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The Calibration and Performance of a 
Non-homothetic CDE Demand System 

for CGE Models 

BY Y.-H. HENRY CHENa 

In computable general equilibrium modeling, whether the simulation results are 
consistent with a set of valid own-price and income demand elasticities that are 
observed empirically remains a key challenge in many modeling exercises, since 
functional forms that are not fully flexible can only allow a limited subset of 
elasticities. While not fully flexible, the Constant Difference of Elasticities (CDE) 
demand system has enough free parameters to match own-price and income 
elasticities in some cases, leading to its adoption by some models since the 1990s. 
However, perhaps due to complexities of the system, the applications of CDE 
demand in other models are less common. Furthermore, how well the system can 
represent the given elasticities is rarely discussed or examined in the existing 
literature. This study aims to fill this gap by revisiting calibration strategies for the 
CDE demand system and exploring conditions where the calibrated elasticities of 
the system can better match a set of valid target elasticities. Results show that the 
calibrated elasticities can be matched to the target ones more precisely if the sectoral 
expenditure shares are lower, the target own-price demand elasticities are lower, and 
target income demand elasticities are relatively higher. The study also incorporates 
a CDE demand into the GTAPinGAMS model and verifies that for the revised model 
with a CDE demand system, the model can successfully replicate the calibrated 
elasticities under various price and income shocks. 

JEL codes: C6, C8, D5, R1  

Keywords: Computable general equilibrium modeling; Constant difference of 
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1. Introduction 

In Computable General Equilibrium (CGE) modeling, price and income 
elasticities of demand are crucial in determining the sectoral growth pattern and 
economic impacts of various policies (Hertel, 2012). This suggests the widely used 
Constant Elasticity of Substitution (CES) utility function (Sancho, 2009; Annabi et 
al., 2006; Elsenburg, 2003), is likely unsatisfactory due to its unitary income 
elasticities of demand, and relative price inflexibility. Indeed, in a single-nest CES 
setting, after applying the Cournot aggregation, the sectoral expenditure shares 
will fully determine the variation in own-price elasticities of demand.  

To capture the observed non-homothetic preferences with income elasticities of 
demand diverging from unity, one approach is to use the Linear Expenditure 
System (LES) derived from Stone-Geary preferences (Geary, 1950; Stone, 1954). 
The LES system can be calibrated to income elasticities of demand compatible to a 
valid demand system, although it only allows for calibration to a single price 
elasticity of demand. In addition, with a special multi-nest structure, the calibrated 
own-price elasticities of demand can be matched perfectly to any valid elasticities 
(Perroni and Rutherford, 1995).1 The shortcoming of LES, however, is that due to 
constant marginal budget shares with respect to income, the limit property of LES 
is still homotheticity, and therefore the underlying income elasticities of demand 
will approach one as income grows and subsistence expenditures dwindle. 

An alternative option to model non-homotheticity is to utilize the Constant 
Difference of Elasticities (CDE) demand system proposed by Hanoch (1975). With 
implicit additivity, a ܰ-commodity CDE demand system has ܰ expansion 
parameters and ܰ substitution parameters to achieve a more general functional 
form than the single nest CES case. The ܰ expansion parameters make it possible 
to incorporate various income elasticities of demand across commodities/sectors, 
and the income elasticities will remain at their given levels as income changes 
(“commodity” and “sector” are used interchangeably in this study). On the other 
hand, compared to a single-nest CES setting, the ܰ substitution parameters allow 
modelers to come up with a somewhat better match with target own-price demand 
elasticities. This led Hertel et al. (1991) to propose the use of the CDE functional 
form in CGE models as a means of bridging the gap between fully flexible forms 
and the restrictive, LES/CES functions.  

One caveat of CDE applications, paradoxically, comes from the relative stability 
of each income elasticity regardless of income levels. Specifically, if a good is a 
luxury it remains a luxury (Yu et al., 2003). While this limitation might not severely 
contradict empirical evidence for developed countries, existing studies have found 
that, for instance, income elasticities of some food items in developing countries 
                                                            
1 While Perroni and Rutherford (1995) focuses on homothetic preferences, it points out that 
the multi-nest strategy achieving a perfect match in own-price elasticities calibration also 
works for non-homothetic preferences. 
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tend to decrease as income grows (Haque, 2005; Chern et al., 2003). In some cases, 
economic growth may turn luxury goods into necessities (Zhou et al., 2012). One 
strategy to address this limitation is to recalibrate CDE parameters over time so 
that target income demand elasticities could be adjusted based on a given 
projection for economic development (Anderson and Strutt (2012); Woltjer et al. 
(2014)). With this treatment within-period welfare comparison can be done when 
the CDE parameters remain unchanged. However, between-period welfare 
comparison is no longer possible, since changing CDE parameters means changing 
preferences, and in that case equivalent variation will not be well-defined (Chen 
et al., 2016). To overcome this, Rimmer and Powell (1996) propose an implicit 
directly additive demand system (AIDADS) that allows income elasticities of 
demand to vary logistically as the marginal budget shares at subsistence income 
and very high income are separately estimated. Nevertheless, because of the 
implicit additivity assumption, AIDADS only allows a limited range of 
substitution possibilities across goods, and due to theoretical and computational 
reasons, AIDADS applications have thus far been limited to 10 
commodities/sectors (Reimer and Hertel, 2004). As a result, CGE applications 
with AIDADS are less common and more project-specific. In contrast, despite 
some limitations, the CDE demand system seems to be more broadly applicable as 
a generic setting for modeling non-homothetic preferences with variation in the 
price-responsiveness of demand. For instance, with the CDE demand, modelers 
have more degrees of freedom in choosing the desired sectoral aggregation level 
that fits their research purposes.  

While CGE models such as GTAP (Hertel and Tsigas, 1997), MAGNET (Woltjer 
and Kuiper, 2014), GTEM (ABARE/DFAT, 1995; ABARE, 1996), and ENVISAGE 
(van der Mensbrugghe, 2008) have been using the CDE demand system in 
modeling final consumption behaviors, perhaps due to the complexities in both 
calibration and implementation, other CDE applications are less common so far. 
More importantly, when studying the responses of CGE models with non-
homothetic preferences, besides examining the implications of income elasticities 
of demand on future projection, the roles of own-price elasticities of demand are 
crucial as well since they can also influence projections if relative prices or income 
levels change. Existing literature also points out that to ensure the regularity of a 
well-behaved demand function, calibrating a CDE demand system to the target 
elasticities that are valid might be infeasible (Hertel, 2012; Huff et al., 1997). How 
well the system can match those elasticities is beyond the discussion of most 
existing literature. One exception is Liu et al. (1998), which presents the differences 
between target and calibrated elasticities. Nevertheless, exploring sources of 
differences between calibrated and target elasticities is beyond the scope of that 
study. 

Before studying how well the calibrated elasticities of a demand system can 
match a set of target elasticities, one needs to ensure that under a given 
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expenditure share structure, the target elasticities are valid, i.e., they are 
conformable to aggregation conditions and a negative semi-definite Slutsky 
matrix. Therefore, the demand system under consideration will only be calibrated 
to a set of valid target elasticities. With that in mind, the study will answer the 
question both analytically and numerically: given a set of valid target own-price 
demand elasticities, income demand elasticities and expenditure shares, under 
what conditions will the calibrated elasticities of a CDE demand system most 
closely approximate the target values? The findings of this study can help 
modelers who implement a CDE demand system in explaining how well the target 
elasticities are represented in their models, and provide information for choosing 
an appropriate sectoral aggregation so that, if possible, at least target elasticities of 
interesting sectors can be better matched.  

Following Chen (2015) this paper also presents strategies for putting the CDE 
demand system into GTAPinGAMS (Rutherford, 2012; Lanz and Rutherford, 
2016), a global CGE model which is written in GAMS and MPSGE and which 
employs the GTAP database (Narayanan et al., 2012; Aguiar et al., 2016). MPSGE 
is a subsystem of GAMS (Rutherford, 1999), and earlier it was sometimes thought 
that despite being a powerful tool that handles the calibration of CES functions 
automatically, MPSGE can only be applied to models with CES or LES utility 
functions (Konovalchuk, 2006; Hertel et al., 1991). Perhaps the misconception is 
because, until recently, CGE models built by MPSGE were largely characterized 
by either CES or LES preferences. This study provides an example of extending 
the application of MPSGE beyond the CES or LES preferences. The revised 
GTAPinGAMS with a CDE demand system is tested with income and price shocks 
to verify the model response is consistent to the calibrated elasticities. The 
programs for the CDE calibration and the revised GTAPinGAMS with a CDE 
demand system are provided in the Appendix, so readers can use them for 
verification or research purposes. 

The rest of the paper is organized as follows: Section 2 briefly reviews the 
theories and settings of the CDE demand system; Section 3 presents the calibration, 
performance, and implementation of the CDE demand system; and Section 4 
provides a conclusion. 

2. Theoretical Background 

To understand what constitutes a regular (i.e., valid) demand response, the 
section will briefly review the economic considerations for a regular demand 
system. In the subsequent analysis, this paper will focus on the following question: 
how can one evaluate the performance of a regular demand system in representing 
a set of valid own-price and income demand elasticity targets? To explore this, the 
section will discuss a demand system’s flexibilities in own-price and income 
demand elasticities calibration, introduce the settings of CDE demand system, and 
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finally examine the implications of CDE regularity conditions on the calibration 
performance of the system. 

2.1 Regularity and Flexibility of a Demand System  

Let us denote a cost (or expenditure) function by ܥሺ݌, -ܰ is a ݌ ሻ whereݑ
dimensional price vector and ݑ is the utility. For ܥ to be considered as well-
behaved, ߲݌߲/ܥ, which is the Hicksian demand vector ݍሺ݌,  ሻ, is nonnegative andݑ
homogeneous of degree zero in ݌, and ൣ߲ଶ݌߲/ܥ௜߲݌௝൧ேൈே, which is the Slutsky 
matrix, is negative semi-definite (NSD).2 The intuition of a NSD Slutsky matrix is: 
for a given utility level ݑ, when a good becomes more expensive, it will be replaced 
by other cheaper alternatives; as a result, the cost increase with the new 
consumption bundle after the price increase will never exceed the cost increase 
when the bundle cannot be altered. 

The Slutsky matrix ൣ߲ଶ݌߲/ܥ௜߲݌௝൧ேൈே, or equivalently ሾ߲݌߲/ݍሿேൈே, is symmetric 
and each term of the matrix is: 

  డ௤೔ሺ௣,௨ሻ

డ௣ೕ
ൌ

డ௫೔ሺ௣,௪ሻ

డ௣ೕ
൅

డ௫೔ሺ௣,௪ሻ

డ௪
,݌௝ሺݔ   ሻݓ (1) 

Equation (1) is the Slutsky equation, which decomposes the impacts of a price 
change on the uncompensated demand ݔ௜ሺ݌,  ሻ into the income effect andݓ
substitution effect, where ݓ is the income (or expenditure) level. With some 
algebra, the Slutsky equation can also be expressed as 

  ௜௝ߪ
௖ ൌ ௜௝ߪ

௠ ൅   ௝ߠ௜ߟ (2) 

where ߪ௜௝
௖ ௜௝ߪ ,

௠,ߟ௜, and ߠ௝ are compensated demand elasticity of commodity ݅ 
with respect to the price of commodity ݆, uncompensated demand elasticity of ݅ 
with respect to the price of ݆, income demand elasticity of ݅, and expenditure share 
of ݆, respectively. If both sides of (2) are divided by ߠ௝, one can come up with a 
Slutsky matrix ൣߪ௜௝൧ேൈே in the form of Allen-Uzawa elasticity of substitution 
(AUES) (Allen and Hicks, 1934; Uzawa, 1962) with 

  ௜௝ߪ ൌ ௜௝ߪ
௠/ߠ௝ ൅   ௜ߟ (3) 

It can be shown that ൣߪ௜௝൧ேൈே is also symmetric, and the matrix is NSD if and 
only if ሾ߲݌߲/ݍሿேൈே is NSD. Therefore, a demand system is regular means 1) the 
Slutsky/AUES matrix ൣߪ௜௝൧ேൈே is NSD; and 2) the Hicksian demand ݍ is non-
negative. For CGE modeling, it is necessary to ensure that the demand system is 
globally regular (i.e., it should remain regular everywhere in the domain of price). 
This is because the algorithm of the solver for finding equilibria may begin from 
an initial point of price and quantity combination that is far from the equilibrium 
levels, and in the process of solving the model, the algorithm might fail if the 
                                                            
2 For example, see p.59 and p.933 in Mas-Colell et al. (1995). 
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demand system is not globally regular, even the system is locally regular at the 
equilibrium points (Perroni and Rutherford, 1998). 

Perroni and Rutherford (1995) defined a regular-flexible demand system as the 
one that is globally regular and can locally represent any valid configuration of 
compensated demands and the AUES matrix ൣߪ௜௝൧ேൈே. Based on an inductive 
argument, Perroni and Rutherford proved that a demand system derived from a 
special version of the non-separable n-stage CES function is regular-flexible. 
Nevertheless, in general, testing whether other demand systems are 
regular-flexible would need to identify the domain of a regular flexible demand 
system first, which is beyond the scope of the current research. Instead of matching 
the entire AUES matrix under a given expenditure share structure, this study will 
focus on the ability of a demand system to match a valid combination of own-price 
demand elasticities, income demand elasticities, and expenditure shares.  

Own-price and income demand elasticities are usually of first-order importance 
in characterizing the model responses to exogenous policy or productivity shocks, 
and are also the most common behavioral parameters available for calibrating a 
demand system. In particular, this study will examine whether a global regular 
demand system under consideration is own-price and income flexible, or 
equivalently, if the system can be calibrated to a valid combination of 
ሺߪ௜௜

௠, ,௜ߟ	  ௜ሻ—the combination that is consistent to any well-behaved cost functionߠ	
(i.e., the aggregation conditions are satisfied, and the AUES matrix is NSD).3 
Ideally, the functional form of a demand system used in a CGE model should not 
become a constraint in matching any valid combination of ሺߪ௜௜

௠, ,௜ߟ	  ,௜ሻ.  Howeverߠ	
usually that is not the case. Note that each of the three components of ሺߪ௜௜

௠, ,௜ߟ	  ௜ሻߠ	
is a N-dimensional vector, and these components (ߪ௜௜

௠, ߟ௜, and ߠ௜) are 
interdependent. For instance, Pigou’s Law states that under certain assumptions 
on preferences, when the sectoral expenditure share ߠ௜ is negligible, there is a 
proportional relationship between the income and uncompensated own-price 
demand elasticities (Pigou, 1910; Snow and Warren, 2015). Because of this 
interdependency, identifying the domain of ሺߪ௜௜

௠, ,௜ߟ	  ௜ሻ is numericallyߠ	
challenging, unless one is willing to consider very few sectors under a given 
distribution of ሼߠ௜ሽ, such as examples shown in Perroni and Rutherford (1998). 
Therefore, in the numerical examples for the CDE calibration provided later, 
                                                            
3 Based on the Slutsky equation (see Equation (2)), if the following information is given: 1) 
expenditure share ߠ௜, 2) target income demand elasticity ߟ௜

௧, and 3) any one of the 
uncompensated own-price demand elasticity target ߪ௜௜

௠௧, compensated own-price demand 
elasticity target ߪ௜௜

௖௧, or compensated own-price demand elasticity target in AUES form ߪ௜௜
௧ , 

then targeting any of the aforementioned three versions of own-price demand elasticities 
is equivalent to targeting another. What matters is to identify the form of the target 
elasticities clearly when doing the calibration job. For example, if one calibrates the 
compensated elasticities to the uncompensated elasticity targets, that would be incorrect.  
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rather than identifying the full space of valid target elasticities and sectoral shares, 
this study will begin by checking whether the target elasticities aggregated from 
the GTAP database with various sectoral resolutions and expenditure share 
structures actually constitute a theoretically valid demand configuration.  

2.2 The CDE Demand System 

Let us consider the expenditure function ܥ with a price vector ݌ and a Hicksian 
demand vector ݍ, i.e., ܿ଴ ൌ ,଴݌ሺܥ ሻݑ ≡ ሼmin ଴ݍ଴݌ : ݂ሺݍ଴ሻ ൒  ሽ where the subscript 0ݑ
denotes the benchmark condition. If the function is normalized by ܿ଴, it becomes 
,଴/ܿ଴݌ሺܥ ሻݑ ≡ 1. With this normalization, Hanoch (1975) proposes the expenditure 
function of a CDE demand system as follows: 

ܥ ቀ
௣

௖బ
, ቁݑ ൌ ∑ ௘೔ݑ௜ߚ

ሺଵିఈ೔ሻ ቀ௣೔
௖బ
ቁ
ଵିఈ೔

௜ ≡ 1   (4) 

where ߙ௜ and ݁௜ are the substitution parameter and expansion parameter, 
respectively. In this setting, the utility ݑ is only implicitly defined, and in general 
there is no reduced form representation for ݑ. The Hicksian demand for 
commodity ݅ based on this setting is: 

௜ݍ ൌ
൤ఉ೔௨

೐೔൫భషഀ೔൯ሺଵିఈ೔ሻቀ
೛೔
೎బ
ቁ
షഀ೔

൨

∑ ఉೕ௨
೐ೕቀభషഀೕቁ൫ଵିఈೕ൯ቀ

೛ೕ
೎బ
ቁ
భషഀೕ

ೕ

   (5) 

For the CDE demand system, the substitution elasticity ߪ௜௝ in AUES form is 
presented in Equation (6), where the expenditure share is denoted by ߠ௜, and ߜ௜௝ ൌ
1 if ݅ ൌ ݆, otherwise ߜ௜௝ ൌ 0. The income elasticity of demand ߟ௜ is presented in 
Equation (7): 

௜௝ߪ ൌ ௜ߙ ൅ ௝ߙ െ ∑ ௞௞ߙ௞ߠ െ
ఋ೔ೕఈ೔
ఏ೔

   (6) 

௜ߟ ൌ ሺ∑ ௞݁௞௞ߠ ሻିଵሾ݁௜ሺ1 െ ௜ሻߙ ൅ ∑ ௞௞ߙ௞݁௞ߠ ሿ ൅ ሺߙ௜ െ ∑ ௞௞ߙ௞ߠ ሻ   (7) 

It can be shown that both Cournot aggregation and Engel aggregation 
conditions hold for these elasticities, i.e., ∑ ௜௝௜ߪ௜ߠ ൌ 0 and ∑ ௜௜ߟ௜ߠ ൌ 1. Note that for 
each off-diagonal term, the difference between the substitution elasticities, 
௜௝ߪ െ ௜௞ߪ ൌ ௝ߙ െ  ௞ , is invariant to ݅ . Hence the name CDE since the demandߙ
system has a constant difference of (substitution) elasticities. The regularity 
condition for the system presented in Hanoch (1975) includes: ߚ௜ ൐ 0; ݁௜ ൐ 0; 0 ൏
௜ߙ ൏ 1 or ߙ௜ ൒ 1	∀	݅ and ߙூ ൐ 1 for some ܫ ∈ ݅. It is worth noting that with the 
regularity condition, each own-price elasticity of demand ߪ௜௜

௖  is always negative. 
This is because from Equation (6) and ߪ௜௜

௖ ൌ  ௜, we haveߠ௜௜ߪ

௜௜ߪ
௖ ൌ െߙ௜ሺ1 െ ௜ሻଶߠ െ ௜ߠ ∑ ௞௞|௞ஷ௜ߙ௞ߠ    (8) 

For a given vector of budget shares, ߠ௜, the requirement that all ߙ௜s should lie 
on the same side of one imposes a constraint in choosing the vector of ߙ௜ such that 
௜௜ߪ
௖  can match the target own-price demand elasticity. For instance, some sectors 



 
 
 

8 
 

may have a very small expenditure share (ߠ௜ → 0) and so for those sectors ߪ௜௜
௖ →

െߙ௜. However, for those sectors, if some target own-price elasticities do not lie on 
the same side of one, it would be impossible to match every single ߪ௜௜

௖  with the 
target elasticity value no matter what regulatory condition on ߙ௜ is chosen. 
Therefore, the CDE demand system is not own-price flexible. Further, the 
requirement of ݁௜ ൒ 0 also suggests that some compromise has to be made in 
calibrating income elasticities of demand. 

3. Calibration, Performance, and Implementation 

Two CDE calibration methods have been presented.  The first is the three-step 
sequential approach documented in Hertel et al. (1991) and Huff et al. (1997).  In 
this approach, own-price demand elasticities are calibrated to target levels first. 
Taking parameters determined in the first step as given, income elasticities of 
demand are calibrated to target levels next, and scale parameters of the system are 
specified last. The second method is the maximum entropy approach presented by 
Surry (1997) and Liu et al. (1998). Rather than calibrating the system sequentially, 
the idea of this approach is finding all parameters simultaneously by maximizing 
an objective function that considers matching both own-price and income 
elasticities of demand. This section will analytically examine the performance of 
CDE calibration (i.e., how well target elasticities can be matched by their calibrated 
counterparts), and then provide numerical examples based on both calibration 
methods. It will also demonstrate how to put the CDE demand system into 
GTAPinGAMS and verify the model response is consistent to the calibrated 
elasticities. 

3.1 Calibration: sequential approach  

 Step 1: Calibrating the own-price elasticity of demand. 

Let us denote the target comopensated own-price elasticity of demand by ߪ௜௜
௖௧. 

The purpose of this step is to choose ߙ௜ so that the objective function ݃ሺߙ௜ሻ ൌ
െ∑ ௜௜ߪ

௖ሺߙ௜ሻሾln	ሺߪ௜௜
௖ሺߙ௜ሻ/ߪ௜௜

௖௧ሻ െ 1ሿ௜  is minimized. Note that ݃ሺߙ௜ሻ is convex in ߙ௜, and 
the function achieves its minimal value when ߪ௜௜

௖ሺߙ௜ሻ ൌ ௜௜ߪ
௖௧ for every ݅.4 The 

problem can be formulated as: 

݉݅݊
ఈ೔

݃ሺߙ௜ሻ	ݏ. .ݐ ௜ߙ ∈ ሺ0, 1ሻ ݎ݋ ௜ߙ ൒ 1 ∀ ݅ ܽ݊݀ ூߙ ൐ 1 ݎ݋݂ ݁݉݋ݏ ܫ ∈ ݅	  (9) 

where ߪ௜௜
௖ሺߙ௜ሻ ൌ െߙ௜ሺ1 െ ௜ሻଶߠ െ ௜ߠ ∑ ௞௞|௞ஷ௜ߙ௞ߠ  (see Equation (8)). 

 Step 2: Calibrating the income elasticity of demand. 

                                                            

4 డ௚
డఈ೔

ൌ
డ௚

డఙ೔೔
೎ ∙

డఙ೔೔
೎

డఈ೔
ൌ ሺെ ln ௜௜ߪ

௖ ൅ ln ௜௜ߪ
௖௧ሻ ∙ ሺെሺ1 െ ሻଶሻ; డߠ

మ௚

డఈ೔
మ ൌ െ

ሺଵିఏ೔ሻ
మ

ఙ೔೔
೎ ൐ 0. 
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Let us denote the target income elasticity of demand by ߟ௜
௧ (ߟ௜

௧ must satisfy the 
Engel aggregation). Given ߙ௜ determined in the previous step, by choosing ݁௜, the 
goal is to calibrate ߟ௜ to ߟ௜

௧ , if possible. Similar to the idea of Step 1, the following 
problem is solved: 

݉݅݊
௘೔|ఈ೔

∑ ௜ߟ௜൫ߠ െ ௜ߟ
௧൯௜
ଶ
.ݏ .ݐ ∑ ௜௜ߟ௜ߠ ൌ 1 ; ሺߟ௜ െ 1ሻ൫ߟ௜

௧ െ 1൯ ൐ 0 & ݁௜ ൐ 0	∀݅   (10) 

The condition ∑ ௜௜ߟ௜ߠ ൌ 1 is to ensure the calibrated elasticities satisfy the Engel 
aggregation, and as noted in Huff et al. (1997), the second condition is to ensure 
the calibrated elasticities lie on the same side of one as the target values. 

 Step 3: Calibrating scale coefficients holding the utility level equals one. 

 With the calibrated ߙ௜ and ݁௜, and the normalization ݑ ൌ ଴௜݌ ,1 ൌ 1, and ݍ଴௜ ൌ
௜ (since ܿ଴ߠ ൌ ∑ ଴௜௜ݍ଴௜݌ ൌ 1), the ܰ scale parameters ߚ௜ can be solved by using (4) 
and (5): 

௜ߚ ൌ
௤బ೔
ଵିఈ೔

/∑
௤బೖ
ଵିఈೖ

௞    (11) 

Because the calibration is done sequentially, how well the income elasticities of 
demand can be matched to target levels is also affected by the calibration of own-
price  elasticities of demand. Appendix A provides the program for the sequential 
approach. The program is written in GAMS, and each minimization problem in 
the program is formulated as a nonlinear programming (NLP) problem. 

3.2 Calibration: maximum entropy approach  

Following the notation used before, in this approach the substitution 
parameters ߙ௜ and the expansion parameters ݁௜ are chosen simultaneously by 
maximizing the objective function, which is the entropy relative to the unknown 
parameters of the CDE demand system. As in the sequential approach, the scale 
parameters ߚ௜ can be calculated once ߙ௜ and ݁௜ are determined (see Equation (11)). 
To provide more details, let us denote the cross entropy of the substitution 
parameter and the cross entropy of the expansion parameter as ߙ௘௧௣ and ݁௘௧௣, 
respectively. The two entropy measures are defined as: 

௘௧௣ߙ ൌ െ∑ ௞ߙ௞ሺߠ ݈݊
ఈೖ
ఈഥ
൅ ሺ1 െ ௞ሻߙ ݈݊

ଵିఈೖ
ଵିఈഥ

ሻ௞    (12) 

݁௘௧௣ ൌ െ∑ ௞݁௞ߠ ݈݊ ݁௞௞    (13) 

Since the calibrated elasticities may deviate from target levels, let us define the 
penalty for errors in the substitution parameters and that for errors in the 
expansions parameters as ߙ௣௡௧ and ݁௣௡௧, respectively: 

௣௡௧ߙ ൌ ∑ ௞ߠ ∙ ሺߪ௞௞
௠ െ ௞௞ߪ

௠௧ሻଶ௞    (14) 

݁௣௡௧ ൌ ∑ ௞ߠ ∙ ሺߟ௞ െ ௞ߟ
௧ ሻଶ௞    (15) 
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The maximum entropy approach is to solve the following problem: 

ݔܽ݉
ఈ೔,௘೔

൛൫݁௘௧௣ ൅ ௘௧௣൯ߙ െ ൫݁௣௡௧ ൅ ௣௡௧൯ൟߙ .ݏ .ݐ ∑ ௞݁௞௞ߠ ൌ 1   (16) 

Interested readers may also refer to Hertel et al. (2014) for details of this 
approach. Note that while results from both calibration methods will be presented 
later, comparing one method with another or assessing which one is preferable is 
beyond the scope of this study, which seeks instead to simply provide numerical 
examples for a set of propositions aimed to guide those seeking to assess the 
performance of CDE calibrations (see Section 3.3). Appendix B presents the GAMS 
program that implements the maximum entropy approach, which is also 
formulated as a nonlinear programming (NLP) problem.5 

3.3 Performance  

Before putting the system into a CGE model, two interesting questions arise: 
under what circumstances does the calibration become more accurate, and how 
well are those target elasticities represented? The following analysis seek to shed 
light on these questions. 
Proposition 3.3.1:  
The lower the expenditure share, the larger the influence of the own-sector substitution 
parameter in determining the calibrated own-price elasticity of demand. On the other hand, 
the higher the expenditure share, the greater the influence of other sectors’ substitution 
parameters in determining the calibrated elasticity. 
Proof: 
௜௜ߪ
௖ ൌ െߙ௜ሺ1 െ ௜ሻଶߠ െ ௜ߠ ∑ ௞௞|௞ஷ௜ߙ௞ߠ ; note that ሺ1 െ  ௜ isߠ ௜ሻଶ is decreasing butߠ

increasing on ߠ௜ ∈ ሺ0, 1ሻ, respectively. Also, note that: ݈݅݉
ఏ೔→଴

௜௜ߪ
௖ ൌ െߙ௜ and ݈݅݉

ఏ೔→ଵ
௜௜ߪ
௖ ൌ

െ∑ ௞௞|௞ஷ௜ߙ௞ߠ  ∎ 
The compensated own-price elasticities of demand presented in GTAP 8 

(Narayanan et al., 2012), from which this study, and many others, draw their data, 
lie between െ1 and 0. Therefore, based on the discussion above, it appears that the 
regularity condition with ߙ௜ ∈ ሺ0,1ሻ produces more accurate calibration results for 
sectors with smaller expenditure shares. With a higher sectoral resolution, more 
commodities/sectors will have smaller expenditure shares, and thus having ߙ௜ ∈
ሺ0,1ሻ will make it possible for producing a better match between calibrated and 
target levels for each individual sector. 

                                                            
5 The author is grateful to Erwin Corong and Thomas Hertel from the Center for Global 
Trade Analysis at the Department of Agricultural Economics in Purdue University for 
sharing the CDE calibration code that implements the maximum entropy approach. The 
code presented in Appendix B follows exactly the same setting as their code, except for the 
fact that some variable names are changed, which makes it easier to read data from 
GTAPinGAMS. 
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Proposition 3.3.2: 
When ߙ௜ ∈ ሺ0, 1ሻ, calibrating the income elasticity of demand to a larger value is less likely 
to violate ݁௜ ൐ 0, which is part of the CDE regularity conditions. On the other hand, when 
௜ߙ ൐ 1, calibrating the elasticity to a lower level is less likely to violate ݁௜ ൐ 0. 
Proof: 

From Equation (7), ݁௜ ൌ
ሼ∑ ఏೖ௘ೖೖ ሾఎ೔ିሺఈ೔ି∑ ఏೖఈೖೖ ሻሿି∑ ఏೖ௘ೖఈೖೖ ሽ

ଵିఈ೔
. Since డ௘೔

డఎ೔
ൌ

∑ ఏೖ௘ೖೖ

ଵିఈ೔
, ∴ డ௘೔

డఎ೔
൐

0 if ߙ௜ ∈ ሺ0, 1ሻ, and డ௘೔
డఎ೔

൏ 0 if ߙ௜ ൐ 1 ∎ 

If one considers ߙ௜ ∈ ሺ0, 1ሻ, the second proposition suggests that matching the 
target income elasticities for the demand of agricultural products in developed 
countries might be trickier, since in general these products tend to have lower 
income elasticity values; as a result, the calibrated income demand elasticities for 
these products might end up with levels higher than the target numbers. 
Nevertheless, the values of ߙ௜ may also affect how well the target income elasticities 
of demand are met, as will be explored in the next proposition.  
Proposition 3.3.3: 
When ߙ௜ ∈ ሺ0, 1ሻ, calibrating the income elasticity of demand to a target level is less likely 
to violate ݁ ௜ ൐ 0 with a smaller ߙ௜. On the other hand, when ߙ௜ ൐ 1, calibrating the elasticity 
to the target level is less likely to violate ݁௜ ൐ 0 with a larger ߙ௜. 
Proof: 

݁௜ ൌ ሼ∑ ௞݁௞௞ߠ ሾߟ௜ െ ሺߙ௜ െ ∑ ௞௞ߙ௞ߠ ሻሿ െ ∑ ௞௞ߙ௞݁௞ߠ ሽ/ሺ1 െ ௜ሻ. Since డ௘೔ߙ
డఈ೔

ൌ
ଵ

ଵିఈ೔
ሾሺെ1 ൅

∑௜ሻߠ ௞݁௞௞ߠ െ ∴ ,௜݁௜ሿߠ
డ௘೔
డఈ೔

൏ 0 if ߙ௜ ∈ ሺ0, 1ሻ, and డ௘೔
డఈ೔

൐ 0 if ߙ௜ ൐ 1 ∎ 

Continuing our previous example for commodities with low income elasticities 
of demand and with ߙ௜ ∈ ሺ0, 1ሻ, while Proposition 3.3.2 says that for given values 
of ߙ௜, it is harder to calibrate the income elasticity of demand to a lower value, 
Proposition 3.3.3 suggests that if the calibrated ߙ௜ is small enough, it is still possible 
to calibrate the income elasticity of demand to a lower level. 
Proposition 3.3.4: 
Commodities with substitution parameters ߙ௜ close to one will have similar calibrated 
income elasticities of demand. 
Proof: 
From Equation (7), lim

ఈ೔→ଵ
௜ߟ ൌ ∑ ௞௞ߙ௞݁௞ߠ /∑ ௞݁௞௞ߠ ൅ 1 െ ∑ ௞௞ߙ௞ߠ ൌ lim

ఈೕ→ଵ
 ∎ ௝ߟ

Proposition 3.3.4 shows that the calibrated ߙ௜ may work against the calibration 
of income elasticities of demand. For instance, if there are two commodities with 
 ௝ both approaching unity, according to the proposition, the calibratedߙ ௜ andߙ
income elasticities of demand ߟ௜ and ߟ௝ will be very close to each other, even if 
their target values ߟ௜

௧ and ߟ௝
௧ are quite different. The four propositions presented 

above are summarized in Table 1. 
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Table 1. Summary of Propositions relating to CDE Calibration. 
Proposition Argument 

3.3.1 
 
 

 

The lower the expenditure share, the larger the influence of own-sector 
substitution parameter in determining the calibrated own-price 
elasticity of demand. On the other hand, the higher the expenditure 
share, the greater the influence of other sectors’ substitution parameters 
in determining the calibrated elasticity. 

3.3.2 
 
 

 
When ߙ௜ ∈ ሺ0, 1ሻ, calibrating the income elasticity of demand to a larger 
value is less likely to violate ݁௜ ൐ 0, which is part of the CDE regularity 
condition. On the other hand, when ߙ௜ ൐ 1, calibrating the elasticity to a 
lower level is less likely to violate ݁௜ ൏ 0.  

3.3.3 
 
 

 
When ߙ௜ ∈ ሺ0, 1ሻ, calibrating the income elasticity of demand to a target 
level is less likely to violate ݁௜ ൐ 0 with a smaller ߙ௜. On the other hand, 
when ߙ௜ ൐ 1, calibrating the elasticity to the target level is less likely to 
violate ݁௜ ൐ 0 with a larger ߙ௜. 

 
3.3.4 

 

 
Commodities with substitution parameters α୧ close to one will have 
similar calibrated income elasticities of demand. 

Source: The author’s summary for the propositions presented in Section 3.3. 

To show how different sectoral aggregation levels could affect the accuracy of 
elasticity calibration, the study considers several different aggregation levels 
(Table 2). The mapping between the GTAP sector numbers shown in Table 2 and 
their abbreviations are presented in Appendix C. For demonstration purposes, all 
GTAP regions are combined into a single region using the aggregation routine of 
GTAPinGAMS. In particular, wherever needed, target elasticities are aggregated 
based on expenditure shares. It is worth noting that the 10-sector income demand 
elasticity estimates based on an AIDADS system were mapped to and used as the 
target income demand elasticities of the original GTAP database, and following 
Zeitsch et al. (1991), income demand elasticities are then used to compute the own-
price demand elasticities of the database, as documented in Hertel et al. (2014).6 

 

 

 

 

                                                            
6 Interested readers may refer to page 14-6, Table 14.5 and Table 14.6 in Hertel et al. (2014) 
for details. 
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Table 2. Settings for calibration exercises with various sectoral aggregation levels. 

Aggregation 
level Setting 

1r3s2f 
 
 

3 sectors: combine GTAP sector 1 (g01) to sector 14 (g14) & sector 22 
(g22) to sector 26 (g26) into s01 (agriculture); g15 to g21 & g27 to g46 
into s02 (manufacturing); and g47 to g57 into s03 (service) 

1r4s2f 
 
 

 
4 sectors: similar to “1r3s2f” except for the fact that the service sector in 
“1r3s2f” is disaggregated into trade and transport sector (g47 to g51) 
and service sector (g52 to g57).  

1r5s2f 
 

 
5 sectors: combine g01 to g17 into s01; g18 to g27 into s02; …; g48 to g57 
into s05 

 
1r8s2f 

 

 
8 sectors: combine g01 to g15 into s01; g16 to g21 into s02; …; g52 to g57 
into s08 

1r16s2f 
 

 
16 sectors: combine g01 to g12 into s01; g13 to g15 into s02; g16 to g18 
into s03; …; g55 to g57 into s16 

1r29s2f 
 

 
29 sectors: combine g01 & g02 into s01; g03 & g04 into s02; …; g55 & 
g56 into s28; g57 becomes s29 

  
1r57s2f 57 sectors: keep the original GTAP sectors (g01 to g57) 

Notes: All settings have one aggregated region and two aggregated primary factors: labor and 
capital. 

To assess the calibration performance for each type of elasticity, in addition to 
a one-by-one comparison between calibrated and target numbers for each 
commodity, it is informative to have an index for measuring how far the point of 
calibrated elasticities is from the point of target elasticities as follows: 

݀ ൌ ට∑ ௜ߠ ∙ ൫ݔ௜ െ ௜ݔ
௧൯
ଶே

௜ୀଵ    (17) 

Depending on the type of elasticity evaluated, ݔ௜ in Equation (17) could be 
either the own-price elasticity of demand ߪ௜௜

௖  or the income elasticity of demand ߟ௜, 
while the superscript ݔ௜

௧ denotes target value. 
When the 57 GTAP sectors are aggregated into a 3-sector setting, even the 

smallest sectoral expenditure share, denoted by ߠ௠௜௡ approximates 12%, and with 
this setting the largest share ߠ௠௔௫ exceeds 63%. As the sectoral resolution increases, 
the absolute difference between ߠ௠௔௫ and ߠ௠௜௡ is reduced. In the most 
disaggregated case where all 57 GTAP sectors are kept, ߠ௠௔௫ is slightly above 17% 
and ߠ௠௜௡ is only 0.0002% (Table 3). Per compensated own-price demand elasticity 
targets, the range between the largest one ߪ௠௔௫௖௧  and the smallest one ߪ௠௜௡

௖௧  increases 
as the sectoral resolution gets higher, since more disaggregation means extreme 
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values are more likely to appear. In general, ߪ௠௔௫௖௧  becomes larger (|ߪ௠௔௫௖௧ | becomes 
smaller, i.e., less elastic) and ߪ௠௜௡

௖௧  becomes smaller (|ߪ௠௜௡
௖௧ | becomes larger, i.e., 

more elastic) as the sectoral resolution increases. The same story applies to the 
income demand elasticity targets—with more disaggregated sectors, the range 
between ߟ௠௔௫௖௧  and ߟ௠௜௡

௖௧  increases as ߟ௠௜௡
௖௧  becomes smaller (less elastic) and/or 

௠௔௫௖௧ߟ  becomes larger (more elastic). 
When trying to calibrate the CDE demand system to the target own-price 

demand elasticities, it is important to verify if there exists an AUES matrix that is 
NSD and is compatible to those elasticity targets. For instance, with the 3-sector 
setting, based on Cournot aggregation, the three off-diagonal terms of the AUES 
matrix are fully determined once the own-price demand elasticities in AUES form 
(i.e., the diagonal terms of the matrix) are given, and hence the whole AUES matrix 
is identified. However, given the target own-price demand elasticities in this 
particular example, one cannot find an AUES matrix that is NSD, which means the 
target own-price demand elasticities are invalid, and one cannot claim the CDE 
demand system is not own-price flexible based on this setting. On the other hand, 
in the 4-sector, 5-sector, 8-sector, and 16-sector settings, it can be shown that under 
each setting, the target own-price demand elasticities are compatible to an AUES 
matrix that is NSD, and therefore the target elasticities are valid. More specifically, 
if one denotes the number of sectors/commodities by ݊, there will be ݊ ∙ ሺ݊ െ 1ሻ/2 
variables (cross-price demand elasticities in AUES form) that are off-diagonal 
terms in an AUES matrix, and after considering ݊ constraints imposed by the 
Cournot aggregation, there will be ݊ ∙ ሺ݊ െ 1ሻ/2 െ ݊ variables that can be assigned 
by using random number generators, provided that the diagonal terms 
(compensated own-price demand elasticities in AUES form) are given. The 
remaining ݊ variables can be solved based on the aforementioned ݊ constraints. 
The task can be done iteratively, and if a NSD AUES matrix can be found, then the 
target own-price demand elasticities are valid. The MATLAB subroutine for doing 
this job is presented in Appendix D. For income demand elasticity targets, on the 
other hand, they are valid as long as the Engel aggregation is satisfied. 

Since sectoralown-price demand elasticity targets are all between 0 and 1, in all 
cases, to calibrate the CDE demand system, similar to Huff et al. (1997), the study 
chooses ߙ௜ ∈ ሺ0, 1ሻ, a setting that produces a more accurate own-price demand 
elasticity calibration when the sectoral resolution becomes higher or the sectors 
under consideration have smaller expenditure shares, based on Proposition 3.3.1. 
It is worth noting that since the CDE demand system is regular, under each 
sectoral aggregation setting presented in Table 2, the calibrated own-price and 
cross-price demand elasticities always constitute a valid AUES matrix, regardless 
of whether the target own-price demand elasticities can form a valid AUES matrix. 
For instance, while the target own-price demand elasticities under the 3-sector 
setting do not constitute a valid AUES matrix, one can still try to calibrate the CDE 
demand system to those targets, and although the calibrated own-price demand 
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elasticities will not (and should not) match those invalid targets, they (the 
calibrated elasticities) will produce a valid AUES matrix (calibration results with 
the 3-sector setting are included in Table 3). As mentioned, what one cannot do is 
to use those invalid targets to assess the performance of CDE calibration.  

The study finds that with the 4-sector, 5-sector, 8-sector, and 16-sector settings, 
although the target elasticities are valid, under both calibration methods, the 
calibrated own-price demand elasticities cannot match their target levels since the 
corresponding distance measure ݀ఙ is nonzero for each case. Nevertheless, in 
general, ݀ ఙ gets smaller as the sectoral resolution increases (Table 3). Indeed, if one 
moves further to the 29-sector or 57-sector settings, a perfect match between the 
calibrated own-price demand elasticities and their target levels is possible since in 
both sectoral settings ݀ఙ ൌ 0 under the sequential approach and ݀ఙ → 0 under the 
maximum entropy approach. Also, as sectoral shares get smaller, the calibrated 
own-price demand elasticity ߪ௜௜

௖  will be closer to െߙ௜ (Appendix E and Appendix 
F). These findings can also be explained by Proposition 3.3.1. 

The results also show that for both calibration methods, the calibrated income 
elasticities of demand are matched to their target levels more precisely than the 
cases for calibrated own-price demand elasticities (Table 3). According to 
Propositions 3.3.2 and 3.3.3, under the same ߙ௜, a bigger ߟ௜

௧ is more achievable, and 
under the same ߟ௜

௧, a smaller ߙ௜ makes match ߟ௜
௧ easier. For both calibration 

methods, if one looks at the substitution parameter ߙ௜ and the income demand 
elasticity target ߟ௜

௧, they are strongly positively correlated (Figure 1), which means 
under the given data, a bigger ߙ௜ may be less of a problem since the relevant 
income demand elasticity target ߟ௜

௧ also tends to be higher, and at the same time a 
smaller ߟ௜

௧ also tends to be coupled with a smaller ߙ௜, which may raise the 
possibility of a precise income demand elasticity match.7 Another finding is that 
under both calibration methods, in general, ߟ௜

௧ is matched more precisely when 
sectors become more disaggregated. This is mainly due to the fact that with more 
disaggregated sectors, the given data tend to yield smaller ߙ௜, the substitution 
parameters of the CDE demand, while there is no obvious trend for the income 
demand elasticity targets ߟ௜

௧ (Figure 1), and Proposition 3.3.3 explains why ߟ௜
௧ can 

be matched better in this case. In fact, under the sequential approach with 29-sector 
and 57-sector settings, a perfect match between calibrated and target income 
demand elasticity can be achieved. Finally, regardless of calibration methods, 
when there are multiple sectors with their own ߙ௜ close to 1, the calibrated income 
demand elasticities will converge to the same level, despite the fact that the target 

                                                            
7 The strong positive correlation between ߙ௜ and the ߟ௜

௧ goes back to the fact that in the 
GTAP database, only the income elasticities of demand are estimated. The own-price 
demand elasticities are obtained from a Frisch parameter, using the assumption of 
additivity, as shown in Zeitsch et al. (1991). Interested readers may refer to p.14-6 in Hertel 
et al. (2014) for details. 
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elasticity levels are different (Appendix E and Appendix F). Proposition 3.3.4 
provides an explanation to this observation. 

  

Table 3. Summary statistics, calibration performance, and validity of the AUES matrix. 
Setting 1r3s2f 1r4s2f 1r5s2f 1r8s2f 1r16s2f  1r29s2f  1r57s2f  
Number of sectors 3 4 5 8 16  29  57  

        
Summary statistics of targets        
Sectoral expenditure share        

 ௠௔௫ 63.430% 39.553% 46.242% 39.553% 26.481% 20.440% 17.186%ߠ
 ௠௜௡ 11.779% 11.779% 3.432% 2.279% 0.092% 0.017% 0.0002%ߠ

Own-price demand elasticity        
௠௔௫௖௧ߪ  -0.4294 -0.4294 -0.2056 -0.1942 -0.1669 -0.0936 -0.0711 
௠௜௡ߪ
௖௧  -0.7658 -0.7800 -0.7608 -0.7800 -0.7974 -0.7957 -0.8095 
௔௩௚௖௧ߪ  -0.6201 -0.6542 -0.5807 -0.6022 -0.6093 -0.5331 -0.5294 
௦௧ௗߪ
௖௧  0.1410 0.1363 0.2064 0.1813 0.1634 0.2269 0.2220 

Income demand elasticity        
௠௔௫௧ߟ  1.0502 1.0543 1.0513 1.0543 1.0987 1.0916 1.1190 
௠௜௡ߟ
௧  0.7300 0.7300 0.5504 0.5387 0.4874 0.3382 0.2704 
௔௩௚௧ߟ  0.9267 0.9569 0.8947 0.9181 0.9457 0.8851 0.8970 
௦௧ௗߟ
௧  0.1406 0.1326 0.1920 0.1708 0.1547 0.2344 0.2272 

        
Calibration: sequential        
Match each ߪ௜௜? no no no no no yes yes 

݀ఙ 0.3526 0.1321 0.1879 0.1441 0.0406 0.0000 0.0000 
Match each ߟ௜௜? no no no no no yes yes 

݀ఎ 0.2363 0.0080 0.0041 0.0081 0.0131 0.0000 0.0000 
        
Calibration: max entropy        
Match each ߪ௜௜? no no no no no no no 

݀ఙ 0.3578 0.1322 0.1856 0.1427 0.0405 0.0024 0.0017 
Match each ߟ௜௜? no no no no no no no 

݀ఎ 0.0815 0.0382 0.0971 0.0842 0.0243 0.0070 0.0051 
        
Validity of the AUES matrix 
based on target elasticities  

 
     

௜௜ߪ
௖௧ compatible to a NSD 

AUES? no yes yes yes yes yes yes 
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Figure 1. Summary statistics for income demand elasticity targets and 
substitution parameters. 

Notes: “avg” and “std” stand for mean and standard deviation, respectively. 

Source: The author’s calculation based on the GTAP 8 database. 

3.4 Implementation  

With the calibrated parameters, the study demonstrates how to put the CDE 
demand system into the multi-region and multi-sector CGE model of 
GTAPinGAMS. The original CGE model is constructed based on CES technologies 
for both production and final consumption. It includes a series of mixed 
complementary problems (MCP) (Mathiesen, 1985; Rutherford, 1995; Ferris and 
Peng, 1997) written in MPSGE, a subsystem of GAMS (Rutherford, 1999). To 
implement the CDE demand system, the CES expenditure function is dropped, 
and by declaring auxiliary variables and equations in MPSGE to formulate 
relevant MCP, three sets of conditions below are incorporated into the revised 
model:  

 The equation for total expenditure. The total expenditure ܿ for purchasing 
one unit of utility (Equation (4)) is added into the model to form a MCP 

0.0

0.2

0.4

0.6

0.8

1.0

Correlation coefficient between the substitution 
parameter and the target income demand 

elasticity

sequential maximum entropy

0.0

0.2

0.4

0.6

0.8

1.0

Mean and standard deviation for the income 
demand elasticity

eta_target_avg eta_target_std

0.0

0.2

0.4

0.6

0.8

1.0

Mean and standard deviation for the 
substitution parameter: sequential approach

alpha_avg alpha_std

0.0

0.2

0.4

0.6

0.8

1.0

Mean and standard deviation for the 
substitution parameter: maximum entropy 

approach

alpha_avg alpha_std



 
 
 

18 
 

with a complementarity variable ܿ. Note that in Equation (4), ܿ is only 
implicitly defined. The purpose of this problem is to determine ܿ jointly 
with other conditions. As previously mentioned, in the benchmark, both 
the utility level and price indices of commodities are normalized to unity. 

 The equation for final demand. This equation (Equation (5)) is coupled with 
its complementarity variable, the activity level of final demand, to form a 
MCP. The problem is incorporated into the model to solve for the final 
demand of each commodity. 

 The  zero  profit  condition  for  utility. Let us denote the marginal cost and 
marginal revenue of utility (i.e., price of utility) by ݉ܿݑ and ݑ݌, 
respectively.8 The zero profit condition of utility and the activity level of 
utility compose another MCP: 

ݑܿ݉ ൒ ;ݑ݌ ݑ ൒ 0; ሺ݉ܿݑ െ ሻݑ݌ ∙ ݑ ൌ ݑܿ݉;0 ൌ
௖∑ ఉ೔௘೔ሺଵିఈ೔ሻ௨

೐೔൫భషഀ೔൯షభቀ
೛೔
೎
ቁ
భషഀ೔

೔

∑ ఉ೔ሺଵିఈ೔ሻ௨
೐೔൫భషഀ೔൯ቀ

೛೔
೎
ቁ
భషഀ೔

೔

  
(18) 

Condition (18) states that in equilibrium, if the supply of utility ݑ is positive, 
the marginal cost of utility mcu must equal the marginal revenue ݑ݌, and if mcu is 
higher than pu in equilibrium, ݑ must be zero. 

With the commodity price being a complementarity variable, the market 
clearing condition of each commodity is also formulated as a MCP by comparing 
the commodity supply (determined by its zero profit condition) with the final 
demand shown above plus the intermediate demand derived from a CES cost 
function as the original GTAPinGAMS. Similarly, with the price of utility being 
the complementarity variable, the supply of utility combined with the demand for 
utility (income/ݑ݌) make up the MCP for the market clearing condition of utility. 
The model code is provided in Appendix G, and interested readers may refer to 
Rutherford (1999) and Markusen (2013) for details of MPSGE.  

For demonstration purposes, the study considers a setting with the aggregation 
level of two regions, four sectors, and one primary factor, and denotes this setting 
by “2r4s1f.” The two regions are USA and the rest of the world (ROW); four sectors 
are agriculture (agri), manufacturing (man), trade and transport (tran), and service 
(serv), following the sectoral classification for the setting “1r4s2f” presented in 
Table 2; and the only one primary factor is the aggregation of all primary factors 
of GTAP8.9 As before, prior to conduct and evaluate the CDE calibration, one 

                                                            
 in Condition (18) can be derived by taking the total derivative of Equation (4) with ݑܿ݉ 8
respect to ݑ and ܿ at a given commodity price vector. 
9 With a very extreme sectorial expenditure share distribution (such as the final 
consumption structure of 0.0007, 30.7722, 0.00002, and 191.5950 billion US$ for coal, gas, 
crude oil, and refined oil products for the U.S. extracted from GTAP 8), as of GAMS version 
23.7.3, the MCP solvers may encounter numerical issues in solving the model. 



 
 
 

19 
 

needs to check if the target elasticities under this setting (2r4s1f) are consistent to 
an AUES matrix that is NSD, and it can be shown that this is indeed the case (the 
NSD AUES matrix can be found numerically based on the subroutine presented 
in Appendix D). Taking the sequential approach as an example, Table 4 presents 
the calibration performance for the CDE demand system under the 2-region and 
4-sector setting. 

Table 4. Performance of the CDE Calibration under the setting “2r4s1f” 

௜௜ߪ ௜ ݁௜ߙ ௜ߠ 
௖௧ ߪ௜௜

௖௖ ߟ௜
௧ ߟ௜

௖ 
Region: USA        

agri 0.04909 0.70623 2.00000 -0.67034 -0.68528 0.81292 0.99981 
manu 0.18381 0.99999 0.00000 -0.82044 -0.81353 0.99514 1.00000 
tran 0.20250 0.99999 0.00000 -0.85294 -0.79457 1.01152 1.00000 
serv 0.56460 0.99999 3.37090 -0.85273 -0.42725 1.01372 1.00002 
Distance         0.32082   0.04303 

Region: 
ROW 

       

agri 0.14694 0.38159 2.95186 -0.39520 -0.39795 0.71822 0.71822 
manu 0.27510 0.87414 3.04606 -0.62097 -0.63376 1.00104 1.00104 
tran 0.25415 0.99999 3.38127 -0.70506 -0.71395 1.05431 1.07114 
serv 0.32380 0.99999 14.65377 -0.72614 -0.63556 1.08436 1.07115 
Distance         0.05218   0.01133 

Source: The author’s calculation based on the GTAP 8 database. 

Let us parameterize the revised CGE model of GTAPinGAMS, based on 
calibrated parameters in Table 4. In the model, the aggregated primary factor along 
with the choice of the numeraire, which is the price for the aggregated primary 
factor, facilitate the identification of income effect. Now, to verify whether the CDE 
demand system is correctly implemented, the study will test if the outputs of the 
CGE model are consistent to the underlying calibrated elasticities under given price 
or income shocks. For example, with the shock on the price of agricultural product 
in the U.S., the first exercise changes the cost of final consumption for agricultural 
product in the U.S. exogenously to create the considered price shock.10 The goal is 
to calculate the uncompensated (Marshallian) own-price arc elasticity for the 
demand of agricultural product based on the model response, and see if the realized 
elasticity from the model output is consistent to the calibrated level.  

Table 4 shows that while the target own-price elasticity of demand for the 
agricultural product is ߪ௜௜

௖௧ ൌ െ0.6703, the calibrated own-price demand elasticity 
is ߪ௜௜

௖௖ ൌ െ0.6853. The target is not matched precisely due to the fact that CDE 
demand is not own-price flexible. Besides, since with a nontrivial price shock 

                                                            
10 For instance, in the revised CGE model of GTAPinGAMS, a 10% increase in the price of 
agricultural product is achieved by multiplying both vdfm(“agri”, c, “usa”) and vifm 
(“agri”, c, “usa”) in GTAPinGAMS by 1.1. Note that in GTAPinGAMS, both vdfm and vifm 
are redefined in a way such that both intermediate and final consumption are considered.  
For example, vdfm(i,g,r) means the domestically produced good i is used by g in region r, 
where g includes both users from industrial sectors and from final consumption. 



 
 
 

20 
 

imposed on the CGE model, it is more convenient to derive a “realized” 
uncompensated arc demand elasticity based on the model’s output, for 
comparison purposes, the study will also convert the calibrated own-price 
demand elasticity ߪ௜௜

௖௖, which is a compensated point elasticity, into an 
uncompensated arc demand elasticity with the same price shock so one can easily 
compare the realized level to the calibrated one.  Note that while changes in 
expenditure share may change the point elasticity levels of both own-price and 
income elasticities of demand, for simplicity, this study uses the point elasticity 
level under the original expenditure share to derive the arc elasticity since changes 
in the structure of expenditure share are relatively moderate under the considered 
shocks. Besides, it is the calibrated income demand elasticity, rather than its target 
level, that is used in the calculation of the uncompensated own-price demand 
elasticity. 

The calibrated uncompensated own-price demand elasticity, ߪ௜௜
௠ ൌ െ0.7344 (a 

point elasticity), can be derived from ߪ௜௜
௖  ௜ based on the Slutsky equationߠ ௜, andߟ ,

presented in Equation (2). Let us consider the quantity index ݍ෤௜ ൌ  ௜ with theߠ/௜ݍ
benchmark level ݍ෤଴௜ ൌ 1 since ݍ௢௜ ൌ  ௜ (see Step 3 in Section 3.1). Because theߠ
percentage change in ݍ෤௜ is equivalent to the percentage change in ݍ௜, ݍ෤௜ can replace 
௜௜ߪ ௜ in deriving the uncompensated (Marshallian) arc demand elasticityݍ

௠௔—with 
both price and quantity indices normalized to unity, the arc elasticity ߪ௜௜

௠௔ can be 
expressed as:11 

௜௜ߪ
௠௔ ൌ

௤೔ି௤೔
బ

ሺ௤೔ା௤೔
బሻ/ଶ

/
௣೔ି௣೔

బ

ሺ௣೔ା௣೔
బሻ/ଶ

ൌ
௤೔ିଵ

௣೔ିଵ
∙
௣೔ାଵ

௤೔ାଵ
ൌ

௣೔
഑೔೔
೘
ିଵ

௣೔ିଵ
∙
௣೔ାଵ

௣೔
഑೔೔
೘
ାଵ

   (19) 

where ݌௜ is the after-shock price level. When various price shocks of agricultural 
product are in place, the values for ߪ௜௜

௠௔ (the calibrated Marshallian arc demand 
elasticity) and the realized arc elasticity levels ߪ௜௜

௠௔௥ (derived from the model 
output) are both presented in Figure 2. Note that with the exogenous price shocks 
in agricultural product, in the new equilibrium, one may also observe changes in 
prices of other commodities relative to their pre-shock levels, and this will in turn 
affect the equilibrium food consumption level due to the existence of cross-price 
elasticities of food demand. The exogenous price shock may also induce an income 
effect as reflected by the change in total (final) expenditure level. Therefore, to 
calculate ߪ௜௜

௠௔௥, the consumption index ݍ෤௜ is adjusted such that it is net of the cross-
price and income effects.12 The result in Figure 2 shows that, as expected, the larger 

                                                            

௜௜ߪ 11
௠ ൌ

ௗ௤೔
௤೔
/
ௗ௣೔
௣೔
	.  Therefore ׬ ௜ݍ/௜ݍ݀

௤೔
௤೔
బ ൌ ׬ ௜௜ߪ

௠݀݌௜/݌௜
௣೔
௣೔
బ , and so ݍ௜ ൌ ௜݌

ఙ೔೔
೘

. 
12 To calculate the “realized” Marshallian arc own-price demand elasticity from the CGE 
model’s output, ߪ௜௜

௠௔௥, the following steps are done: 1) step 1: calculate the substitution 
effect due to changes in all prices but the own-price based on prices change and the 
theoretical cross-price arc demand elasticity ߪ௜௝

௠௔. The calculation is conditional on the 
original income level and the new (after shock) own-price level; 2) step 2: calculate the 
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the price shock, the more the arc elasticity deviates from the point elasticity ߪ௜௜
௠, 

which is the calibrated level without any price shock in the figure. Figure 2 also 
verifies that the uncompensated arc demand elasticity ߪ௜௜

௠௔௥ calculated from the 
model output replicates its calibrated counterpart ߪ௜௜

௠௔. 

 

Figure 2. Own-price arc elasticity for the demand of agricultural product in 
the U.S. 

The study continues to examine the model response under various income 
shocks in the U.S. The shocks are created by changing the quantity of the 
aggregated primary factor of the U.S., which is just the real GDP level of the U.S. 
Since GDP is not only spent on private consumption, to calculate the income 
elasticities of various commodities based on the model response, one needs to use 
the percentage change in the portion of income dedicated to private consumption, 
or equivalently, the percentage change in total expenditure on private 
consumption. Following the same logic as Equation (19), the income arc demand 
elasticity can be written as: 

௜ߟ
௔ ൌ

௖ആ೔ିଵ

௖ିଵ
∙
௖ାଵ

௖ആ೔ାଵ
 ; ܿ is the after-shock income level   (20) 

Under various levels of income shock, Equation (20) is used to convert the 
calibrated point elasticity into the calibrated arc elasticity, which serves as the 
benchmark for the comparison between the realized arc elasticity from model 
outputs and the calibrated level the model is given. Finally, as the previous 
example, the new equilibrium with an income shock will generally accompany 
changes in price levels of various commodities. This means that the resulting 
consumption levels will be contaminated by changes in prices, although these 

                                                            
income effect on top of changes in all prices; based on the theoretical elasticities ߟ௜

௔ and 
௜௝ߪ
௠௔; 3) step 3: calculate the adjusted demand net of cross-price effect calculated from 

step 1 and income effect calculated from step 2, and then calculate ߪ௜௜
௠௔௥ accordingly. 
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changes are usually small. The study accounts for this price effect and removes it 
from the consumption levels, and then for each commodity, uses the percentage 
change of the adjusted consumption level as the numerator of the income demand 
elasticity.13 Figure 3 demonstrates that for the final consumption of agricultural 
product, the realized income arc demand elasticity levels, as expected, replicate 
their calibrated counterparts. The two exercises presented here can be extended to 
other sectors and regions. For instance, with this 2-region and 4-sector setting, 
most of the calibrated income demand elasticities are close to one, although the 
target income demand elasticities can significantly deviate from one (Table 4). One 
exception is the income demand elasticity for the agricultural product in the rest 
of the world, ߟ௜

௖ ൌ 0.7182 (Table 4). For this elasticity, the calibrated elasticity and 
the realized numbers are matched as well (Figure 4). 

 

Figure 3. Income arc elasticity for the agricultural product demand in the 
U.S. 

                                                            
13 To calculate the “realized” income arc demand elasticity from the model’s output, ߟ௜

௔௥, 
the following steps are done: 1) step 1: calculate the expected quantity level due to pure 
income effect, based on changes in income level and the theoretical income arc demand 
elasticity ߟ௜

௔; 2) step 2: under the expected quantity derived from the pure income effect 
calculated in step 1, calculate the quantity changes due to changes in all prices, based on 
prices changes and the theoretical own-price and cross-price arc demand elasticity ߪ௜௝

௠௔; 
3) step 3: subtract the quantity change due to price effect calculated in step 2 from the 
observed quantity of model output, and then calculate ߟ௜

௔௥ accordingly. 
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Figure 4. Income arc elasticity for the agricultural product demand in the rest of world 

4. Conclusion 

This paper provides the first comprehensive investigation of the circumstances 
under which the calibrated own-price and income elasticities of demand in a CDE 
demand system can be matched more accurately to their target levels. It finds that 
while the system is neither own-price nor income flexible, the elasticity match 
improves with smaller sectoral expenditure shares (i.e., higher sectoral resolution), 
lower target own-price demand elasticities, and higher target income demand 
elasticities. In any case, to understand the extent to which the elasticity targets are 
correctly represented in a CGE model, it is crucial to check whether the target 
elasticities are valid (i.e., compatible to aggregation conditions and a NSD AUES 
matrix), and disclose how well the calibrated elasticities match their target 
counterparts. Without having these inspections, when the calibrated elasticities 
deviate from target levels, it will not be possible to determine if that is due to 
targeting elasticity levels that are invalid, or if the inflexibility of the demand 
system is indeed the cause of the mismatch. For modelers who need to make sure 
the target income or own-price demand elasticities are reasonable, they can apply 
the program presented in Appendix D, which tests if the Engel aggregation is 
satisfied to ensure income demand elasticity targets are valid, and conditional on 
the satisfaction of Cournot aggregation, it also checks if a NSD AUES matrix can 
be found to verify the legitimacy of own-price demand elasticity targets. 

In addition, using GTAPinGAMS, the study also incorporates the CDE demand 
system into a global CGE model written in MPSGE. Furthermore, price and 
income shocks are imposed on this revised GTAPinGAMS, and the model outputs 
successfully replicate the calibrated elasticities of the CDE demand system. Since 
implementing a CDE demand could be complicated and error-prone, future 
studies may examine if other CGE applications with the CDE demand can produce 
results in line with the calibrated elasticities, or they may investigate the flexibility 
and calibration performance of other demand systems—these issues are rarely 
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studied yet essential because a more flexible demand system can better represent 
a set of valid target elasticities observed empirically, and allows CGE models to 
produce results more consistent to the underlying characteristics of the economy. 
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Appendix A. The CDE calibration program: sequential approach14 
$title  Calibrate a CDE Demand System using GTAP data 
 
$if not set ds $set ds g20 
$if not set datadir $set datadir .\input\ 
$if not set wt $set wt 0 
$include gtap8data_old 
 
set     info    Information about this calibration / 
        ds      "%ds%", 
        datadir "%datadir%", 
        workdir "%gams.workdir%" 
        date    "%system.date%" 
        time    "%system.time%" /; 
 
alias(i,j,k); 
 
set rr(r) dynamic subset of r; 
rr(r) = no; 
 
parameters 
z(i,r)        normalized price 
theta(i,r)    value share in final demand 
vafm(i,r)     Aggregate final demand, 
delta(i,j,r)  diagonal-one off-diagonal-zero 
sigma(i,j,r)  Allen partial elasticity of substitution 
epsilon_(i,r) targeted own-price elasticity of demand 
eta_(i,r)     targeted income elasticity of demand 
p0(i,r)       benchmark price index 
q0(i,r)       benchmark consumption level 
c0(r)         expenditure level 
mc0(r)        marginal cost when u is one 
weight(i,r)   weight for the square distance 
beta(i,r)     scale coefficient 
 
; 

 
vafm(i,r) = vdfm(i,"c",r)*(1+rtfd0(i,"c",r))+vifm(i,"c",r)*(1+rtfi0(i,"c",r)); 
theta(i,r) = vafm(i,r) / (vom("c",r)*(1-rto("c",r))); 
abort$sum(r, round(abs(1-sum(i,theta(i,r))),5)) "Shares do not add up."; 
 
epsilon_(i,r)            = epsilon(i,r); 
eta_(i,r)                = eta(i,r);  
 
$ontext 
theta(i,r)               = data(r,i,"shr"); 
epsilon_(i,r)            = data(r,i,"vt"); 
eta_(i,r)                = data(r,i,"eta_");  
$offtext 
 
p0(i,r)                  = 1; 

                                                            
14 To run this program, one needs: 1) the GTAP 8 data in the gdx format (created by 
GTAPinGAMS); 2) the subroutine “gtap8data.gms,” which is also included in 
GTAPinGAMS, that reads data needed in the calibration program; 3) to type “gams 
cdecalib” under the DOS command prompt—this will use the default database 
“2r4s1f.gdx”. The environment variable “ds” can be used to overwrite the default database 
setting. Similarly, to run the maximum entropy approach calibration shown in Appendix 
B, one can type “gams cdeetp --ds=2r4s1f”. 
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q0(i,r)                  = theta(i,r)/p0(i,r); 
c0(r)                    = sum(i,p0(i,r)*q0(i,r)); 
delta(i,j,r)             = 0;  
delta(i,j,r)$sameas(i,j) = 1;  
weight(i,r)              = theta(i,r)$(%wt% eq 0) + (1/card(j))$(%wt% ne 0); 
 
*      Finish reading data 
*      --------------------------------------------------------- 
 
variables 
ALPHA(i,r)   substitution coefficient 
V(i,r)       own-price elasticity of demand 
E(i,r)       expansion coefficient 
ETAV(i,r)    income elasticity of demand      
OBJONE       objective value for own-price elasticity calibration 
OBJTWO       objective value for income elasticity calibration 
OBJTHR       objective value for the dummy 
OBJFOR       objective value for the dummy 
U(r)         utility 
; 
 
* The equation "e_engel" deals with the case where eta from data doesn't  
* satisfy the Engel aggregation equations 
e_v(i,r)        for v        
e_eta(i,r)      for ETAV   
e_objone        for OBJONE  
e_objtwo        for OBJTWO  
e_objthr        for OBJTHR  
e_objfor        for OBJFOR  
e_engel(r)      Engel aggregation 
e_etaside(i,r)  ensure eta & eta_ lies on the same side of one  
e_exp(r)        expenditure function                
e_dfn(i,r)      compensated demand                 
; 
 
*      Step 1: Calibrating to the own-price elasticity of demand      
 
e_v(i,rr) .. 
V(i,rr)$theta(i,rr) =e= theta(i,rr)*(2*ALPHA(i,rr)- 
sum(k,theta(k,rr)*ALPHA(k,rr)))-ALPHA(i,rr); 
 
e_objone .. 
OBJONE =e= -sum((i,rr),V(i,rr)*(log(V(i,rr)/epsilon_(i,rr))-1)); 
 
model demandelas / e_v, e_objone /; 
 
loop(r, 
rr(r)          = yes; 
ALPHA.L(i,rr)  = 0.5; 
ALPHA.UP(i,rr) = 0.99999; 
ALPHA.LO(i,rr) = 0.00001; 
V.L(i,rr)      = epsilon_(i,rr); 
OBJONE.L       = 0; 
solve demandelas using nlp minimizing OBJONE; 
sigma(i,j,r)$theta(i,r) = ALPHA.L(i,r)+ALPHA.L(j,r)- 
sum(k,theta(k,r)*ALPHA.L(k,r))-delta(i,j,r)*ALPHA.L(i,r)/theta(i,r); 
rr(r)          = no; 
); 
 
*      Step 2: Calibrating the income elasticity of demand 
 
e_eta(i,rr) .. 
ETAV(i,rr) =e= (1/sum(k,theta(k,rr)*E(k,rr)))*(E(i,rr)*(1- 
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ALPHA.L(i,rr))+sum(k,theta(k,rr)*E(k,rr)*ALPHA.L(k,rr))) 
          + (ALPHA.L(i,rr)-sum(k,theta(k,rr)*ALPHA.L(k,rr)));  
 
e_objtwo .. 
OBJTWO =e= sum((i,rr),weight(i,rr)*(ETAV(i,rr)-eta_(i,rr))*(ETAV(i,rr)- 
eta_(i,rr))); 
 
e_engel(rr) .. 
sum(i,theta(i,rr)*ETAV(i,rr)) =e= 1; 
 
e_etaside(i,rr) .. 
(ETAV(i,rr)-1)*(eta_(i,rr)-1) =g= 0; 
 
model incomeelas /e_objtwo, e_engel, e_eta, e_etaside/; 
 
loop(r, 
rr(r)          = yes; 
E.LO(i,rr)     = 1e-6; 
E.L(i,rr)      = 1; 
ETAV.L(i,rr)   = eta_(i,r); 
 
OBJTWO.L       = 0;  
solve incomeelas using nlp minimizing OBJTWO; 
rr(r)          = no; 
); 
 
*      Step 3: Calibrating the scale coefficient BETA holding the utility level  
*      equals one 
 
beta(i,r) = (q0(i,r)/(1-ALPHA.L(i,r)))/sum(j,q0(j,r)/(1-ALPHA.L(j,r))); 
U.FX(r)   = 1; 
 
parameter  epsilonv00(i,r)  EPSILONV solved by the CDE calibration routine, 
           etav00(i,r)      ETAV solved by the CDE calibration routine 
           alpha00(i,r)     ALPHA solved by the CDE calibration routine 
           e00(i,r)         E solved by the CDE calibration routine 
           u00(r)           U solved by the CDE calibration routine 
           beta00(i,r)      beta solved by the CDE calibration routine 
           mc00(r)          Marginal cost 
; 
 
epsilonv00(i,r) = V.L(i,r); 
etav00(i,r)     = ETAV.L(i,r); 
alpha00(i,r)    = ALPHA.L(i,r); 
e00(i,r)        = E.L(i,r); 
u00(r)          = U.L(r); 
beta00(i,r)     = beta(i,r); 
 
 
mc00(r) = 
 
c0(r)*sum(i,beta(i,r)*E.L(i,r)*(1-ALPHA.L(i,r))*(U.L(r)**(E.L(i,r)*(1- 
ALPHA.L(i,r))-1))*(p0(i,r)/c0(r))**(1-ALPHA.L(i,r))) 
      /sum(i,beta(i,r)*(1-ALPHA.L(i,r))*(U.L(r)**(E.L(i,r)*(1- 
ALPHA.L(i,r))))*(p0(i,r)/c0(r))**(1-ALPHA.L(i,r))); 
 
parameter data model output; 
data(i,r,"theta")      = theta(i,r); 
data(i,r,"epsilon")    = epsilon_(i,r);  
data(i,r,"epsilonv00") = epsilonv00(i,r); 
data(i,r,"eta")        = eta_(i,r); 
data(i,r,"etav")       = ETAV.L(i,r); 
data(i,r,"alpha")      = ALPHA.L(i,r); 
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data(i,r,"e")          = E.L(i,r); 
data(i,r,"beta")       = beta(i,r); 
data("mc",r,"mc")      = mc00(r); 
data(i,r,"weight")     = weight(i,r); 
 
execute_unload ".\output\cdecalib_%ds%_lnobj.gdx"; 
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Appendix B. The CDE calibration program: maximum entropy approach 
$title  Calibrate a CDE Demand System using GTAP data 
 
$if not set ds $set ds g20 
$if not set datadir $set datadir .\input\ 
$if not set wt $set wt 0 
$include gtap8data_old 
 
set     info    Information about this calibration / 
        ds      "%ds%", 
        datadir "%datadir%", 
        workdir "%gams.workdir%" 
        date    "%system.date%" 
        time    "%system.time%" /; 
 
alias(i,j,k); 
 
set rr(r) dynamic subset of r; 
rr(r) = no; 
 
parameters 
z(i,r)        normalized price 
theta(i,r)    value share in final demand 
vafm(i,r)     Aggregate final demand, 
delta(i,j,r)  diagonal-one off-diagonal-zero 
sigma(i,j,r)  Allen partial elasticity of substitution 
epsilon_(i,r) realized compensated own-price elasticity of demand 
p0(i,r)       benchmark price index 
q0(i,r)       benchmark consumption level 
c0(r)         expenditure level 
mc0(r)        marginal cost when u is one 
weight(i,r)   weight for the square distance 
beta(i,r)     scale coefficient 
uncelas(i,r)  targeted uncompensated own-price demand elasticity 
incelas(i,r)  targeted income demand elasticity 
bound         to avoid zero division 
tt            to scale the part of objective function 
regind        index for region 
result(r)     the real objective value for each r 
; 
 
bound  = 0.000001; 
tt     = 1000; 
 
vafm(i,r)  = vdfm(i,"c",r)*(1+rtfd0(i,"c",r))+vifm(i,"c",r)*(1+rtfi0(i,"c",r)); 
theta(i,r) = vafm(i,r) / (vom("c",r)*(1-rto("c",r))); 
abort$sum(r, round(abs(1-sum(i,theta(i,r))),5)) "Shares do not add up."; 
uncelas(i,r)             = epsilon(i,r)-eta(i,r)*theta(i,r); 
incelas(i,r)             = eta(i,r);  

 
p0(i,r)                  = 1; 
q0(i,r)                  = theta(i,r)/p0(i,r); 
c0(r)                    = sum(i,p0(i,r)*q0(i,r)); 
delta(i,j,r)             = 0;  
delta(i,j,r)$sameas(i,j) = 1;  
weight(i,r)              = theta(i,r)$(%wt% eq 0) + (1/card(j))$(%wt% ne 0); 
 
*      Finish reading data 
*      --------------------------------------------------------- 
 
variables 
ALPHA(i,r)     substitution coefficient 
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V(i,r)         own-price elasticity of demand 
E(i,r)         expansion coefficient 
ETAV(i,r)      income elasticity of demand 
ALPHAETP(r)    entropy of ALPHA 
EETP(r)        entropy of E 
ALPHAPNT(r)    penalty for deviations in ALPHA 
EPNT(r)        penalty for deviations in E 
AHAT(i,r)      deviation of uncompensated own-price demand elasticity 
AHAT1(i,r)     deviation of income demand elasticity 
UNCELASAC(i,r) actual uncompensated price elasticity 
ALPHAMEAN(r)   mean substitution coefficient 
OBJ      
; 
 
equations 
objective(r) 
alphaetpeq(r) 
eetpeq(r) 
alphapnteq(r) 
epnteq(r) 
icmels(i,r) 
ahat1eq(i,r) 
epsnml(r) 
uelasaceq(i,r)  actual price elasticity 
ahateq(i,r)     error in elasticity 
alphameaneq(r) 
; 
 
* Objective function: maximize the entropy relative to the unknown parameters  
* of the cde function 
OBJECTIVE(r)$(ord(r) eq regind).. 
    OBJ =E= -TT*(EPNT(R) + ALPHAPNT(R)) + EETP(R) + ALPHAETP(R); 
 
* Penalty for errors in the expansion parameter 
EPNTEQ(r)$(ord(r) eq regind).. 
    EPNT(r) =E= sum(i, theta(i,r)*sqr(AHAT1(i,r))); 
 
* Deviation of income elasticity 
AHAT1EQ(i,r)$(ord(r) eq regind).. 
    AHAT1(i,r) =E= ETAV(i,r) - incelas(i,r); 
 
* Income elasticity expression found in Hanoch (1975) or Hertel et al (1990) 
icmels(i,r)$(ord(r) eq regind).. 
 
ETAV(i,r) =e= (1/sum(j,theta(j,r)*E(j,r)))*(E(i,r)*(1-
ALPHA(i,r))+sum(j,theta(j,r)*E(j,r)*ALPHA(j,r))) 
          + (ALPHA(i,r)-sum(j,theta(j,r)*ALPHA(j,r)));  

                       
* Penalty for errors in the substitution parameter 
alphapnteq(r)$(ord(r) eq regind).. 
    ALPHAPNT(r) =E= sum(i, theta(i,r)*sqr(AHAT(i,r))); 
 
* Deviation of uncompensated own-price demand elasticity 
ahateq(i,r)$(ord(r) eq regind).. 
    AHAT(i,r) =E= UNCELASAC(i,r) - uncelas(i,r); 
                       
* This last constraint pertains to the uncompensated direct price elasticities 
uelasaceq(i,r)$(ord(r) eq regind).. 
    UNCELASAC(i,r) =E= -(1-theta(i,r))*ALPHA(i,r) - theta(i,r)*E(i,r) 
                       +  theta(i,r)*(ALPHA(i,r)*E(i,r) - 
SUM(j,theta(j,r)*ALPHA(j,r)*E(j,r))); 
                                          
* Cross entropy of the expansion parameter 
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eetpeq(r)$(ord(r) eq regind).. 
    EETP(r) =E= -SUM(i, theta(i,r)*E(i,r)*log(E(i,r))); 
 
* Normalize the expansion parameter 
epsnml(r)$(ord(r) eq regind).. 
    SUM(i, theta(i,r)*E(i,r)) =E= 1; 
 
* Cross entropy of the substitution parameter 
alphaetpeq(r)$(ord(r) eq regind).. 
    ALPHAETP(r) =E= -SUM(i, theta(i,r)*(ALPHA(i,r)*log(ALPHA(i,r)/ALPHAMEAN(r)) 
                                           +(1-ALPHA(i,r))*log((1-
ALPHA(i,r))/(1-ALPHAMEAN(r))))); 
                   
* Mean substitution parameter 
alphameaneq(r)$(ord(r) eq regind).. 
    ALPHAMEAN(r) =E= sum(i,theta(i,r)*ALPHA(i,r)); 
 
* Variable bounds 
 
ALPHA.LO(i,r)    = bound; 
ALPHA.L(i,r)     = 0.5; 
ALPHA.UP(i,r)    = 1.0 - bound; 
ALPHAMEAN.L(r)   = 0.5; 
E.LO(i,r)        = bound; 
E.L(i,r)         = 1.0; 
UNCELASAC.L(i,r) = uncelas(i,r); 
ETAV.L(i,r)      = incelas(i,r); 
alias (r, rreg); 
 
model cdent /all/; 
 
loop (rreg, 
      regind=ord(rreg); 
      solve cdent using nlp maximizing obj; 
      display obj.l; 
      result(rreg) = obj.l + tt*(sum(i,theta(i,rreg)*power(ahat.l(i,rreg),2))       
                                
+sum(i,theta(i,rreg)*power(ahat1.l(i,rreg),2))); 
      epsilon_(i,r) = UNCELASAC.L(i,r)+ETAV.L(i,r)*theta(i,r); 
     ); 
 
execute_unload ".\output\cdeetp_%ds%.gdx"; 
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Appendix C. Sectors in GTAP 8 database 

Notation used in Table 2 Code Description 
g01 PDR Paddy rice 
g02 WHT Wheat 
g03 GRO Cereal grains nec 
g04 V_F Vegetables, fruit, nuts 
g05 OSD Oil seeds 
g06 C_B Sugar cane, sugar beet 
g07 PFB Plant-based fibers 
g08 OCR Crops nec 
g09 CTL Bovine cattle, sheep and goats, horses 
g10 OAP Animal products nec 
g11 RMK Raw milk 
g12 WOL Wool, silk-worm cocoons 
g13 FRS Forestry 
g14 FSH Fishing 
g15 COA Coal 
g16 OIL Oil 
g17 GAS Gas 
g18 OMN Minerals nec 
g19 CMT Bovine meat products 
g20 OMT Meat products nec 
g21 VOL Vegetable oils and fats 
g22 MIL Dairy products 
g23 PCR Processed rice 
g24 SGR Sugar 
g25 OFD Food products nec 
g26 B_T Beverages and tobacco products 
g27 TEX Textiles 
g28 WAP Wearing apparel 
g29 LEA Leather products 
g30 LUM Wood products 
g31 PPP Paper products, publishing 
g32 P_C Petroleum, coal products 
g33 CRP Chemical, rubber, plastic products 
g34 NMM Mineral products nec 
g35 I_S Ferrous metals 
g36 NFM Metals nec 
g37 FMP Metal products 
g38 MVH Motor vehicles and parts 
g39 OTN Transport equipment nec 
g40 ELE Electronic equipment 
g41 OME Machinery and equipment nec 
g42 OMF Manufactures nec 
g43 ELY Electricity 
g44 GDT Gas manufacture, distribution 
g45 WTR Water 
g46 CNS Construction 
g47 TRD Trade 
g48 OTP Transport nec 
g49 WTP Water transport 
g50 ATP Air transport 
g51 CMN Communication 
g52 OFI Financial services nec 
g53 ISR Insurance 
g54 OBS Business services nec 
g55 ROS Recreational and other services 
g56 OSG Public Administration, Defense, Education, Health 
g57 DWE Dwellings 

Source: GTAP (2015). 
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Appendix D. The program (in MATLAB) checking if elasticity targets are valid 

% Read EXCEL input: share; eps_target; eps_calib; eta_target; 
eta_calib 
data = xlsread('.\input\elastheta.xlsx','4x4','B3:F6'); 
  
%{ 
data in the worksheet "4x4" 
  
sector  share   eps_target  eps_calib   eta_target  eta_calib                
s01     0.1178  -0.4294     -0.4657     0.7300      0.8442 
s02     0.2479  -0.6650     -0.7201     0.9997      1.0000 
s03     0.3955  -0.7800     -0.5767     1.0543      1.0289 
s04     0.2388  -0.7424     -0.7445     1.0435      1.0289 
%} 
  
% Declare dimension 
n = 4; 
  
% Check Engel aggregation (variable engel = 1 must hold) 
eta_target = data(1:n, 4:4); 
theta = data(1:n, 1:1); 
engel = theta'*eta_target; 
  
% Create a diagonal matrix with diagonal terms being the own-
price AUES elasticities 
eps_target = data(1:n, 2:2); 
theta_diag = diag(theta); 
aues_diag = diag(inv(theta_diag)*eps_target); 
  
% Initialize the determinants for checking ND (sa stores values 
of various determinants) 
sa = zeros(n,1); 
for i = 1:n-1 
    sa(i) = (-1)^(i+1); 
end 
  
while sa(1)>0|sa(2)<0|sa(3)>0|abs(sa(4))>0.00000001 
  
% Empty aues from the previous run     
aues_off = zeros(n,n);         
  
% For each row create random variables no larger than the 
|diagonal term|/n 
for i = 1:n-3 
    offi = (-1+2*rand)*abs(aues_diag(i,i))/n; 
    for j = i+1:n-1 
         aues_off(i,j) = offi; 
         aues_off(j,i) = aues_off(i,j); 
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    end 
end 
  
aues = aues_diag + aues_off; 
  
% Create the "A" (LHS coefficient) matrix for solving the 
unknowns 
A = zeros(n,n); 
for i = 1:n-1 
    A(i,i) = theta(n,1); 
    A(n,i) = theta(i,1); 
end 
A(n-2,n) = theta(n-1,1); 
A(n-1,n) = theta(n-2,1); 
  
% This incomplete aues matrix is suitable for finding "C" (RHS 
coefficient) matrix  
C = -aues*theta; 
  
% The unknowns are in "B" and are solved by A*B = C 
B = inv(A)*C; 
  
% Assign "B" to uknowns in aues, and now all aues unknows are 
found 
for i = 1:n-1 
    aues(i,n) = B(i,1); 
end 
aues(n-2,n-1) = B(n,1); 
  
% Assign the solved AUES unknows (i,j) to their corresponding 
(j,i) elements  
for i = 1:n 
    for j= 1:n 
aues(j,i) = aues(i,j); 
    end 
end 
  
% Check Cournot aggregation 
cournot = aues*theta; 
  
% Check NSD 
for i = 1:n 
sa(i) = det(aues(1:i, 1:i)/10); 
end 
  
end 
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Appendix E. CDE calibration results: sequential approach 

1r3s2f ߪ ߙ ߠ௜௜
௖௧ ߪ௜௜

௖ ݁ ߟ௜
௧ ߟ௜ 

s01 0.1178 0.4631 -0.4294 -0.4643 1.0000 0.7300 0.9999 
s02 0.2479 1.0000 -0.6650 -0.7364 0.0000 0.9997 1.0000 
s03 0.6343 1.0000 -0.7658 -0.3256 1.3911 1.0502 1.0000 
1r4s2f        
s01 0.1178 0.4297 -0.4294 -0.4365 0.7478 0.7300 0.7300 
s02 0.2479 0.9396 -0.6650 -0.7012 0.2804 0.9997 0.9997 
s03 0.2388 1.0000 -0.7424 -0.7416 0.0000 1.0435 1.0502 
s04 0.3955 1.0000 -0.7800 -0.5720 3.9133 1.0543 1.0503 
1r5s2f        
s01 0.0343 0.1896 -0.2056 -0.2073 0.6446 0.5504 0.5504 
s02 0.1160 0.5659 -0.5208 -0.5385 0.7877 0.8187 0.8187 
s03 0.1041 0.7476 -0.6654 -0.6852 1.4006 1.0073 1.0073 
s04 0.2831 1.0000 -0.7511 -0.6873 1.0425 1.0513 1.0479 
s05 0.4624 1.0000 -0.7608 -0.4893 2.4110 1.0458 1.0479 
1r8s2f        
s01 0.0335 0.1781 -0.1942 -0.1951 0.3881 0.5387 0.5387 
s02 0.0228 0.4921 -0.4878 -0.4894 0.5455 0.8120 0.8120 
s03 0.0940 0.5632 -0.5301 -0.5386 0.4910 0.8221 0.8221 
s04 0.0978 0.7363 -0.6657 -0.6769 0.8496 1.0046 1.0046 
s05 0.0436 0.7548 -0.7219 -0.7267 0.9549 1.0329 1.0329 
s06 0.0705 0.7497 -0.6971 -0.7050 0.9726 1.0368 1.0368 
s07 0.2421 1.0000 -0.7411 -0.7253 1.0104 1.0434 1.0502 
s08 0.3955 1.0000 -0.7800 -0.5513 1.3088 1.0543 1.0502 
1r16s2f        
s01 0.0294 0.1513 -0.1669 -0.1671 0.2314 0.4874 0.4874 
s02 0.0041 0.3869 -0.3871 -0.3872 0.5142 0.9021 0.9020 
s03 0.0009 0.6656 -0.6652 -0.6652 0.6649 1.0408 1.0408 
s04 0.0219 0.4834 -0.4803 -0.4806 0.3580 0.8023 0.8023 
s05 0.0192 0.4157 -0.4157 -0.4159 0.3151 0.7334 0.7334 
s06 0.0749 0.5855 -0.5594 -0.5607 0.3508 0.8449 0.8448 
s07 0.0310 0.6529 -0.6379 -0.6384 0.5201 0.9652 0.9651 
s08 0.0669 0.7200 -0.6785 -0.6798 0.6222 1.0228 1.0227 
s09 0.0033 0.6498 -0.6482 -0.6483 0.6867 1.0524 1.0523 
s10 0.0403 0.7559 -0.7279 -0.7288 0.6392 1.0313 1.0313 
s11 0.0445 0.7445 -0.7147 -0.7156 0.6555 1.0371 1.0371 
s12 0.0260 0.6810 -0.6669 -0.6674 0.6555 1.0363 1.0363 
s13 0.2078 0.9988 -0.7513 -0.7582 1.4324 1.0518 1.0418 
s14 0.0344 0.6991 -0.6792 -0.6799 0.5587 0.9927 0.9927 
s15 0.1307 0.9359 -0.7974 -0.8010 1.2667 1.0987 1.0985 
s16 0.2648 1.0000 -0.7714 -0.6927 0.0000 1.0324 1.0404 
1r29s2f        
s01 0.0014 0.0927 -0.0936 -0.0936 0.4274 0.3399 0.3399 
s02 0.0160 0.1052 -0.1148 -0.1148 0.4025 0.3382 0.3383 
s03 0.0007 0.0984 -0.0988 -0.0988 0.6283 0.4375 0.4375 
s04 0.0029 0.1315 -0.1331 -0.1331 0.4741 0.3911 0.3911 
s05 0.0052 0.3090 -0.3099 -0.3099 1.3384 0.8322 0.8322 
s06 0.0031 0.2742 -0.2751 -0.2751 1.3963 0.8430 0.8430 
s07 0.0040 0.3858 -0.3859 -0.3859 1.4633 0.8956 0.8956 
s08 0.0002 0.4175 -0.4175 -0.4175 1.9735 1.0562 1.0562 
s09 0.0009 0.6658 -0.6654 -0.6654 1.9047 1.0409 1.0409 
s10 0.0182 0.5188 -0.5146 -0.5146 1.0012 0.8143 0.8143 
s11 0.0169 0.4667 -0.4646 -0.4646 1.0538 0.8035 0.8035 
s12 0.0060 0.2107 -0.2130 -0.2130 0.6965 0.5412 0.5412 
s13 0.0653 0.5766 -0.5541 -0.5541 0.9351 0.8280 0.8280 
s14 0.0298 0.6400 -0.6260 -0.6260 1.4583 0.9578 0.9578 
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௜௜ߪ ߙ ߠ 
௖௧ ߪ௜௜

௖ ݁ ߟ௜
௧ ߟ௜ 

s15 0.0107 0.6381 -0.6331 -0.6331 1.5840 0.9807 0.9807 
s16 0.0390 0.6960 -0.6733 -0.6733 1.6876 1.0076 1.0076 
s17 0.0307 0.7007 -0.6825 -0.6825 1.9223 1.0443 1.0443 
s18 0.0005 0.6415 -0.6412 -0.6412 2.0950 1.0754 1.0754 
s19 0.0358 0.7612 -0.7356 -0.7356 1.8487 1.0360 1.0360 
s20 0.0166 0.6963 -0.6866 -0.6866 1.8167 1.0278 1.0278 
s21 0.0325 0.7445 -0.7224 -0.7224 1.8542 1.0359 1.0359 
s22 0.0217 0.6728 -0.6612 -0.6612 1.8849 1.0377 1.0377 
s23 0.0077 0.6791 -0.6749 -0.6749 1.8503 1.0322 1.0322 
s24 0.2044 0.9942 -0.7530 -0.7530 3.3150 1.0520 1.0520 
s25 0.0085 0.6395 -0.6354 -0.6354 1.6713 0.9971 0.9971 
s26 0.0608 0.8046 -0.7560 -0.7560 2.1086 1.0643 1.0643 
s27 0.0958 0.8884 -0.7957 -0.7957 2.7073 1.0916 1.0916 
s28 0.1718 0.9652 -0.7725 -0.7725 1.0188 1.0314 1.0314 
s29 0.0930 0.8527 -0.7693 -0.7693 1.7658 1.0343 1.0343 
1r57s2f        

s01 0.0068 0.6543 -0.6507 -0.6507 2.1406 0.9948 0.9948 
s02 0.0264 0.5688 -0.5591 -0.5591 1.2538 0.8320 0.8320 
s03 0.0002 0.0910 -0.0911 -0.0911 0.6386 0.3696 0.3696 
s04 0.0258 0.7105 -0.6937 -0.6937 2.0241 0.9912 0.9912 
s05 0.0077 0.5204 -0.5183 -0.5183 1.2649 0.8091 0.8091 
s06 0.0034 0.6500 -0.6482 -0.6482 2.4491 1.0359 1.0359 
s07 0.0002 0.4169 -0.4169 -0.4169 2.5926 1.0566 1.0566 
s08 0.0279 0.7035 -0.6858 -0.6858 2.4960 1.0440 1.0440 
s09 0.0008 0.2753 -0.2755 -0.2755 1.9500 0.8767 0.8767 
s10 0.0930 0.8570 -0.7693 -0.7693 2.2324 1.0343 1.0343 
s11 0.0120 0.7014 -0.6938 -0.6938 2.4665 1.0405 1.0405 
s12 0.0190 0.6667 -0.6560 -0.6560 2.4651 1.0388 1.0388 
s13 0.0030 0.6789 -0.6771 -0.6771 2.5176 1.0459 1.0459 
s14 0.0010 0.4853 -0.4851 -0.4851 2.5983 1.0574 1.0574 
s15 0.0029 0.3503 -0.3505 -0.3505 1.7234 0.8380 0.8380 
s16 0.0008 0.6807 -0.6802 -0.6802 2.4340 1.0356 1.0356 
s17 0.0027 0.6948 -0.6932 -0.6932 2.3817 1.0302 1.0302 
s18 0.0015 0.1116 -0.1124 -0.1124 0.7905 0.4375 0.4374 
s19 0.0003 0.6087 -0.6085 -0.6085 2.7937 1.0861 1.0861 
s20 0.0259 0.7789 -0.7585 -0.7585 2.1602 1.0176 1.0176 
s21 0.0074 0.6077 -0.6044 -0.6044 1.9147 0.9525 0.9525 
s22 0.0033 0.6985 -0.6964 -0.6964 2.4886 1.0430 1.0430 
s23 0.0132 0.5107 -0.5074 -0.5074 1.3500 0.8204 0.8204 
s24 0.0328 0.7660 -0.7410 -0.7410 2.3762 1.0351 1.0351 
s25 0.0003 0.6721 -0.6719 -0.6719 2.6726 1.0654 1.0654 
s26 0.0028 0.6511 -0.6496 -0.6496 2.5371 1.0479 1.0479 
s27 0.0044 0.3155 -0.3161 -0.3161 1.7155 0.8243 0.8243 
s28 0.0699 0.8784 -0.8095 -0.8095 3.9681 1.1190 1.1190 
s29 0.0024 0.0696 -0.0711 -0.0711 0.4082 0.2704 0.2704 
s30 0.0389 0.5646 -0.5507 -0.5507 1.2271 0.8253 0.8253 
s31 0.0349 0.8333 -0.8020 -0.8020 3.5802 1.1183 1.1182 
s32 0.0000 0.5457 -0.5457 -0.5457 2.3675 1.0163 1.0163 
s33 0.0163 0.7321 -0.7208 -0.7208 2.4110 1.0361 1.0361 
s34 0.0162 0.7354 -0.7240 -0.7240 2.4057 1.0357 1.0357 
s35 0.0001 0.5628 -0.5628 -0.5628 2.7215 1.0777 1.0777 
s36 0.0104 0.5146 -0.5119 -0.5119 1.3286 0.8182 0.8182 
s37 0.0005 0.1011 -0.1013 -0.1013 0.8754 0.4597 0.4597 
s38 0.1051 0.8856 -0.7804 -0.7804 2.0727 1.0311 1.0311 
s39 0.0046 0.6701 -0.6675 -0.6675 2.1155 0.9942 0.9942 
s40 0.0325 0.6297 -0.6138 -0.6138 2.1947 0.9983 0.9983 
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௜௜ߪ ߙ ߠ 
௖௧ ߪ௜௜

௖ ݁ ߟ௜
௧ ߟ௜ 

s41 0.0274 0.6612 -0.6461 -0.6461 2.1463 0.9967 0.9967 
s42 0.0035 0.1042 -0.1062 -0.1062 0.6533 0.3847 0.3847 
s43 0.0003 0.1290 -0.1292 -0.1292 1.1345 0.5657 0.5657 
s44 0.0005 0.4196 -0.4195 -0.4195 2.1107 0.9481 0.9481 
s45 0.0115 0.7466 -0.7382 -0.7382 2.3761 1.0336 1.0336 
s46 0.0030 0.2750 -0.2757 -0.2757 1.8077 0.8367 0.8367 
s47 0.0666 0.8177 -0.7601 -0.7601 2.2719 1.0318 1.0318 
s48 0.0025 0.3636 -0.3637 -0.3637 1.3976 0.7620 0.7620 
s49 0.0096 0.5996 -0.5955 -0.5955 1.9731 0.9595 0.9595 
s50 0.1719 0.9858 -0.7794 -0.7794 4.1494 1.0622 1.0622 
s51 0.0145 0.1070 -0.1150 -0.1150 0.4832 0.3278 0.3278 
s52 0.0037 0.3115 -0.3121 -0.3121 1.4169 0.7433 0.7433 
s53 0.0202 0.6512 -0.6404 -0.6404 1.8649 0.9570 0.9570 
s54 0.0011 0.0839 -0.0846 -0.0846 0.4105 0.2833 0.2833 
s55 0.0002 0.2653 -0.2654 -0.2654 2.1931 0.9436 0.9436 
s56 0.0017 0.5765 -0.5758 -0.5758 2.2908 1.0062 1.0062 
s57 0.0043 0.6986 -0.6959 -0.6959 2.3714 1.0293 1.0293 
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Appendix F. CDE calibration results: maximum entropy approach 

1r3s2f ߪ ߙ ߠ௜௜
௖௧ ߪ௜௜

௖ ݁ ߟ௜
௧ ߟ௜ 

s01 0.11779 0.56735 -0.42935 -0.54290 0.00001 0.72997 0.64026 
s02 0.24791 0.91148 -0.66503 -0.68939 0.00001 0.99974 0.98439 
s03 0.63430 0.99999 -0.76584 -0.31946 1.57654 1.05025 1.07291 
1r4s2f        
s01 0.11779 0.47688 -0.42935 -0.47267 0.30153 0.72997 0.69691 
s02 0.24791 0.91785 -0.66503 -0.69034 0.05446 0.99974 0.98462 
s03 0.23876 0.99999 -0.74242 -0.74165 1.49754 1.04350 1.06230 
s04 0.39553 0.99999 -0.77997 -0.57204 1.50032 1.05432 1.06230 
1r5s2f        
s01 0.03432 0.25533 -0.20559 -0.26916 0.22697 0.55041 0.49290 
s02 0.11603 0.64208 -0.52076 -0.59909 0.12963 0.81865 0.75703 
s03 0.10413 0.81541 -0.66544 -0.74073 0.34188 1.00727 0.94707 
s04 0.28309 0.99999 -0.75108 -0.69247 1.26147 1.05134 1.06855 
s05 0.46242 0.99999 -0.76079 -0.49766 1.26389 1.04581 1.06855 
1r8s2f        
s01 0.03352 0.21697 -0.19417 -0.23191 0.27903 0.53872 0.50524 
s02 0.02279 0.52754 -0.48782 -0.52354 0.38500 0.81197 0.77922 
s03 0.09404 0.60461 -0.53011 -0.57362 0.28488 0.82213 0.78703 
s04 0.09783 0.77552 -0.66566 -0.70984 0.55209 1.00456 0.96923 
s05 0.04364 0.79015 -0.72192 -0.75957 0.66587 1.03290 0.99966 
s06 0.07051 0.78699 -0.69707 -0.73803 0.68360 1.03684 1.00238 
s07 0.24214 0.99999 -0.74111 -0.72872 1.29038 1.04339 1.06978 
s08 0.39553 0.99999 -0.77997 -0.55687 1.29285 1.05432 1.06978 
1r16s2f        
s01 0.02937 0.15807 -0.16693 -0.17349 0.33003 0.48744 0.48309 
s02 0.00415 0.39278 -0.38712 -0.39301 0.75346 0.90206 0.89746 
s03 0.00092 0.67097 -0.66517 -0.67050 0.96645 1.04085 1.03612 
s04 0.02187 0.48901 -0.48033 -0.48602 0.51246 0.80230 0.79804 
s05 0.01917 0.42144 -0.41568 -0.42141 0.45036 0.73339 0.72916 
s06 0.07487 0.59118 -0.55941 -0.56565 0.49446 0.84486 0.84049 
s07 0.03095 0.65831 -0.63789 -0.64360 0.74680 0.96517 0.96065 
s08 0.06687 0.72558 -0.67851 -0.68480 0.89316 1.02279 1.01784 
s09 0.00330 0.65520 -0.64824 -0.65365 1.00117 1.05236 1.04757 
s10 0.04035 0.76113 -0.72795 -0.73366 0.91363 1.03131 1.02653 
s11 0.04451 0.74982 -0.71468 -0.72051 0.94049 1.03715 1.03228 
s12 0.02600 0.68642 -0.66691 -0.67260 0.94999 1.03631 1.03148 
s13 0.20777 0.99654 -0.75135 -0.75725 1.04063 1.05178 1.04730 
s14 0.03437 0.70443 -0.67923 -0.68492 0.80025 0.99270 0.98812 
s15 0.13072 0.93584 -0.79738 -0.80115 1.66686 1.09873 1.08995 
s16 0.26481 0.99999 -0.77138 -0.69316 1.05077 1.03240 1.04716 
1r29s2f        
s01 0.00143 0.09410 -0.09357 -0.09498 0.22477 0.33991 0.34056 
s02 0.01600 0.10662 -0.11479 -0.11612 0.21207 0.33825 0.33892 
s03 0.00069 0.10003 -0.09883 -0.10044 0.32785 0.43748 0.43792 
s04 0.00290 0.13281 -0.13312 -0.13438 0.24916 0.39110 0.39172 
s05 0.00520 0.31026 -0.30995 -0.31123 0.69479 0.83221 0.83232 
s06 0.00315 0.27565 -0.27506 -0.27646 0.72419 0.84299 0.84306 
s07 0.00398 0.38691 -0.38590 -0.38704 0.76003 0.89563 0.89572 
s08 0.00017 0.41870 -0.41753 -0.41870 1.02280 1.05623 1.05609 
s09 0.00092 0.66650 -0.66536 -0.66601 0.99417 1.04089 1.04089 
s10 0.01817 0.51938 -0.51461 -0.51517 0.52572 0.81432 0.81489 
s11 0.01690 0.46753 -0.46461 -0.46536 0.55130 0.80348 0.80392 
s12 0.00597 0.21189 -0.21299 -0.21418 0.36404 0.54116 0.54163 
s13 0.06527 0.57708 -0.55410 -0.55441 0.49379 0.82800 0.82875 

s14 0.02982 0.64072 -0.62598 -0.62656 0.76412 0.95776 0.95809 
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௜௜ߪ ߙ ߠ 
௖௧ ߪ௜௜

௖ ݁ ߟ௜
௧ ߟ௜ 

s15 0.01073 0.63875 -0.63307 -0.63370 0.82849 0.98065 0.98088 
s16 0.03895 0.69671 -0.67330 -0.67386 0.88450 1.00760 1.00781 
s17 0.03068 0.70142 -0.68252 -0.68313 1.00500 1.04433 1.04433 
s18 0.00054 0.64222 -0.64124 -0.64196 1.09070 1.07543 1.07529 
s19 0.03579 0.76172 -0.73564 -0.73607 0.97206 1.03603 1.03618 
s20 0.01658 0.69692 -0.68660 -0.68718 0.95065 1.02778 1.02788 
s21 0.03249 0.74508 -0.72240 -0.72288 0.97329 1.03591 1.03603 
s22 0.02171 0.67358 -0.66119 -0.66185 0.98430 1.03770 1.03771 
s23 0.00765 0.67976 -0.67491 -0.67553 0.96691 1.03219 1.03224 
s24 0.20439 0.98732 -0.75305 -0.74862 1.37647 1.05204 1.04761 
s25 0.00855 0.64016 -0.63545 -0.63611 0.87329 0.99708 0.99724 
s26 0.06077 0.80518 -0.75598 -0.75634 1.10962 1.06429 1.06420 
s27 0.09577 0.88820 -0.79570 -0.79535 1.42731 1.09161 1.09061 
s28 0.17177 0.96110 -0.77251 -0.76951 0.83040 1.03136 1.03624 
s29 0.09304 0.85299 -0.76929 -0.76933 0.94566 1.03432 1.03485 

1r572f        
s01 0.00681 0.65468 -0.65067 -0.65101 0.84353 0.99476 0.99522 
s02 0.02640 0.56886 -0.55911 -0.55914 0.49822 0.83196 0.83292 
s03 0.00017 0.09223 -0.09111 -0.09233 0.25212 0.36960 0.37035 
s04 0.02582 0.71068 -0.69373 -0.69386 0.80181 0.99124 0.99191 
s05 0.00775 0.52059 -0.51827 -0.51849 0.50089 0.80914 0.80998 
s06 0.00337 0.65045 -0.64823 -0.64866 0.96254 1.03589 1.03616 
s07 0.00017 0.41785 -0.41692 -0.41784 1.01271 1.05659 1.05665 
s08 0.02792 0.70389 -0.68575 -0.68607 0.98322 1.04398 1.04428 
s09 0.00078 0.27643 -0.27545 -0.27660 0.76189 0.87675 0.87696 
s10 0.09304 0.85664 -0.76927 -0.76884 0.90365 1.03432 1.03544 
s11 0.01203 0.70175 -0.69382 -0.69413 0.97172 1.04050 1.04082 
s12 0.01903 0.66713 -0.65599 -0.65639 0.96942 1.03880 1.03907 
s13 0.00301 0.67925 -0.67710 -0.67748 0.99030 1.04588 1.04614 
s14 0.00105 0.48613 -0.48513 -0.48591 1.01593 1.05735 1.05744 
s15 0.00293 0.35123 -0.35053 -0.35143 0.67488 0.83797 0.83832 
s16 0.00081 0.68103 -0.68020 -0.68055 0.95810 1.03557 1.03589 
s17 0.00273 0.69515 -0.69315 -0.69346 0.93856 1.03015 1.03052 
s18 0.00152 0.11284 -0.11243 -0.11367 0.31113 0.43746 0.43811 
s19 0.00026 0.60920 -0.60854 -0.60908 1.09443 1.08610 1.08616 
s20 0.02590 0.77890 -0.75851 -0.75848 0.86042 1.01763 1.01839 
s21 0.00739 0.60808 -0.60442 -0.60479 0.75442 0.95247 0.95300 
s22 0.00334 0.69880 -0.69638 -0.69670 0.98011 1.04296 1.04326 
s23 0.01320 0.51101 -0.50737 -0.50768 0.53343 0.82036 0.82110 
s24 0.03278 0.76611 -0.74100 -0.74111 0.94180 1.03512 1.03564 
s25 0.00028 0.67250 -0.67193 -0.67234 1.04989 1.06543 1.06559 
s26 0.00276 0.65150 -0.64960 -0.65003 0.99662 1.04786 1.04807 
s27 0.00442 0.31645 -0.31607 -0.31705 0.67139 0.82431 0.82463 
s28 0.06985 0.87761 -0.80949 -0.80876 1.56298 1.11904 1.11816 
s29 0.00239 0.07074 -0.07113 -0.07224 0.16292 0.27043 0.27139 
s30 0.03887 0.56469 -0.55069 -0.55071 0.48778 0.82531 0.82628 
s31 0.03495 0.83315 -0.80198 -0.80181 1.41104 1.11825 1.11783 
s32 0.00000 0.54637 -0.54574 -0.54637 0.92773 1.01626 1.01647 
s33 0.01632 0.73234 -0.72077 -0.72099 0.95231 1.03608 1.03649 
s34 0.01617 0.73560 -0.72405 -0.72426 0.95049 1.03574 1.03616 
s35 0.00012 0.56348 -0.56280 -0.56343 1.06525 1.07767 1.07774 
s36 0.01042 0.51487 -0.51188 -0.51216 0.52528 0.81818 0.81895 
s37 0.00052 0.10241 -0.10135 -0.10270 0.34384 0.45970 0.46028 
s38 0.10513 0.88465 -0.78040 -0.77956 0.85702 1.03107 1.03276 
s39 0.00456 0.67044 -0.66755 -0.66783 0.83463 0.99424 0.99475 
s40 0.03252 0.63018 -0.61379 -0.61422 0.86338 0.99835 0.99872 
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௜௜ߪ ߙ ߠ 
௖௧ ߪ௜௜

௖ ݁ ߟ௜
௧ ߟ௜ 

s41 0.02743 0.66158 -0.64607 -0.64640 0.84604 0.99669 0.99715 
s42 0.00350 0.10541 -0.10620 -0.10736 0.25795 0.38467 0.38542 
s43 0.00029 0.13040 -0.12919 -0.13055 0.44445 0.56568 0.56614 
s44 0.00052 0.42040 -0.41952 -0.42036 0.82592 0.94812 0.94836 
s45 0.01153 0.74676 -0.73824 -0.73841 0.93999 1.03358 1.03406 
s46 0.00296 0.27616 -0.27569 -0.27680 0.70672 0.83670 0.83697 
s47 0.06663 0.81758 -0.76006 -0.75991 0.90890 1.03182 1.03263 
s48 0.00248 0.36437 -0.36375 -0.36448 0.54894 0.76202 0.76255 
s49 0.00960 0.60002 -0.59548 -0.59589 0.77669 0.95945 0.95993 
s50 0.17186 0.97988 -0.77940 -0.77534 1.49251 1.06220 1.05916 
s51 0.01448 0.10798 -0.11504 -0.11600 0.19225 0.32782 0.32873 
s52 0.00370 0.31240 -0.31206 -0.31294 0.55569 0.74329 0.74375 
s53 0.02022 0.65146 -0.64045 -0.64067 0.73704 0.95695 0.95760 
s54 0.00115 0.08493 -0.08462 -0.08562 0.16399 0.28326 0.28424 
s55 0.00019 0.26653 -0.26536 -0.26658 0.85608 0.94356 0.94369 
s56 0.00174 0.57705 -0.57583 -0.57639 0.89885 1.00619 1.00647 
s57 0.00428 0.69889 -0.69591 -0.69620 0.93490 1.02927 1.02965 
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Appendix G. The CGE model with a CDE demand in GTAPinGAMS15 
$title Read GTAP8 Base data and Replicate the Benchmark in MPSGE 
* To run the model, type, for example: gams mrtmge_cde --start=0.1 --end=20 --
step=0.1 
 
* The following pre-assignment for ds will be used in a $gdxin command in 
gtap8data.gms 
$if not set ds $set ds 2r4s1f 
 
$if not set wt $set wt 0 
 
* Sets, parameters declarations and assignments are done in gtap8data.gms 
$include ..\build\gtap8data 
 
set c(g) private consumption /c/; 
set e(g) exogenous consumption /g, i/; 
 
parameters  
esub(g)     Top-level elasticity in demand /C 1/ 
vcm(i,c,r)      Tax included Armington good i for private consumption, 
data(*,*,*)     Output from cdecalib, 
cde             CDE calibration, 
chkd(i,r)       Check final expenditure D; 
 
* Aggregate final demand (Armington good) 
vcm(i,c,r) = vdfm(i,c,r)*(1+rtfd0(i,c,r))+vifm(i,c,r)*(1+rtfi0(i,c,r)); 
 
* Read the CDE coefficients 
*execute_load ".\input\cdecalib_%ds%_wt=%wt%.gdx" data = data; 
execute_load ".\input\cdecalib_%ds%_lnobj.gdx" data = data; 
cde(i,r,"alpha")     = data(i,r,"alpha");   
cde(i,r,"e")         = data(i,r,"e");    
cde(i,r,"beta")      = data(i,r,"beta");     
cde("utility",r,"u") = 1; 
cde("mc",r,"mc")     = data("mc",r,"mc"); 
 
cde(i,r,"alpha")$(cde(i,r,"alpha") eq eps)  = 0;     
cde(i,r,"e")$(cde(i,r,"e") eq eps)               = 0; 
cde(i,r,"beta")$(cde(i,r,"beta") eq eps)         = 0; 
cde("utility",r,"u")$(cde("utility",r,"u") eq eps) = 0; 
cde("mc",r,"mc")$(cde("mc",r,"mc") eq eps)          = 0; 
 
$ontext 
$model:gtap8 
 
$sectors: 
    y(g,r)$(not c(g) and vom(g,r))  ! Supply 
    m(i,r)$vim(i,r)    ! Imports 

                                                            
15 To run this MPSGE program “mrtmge_cde.gms,” one needs to 1) place it inside the 
subdirectory “model” of GTAPinGAMS; 2) set either price shock or income shock 
within the loop; 3) set the output file name that distinguishes price shock from income 
shock; and 4) type, for example, “gams mrtmge_cde --start=0.1 --end=20 --step=0.1” 
under the DOS command prompt. With the default setting, this will produce 20 
different price shocks for the agricultural product—the first shock will be created by 
multiplying both vdfm("agri",c,"usa") and vifm("agri",c,"usa") by 0.1, and for each 
following shock, the multiplicand increases by 0.1 compared to that in the previous 
shock.  
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    yt(j)$vtw(j)    ! Transportation services 
    ft(f,r)$(sf(f) and evom(f,r))  ! Specific factor transformation 
    yc(i,c,r)$vcm(i,c,r)   ! Private consumption by commodity 
 
$commodities: 
    p(g,r)$vom(g,r)    ! Domestic output price   
    pm(j,r)$vim(j,r)   ! Import price       
    pt(j)$vtw(j)    ! Transportation services    
    pf(f,r)$evom(f,r)   ! Primary factors rent 
    ps(f,g,r)$(sf(f) and vfm(f,g,r)) ! Sector-specific primary factors 
    pc(i,c,r)$vcm(i,c,r)   ! Private consumption price 
 
$consumers: 
    ra(r)              ! Representative agent 
 
$auxiliary: 
    TC(r)                              ! Expenditure for the CDE system 
    U(r)                               ! Activity level of Utility 
    D(i,r)$vcm(i,"c",r)                ! Activity level of final consumption 
 
* Sectoral output 
$prod:y(j,r)$vom(j,r) s:esub(j)       i.tl:esubd(i)  va:esubva(j) 
 o:p(j,r) q:vom(j,r) a:ra(r)  t:rto(j,r) 
 i:p(i,r) q:vdfm(i,j,r) p:(1+rtfd0(i,j,r))   i.tl:  a:ra(r)  
t:rtfd(i,j,r) 
 i:pm(i,r) q:vifm(i,j,r) p:(1+rtfi0(i,j,r))   i.tl:  a:ra(r)  
t:rtfi(i,j,r) 
 i:ps(sf,j,r) q:vfm(sf,j,r) p:(1+rtf0(sf,j,r))   va:    a:ra(r)  
t:rtf(sf,j,r) 
 i:pf(mf,r) q:vfm(mf,j,r) p:(1+rtf0(mf,j,r))   va:    a:ra(r)  
t:rtf(mf,j,r) 
 
* Government consumption and investment (exogenous consumption) 
$prod:y(e,r)$vom(e,r) s:esub(e)       i.tl:esubd(i) 
 o:p(e,r) q:vom(e,r) a:ra(r)  t:rto(e,r) 
 i:p(i,r) q:vdfm(i,e,r) p:(1+rtfd0(i,e,r))   i.tl:  a:ra(r)  
t:rtfd(i,e,r) 
 i:pm(i,r) q:vifm(i,e,r) p:(1+rtfi0(i,e,r))   i.tl:  a:ra(r)  
t:rtfi(i,e,r) 
 
* Private consumption: new 
* Level 1: Armington good of commodity i 
$prod:yc(i,c,r)$vcm(i,c,r) s:esubd(i) 
        o:pc(i,c,r)     q:vcm(i,c,r)                           a:ra(r)  
t:rto(c,r) 
        i:p(i,r)        q:vdfm(i,c,r) p:(1+rtfd0(i,c,r))   a:ra(r)  
t:rtfd(i,c,r) 
        i:pm(i,r)       q:vifm(i,c,r) p:(1+rtfi0(i,c,r))   a:ra(r)  
t:rtfi(i,c,r) 
 
* Level 2: Aggregate various goods to a single consumption good c.  This is 
where we need to work on for CDE. 
* Let's temporarily remove the declaration of y(c,r), and move the sources and  
* sinks in this block to demand block. 
* This strategy is similar to linking the top-down and bottom-up.  
* Now this is moved to the representative agent block. 
 
$prod:yt(j)$vtw(j)      s:1 
 o:pt(j)  q:vtw(j) 
 i:p(j,r) q:vst(j,r) 
 
$prod:m(i,r)$vim(i,r) s:esubm(i)      s.tl:0 
 o:pm(i,r) q:vim(i,r) 
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 i:p(i,s) q:vxmd(i,s,r) p:pvxmd(i,s,r)       s.tl:  a:ra(s)  t:(-
rtxs(i,s,r))  a:ra(r)  t:(rtms(i,s,r)*(1-rtxs(i,s,r))) 
 i:pt(j)#(s) q:vtwr(j,i,s,r) p:pvtwr(i,s,r)       s.tl:  a:ra(r)  
t:rtms(i,s,r) 
 
$prod:ft(sf,r)$evom(sf,r)  t:etrae(sf) 
 o:ps(sf,j,r) q:vfm(sf,j,r) 
 i:pf(sf,r) q:evom(sf,r) 
 
$demand:ra(r) 
 d:p("c",r) q:vom("c",r) 
 e:p("c",rnum) q:vb(r) 
 e:p("g",r) q:(-vom("g",r)) 
 e:p("i",r) q:(-vom("i",r)) 
 e:pf(f,r) q:evom(f,r) 
     e:p(c,r)       q:vom(c,r)      r:U(r) 
     e:pc(i,c,r)    q:(-vcm(i,c,r)) r:D(i,r)   
 
$constraint:TC(r) 
        sum(i,cde(i,r,"beta")*(cde("utility",r,"u")*U(r))**(cde(i,r,"e")*(1-
cde(i,r,"alpha")))* 
        (PC(i,"c",r)/TC(r))**(1-cde(i,r,"alpha"))) =e= 1;    
 
$constraint:U(r) 
        TC(r)*sum(i,cde(i,r,"beta")*cde(i,r,"e")*(1-
cde(i,r,"alpha"))*(U(r)**(cde(i,r,"e")*(1-cde(i,r,"alpha"))-
1))*(PC(i,"c",r)/TC(r))**(1-cde(i,r,"alpha"))) 
         =e= data("mc",r,"mc")*P("c",r)*sum(i,cde(i,r,"beta")*(1-
cde(i,r,"alpha"))*(U(r)**(cde(i,r,"e")*(1-
cde(i,r,"alpha"))))*(PC(i,"c",r)/TC(r))**(1-cde(i,r,"alpha"))); 
 
$constraint:D(i,r)$(vcm(i,"c",r)) 
        vcm(i,"c",r)/vom("c",r)*D(i,r)*sum(j,cde(j,r,"beta")*(U(r)**((1-
cde(j,r,"alpha"))*cde(j,r,"e")))*(1-cde(j,r,"alpha"))*(PC(j,"c",r)/TC(r))**(1-
cde(j,r,"alpha")))  
         =e= (cde(i,r,"beta")*(U(r)**((1-cde(i,r,"alpha"))*cde(i,r,"e")))*(1-
cde(i,r,"alpha"))*(pc(i,"c",r)/TC(r))**(-cde(i,r,"alpha"))); 
 
             
$offtext 
 
$sysinclude mpsgeset gtap8 
 
TC.L(r)   = 1; 
TC.LO(r)  = 0.000001; 
U.L(r)    = 1; 
U.LO(r)   = 0.000001; 
D.L(i,r)  = 1; 
D.LO(i,r) = 0.000001; 
PF.FX("primary","usa") = 1; 
 
gtap8.workspace = 128; 
gtap8.iterlim = 0; 
$include gtap8.gen 
solve gtap8 using mcp; 
 
chkd(i,r) = vcm(i,"c",r)/vom("c",r)*D.L(i,r)  
          - (cde(i,r,"beta")*(U.L(r)**((1-cde(i,r,"alpha"))*cde(i,r,"e")))*(1-
cde(i,r,"alpha"))*(PC.L(i,"c",r)/TC.L(r))**(-cde(i,r,"alpha"))) 
            /sum(j,cde(j,r,"beta")*(U.L(r)**((1-
cde(j,r,"alpha"))*cde(j,r,"e")))*(1-cde(j,r,"alpha"))*PC.L(j,"c",r)**(1-
cde(j,r,"alpha"))*TC.L(r)**cde(i,r,"alpha")); 
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execute_unload ".\output\mrtmge_cde_ref_ds=%ds%.gdx"; 
 
* The code below is for testing whether the model's realized elasticities equal 
the calibrated levels it is given to 
 
$if not set step $set step 0 
set x shock level /1*%end%/ 
parameters  
step  step of the shock level,  
start initial shock coefficient,  
vdfm0 vdfm value from GTAP,  
vifm0 vifm value from GTAP,  
evom0 evom value from GTAP,  
pfx  realized PF with shock level x, 
pcx  realized PC over PF with shock level x,  
dx  realized D with shock level x,  
theta_i final consumption expenditure share,  
eta_i calibrated income demand point elasticity,  
priexp total private expenditure, 
priexpi total private expenditure index, 
eta_i_a calibrated arc income demand elasticity, 
sigma calibrated AUES price demand elasticity (point elasticity), 
delta(i,j,r) diagonal-one off-diagonal-zero, 
sigma_c calibrated compensated price demand elasticity (point elasticity), 
sigma_m calibrated Marshallian price demand elasticity (point elasticity),  
sigma_ma calibrated Marshallian price demand elasticity (arc elasticity), 
dxn  realized D with shock level x net of prices & income effects, 
sigma_mar realized Marshallian price elasticity (arc elasticity), 
cds  change in d due to changes in other prices, 
cdi  change in d due to change in income, 
eqi  expected quantity due to pure income effect, 
cqp  change in quantity due to change in own-price, 
dxi  realized D with shock level x net of prices effects,  
eta_i_ar realized arc income demand elasticity; 
 
alias(i,k); 
 
* Assign start and step in the command line using environment variables 
start   = %start%; 
step    = %step%; 
 
* Read the shares and calibrated elasticities 
theta_i(i,r,"theta")     = data(i,r,"theta"); 
eta_i(i,r,"etav")       = data(i,r,"etav"); 
 
* Store the original vdfm, vifm, and evom in GTAP 
vdfm0(i,c,r)   = vdfm(i,c,r); 
vifm0(i,c,r)  = vifm(i,c,r); 
evom0(f,r)     = evom(f,r); 
 
* Step 1: Calculate the Marshallian price demand elasticity (point elasticity) 
delta(i,j,r)              = 0;  
delta(i,j,r)$sameas(i,j)  = 1;  
sigma(i,j,r)  = cde(i,r,"alpha")+cde(j,r,"alpha")-sum(k, 
theta_i(k,r,"theta")*cde(k,r,"alpha")) 
     -delta(i,j,r)*cde(i,r,"alpha")/theta_i(i,r,"theta"); 
sigma_c(i,j,r)  = sigma(i,j,r)*theta_i(i,r,"theta"); 
sigma_m(i,j,r)  = sigma_c(i,j,r)-
eta_i(i,r,"etav")*theta_i(i,r,"theta"); 
 
loop(x, 
 
* Consumer's price shock: 
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vdfm("agri",c,"usa") = vdfm0("agri",c,"usa")*(start+(ord(x)-1)*step); 
vifm("agri",c,"usa") = vifm0("agri",c,"usa")*(start+(ord(x)-1)*step); 
 
* Endowment shock: 
*evom(f,"usa") = evom0(f,"usa")*(start+(ord(x)-1)*step); 
 
* Avoid raise 0 by a negative number in the third auxiliary equation  
PC.LO(i,"c",r) = 0.000001; 
 
gtap8.iterlim = 50000; 
$include gtap8.gen 
solve gtap8 using mcp; 
 
* Step 2: Within the loop, derive the calibrated arc elasticities associated 
with the shock 
 
** Marshallian price demand elasticity (arc elasticity) 
pfx(r,x)   = PF.L("primary",r); 
pcx(i,r,x) = PC.L(i,"c",r)/pfx(r,x); 
sigma_ma(i,j,r,x)$(pcx(j,r,x) ne 1) = (pcx(j,r,x)**sigma_m(i,j,r)-
1)/(pcx(j,r,x)-1)*(pcx(j,r,x)+1)/(pcx(j,r,x)**sigma_m(i,j,r)+1);                                     
sigma_ma(i,j,r,x)$(pcx(j,r,x) eq 1) = sigma_m(i,j,r); 
 
** Income demand elasticity (arc elasticity) 
priexp(r,x) = sum(i,pcx(i,r,x)*D.L(i,r)*vcm(i,"c",r)); 
priexpi(r,x) = priexp(r,x)/sum(i,vcm(i,"c",r)); 
eta_i_a(i,r,x)$(priexpi(r,x) ne 1) = (priexpi(r,x)**eta_i(i,r,"etav")-
1)/(priexpi(r,x)-1) 
  *(priexpi(r,x)+1)/(priexpi(r,x)**eta_i(i,r,"etav")+1); 
eta_i_a(i,r,x)$(priexpi(r,x) eq 1) = eta_i(i,r,"etav");  
 
* Step 3-1: Calculate the substitution effect due to changes in PC-
others|original income; after shock PC-own 
dx(i,r,x)  = D.L(i,r); 
cds(i,r,x) = sum(j$(not sameas(i,j)), (pcx(j,r,x)-
1)/((pcx(j,r,x)+1)/2)*sigma_ma(i,j,r,x)*(1+sigma_ma(i,i,r,x)*(pcx(i,r,x)-
1)/((1+pcx(i,r,x))/2)*((1+dx(i,r,x))/2))); 
 
* Step 3-2: Calculate the income effect on top of changes in all PC 
cdi(i,r,x) = (priexpi(r,x)-
1)/((priexpi(r,x)+1)/2)*eta_i_a(i,r,x)*(1+sigma_ma(i,i,r,x)*(pcx(i,r,x)-
1)/((1+pcx(i,r,x))/2)+cds(i,r,x)); 
 
* Step 3-3: Calculate the adjusted demand net of cross-price effect and income 
effect 
dxn(i,r,x) = dx(i,r,x)-cds(i,r,x)-cdi(i,r,x); 
sigma_mar(i,j,r,x)$(pcx(j,r,x) ne 1) = (dxn(i,r,x)-1)/((dxn(i,r,x)+1)/2) / 
((pcx(j,r,x)-1)/((pcx(j,r,x)+1)/2)); 
 
* Step 3-4: Calculate expected quantity level due to pure income effect 
eqi(i,r,x) = (priexpi(r,x))**eta_i(i,r,"etav"); 
 
* Step 3-5: Based on the expected quantity derived from pure income effect, 
calculate the quantity changes due to changes in prices 
cqp(i,r,x) = sum(j, (pcx(j,r,x)-
1)/((pcx(j,r,x)+1)/2)*sigma_ma(i,j,r,x)*eqi(i,r,x)); 
 
* Step 3-6: Substract quantity change due to price effect from the observed 
quantity 
dxi(i,r,x) = dx(i,r,x) - cqp(i,r,x); 
 
* Step 3-7: Calculate the realized income demand elasticity 
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eta_i_ar(i,r,x) = (dxi(i,r,x)-1)/((dxi(i,r,x)+1)/2)/((priexpi(r,x)-
1)/((priexpi(r,x)+1)/2)); 
 
execute_unload ".\output\mrtmge_cde_policy_ds=%ds%_priceshock=%step%.gdx"; 
*execute_unload ".\output\mrtmge_cde_policy_ds=%ds%_incomeshock=%step%.gdx"; 
 
); 
 

 


