavefunctions are obtained in the virtual crystal with averaged properties. Care must 

be taken to set the reference for the potential energy[62]. 

The same perturbative approach has been applied to compare the effect of different 

substitutes on the electron scattering within the same column[67]. As we have mentioned in 

section 2, the supercell method will inevitably introduce spurious interactions due to the 

image atoms and background compensating charges, therefore questioning a direct evaluation 

of the perturbed potential. However, in the same column the element has the same number of 

valence electrons and the errors thus introduced will be the same. The difference mainly 

comes from the scattering due to strain-induced disorder. We note that to compare elements in 

different columns, an accurate description of the perturbed potential will be necessary. One 

way to achieve this has been illustrated by Restrepo et al in their calculation of 

electron-impurity scattering rate[36]. Other techniques borrowed from the treatment of 

calculating formation energy [69] can also be possibly used to develop an efficient method 

for describing electron scattering by charged impurities. 

Besides the alloying scattering for electrons, the alloy structure also modifies the phonon 

modes and therefore the coupling between electrons and phonons. In the lowest-order 

approximation, phonon eigenmodes as well as the perturbed potential can be obtained in the 

virtual crystal. The electron-phonon scattering rates are then calculated based on these virtual 

crystal perturbation combined with the electron modes of the virtual crystal, assuming the 

electronic disorder is weak[129]. However the disorder effect on the electron-phonon 

coupling has been ignored in such approach. We would expect that a larger supercell 

calculation will help to understand how the electron phonon coupling is modified by the alloy 

structures, with detailed studies into the electron relaxation times and mean free path 

distribution, providing crucial information for evaluating the electron size effect at nanoscale. 



 

5. Summary 

We have reviewed the recent development of the first-principles approach to obtain the transport 

properties (in particular, electrical conductivity, Seebeck coefficient and thermal conductivity) of 

materials, which provides us a better understanding of the transport features and leads to rational 

designs of material properties. The coupled electron-phonon Boltzmann transport equation has 

been introduced, discussed and used for relating the transport property to the eigenmodes 

(electrons, phonons) and their coupling with each other. The relaxation time is introduced as a 

measure of the decay of non-equilibrium distribution back into equilibrium state, and is the key 

variable in calculating the transport property under the so-called relaxation time approximation. 

Relaxation times derive from the scatterings between the states, which are governed by the 

coupling due to perturbations introduced to the original system. For phonon-phonon scattering, 

the perturbations come from the anharmonic interatomic forces. For electron-phonon scattering, 

the atomic displacements perturb the environments seen by the electrons. Besides, impurities 

naturally introduce perturbations into the original pristine crystal. All of these can be analyzed 

using the same framework and we have seen that the crucial ingredient in describing these 

scattering processes and thus relaxation times is the coupling matrix that determines the 

transition probabilities from one state to another. 

Methods to extract the electron-phonon coupling matrix based on first-principles calculations are 

briefly discussed. For the thermal conductivity calculation, the important information is the 

anharmonic force constant while for the electrical transport properties the electron-phonon 

coupling matrix is the vital component. An efficient extraction of such information is needed, due 

to the requirement for the convergence of the relaxation time calculation involving the states 

across the Brillouin zone. 

We have seen that the calculation of thermal transport has been greatly improved in recent years, 

from simple semiconductors to more complex systems. Some practical systems like alloys can 

now be calculated with good agreements with experiments. Further direction could be the 

calculations of even more complex materials like perovskites and organic semiconductors. These 

complex materials are difficult for a first-principles calculation mainly because the computational 



time scales approximately as 3N  ( N  is the total number of atoms in the unit cell) due to the 

non-locality inherent in quantum mechanics [4]. An order-N method (computational time scales 

as N ) that uses certain features of the system to reduce the computational load has seen great 

advantage over traditional method[4], but has not been introduced into the first-principles 

calculation of the thermal conductivity. Another possible strategy for accelerating the calculation 

is to use effective force constants to represent some atomic cluster in a large unit cell. For 

example, the inorganic-organic perovskite semiconductor CH3NH3PbI3 which recently gains the 

popularity due to its potential in solar cells [130] has an ABO3 structure with site-A replaced by 

an organic group. If the organic group can be represented by a meta-atom with effective force 

constants (between this meta-atom and other atoms), the total number of atoms can be greatly 

reduced. This strategy, if possible, can facilitate the first-principles thermal transport study into 

many inorganic-organic hybrid materials. 

In comparison with the first-principles calculation for thermal transport, calculations of electrical 

transport in semiconductors have only received attention recently and up to now only few 

materials (silicon, phosphorene, MoS2, etc.) are calculated within a fully first-principles approach 

for the electrical transport properties [36–38,126,127]. Other methods usually use parameterized 

models such as the deformation potential model, fitted from experiments or first-principles 

calculations. The first-principles method can provide insightful details into the relaxation time 

profile and mean free path distribution of the electrons, which are of great significance for 

modeling and engineering nanoscale devices. Besides, unprecedented details in the transport 

property have been seen by using the first-principles approach. For example, the phonon drag 

effect was seen to play a non-negligible role in the Seebeck coefficient even in heavily-doped 

samples at room temperature. Along this path, we think some of the challenges include the 

consideration of the spin-orbit coupling for heavy elements and alloy (and doping) effects on the 

electrical transport. Since the band structure greatly affects the scattering rate profile as we have 

seen in GaAs[122], more advanced first-principles method such as GW calculation (a method to 

more accurately describe the electron-electron interaction with G stands for Green’s function and 

W stands for the screened Coulomb interaction) to take into account the electron many-body 

effects on the band structure will be necessary for a better description of the electronic properties. 



In addition, one can develop the theory to recast the transport property calculation based on BTEs 

using the matrix elements between different eigenstates into one that only uses the matrix 

elements in the Wannier basis, the latter of which requires less computational work but contains 

all the essential information, a strategy already mentioned in Ref. [43]. The Wannier basis (for 

electron and phonons) may also serve as good starting points for the study of transport problems 

in disordered materials (such as polymer or amorphous structure), where the periodic boundary 

condition breaks down and the dynamics of the system is more often described using 

spatially-localized modes. Another challenging question is how to concurrently solve the coupled 

electron-phonon BTEs, putting the effect of electron on phonons and that of phonon on electrons 

on an equal footing. For this, one has to use iterative solver to deal with the BTEs, which goes 

beyond the relaxation time model. This further step will provide us more information for the 

coupled electron phonon transport. It is also possible that unique physical behaviors may emerge 

from such coupled transport problem. In general, the advancement of the first-principles 

computational technique, as we believe, extends our toolbox for studying the transport properties 

in a quantitative way and will finally open up the venue towards a high-throughput material 

search based on ab initio predictions. 
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