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Mechanisms for Repeated Trade†

By Andrzej Skrzypacz and Juuso Toikka*

How does feasibility of efficient repeated trade depend on the features 
of the environment such as persistence of values, private information 
about their evolution, or trading frequency? We derive a necessary 
and sufficient condition for efficient, unsubsidized, and voluntary 
trade, which implies that efficient contracting requires sufficient con-
gruence of expectations. This translates to bounds on persistence of 
values and on private information about their evolution, and distin-
guishes increasing patience from more frequent interaction; the lat-
ter need not facilitate efficiency even when the former does. We also 
discuss second-best mechanisms and extend the characterization to 
general dynamic collective choice problems. (JEL C73, D82, D86)

In this paper, we study the feasibility of efficient contracting in dynamic envi-
ronments. For concreteness, we cast the analysis in the context of a (finitely or 

infinitely) repeated bilateral trade problem, such as the one faced by the supplier 
and the buyer of a service, which can be provided in multiple periods. A natural 
benchmark for such problems is given by the impossibility theorem of Myerson and 
Satterthwaite (1983): In a one-shot interaction with two-sided private information, 
there do not exist satisfactory trading mechanisms, that is, mechanisms that achieve 
efficient trade while being incentive compatible, individually rational, and budget 
balanced. We characterize informational conditions under which this negative result 
is overturned when the agents can trade more than once.

A dynamic setting brings about two novel features. First, the agents’ privately 
known values may change over time, with the resulting process exhibiting some form 
of serial dependence. Second, the agents may have private information about this 
process beyond just knowing their values for the current transaction. For instance, 
the seller of a service may have superior information not only about his current cost, 
but also about his long-run average cost, or about the likelihood of shocks to his cost 
structure. In order to accommodate such multidimensional asymmetric information, 
we model the agents’ values as evolving over time according to a pair of Markov 
processes, the parameters of which may be part of the agents’ initial private infor-
mation along with the starting values of the processes.
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ments, and Yair Livne and Mikhail Panov for research assistance. This paper was formerly titled “Mechanisms for 
Repeated Bargaining.”

† Go to http://dx.doi.org/10.1257/mic.20140173 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.
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We start by showing that satisfactory mechanisms exist if and only if the expected 
present value of (first-best) gains from trade is no higher than the sum of worst-case 
expectations of gains from trade from the perspective of each agent. Specifically, an 
agent’s worst-case expectation is computed as the infimum of the expected present 
value of gains from trade conditional on the agent’s initial information, where the 
infimum is over both the starting value and the parameters of his Markov process. 
Thus, the condition imposes a restriction on the sensitivity of expected gains from 
trade to the agents’ initial information, implying that efficient dynamic contracting 
requires sufficient congruence of the agents’ private expectations.1

The above characterization provides a precise, yet simple, answer to the question: 
How does the feasibility of efficient dynamic contracting depend on the features of 
the bargaining environment? Namely, anything that makes an agent’s worst-case 
conditional expectation of gains from trade more similar to the unconditional expec-
tation is (weakly) good news for efficiency. Conversely, any change that leads to the 
unconditional and conditional expectations being more different makes efficiency 
harder to achieve. For example, extending the duration of the relationship is benefi-
cial only to the extent that the agents have less information about their future values 
(say, because of shocks to their costs) and that they are sufficiently patient for this to 
be reflected in the expected present value calculation.

We illustrate how this result can be put to work beyond general level intuitions by 
considering three applications.

First, for processes with positive serial correlation in the sense of first-order sto-
chastic dominance, we show that the condition for efficiency is harder to satisfy—
and hence satisfactory mechanisms are less likely to exist—the more persistent the 
process. This formalizes the intuition that persistence is detrimental to efficiency as 
persistent information is difficult to elicit due to it affecting payoffs in many periods.

Second, if the agents have private information about the parameters of their type 
of processes, we show that satisfactory mechanisms may exist despite this infor-
mation being fully persistent provided that the range of possible processes is “not 
too large.” We also discuss which features of the distributions of the parameters are 
relevant for the conclusion. Moreover, we show that given enough uncertainty over 
possible processes, satisfactory mechanisms may fail to exist even if the agents are 
arbitrarily patient and values are purely transitory.

Third, we distinguish between increasing patience and more frequent interaction, 
and show that if values are auto-correlated, the latter need not facilitate efficiency 
even if the former does. This is because an increase in the trading frequency has two 
effects: it leads to a smaller per period discount factor, but implies higher correla-
tion of values in adjacent periods as there is less time for values to evolve between 
trades. The first effect is simply an increase in patience, which makes unconditional 
and conditional expectations of gains from trade more similar, whereas the second 
amounts to an increase in persistence, which goes in the opposite direction. As a 

1 In a static problem, or in a dynamic problem with perfectly persistent values and costs, the worst-case expec-
tations never add up to the unconditional expected gains from trade, yielding a proof of the Myerson-Satterthwaite 
theorem due to Makowski and Mezzetti (1994), Williams (1999), and Krishna and Perry (2000). This is immediate 
to see when the supports of values and costs coincide, as then the worst-case expectation is zero for each agent. 
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result, the continuous-time limit may exhibit inefficiency even if efficiency can be 
achieved in the same model by sending the discount rate to zero. This gives an 
adverse-selection analog of the result of Abreu, Milgrom, and Pearce (1991), who 
point out the difference of the two limits for two-sided moral hazard.

For completeness, we also discuss second-best analysis, and illustrate that the 
dynamics of distortions may be qualitatively different depending on whether the 
agents’ initial information is about their initial value and cost, or about a process 
parameter.2

As we explain in the last section, our characterization and its consequences read-
ily extend to general dynamic Bayesian collective choice problems such as dou-
ble auctions, public good provision, or allocation of resources within a team. The 
extension presented there provides a dynamic generalization of the characterization 
for static private value environments by Makowski and Mezzetti (1994), Williams 
(1999), and Krishna and Perry (2000).3

In terms of the model, this paper is most closely related to the work of Athey and 
Miller (2007) and Athey and Segal (2007, 2013). Athey and Miller study repeated 
bilateral trade when types are independent and identically distributed across peri-
ods, thus abstracting from the two features central to our analysis. Athey and Segal 
(2013) establish a general “folk theorem” for Markov games with transfers, which 
implies that in a discrete-type version of our problem, if the horizon is infinite, 
initial information is only about starting values, and processes are ergodic, then 
satisfactory mechanisms exist given sufficiently little discounting. Athey and Segal 
(2007) specialize this result to two examples of bilateral trade. In contrast, our char-
acterization allows us to compute the critical discount factor, establish comparative 
statics (e.g., with respect to persistence and trading frequency), and study the case 
where initial private information is about process parameters, which is ruled out by 
their ergodicity assumption.

In terms of the methods, we draw on recent advances in dynamic mechanism 
design, which in turn build on earlier contributions by Baron and Besanko (1984), 
Courty and Li (2000), Battaglini (2005), and Eső  and Szentes (2007) among others. 
In particular, our analysis applies to environments that satisfy a dynamic version of 
the payoff-equivalence property familiar from static quasilinear environments. We 
provide sufficient conditions for it to hold in the Appendix where we establish a pay-
off-equivalence theorem for environments with multidimensional initial information 
by extending the necessary condition for incentive compatibility by Pavan, Segal, 
and Toikka (2014—henceforth PST) to our setting. Our discussion of second best 
also builds on their results. Athey and Segal (2013) and Bergemann and Välimäki 
(2010) construct efficient dynamic mechanisms, which extend VCG mechanisms to 
dynamic private-value environments. Our results on ex post budget balance rely on 

2 This result is closely related to the contrasting findings by Battaglini (2005) and Boleslavsky and Said (2013), 
who study monopolistic price discrimination under analogous assumptions. However, here the distortions arise in a 
social-surplus-maximizing mechanism rather than as solutions to a profit-maximization problem. 

3 The existence of satisfactory mechanisms depends also on the specification of the agents’ outside options, or 
the “status quo.” See Segal and Whinston (2011) and the references therein for the static case. However, as this issue 
is tangential to our analysis, we omit a discussion of it in the interest of space. 
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Athey and Segal’s method of balancing transfers, which yields a dynamic version of 
the AGV mechanism of d’Aspremont and Gérard-Varet (1979).

I.  The Environment

Consider the following dynamic bargaining environment with two-sided private 
information.4 There are two agents, a buyer (​B​) and a seller (​S​), who may trade a 
nonstorable good and a numeraire in each of countably many periods indexed by ​
t  =  0, 1, … , T​ , with ​T  ≤  ∞​. (For example, the seller can provide a service for 
which the buyer pays in cash.) If the period-​t​ allocation of the good is ​​x​t​​  ∈  {0, 1}​ 
and agent ​i  ∈  {B, S}​ receives ​​p​i, t​​​ units of the numeraire, then the resulting flow pay-
offs are ​​x​t​​ ​v​t​​ + ​p​B, t​​​ for the buyer and ​​p​S, t​​ − ​x​t​​ ​c​t​​​ for the seller. The value ​​v​t​​​ and cost ​​
c​t​​​ are private information of the respective agents, and evolve as described below. 
The agents evaluate streams of flow payoffs according to the discounted average 
criterion with a common discount factor ​δ  ∈  (0, 1]​ with ​δ  <  1​ if ​T  =  ∞​.

The buyer’s values are given by a privately observed stochastic process 
​V  = ​ (​V​t​​)​ t=0​ T ​ ​ on the (possibly unbounded) interval ​  ⊂  ℝ​. Let ​​​0​​  ⊂  ​ and 
​​Ω​B​​  ⊂ ​ ℝ​​ k​​ be convex sets. The law of ​V​ is given by a mixture of Markov chains 
defined by an initial distribution ​​F​0​​​ on ​​Ω​B​​ × ​​0​​​ and a parameterized family ​​
{F( · | · ; ​θ​B​​)}​​θ​B​​∈​Ω​B​​​​​ of Markov kernels ​F( · | · ; ​θ​B​​)  :  ×   →  [0, 1]​.5 Specifically, 
given any ​(​θ​B​​, ​v​0​​)  ∈ ​ Ω​B​​ × ​​0​​​ , ​V​ follows the Markov chain ​​⟨​v​0​​, F( · | · ; ​θ​B​​)⟩​​ with 
transitions ​F( · | · ; ​θ​B​​)​ and initial value ​​v​0​​​. The initial condition ​(​θ​B​​, ​v​0​​)  ∈ ​ Ω​B​​ × ​​0​​​ 
is determined as the realization of the random vector ​(​Θ​B​​, ​V​0​​)​ with distribution ​​F​0​​​.

The buyer’s private information in period ​0​ consists of the vector ​(​θ​B​​, ​v​0​​)​ , and 
hence, from his perspective ​V​ is simply the Markov chain ​​⟨​v​0​​, F( · | · ; ​θ​B​​)⟩​​. The seller 
is only informed of the distribution ​​F​0​​​ and the family ​​{F( · | · ; ​θ​B​​)}​​θ​B​​∈​Ω​B​​​​​ , which are 
assumed common knowledge as usual. Thus, the buyer’s payoff-relevant private 
information in any period ​t​ consists of the transitory component ​​v​t​​​ as well as the 
permanent component ​​θ​B​​​.

Analogously, the seller’s privately observed cost evolves on the interval ​  ⊂  ℝ​ 
according to a process ​C  = ​ (​C​t​​)​ t=0​ T ​ ​ generated by the kernels ​​{G( · | · ; ​θ​S​​)}​​θ​S​​∈​Ω​S​​​​​ and 
the joint distribution ​​G​0​​​ of ​(​Θ​S​​, ​C​0​​)​ on ​​Ω​S​​ × ​​0​​​ for some convex sets ​​Ω​S​​  ⊂ ​ ℝ​​ k​​ 
and ​​​0​​  ⊂  ​. From the seller’s perspective, ​C​ is the Markov chain ​​⟨​c​0​​, G( · | · ; ​θ​S​​)⟩​​  
determined by his period-​0​ private information ​(​θ​S​​, ​c​0​​)​ , whereas the buyer only 
knows the pair ​(​G​0​​, ​{G( · | · ; ​θ​S​​)}​​θ​S​​∈​Ω​S​​​​)​. In every period ​t​ , the seller’s payoff-relevant 
private information consists of the vector ​(​θ​S​​, ​c​t​​)​.

We assume that the processes ​V​ and ​C​ are independent, which is the dynamic 
extension of the independent-types assumption familiar from static models. For 
simplicity, we also assume that the initial distributions ​​F​0​​​ and ​​G​0​​​ have full support 
on their respective domains. Finally, to ensure that expected allocation utilities are 

4 We discuss more general environments in Section VI.  
5 That is, ​F( · | v; ​θ​B​​)​ is a cumulative distribution function for all ​(v, ​θ​B​​)  ∈   × ​Ω​B​​​ , and ​F(v | · ; · ) : 

 × ​Ω​B​​  →  [0, 1]​ is (Borel) measurable for all ​v  ∈  ​. 
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well-behaved, assume ​E​[​∑ t=0​ 
T  ​​ ​δ​​ t​ | ​V​t​​ || ​θ​B​​, ​v​0​​]​​ and ​E​[​∑ t=0​ 

T  ​​ ​δ​​ t​ | ​C​t​​ || ​θ​S​​, ​c​0​​]​​ are finite 
for all ​(θ, ​v​0​​, ​c​0​​)  ∈  Ω × ​​0​​ × ​​0​​​ , where ​θ :=  (​θ​B​​, ​θ​S​​)  ∈ ​ Ω​B​​ × ​Ω​S​​  =: Ω​.6

The following three examples illustrate the environment. We use versions of them 
(along with other examples) throughout the paper.

Example 1 (Conditionally Independent and Identically Distributed Types): 
Given any ​θ  ∈  Ω​ , values and costs are independent and identically distributed 
draws from distributions ​F( · | ​θ​B​​)​ and ​G( · | ​θ​S​​)​ , respectively, whose parameters are 
private information of the agents. For example, ​​θ​i​​​ may be the mean (or, more gener-
ally, the vector of the first ​k​ moments) of the distribution.

The next example generalizes the previous one by introducing persistence.

Example 2 (Renewal Model): Given ​​θ​B​​  ∈ ​ Ω​B​​​ , the buyer’s value evolves as fol-
lows: The initial value ​​V​0​​​ is distributed according to ​​F​0​​( · | ​θ​B​​)​. For every period ​
t  >  0​ , given ​​V​t−1​​  =  v​ , the distribution of ​​V​t​​​ is given by the kernel ​F( · | v; ​θ​B​​) 
= ​ γ​B​​ ​1​[v,∞)​​( · ) + (1 − ​γ​B​​)​F​0​​( · | ​θ​B​​)​ for some ​​γ​B​​  ∈  [0, 1]​. That is, the buyer’s type 
stays constant with probability ​​γ​B​​​ , and it is drawn anew from the privately known 
distribution ​​F​0​​( · | ​θ​B​​)​ (independently of past types) with the complementary prob-
ability. Similarly, given ​​θ​S​​  ∈ ​ Ω​S​​​ , the seller’s initial cost ​​C​0​​​ is distributed accord-
ing to ​​G​0​​( · | ​θ​S​​)​ , and for every ​t  >  0​ , given ​​C​t−1​​  =  c​ , the distribution of ​​C​t​​​ is 
​G( · | c; ​θ​S​​)  = ​ γ​S​​ ​1​[c,∞)​​( · ) + (1 − ​γ​S​​)​G​0​​( · | ​θ​S​​)​. Note that taking ​​γ​i​​  =  0​ yields the 
above independent and identically distributed case, whereas ​​γ​i​​  =  1​ corresponds to 
perfectly persistent types.

Finally, we consider linear autoregressive processes with Gaussian shocks.

Example 3 (Linear AR(1)): The buyer’s value evolves on ​ℝ​ according to the 
linear first-order autoregressive, or AR(1), process ​​v​t​​  = ​ γ​B​​ ​v​t−1​​ + (1 − ​γ​B​​)​m​B​​ + 
​ε​B, t​​​ , where ​​m​B​​​ is the long-term mean, and ​(​ε​B, t​​)​ are a sequence of independent and 
identically distributed draws from a Normal distribution. Similarly, the seller’s value 
evolves on ​ℝ​ according to ​​c​t​​  = ​ γ​S​​ ​c​t−1​​ + (1 − ​γ​S​​)​m​S​​ + ​ε​S, t​​​ , where ​(​ε​S, t​​)​ are inde-
pendent and identically distributed draws from a Normal distribution. The constants ​​
γ​i​​​ , ​​m​i​​​ , and the parameters of the Normal distributions may be private information.

II.  Trading Games and Mechanisms

By the revelation principle, in order to characterize incentive compatible out-
comes, it is without loss to focus on truthful equilibria of direct revelation mecha-
nisms where in each period the agents simply report their new private information, 
and the mechanism determines the allocation and transfers as a function of the 

6 All conditional expectations where the conditioning event is measure zero are to be interpreted as the (unique) 
version obtained by using the kernels ​F( · | · )​ and ​G( · | · )​ while respecting the independence of the agents’ type 
processes. 
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history of reports. However, in a dynamic setting the set of implementable decision 
rules in general depends on the degree of transparency in the mechanism. The most 
permissive results are achieved with the least amount of information disclosure as 
hiding information from an agent amounts to pooling his incentive constraints (see, 
e.g., Myerson 1986). As will be clear from our results, for the purposes of the cur-
rent paper this issue can be addressed by considering only the two extreme cases: a 
fully transparent mechanism, where all reports, allocations, and transfers are public; 
and the fully opaque mechanism, where reports are confidential and transfers are 
never observed by either agent. While the latter is best viewed as a purely theoret-
ical construct, it should be noted that real-world trading institutions are typically 
price-based indirect mechanisms, which entail an intermediate level of transpar-
ency. Thus, it is important to look beyond public mechanisms.

Formally, a decision rule is a (measurable) map

	​ μ  =  (x, p) :  Ω × ​( × )​​ T+1​  → ​ {0, 1}​​ T+1​ × ​ℝ​​ 2(T+1)​,​

where ​x​ is the allocation rule and ​p​ is the transfer rule, whose period-​t​ compo-
nents ​​x​t​​​ and ​​p​t​​​ are functions only of the (reported) parameters, values, and costs 
in periods ​0, … , t​.7 A decision rule ​μ​ induces a multi-stage game form where in 
every period ​t  =  0, 1, … , T​ , given history of reports ​(​​θ ̂ ​​B​​, ​​θ ̂ ​​S​​, ​​v ̂ ​​0​​, ​​c ̂ ​​0​​, … , ​​v ̂ ​​t−1​​, ​​c ̂ ​​t−1​​) 
∈  Ω × ​( × )​​ t​​ , timing is as follows:

t.1 � The agents privately observe their own current types ​​v​t​​  ∈  ​ and ​​c​t​​  ∈  ​ (or 
​(​θ​B​​, ​v​0​​)  ∈ ​ Ω​B​​ × ​​0​​​ and ​(​θ​S​​, ​c​0​​)  ∈ ​ Ω​S​​ × ​​0​​​ if ​t  =  0​).

t.2 � The buyer reports ​​​v ˆ ​​t​​​ ∈ supp F(· | ​​​v ˆ ​​t−1​​​; ​​​θ ˆ ​​B​​​) and the seller reports 
​​​c ˆ ​​t​​​ ∈ supp G(· | ​​​c ˆ ​​t−1​​​; ​​​θ ˆ ​​S​​​) (or, respectively, ​(​​θ ̂ ​​B​​, ​​v ̂ ​​0​​)  ∈ ​ Ω​B​​ × ​​0​​​ and ​(​​θ ̂ ​​S​​, ​​c ̂ ​​0​​)  
∈ ​ Ω​S​​ × ​​0​​​ if ​t  =  0​).

t.3 � The decision rule ​μ​ determines the allocation ​​x​t​​  ∈  {0, 1}​ and transfers 
​( ​p​B, t​​, ​p​S, t​​)  ∈ ​ ℝ​​ 2​​ as a function of the reports ​(​​θ ̂ ​​B​​, ​​θ ̂ ​​S​​, ​​v ̂ ​​0​​, ​​c ̂ ​​0​​, … , ​​v ̂ ​​t​​, ​​c ̂ ​​t​​)​.

Note that the agents are restricted to reporting types that are consistent with the 
supports of the type process.

If the agents observe each other’s reports at stage ​t.2​ as well as the allocation and 
transfers at stage ​t.3​ , then this game form is the public mechanism with decision 
rule ​μ​ , or simply the public mechanism ​μ​. In contrast, if each agent observes neither 
transfers nor the other agent’s reports, then the above game form is the blind mech-
anism with decision rule ​μ​ , or the blind mechanism ​μ​ for short. In what follows, 
we use “mechanism ​μ​” as the general term to refer to both the public and the blind 
mechanism with decision rule ​μ​.

7 Restricting attention to deterministic mechanisms is without loss for our results so we do so throughout to 
simplify notation. 
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The set of feasible period-​t​ histories of agent ​i​ in a mechanism ​μ​ is 
denoted ​​​ i, t​ 

μ ​​ , or simply ​​​i, t​​​ , if ​μ​ is clear from the context.8 A strategy for 
the buyer is then a sequence of (measurable) functions ​​σ​B​​  = ​ (​σ​B, t​​)​ t=0​ T ​ ​ where 
​​σ​B, 0​​ : ​​B, 0​​  → ​ Ω​B​​ × ​​0​​​ and ​​σ​B, t​​ : ​​B, t​​  →  ​ for ​t  ≥  1​. The seller’s strategy ​​
σ​S​​  = ​ (​σ​S, t​​)​ t=0​ T ​ ​ is defined analogously. We say that agent ​i​ ’s history ​​h​i, t​​  ∈ ​ ​i, t​​​ is 
truthful if his own reports have been truthful in all periods ​0, … , t − 1​. We say that 
strategy ​​σ​i​​​ for agent ​i​ is truthful, denoted ​​σ​ i​ ∗​​ , if it reports truthfully at all truthful 
histories.

A mechanism ​μ​ and a strategy profile ​σ :=  (​σ​B​​, ​σ​S​​)​ induce an allocation process ​
X​ on ​{0, 1}​ and a payment process ​P :=  (​P​B​​, ​P​S​​)​ on ​​ℝ​​ 2​​ in the obvious way. For any 
period ​t​ and truthful histories ​​h​B, t​​  ∈ ​ ​B, t​​​ and ​​h​S, t​​  ∈ ​ ​S, t​​​ , we denote the expected 
continuation utilities for the buyer and the seller, respectively, by

	​ ​U​ t​ μ, σ​(​h​B, t​​)   := ​ E​​ μ, σ​​[​​  1 − δ ______ 
1 − ​δ​​ T+1​

 ​ ​∑ 
τ=t

​ 
T

 ​​ ​δ​​ τ​(​X​τ​​ ​V​τ​​ + ​P​B, τ​​) |​ ​h​B, t​​]​,​

and

	​ ​Π​ t​ μ, σ​(​h​S, t​​)   := ​ E​​ μ, σ​​[​  1 − δ ______ 
1 − ​δ​​ T+1​

 ​ ​​∑ 
τ=t

​ 
T

 ​​ ​δ​​ τ​(​P​S, τ​​ − ​X​τ​​ ​C​τ​​) |​ ​h​S, t​​]​ .​

Our convention is to omit ​σ​ if the strategies are truthful ​​(e.g., ​U​ t​ μ​ := ​ U​ t​ μ, ​σ​​ ∗​​)​​.
The following definitions are standard (see, e.g., Athey and Segal 2013; 

Bergemann and Välimäki 2010; or PST):

Definition 1: A mechanism ​μ  =  (x, p)​ is efficient (E) if for all ​t​ , ​​x​t​​  = ​ 1​{​v​t​​≥​c​t​​}​​​.

Definition 2: A mechanism ​μ​ is Bayesian incentive compatible (IC) if for all 
strategies ​​σ​B​​​ , ​​σ​S​​​ , and all ​(θ, ​v​0​​, ​c​0​​)  ∈  Ω ×​​0​​ ×​​0​​​ ,

	​​ U​ 0​ 
μ​(​θ​B​​, ​v​0​​)  ≥ ​ U​ 0​ 

μ,(​σ​B​​, ​σ​ S​ ∗​)​(​θ​B​​, ​v​0​​)    and  ​  Π​ 0​ 
μ​(​θ​S​​, ​c​0​​)  ≥ ​ Π​ 0​ 

μ,(​σ​ B​ ∗ ​, ​σ​S​​)​(​θ​S​​, ​c​0​​) .​

The mechanism ​μ​ is perfect Bayesian incentive compatible (PIC) if it is IC and 
the game induced by the mechanism has a perfect Bayesian equilibrium in truthful 
strategies. The mechanism is within-period ex post incentive compatible (EPIC) if 
it is PIC and for all ​t​ , all pairs of truthful histories ​(​h​B, t​​, ​h​S, t​​)  ∈ ​ ​B, t​​ × ​​S, t​​​ , and 
each agent ​i​ , a truthful strategy is a best response for agent ​i​ even if he knows the 
history ​​h​j, t​​​ of agent ​j  ≠  i​.

8 Formally, the sets of buyer’s histories in a public mechanism are defined recursively by setting 
​​​B, 0​​ := ​ Ω​B​​ × ​​0​​​ , ​​​B, 1​​ := ​ ​B, 0​​ × Ω × ​​0​​ × ​​0​​ × {0, 1} × ​ℝ​​ 2​ × ​ , and ​​​B, t​​ := ​ ​B, t−1​​ ×  ×  × 
{0, 1} × ​ℝ​​ 2​ × ​ for ​t  ≥  2​ (i.e., in each period, the history is augmented with the previous period reports, allo-
cation, and transfers, and the buyer’s new value.) In a blind mechanism these become ​​​B, 0​​ := ​ Ω​B​​ × ​​0​​​ , ​​​B, 1​​ 
:= ​ ​B, 0​​ × ​Ω​B​​ × ​​0​​ ×  × {0, 1}​ , and ​​​B, t​​ := ​ ​B, t−1​​ ×  ×  × {0, 1}​ for ​t  ≥  2​ (i.e., in each period, the his-
tory is augmented with the buyer’s previous period report and allocation as well as his new value.) The sets ​​​S, t​​​ for 
the seller are defined analogously. 
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An agent can never observe that the other agent has deviated from truthful report-
ing due to the restriction on reports at stage ​t.2​ , and hence the difference between 
IC and PIC is essentially just the fact that the former requires sequential rationality 
only almost surely, whereas the latter imposes it everywhere.

Definition 3: A mechanism ​μ​ is individually rational in period 0 (IR​​​​0​​​) if for all ​
(θ, ​v​0​​, ​c​0​​)  ∈  Ω × ​​0​​ × ​​0​​​ ,

	​​ U​ 0​ 
μ​(​θ​B​​, ​v​0​​)  ≥  0    and  ​  Π​ 0​ 

μ​(​θ​S​​, ​c​0​​)  ≥  0.​

The mechanism ​μ​ is individually rational (IR) if for all ​t​ , and all truthful histories 
​(​h​B, t​​, ​h​S, t​​)  ∈ ​ ​B, t​​ × ​​S, t​​​ ,

	​ ​U​ t​ μ​(​h​B, t​​)  ≥  0    and    ​Π​ t​ μ​(​h​S, t​​)  ≥  0.​

Individual rationality in period 0 corresponds to a situation where the agents, 
having observed their initial private information, decide whether to commit to a 
long-term contract or to take their outside option, which yields a payoff of zero. For 
individual rationality we require, in addition, that the agents expected continuation 
payoffs under truthful reporting remain nonnegative in all future periods.

Definition 4: A mechanism ​μ​ is ex ante budget balanced (BB​​​​0​​​) if

	​ ​E​​ μ​​[​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​  ≤  0 .​

The mechanism ​μ  =  (x, p)​ is budget balanced (BB) if ​​p​B​​ + ​p​S​​  ≡  0.​

Ex ante budget balance is the relevant notion in situations where the operation of 
the mechanism can be financed by a third party. Then it corresponds to the require-
ment that, in terms of the expected present value, the profit to the third party be 
nonnegative. In contrast, in a budget balanced mechanism the sum of transfers is 
identically zero at all possible reporting histories, and hence such a mechanism 
requires no outside financing.

Remark 1: Fix a decision rule ​(x, p)​. Let ​μ​ and ​η​ denote the public and the blind 
mechanism with decision rule ​(x, p)​. Observe that in every period ​t​ and for each agent ​
i​ , the set of histories ​​​ i, t​ 

η ​​ in the blind mechanism ​η​ corresponds to a partition of the set 
of histories ​​​ i, t​ 

μ ​​ in the public mechanism ​μ​. Therefore, if ​μ​ has any of the properties 
listed in Definitions 1–4, then ​η​ has the same property, but the converse is clearly not 
true in general. More generally, fix any mechanism ​λ​ with decision rule ​(x, p)​ and 
with an arbitrary information disclosure policy (e.g., ​λ​ may involve sending noisy, 
private signals to the players about the history of the other agent’s reports and trans-
fers). The information structure in the blind mechanism ​η​ amounts to a coarsening of 
the agents’ information in the mechanism ​λ​ , and hence if ​λ​ has any of the properties 
in Definitions 1–4, then ​η​ has the same property. (Indeed, this is simply the dynamic 
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revelation principle.) On the other hand, the information structure in the public mech-
anism ​μ​ refines the information in ​λ​ , which makes the properties harder to satisfy.

III.  A Characterization

We provide a necessary and sufficient condition for the existence of mechanisms 
that are efficient, individually rational, and budget-balanced. The tightness of our 
condition relies on the following property of the bargaining environment:

Definition 5: The environment has the payoff-equivalence property if for all IC 
mechanisms ​μ  =  (x, p)​ and ​η  =  (​x ′ ​, ​p ′ ​)​ such that ​x  = ​ x ′ ​​ , there exist constants ​
a, b  ∈  ℝ​ such that ​​U​ 0​ 

μ​  = ​ U​ 0​ 
η​ + a​ and ​​Π​ 0​ 

μ​  = ​ Π​ 0​ 
η ​ + b​.

The above notion is a dynamic analog of the familiar static payoff-equivalence (or 
revenue-equivalence) property, which here obtains as a special case by taking ​T  =  0​. 
Similarly to static settings, the property is satisfied in sufficiently well-behaved 
environments. We provide an informal discussion of sufficient conditions for payoff 
equivalence at the end of this section, and relegate a formal account—including a 
novel payoff-equivalence theorem for dynamic models with multi-dimensional ini-
tial information (Proposition A1)—to the Appendix.

Denote the first-best gains from trade by

	​ Y := ​   1 − δ ______ 
1 − ​δ​​ T+1​

 ​ ​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​​(​V​t​​ − ​C​t​​)​​ +​,​

where for any ​a  ∈  ℝ​ , we write ​​a​​ +​ :=  max {0, a}​. Our main tool for the analysis of 
repeated bargaining is given by the following result, the proof of which can be found 
in Appendix A2 (along with all other omitted proofs).

Proposition 1: Suppose that the environment has the payoff-equivalence prop-
erty. Then the following are equivalent:

	 (i)	 The first-best gains from trade, ​Y​ , satisfy

		  (1)	 ​​ inf​ 
​θ​B​​, ​v​0​​

​ 
​
 ​  E[Y | ​θ​B​​, ​v​0​​] + ​ inf​ 

​θ​S​​, ​c​0​​ 
​ 

​
 ​ E[Y | ​θ​S​​, ​c​0​​]  ≥  E[Y ].​

	 (ii)	 There exists a blind mechanism that is E, IC, IR​​​​0​​​ , and BB​​​​0​​​.

	 (iii)	 There exists a public mechanism that is E, PIC, IR​​​​0​​​ , and BB.

	 (iv)	 There exists a public mechanism that is E, EPIC, IR, and BB​​​​0​​​.

Remark 2: If (1) is not satisfied, then for each of the statements (ii)-(iv) in 
Proposition 1, the minimum (expected) subsidy required for the existence of a 
mechanism having the listed properties is given by ​E[Y] − ​inf​ ​θ​B​​, ​v​0​​​ 

​ ​  E[Y | ​θ​B​​, ​v​0​​] − ​
inf​ ​θ​S​​, ​c​0​​​ 

​ ​  E[Y | ​θ​S​​, ​c​0​​]​.
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Proposition 1 shows that inequality (1) is a necessary and sufficient condition for 
the existence of a bargaining mechanism that delivers efficient, unsubsidized, and 
voluntary trade. Note that the properties invoked in statement (ii) are arguably the 
weakest possible requirements for a satisfactory mechanism as incentive compatibil-
ity is imposed without perfection, balancing the budget may rely on an unbounded 
credit line, the agents are able to commit to a long-term contract, and minimal feed-
back is provided to the agents as the mechanism is blind—see Remark 1. Thus, there 
is no scope for relaxing (1).

In the other direction, statements (iii) and (iv) show, respectively, that (1) is in 
fact sufficient for efficient trade to be perfect Bayesian incentive compatible in a 
public mechanism that is either budget balanced period by period and individually 
rational in period 0, or individually rational in every period and budget balanced 
ex ante. (In the latter case, incentive compatibility can be strengthened to hold 
within-period ex post.) However, (1) is not sufficient to simultaneously guarantee 
ex post budget balance and individual rationality in every period. Indeed, as we dis-
cuss below, when the horizon is finite, no such mechanism exists, and even with an 
infinite horizon, a stronger condition is needed.

For the special case of a static model, Proposition 1 follows from the characteri-
zations by Makowski and Mezzetti (1994); Williams (1999); or Krishna and Perry 
(2000).9 However, in a static model, inequality (1) is satisfied only in the trivial 
case where there is common knowledge of positive gains from trade, which yields 
an alternative proof of Myerson and Satterthwaite’s (1983) theorem. In contrast, in 
dynamic settings the existence of future surplus allows (1) to be satisfied in many 
cases where gains from trade are not certain.

In order to interpret inequality (1), we note that it imposes a joint restriction on 
the sensitivity of the expected (first-best) gains from trade, ​E[Y ]​ , on each agent’s 
initial private information.10 In our dynamic setting, there are two new channels 
through which this information matters. First, fixing the parameters ​θ  =  (​θ​B​​, ​θ​S​​)​ , ​
V​ and ​C​ are Markov processes, and hence varying ​​v​0​​​ or ​​c​0​​​ will in general vary the 
distribution of the period-​t​ gains from trade, ​​(​V​t​​ − ​C​t​​)​​ +​​ , in every period ​t​ (rather 
than just in period ​0​), with the effect being more pronounced the more persistent the 
process. Second, for fixed initial values ​(​v​0​​, ​c​0​​)​ , the distribution of ​Y​ may depend 
on the privately known parameters ​θ​. Inequality (1) imposes a joint lower bound on 
the most pessimistic period ​0​ expectations about ​Y​ that may be held by each agent. 
Hence, we interpret Proposition 1 as saying that the agents’ expectations have to be 
sufficiently congruent for bilateral bargaining to be efficient. For example, it imme-
diately follows that repeated interaction (i.e., ​T  >  0​) is beneficial only if there is 
less asymmetric information about the future than the present.

9 See also Athey and Miller (2007) for an exploration of different combinations of properties in the case of 
independent and identically distributed types drawn from known distributions. 

10 Trivially, if at most one agent has private information in period 0 (i.e., if ​​Ω​B​​ × ​​0​​​ or ​​Ω​S​​ × ​​0​​​ is a singleton), 
then at least one of the infimum terms equals ​E[Y ]​ , implying that the inequality is satisfied. Thus, satisfactory mech-
anisms exist in this case despite there being bilateral private information in the future. On the other hand, if initial 
private information is two-sided, and it is possible that one of the agents knows based on his initial information that 
there are no gains from trade (i.e., if ​inf  E[Y | ​θ​B​​, ​v​0​​] ∧ inf E[Y | ​θ​S​​, ​c​0​​]  =  0​), then the inequality is never satisfied. 



262	 American Economic Journal: microeconomics� November 2015

Since the payoff-equivalence property is taken as given, the proof of Proposition 1 
parallels that of the static case, with a repeated Groves’ scheme and the balancing 
trick of Athey and Segal (2013) replacing, respectively, the static VCG and AGV 
mechanisms in the argument. Analogously to the static setting, the proof provides 
another interpretation of inequality (1): the terms on the left are the utilities of 
the worst initial types of the buyer and the seller under the repetition of the static 
Groves’ scheme, whereas the term on the right is the expected budget deficit under 
that scheme. Hence, (1) is the condition under which this simple mechanism could 
be financed (in expectation) by charging type-independent participation fees in 
period ​0​. If (1) is not satisfied, a mechanism designer wanting to achieve efficient, 
individually rational, and budget balanced trade (in any mechanism) would need to 
subsidize it by exactly the shortfall.

As suggested by the above proof sketch, Proposition 1 immediately generalizes 
to other dynamic bargaining problems. We state one such extension to ​n​-person 
problems in the concluding remarks (Section VI).

One may wonder about the possibility of satisfying both individual rationality 
and budget balance period by period. With a finite horizon, no mechanism satisfies 
E, IC, IR, and BB. This follows by noting that under these conditions, the last period ​
T​ essentially reduces to a static problem because the budget has to be balanced at the 
end of period ​T − 1​.11 The ability of finite long-term contracts to support efficient 
trade thus rests on third party financing (BB​​​​0​​​) or contract enforcement (IR​​​​0​​​). With 
an infinite horizon, a general characterization appears to be out of reach as it would 
require tracking the agents’ beliefs. However, for public mechanisms, it can be 
shown by an argument similar to the proof of Proposition 1 that if the kernels have 
full support, then E, PIC, IR, and BB can be satisfied if and only if inequality (1) 
holds and ​​inf​ ​v​0​​​ 

​ ​  E[Y | θ, ​v​0​​, ​c​−1​​] + ​inf​ ​c​0​​​ 
​ ​  E[Y | θ, ​v​−1​​, ​c​0​​]  ≥  E[Y | θ, ​v​−1​​, ​c​−1​​]​ for all ​

(θ, ​v​−1​​, ​c​−1​​)​ , where the expectation ​E[Y | θ, ​v​0​​, ​c​−1​​]​ is taken with respect to the type 
processes with parameters ​θ​ , with ​​c​0​​​ drawn from ​G( · | ​c​−1​​; ​θ​S​​)​ (and similarly for ​
E[Y | θ, ​v​−1​​, ​c​0​​]​ and ​E[Y | θ, ​v​−1​​, ​c​−1​​]​).12

A. Conditions for Payoff Equivalence

We provide here an informal discussion of sufficient conditions for the 
payoff-equivalence property, relegating a formal treatment to the Appendix. The 
reader more interested in the implications of Proposition 1 may proceed directly to 
the next section.

Recall that in static models where each agent’s type is a real vector, the 
payoff-equivalence property can be established as an implication of an appropri-
ately formulated envelope theorem (see Milgrom and Segal 2002). The regular-
ity assumption required for this approach is that each agent’s utility function vary 

11 The formal result requires that with positive probability, the period-​T​ type distribution satisfies the assump-
tions of Myerson-Satterthwaite theorem. For example, this holds if for all ​(v, c, ​θ​B​​, ​θ​S​​)​ , the supports of ​F( · | v; ​θ​B​​)​ 
and ​G( · | c; ​θ​S​​)​ are intervals whose intersection has a nonempty interior. 

12 Athey and Segal (2007, 2013) show that a public mechanism that is E, PIC, IR, and BB exists in a class of 
ergodic Markov environments with known parameters and finitely many types, if agents are sufficiently patient. We 
conjecture that the same is true in our model whenever (1) is satisfied for some ​δ  <  1​. 
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smoothly in the type with a bounded derivative. In a dynamic setting, this translates, 
roughly, to the requirement that a change in an agent’s initial private information 
have a smooth effect on his expected utility over dynamic allocation and transfer 
rules. As the expected utility depends on both the (Bernoulli) utility function as 
well as the stochastic process for the agent’s future types, a condition stated on the 
primitives must require that both the utility function and the stochastic process vary 
“sufficiently smoothly” in the agent’s initial private information. PST provide suf-
ficient conditions for this in a general class of dynamic models where each agent’s 
new private information is one dimensional in every period, and establish an enve-
lope theorem for such problems (PST, Theorem 1).

Our environment is not immediately covered by the result of PST as here the 
agents’ initial information is multidimensional. However, by combining the 
standard payoff-equivalence argument for static multidimensional models (see, e.g., 
Holmström 1979) with the dynamic envelope formula of PST, it is possible to estab-
lish a payoff-equivalence result for dynamic models with multidimensional initial 
information.13 We provide general sufficient conditions for this in the Appendix by 
introducing the notion of a regular environment (Definition A2) and proving that 
such environments have the payoff-equivalence property (Proposition A1). These 
conditions are somewhat cumbersome to state, and hence it is convenient to intro-
duce the following easy-to-check smoothness condition, which is a special case of 
regular environments (see Lemma A1), and hence (grossly) sufficient for payoff 
equivalence:

Definition 6: Let ​Z  = ​ (​Z​t​​)​ t=0​ T ​ ​ be a stochastic process on the interval ​  ⊂  ℝ​ 
generated by the kernels ​​{H( · | · ; ​θ​i​​)}​​θ​i​​∈​Ω​i​​​​​ and the initial distribution ​​H​0​​​ on the con-
vex set ​​Ω​i​​ × ​​0​​  ⊂ ​ ℝ​​ k​ × ​. The process ​Z​ is smooth if the following conditions 
hold:

	 (i)	 Every ​H( · | z; ​θ​i​​)​ , ​(z, ​θ​i​​)  ∈   × ​Ω​i​​​ , is absolutely continuous with density ​
h( · | z; ​θ​i​​)​ strictly positive on ​​.

	 (ii)	 The kernel ​H( · | · ; · )  : ​ℝ​​ k+2​  →  ℝ​ is continuously differentiable and there 
exist constants ​b  < ​  1 _ δ ​​ and ​d  <  ∞​ such that for all ​z​ , z  ′ ∈ int  and all ​​
θ​i​​​ ∈ int   ​​Ω​i​​​,

	​ ​ 
​|​∂​z​​ H(​z ′ ​ | z; ​θ​i​​)|​  ____________  

h(​z ′ ​ | z; ​θ​i​​)
 ​   <  b    and     ​ 

​‖​∇​​θ​i​​​​(​z ′ ​ | z; ​θ​i​​)‖​
  ______________  

h(​z ′ ​ | z; ​θ​i​​)
 ​   <  d.​

The environment is smooth if the processes ​V​ and ​C​ are smooth.

13 Alternatively, one can consider a fictitious environment where the initial period is divided into subperiods 
and the agents observe and report one dimension of their multidimensional initial type in each subperiod. Any 
mechanism that is incentive compatible in the original environment remains incentive compatible in the fictitious 
environment. As private information is one dimensional in the latter, under appropriate regularity conditions one can 
apply the ex post payoff equivalence result of PST (Theorem 2) to establish a multidimensional payoff equivalence 
result analogous to our Proposition A1. 
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The first condition is an assumption of “continuous types.” (It also imposes 
full support and rules out atoms, which is not essential, but simplifies exposition.) 
The second condition ensures that the process ​Z​ is a sufficiently smooth Lipschitz 
function of the initial information ​(​z​0​​, ​θ​i​​)​ , which is comparable to the differentia-
bility and bounded-derivative assumptions invoked in static models. For example, 
the conditionally independent and identically distributed types in Example 1 are 
smooth if ​F( · | ​θ​B​​)​ and ​G( · | ​θ​B​​)​ are absolutely continuous given any ​​θ​B​​​ and ​​θ​S​​​ , and 
depend sufficiently regularly on the parameters. Similarly, it can be verified that if 
the parameters of the linear AR(1) processes of Example 3 are common knowledge, 
then the processes are smooth simply whenever ​​γ​i​​  < ​  1 _ δ ​​ for ​i  ∈  {B, S}​. In contrast, 
the renewal model of Example 2 is clearly not smooth as the transitions have atoms 
(but it is regular in the sense of Definition A2 by Lemma A2).

IV.  Applications

We now use Proposition 1 to explore, for a fixed discount rate, how the fea-
sibility of efficient contracting depends on persistence, private information about 
the process parameters ​θ​ , and the frequency of interaction. To facilitate discus-
sion, we say that satisfactory trading mechanisms exist if statements (ii)–(iv) in 
Proposition 1 are satisfied. By Proposition 1, this is the case in environments that 
have the payoff-equivalence property if and only if

	​​  inf​ 
​θ​B​​, ​v​0​​

​ 
​
 ​  E[ Y | ​θ​B​​, ​v​0​​] + ​ inf​ 

​θ​S​​, ​c​0​​
​ 

​
 ​  E[ Y | ​θ​S​​, ​c​0​​]  ≥  E[Y ],​

where ​Y := ​   1 − δ _____ 
1 − ​δ​​ T+1​

 ​ ​∑ t=0​ 
T  ​​ ​δ​​ t​​(​V​t​​ − ​C​t​​)​​ +​​ denotes the first-best gains from trade.

A. Persistence

We say that the environment is with known parameters if the parameter space ​
Ω  = ​ Ω​B​​ × ​Ω​S​​​ is a singleton, in which case we suppress all references to ​θ​ in the 
notation. We restrict attention to such environments in this subsection in order to 
focus on the persistence of values and costs. It is useful to start by reviewing the 
independent and identically distributed case.

Example 4 (Independent and Identically Distributed with Known Parameters): 
Consider the environment of Example 1 with known parameters. Then ​V​ and ​C​ are, 
respectively, independent and identically distributed draws from the known distri-
butions ​​F​0​​​ and ​​G​0​​​ , which we assume to have strictly positive continuous densi-
ties everywhere on their domains. This environment is smooth and hence has the 
payoff-equivalence property by Proposition A1. For simplicity, take ​T  =  ∞​ and 
suppose ​  =  ​. Then,

	​ ​inf​ ​v​0​​
​ 

​
 ​  E[Y | ​v​0​​]  = ​ inf​ ​c​0​​

​ 
​
 ​  E[Y | ​c​0​​]  =  δE[Y ],​
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as the worst initial type of either agent does not trade in period 0 under the effi-
cient allocation rule, but expects first-best trade from period 1 onward. Hence, by 
Proposition 1, satisfactory trading mechanisms exist if and only if ​2δE[Y ]  ≥  E[Y ]​ , 
or equivalently, if and only if ​δ  ≥ ​  1 _ 2 ​​. By statement 4 of Proposition 1 this replicates 
the finding by Athey and Miller (2007, proposition 1), who derived the cutoff by 
considering recursive mechanisms.14

At the other extreme, when types are perfectly persistent and do not change over 
time, the analysis reduces to the static case. The Myerson-Satterthwaite (1983) the-
orem then implies that gains from trade are bounded away from first-best for any 
level of the discount factor.15

These two examples suggest that persistence of private information is detrimental 
to efficiency. In order to formalize this intuition, we need a notion of persistence 
that discriminates between Markov chains according to their short-run behavior as 
payoffs are discounted (and the horizon may be finite). The following definition 
provides one such notion in terms of a partial order on ergodic Markov chains.

Definition 7: Let ​Z  = ​ (​Z​t​​)​ t=0​ T ​ ​ and ​​Z ′ ​  = ​ (​Z​t​ ′ ​  )​ t=0​ 
T
 ​​  be Markov chains on ​  ⊂  ℝ​ 

with kernels ​H( · | · )​ and ​​H ′ ​( · | · )​ , respectively. We say that ​Z​ is (weakly) more per-
sistent than ​​Z ′ ​​ if there exists a distribution ​Φ​ satisfying the following conditions:

	 (i)	​ Φ​ is the unique invariant distribution admitted by the kernels ​H( · | · )​ and 
​​H ′ ​( · | · )​.

	 (ii)	​ Φ​ is the initial distribution of the chains ​Z​ and ​​Z ′ ​​.

	 (iii)	 For all ​(​z​0​​, z)  ∈  ​​​ 2​​ and all ​t  ≥  1​ , the ​t​-step distributions satisfy

	​ ​| ​H​​ (t)​(z | ​z​0​​) − Φ(z) |​  ≥ ​ | ​H ′ ​​ ​​ (t)​(z | ​z​0​​) − Φ(z) |​ .​

Conditions (i) and (ii) ensure that increasing persistence only affects the short-run 
properties of the Markov chain. Condition (iii) captures the idea that a more persistent 
chain converges slower to the invariant distribution. For example, if ​Z​ is a Markov chain 
started from its unique invariant distribution ​Φ​ , and ​​Z ′ ​​ is a sequence of independent 
and identically distributed draws from ​Φ​ , then ​Z​ is more persistent than ​​Z ′ ​​ according 
to the above definition. More generally, the family of chains ​​{​Z​​ α​}​α∈[0, 1]​​​ with kernels 
​​H​​ α​( · | z)  :=  αH( · | z) + (1 − α)Φ( · )​ , ​z  ∈  ​ , where ​H( · | · )​ is the kernel of 
​Z  = ​ Z​​ 1​​ , is ordered by persistence with ​​Z​​ α​​ more persistent than ​​Z​​ ​α ′ ​​​ if and only if ​
α  ≥ ​ α ′ ​​. Note that taking ​Z​ to be a fully persistent chain yields the renewal model 

14 Their notion of ex ante budget balance requires budget to balance in expectation in every period, whereas our 
definition only considers the expected balance in period 0. However, with independent and identically distributed 
types the two are equivalent. 

15 Formally, this can be shown by applying our Proposition 1 to the renewal model of Example 2 with 
known parameters and ​​γ​i​​  =  1​ for ​i  ∈  {B, S}​. This environment is regular by Lemma A2, and hence it has the 
payoff-equivalence property by Proposition A1. (Because of the non-changing types, payoff equivalence can also 
be established using the standard static argument, see, e.g., Milgrom and Segal 2002.) 
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of Example 2, which thus provides one possible parameterization of persistence 
spanning from independent and identically distributed to permanent types.

We can now show that the kind of persistence captured by Definition 7 is harmful 
when the transitions of the type processes are order-preserving in the following sense:

Definition 8: Let ​Z  = ​ (​Z​t​​)​ t=0​ T ​ ​ be a Markov chain on ​  ⊂  ℝ​ with kernel 
​H( · | · )​. We say that ​Z​ is stochastically monotone if for all ​(z, z′ )  ∈ ​ ℝ​​ 2​​ with ​z  >  z​ ′, ​
H( · | z)​  first-order stochastically dominates ​H( · | z′ )​.

Proposition 2: Let ​(V, C  )​ and ​(​V ′ ​, ​C ′ ​ )​ be two pairs of stochastically monotone 
Markov chains with compact sets of initial values (and known parameters). Suppose 
the following hold:

	 (i)	 The first-best gains from trade under ​(V, C)​ satisfy inequality (1), and

	 (ii)	​ V​ is more persistent than ​​V ′ ​​ , and ​C​ is more persistent than ​​C ′ ​​.

Then the first-best gains from trade under ​(​V ′ ​, ​C ′ ​ )​ satisfy inequality (1).16

The key to the proof is the observation that for monotone chains with known 
parameters, inequality (1) reduces to ​E[Y | min  ​​0​​] + E[Y | max  ​​0​​]  ≥  E[Y ]​. To 
see this, note that the lowest possible value for the buyer is not only the worst cur-
rent type, but also results in the lowest possible distribution of values in every future 
period in the sense of first-order stochastic dominance because the chain is assumed 
to be monotone. (The seller is treated analogously.) Furthermore, since any two 
comparable pairs of chains ​(V, C  )​ and ​(​V ′ ​, ​C ′ ​ )​ necessarily have the same invariant 
distribution, ​E[Y ]​ is the same under both pairs of processes. Hence, it remains to 
show that increasing persistence in the sense of Definition 7 decreases ​E[Y | min  ​​0​​]​  
and ​E[Y | max  ​​0​​]​. Heuristically, this follows because a monotone chain started 
from an extreme value (e.g., at ​min  ​​0​​​) converges monotonically to the invariant 
distribution so that increasing persistence means that the distribution remains con-
centrated around the unfavorable extreme value for longer.

Taken together, Propositions 1 and 2 imply that satisfactory trading mechanisms 
are less likely to exist when the type processes are more persistent. The following 
example illustrates.

Example 5 (Renewals with Known Parameters): Consider the renewal model of 
Example 2 with known parameters. By Lemma A2 this environment is regular and 

16 To see that stochastic monotonicity is needed, consider a two-period problem with ​  =    =  [0, 1]​. If types 
are independent and identically distributed from the uniform distribution, then (1) holds if and only if ​δ  =  1​.  
However, if types are perfectly negatively correlated (i.e., ​​v​1​​  =  1 − ​v​0​​​ and ​​c​1​​  =  1 − ​c​0​​​) with period-​0​ types dis-
tributed uniformly, then for ​δ  =  1​ the worst initial types are ​​v​0​​  = ​ c​0​​  = ​  1 _ 2 ​​ with average expected gains from trade 
one-eighth each. As ​E[Y ]  = ​  1 _ 6 ​​ , this implies that inequality (1) is slack, and, hence, the critical discount factor is 
lower than in the independent and identically distributed case by continuity. By slightly perturbing the latter process 
we obtain an ergodic process which is more persistent than the independent and identically distributed process in 
the sense of Definition 7, yet for which the critical discount factor is strictly less than ​1​. 
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hence it has the payoff-equivalence property by Proposition A1. For any ​​γ​B​​​ and ​​γ​S​​​ 
the invariant distributions are simply ​​F​0​​​ and ​​G​0​​​ , and for any ​(​v​0​​, ​c​0​​)  ∈   × ​ , the ​
t​-step distributions are

	​ ​F​​ (t)​( · | ​v​0​​)  = ​ γ​ B​ t ​ ​1​[​v​0​​,∞)​​ + (1 − ​γ​ B​ t ​)​F​0​​,  and

	 ​G​​ (t)​( · | ​c​0​​) = ​γ​ S​ t ​ ​1​[​c​0​​,∞)​​ + (1 − ​γ​ S​ t ​)​G​0​​ .​

Thus, for all ​(v, c)  ∈   × ​ , we have

	​ ​|​F​​ (t)​(v | ​v​0​​) − ​F​0​​(v)|​  = ​ γ​ B​ t ​​|​1​[​v​0​​,∞)​​(v) − ​F​0​​(v)|​,​
and

	​ ​|​G​​ (t)​(c | ​c​0​​) − ​G​0​​(c)|​  = ​ γ​ S​ t ​​|​1​[​c​0​​,∞)​​(c) − ​G​0​​(c)|​ .​

Therefore, increasing ​​γ​i​​​ for ​i  ∈  {B, S}​ results in a more persistent type process for 
agent ​i​ in the sense of Definition 7. Furthermore, the processes ​V​ and ​C​ are clearly 
stochastically monotone. Hence, inequality (1) is harder to satisfy for higher values 
of ​​γ​i​​​ by Proposition 2. For example, if ​T  =  ∞​ and ​  =  ​ , then straightforward 
calculations show that (1) is equivalent to

(2)	​ ​√ ____ ​ρ​B​​​ρ​S​​ ​  ≥ ​  1 − δ ____ δ ​ , ​

where ​​ρ​i​​ :=  1 − ​γ​i​​​ is the probability of a renewal for agent ​i​. That is, satisfactory 
trading mechanisms exist if and only if the geometric average of the agents’ renewal 
probabilities ​(​ρ​B​​, ​ρ​S​​)  ∈ ​ [0, 1]​​ 2​​ is high enough, with the threshold being decreasing 
in patience. (Note that ​δ  ≥ ​  1 _ 2 ​​ is a necessary condition.) The fact that persistence 
is substitutable across agents in (2) is a manifestation of the joint restriction on the 
agents’ processes embodied in (1).

When the agents have private information about the process parameters, the 
above forces are still at play for any given ​θ  ∈  Ω​. But since inequality (1) involves 
taking infima with respect to the parameters, what matters then is “worst-case per-
sistence” rather than the persistence of the realized processes. For example, if the 
supports of the values and costs coincide, then an impossibility result obtains as 
soon as the least favorable type may be an absorbing state for one of the agents, 
thus generalizing the negative finding from the case of perfectly persistent types.17 
However, as the kernels can in general depend on ​θ​ in complicated ways, obtaining 
clean predictions requires additional structure. A natural special case arises when ​θ​ 
simply parameterizes the persistence of the agents’ processes. We consider this in 
the next subsection after some general remarks on the effects of private information 
about process parameters (see Example 7).

17 To see this, suppose the sets ​​​0​​  =    =  ​ are closed and bounded from below, and there exists ​​θ​ B​ ′ ​  ∈ ​ Ω​B​​​ 
such that ​F( min  | min ; ​θ​ B​ ′ ​)  =  1​. Then ​​inf​ ​θ​B​​, ​v​0​​​ ​ ​  E[Y | ​θ​B​​, ​v​0​​]  =  E[Y | ​θ​ B​ ′ ​, min  ]  =  0​ , and hence inequality (1) 
is violated (unless the seller has no initial private information). An obvious sufficient condition for this is that the 
buyer’s value is fully persistent given some ​​θ​ B​ ′ ​  ∈ ​ Ω​B​​​. 
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B. Private Information about Process Parameters

We now turn to the possibility that the agents have at time zero private infor-
mation about the distribution of their future types beyond the information con-
tained in ​​v​0​​​ and ​​c​0​​​. This information is captured by the privately known parameters 
​​θ​i​​  ∈ ​ Ω​i​​​ , ​i  ∈  {B, S}​. By inspection of inequality (1), if we reduce the asymmetry of 
information by restricting the parameters to some subsets ​​Ω​ B​ ′ ​  ⊂ ​ Ω​B​​​ and ​​Ω​ S​ ′ ​  ⊂ ​ Ω​S​​​ 
without affecting the expected gains from trade, ​E[Y ]​ , then the inequality is easier 
to satisfy, and, consequently, satisfactory mechanisms are more likely to exist. In 
other words, efficient trade is harder to achieve when there is more asymmetric 
information about the type processes. For completeness, we record this observation 
in the form of a proposition.

Definition 9: Fix a pair ​(V, C)​ of type process generated by ​(​F​0​​, ​{F( · | · ; ​θ​B​​)}​​θ​B​​∈​Ω​B​​​​)​  
and ​(​G​0​​, ​{G( · | · ; ​θ​S​​)}​​θ​S​​∈​Ω​S​​​​)​. A surplus-neutral truncation of parameters is a  
pair ​(​V   ′ ​, ​C ′ ​ )​ of type process generated by ​(​F​ 0​ ′ ​, ​{​F ′ ​( · | · ; ​θ​B​​)}​​θ​B​​∈​Ω​ B​ ′ ​​​)​ and 
​(​G​ 0​ ′ ​, ​{​G ′ ​( · | · ; ​θ​S​​)}​​θ​S​​∈​Ω​ S​ ′ ​​​)​ such that

	 (i)	​ ​Ω ′ ​  ⊂  Ω​ ,

	 (ii)	​​ F​ 0​ ′ ​  = ​​​ F​0​​|​​×​Ω​ B​ ′ ​​​​ and ​​G​ 0​ ′ ​  = ​​​ G​0​​ |​ ​×​Ω​ S​ ′ ​​​​ ,

	 (iii)	​ ​F ′ ​( · | · ; ​θ​B​​)  =  F( · | · ; ​θ​B​​)​ and ​​G ′ ​( · | · ; ​θ​S​​)  =  G( · | · ; ​θ​S​​)​ for all ​θ  ∈ ​ Ω ′ ​​ , and

	 (iv)	 ​E[Y ]  =  E[Y ′  ] ​.

Proposition 3: Fix an environment that has the payoff-equivalence property, 
and where inequality (1) is satisfied. Then any environment where the type processes 
are given by a surplus-neutral truncation of parameters has the payoff-equivalence 
property, and inequality (1) is satisfied under the truncated processes.

The proof is immediate and hence omitted.
Taken together, Propositions 1 and 3 provide a sense in which private information 

about process parameters is detrimental to efficiency. Indeed, inequality (1) allows 
us to compute exactly when this is the case. In some specific examples this can even 
be done in closed form.

Example 6 (Independent and Identically Distributed with Private Parameters): 
Consider the environment of Example 1 with ​T  =  ∞​. Specifically, assume that the 
distributions belong to the following single-parameter families of linear densities on 
the unit interval:

	​ f ​(v | ​θ​B​​)​  = ​ θ​B​​ + 2​(1 − ​θ​B​​)​ v for ​θ​B​​  ∈ ​ [0, 2]​,

	 g​(c | ​θ​S​​)​  = ​ θ​S​​ + 2​(1 − ​θ​S​​)​ c for ​θ​S​​  ∈ ​ [0, 2]​ .​
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The case ​​θ​i​​  =  1​ corresponds to the uniform distribution. Note that ​f ​(· | ​θ​B​​)​​ and ​
g( · | ​θ​S​​)​ decrease in ​​θ​i​​​ in the sense of first-order stochastic dominance (i.e., the 
distributions are the strongest when ​​θ​i​​  =  0​ and the weakest for ​​θ​i​​  =  2​), and all 
distributions have full support on ​​[0, 1]​​. Suppose that each ​​Θ​i​​​ is distributed over  
​​[​θ _​, 2 − ​θ _​]​​ for some ​​θ _​  ∈ ​ [0, 1]​​ according to a continuous distribution, which is sym-
metric around ​1​ (the distributions can be different for the two agents but for simplic-
ity we take ​​θ _​​ to be the same for both). By symmetry, the unconditional distributions 
of ​​V​t​​​ and ​​C​t​​​ are then uniform on ​​[0, 1]​​ for all ​t​. This implies that increasing ​​θ _​​ to some ​​​
θ _​ ′ ​  > ​ θ _​​ induces a surplus-neutral truncation of parameters.

It is straightforward to verify that this environment is smooth, and hence 
Proposition 1 and Proposition 3 apply, implying that efficiency is easier to achieve 
for higher values of ​​θ _​​. In order to find the cutoff, note that the expected gains from 
trade always equal ​E[Y ]  = ​  1 _ 6 ​​. The worst initial type of the buyer corresponds to 
having ​​v​0​​  =  0​ and ​​θ​B​​  =  2 − ​θ _​​ , while for the seller it is ​​(1, ​θ _​)​​. Direct computation 
then yields

	​​  inf​ 
​θ​B​​, ​v​0​​

​ 
​
 ​  E[Y | ​θ​B​​, ​v​0​​]  = ​  inf​ 

​θ​S​​, ​c​0​​
​ 

​
 ​  E[Y | ​θ​S​​, ​c​0​​]  = ​  δ ___ 

12
 ​​(1 + ​θ _​)​ .​

This leads us to the following corollary: In the independent and identically distrib-
uted case with types drawn from the linear family, satisfactory mechanisms exist 
if and only if ​​θ _​  ≥ ​  1 − δ ___ δ ​ ​. In particular, if ​​θ _​  =  0​ , there is no ​δ  <  1​ for which this 
condition is satisfied.

This example illustrates three general points:

	 •	 Even though the parameters ​​θ​i​​​ are fully persistent, if there is not “too much” 
uncertainty about the processes, satisfactory mechanisms exist. However, this 
requires the agents be more patient than in the case where the processes are 
known (which corresponds to ​​θ _​  =  1​ , and yields ​δ  ≥ ​  1 _ 2 ​​ as in Example 4).

	 •	 If there is enough uncertainty about the processes, satisfactory mechanisms 
may not exist even if the players are arbitrarily patient.

	 •	 The distribution of the parameters ​​θ​i​​​ affects feasibility of efficient trade only 
if it affects the unconditional distribution of ​(V, C)​ , or the domain of possible 
parameters ​Ω​ (in the example, any distribution symmetric around ​1​ yields the 
same bound). To see this, note that if the unconditional distribution of ​(V, C) ​ 
stays constant, so does ​E[Y ]​. Furthermore, if we change the distribution of ​​θ​B​​​ 
without changing its support, and keeping the unconditional distribution of ​V​ 
fixed, then ​​inf​ ​θ​S​​, ​c​0​​​ ​ ​  E[Y | ​θ​S​​, ​c​0​​]​ is unaffected. Similarly, ​​inf​​θ​B​​, ​v​0​​​​​ E[Y | ​θ​B​​, ​v​0​​]​ 
does not change either, as it depends only on ​​Ω​B​​​.

As a second example, we consider an environment where the agents have private 
information about persistence.

Example 7 (Privately Known Persistence): Let ​T  <  ∞​ , and construct the type 
processes ​V​ and ​C​ as follows. Fix ​Δ  >  0​. Define the “base kernels” ​​ 

_
 F ​( · | · )​ and 

​​ 
_
 G ​( · | · )​ on ​​[0, 1]​​ 2​​ by letting ​​ 

_
 F ​( · | z)​ and ​​ 

_
 G ​( · | z)​ be the time-​Δ​ distribution of a 
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Brownian motion starting from ​z  ∈  [0, 1]​ at time ​0​ and having reflecting boundaries 
at ​0​ and at ​1​. Let ​Φ​ denote the cumulative distribution function of the uniform distri-
bution on ​[0, 1]​ , which is the invariant distribution for this twice-reflected Brownian 
motion (see, e.g., Harrison 1985). The families of kernels for the buyer and seller 
are then defined by setting for ​v, c  ∈  [0, 1]  =    =  ​ and ​​θ​i​​  ∈ ​ Ω​i​​  ⊂  [0, 1]​ , ​
i  ∈  {B, S}​ ,

	​ F( · | v; ​θ​B​​)  = ​ θ​B​​ ​ 
_
 F ​( · | v) + (1 − ​θ​B​​)Φ( · ),​

and

	​ G( · | c; ​θ​S​​)  = ​ θ​S​​ ​ 
_
 G ​( · | c) + (1 − ​θ​S​​)Φ( · ) .​

Let ​​V​0​​​ and ​​C​0​​​ be distributed uniformly on ​[0, 1]​ independently of ​​Θ​B​​​ and ​​Θ​S​​​ , so 
that conditional on any ​θ  ∈  Ω​ , the distribution of ​​V​t​​​ and ​​C​t​​​ is simply ​Φ​ for all ​t​. The 
parameters ​​Θ​i​​​ are distributed on ​​Ω​i​​​ according to some continuous distribution with 
full support. Lemma A3 in the Appendix shows that this environment is regular, and 
hence it has the payoff-equivalence property by Proposition A1.

Conditional on any ​θ  ∈  Ω​ , the processes ​V​ and ​C​ are stochastically monotone 
in the sense of Definition 8. Since increasing ​​θ​i​​​ leads to a more persistent process 
in the sense of Definition 7,18 an argument analogous to the proof of Proposition 2 
shows that the worst case for each agent corresponds to having ​​θ​i​​  =  sup ​Ω​i​​​ , and 
the least favorable type in period ​0​ (i.e., ​​v​0​​  =  0​ or ​​c​0​​  =  1​). Moreover, we have ​
E[Y ]  = ​  1 _ 6 ​​ independently of the distribution or the support of ​​Θ​i​​​. Proposition 1 and 
Proposition 3 then imply the following:

•  Given any parameter spaces ​​Ω​i​​  ⊂  [0, 1]​ , ​i  ∈  {B, S}​ , satisfactory mechanisms 
exist if and only if such mechanisms exist when it is common knowledge 
that each agent’s type process is the most persistent one possible (i.e., that 
​​θ​i​​  =  sup  ​Ω​i​​​ for ​i  ∈  {B, S}​).

•  Any ​​Ω ′ ​  ⊂  Ω​ induces a surplus-neutral truncation of parameters, which makes 
inequality (1) easier to satisfy (strictly so, if ​sup  ​Ω​ i​ ′ ​  <  sup  ​Ω​i​​​ for some ​
i  ∈  {B, S}​).

C. Trading Frequency

Let ​T  =  ∞​ throughout this subsection, and denote by ​Δ  >  0​ (real) time between 
periods. A natural modeling strategy that allows varying ​Δ​ is to fix an underlying 
pair of independent continuous-time processes, and think of the discrete-time pro-
cesses ​V​ and ​C​ generated by sampling the continuous-time processes at ​Δ​ intervals. 
This implies that increasing frequency of interaction by reducing ​Δ​ has two real-
istic effects: It reduces discounting between interactions and increases correlation 
between agent’s types in adjacent periods. Based on our remarks on persistence, the 

18 Note that the processes ​V​ and ​C​ are of the same form as the family ​{​Z​​ α​}​ discussed after Definition 7, only now 
the parameter ​α​ is private information. 
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former tends to be favorable for efficient bargaining whereas the latter tends to be 
detrimental. Depending on the parameters, either may dominate.

Example 8: Consider the renewal model with known parameters considered in 
Example 5. Suppose that the type renewals of agent ​i​ are generated by Poisson 
arrivals at rate ​​λ​i​​​ for ​i  ∈  {B, S}​. Then ​​ρ​i​​  =  1 − ​e​​ −​λ​i​​ Δ​​ , which implies that in the 
continuous-time limit (i.e., as ​Δ  →  0​), the necessary and sufficient condition (2) 
derived in Example 5 simplifies further to

	​ ​√ 
___

 ​λ​B​​ ​λ​S​​ ​  ≥  r,​

where ​r​ is the continuous-time discount rate. That is, frequent interaction facilitates 
efficient, budget-balanced, and unsubsidized trade if and only if the geometric aver-
age of the renewal rates is higher than the discount rate.19

Note that, in contrast, taking ​δ  = ​ e​​ −rΔ​  →  1​ by sending ​r  →  0​ always leads to 
inequality (2) being satisfied provided that neither agent has a fully persistent type 
(i.e., that ​​ρ​i​​  >  0​ , or equivalently, that ​​λ​i​​  >  0​ for both ​i​). Hence, the two limits lead 
to qualitatively different results if we start from a situation with ​0  < ​ √ 

____
 ​λ​B​​​λ​S​​ ​  <  r​. 

This suggests that the efficiency results for high ​δ​ in repeated adverse selection mod-
els in the literature (e.g., in Athey and Miller 2007; Athey and Segal 2013; Escobar 
and Toikka 2013; or Fudenberg, Levine, and Maskin 1994) should be interpreted 
literally as low discounting results, and the findings will in general be different for 
the frequent-interaction case. Indeed, the contrast is particularly stark in case of sta-
tionary Gaussian types (see Proposition 6 below), but obtaining this result requires 
second-best analysis, which we turn to next.

V.  On Second Best

So far we have restricted attention to studying whether there exists an incentive 
compatible mechanism with the efficient, or first-best, allocation rule, and which 
satisfies some form of individual rationality and budget balance. When the necessary 
and sufficient condition (1) for this fails, it is natural to look for a second-best mech-
anism, which we take to mean a mechanism that maximizes the expected gains from 
trade subject to incentive compatibility, individual rationality, and budget balance.

Unfortunately, the second-best problem appears highly intractable for the general 
model. First of all, optimal mechanism design is notoriously difficult with multidi-
mensional types even in a static setting. Hence, we are led to consider environments 
where new private information is one-dimensional in each period. However, even 
with this restriction, the existing methods for characterizing optimal dynamic mech-
anisms require introducing additional structure (see PST, as well as Battaglini and 
Lamba 2012). Given that a second-best result as general as Proposition 1 is thus out 

19 More precisely, it is straightforward to verify that reducing ​Δ​ always helps in the sense of making inequality 
(2) easier to satisfy, but the inequality is satisfied in the limit if and only if ​​√ 

___
 ​λ​B​​ ​λ​S​​ ​  ≥  r​. We conjecture that this 

“comparative static” with respect to ​Δ​ extends to the generalized renewal processes considered in Example 7. 
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of reach, we focus here on two special cases, which allow us to illustrate the argu-
ments employed in the second-best analysis, and deliver clean results.

A. Limits of Second Best under Stationary Gaussian Types

Consider the linear AR(1) processes of Example 3 with known parameters. 
Assume right away that the horizon is infinite, and that the processes are generated 
by sampling independent Ornstein-Uhlenbeck processes ​​V ̃ ​​ and ​​C ̃ ​​ defined by the 
stochastic differential equations

	​ d​​V ̃ ​​τ​​  =  −​α​B​​(​​V ̃ ​​τ​​ − ​m​B​​) dτ + ​σ​B​​d  ​W​ τ​ B​,

	 d​​C ̃ ​​τ​​  =  −​α​S​​(​​C ̃ ​​τ​​ − ​m​S​​)dτ + ​σ​S​​ d ​W​ τ​ S​,​

where ​τ  ≥  0​ denotes real time, ​​W​​ i​​ are independent copies of standard 
one-dimensional Brownian motion, and ​​α​i​​  >  0​ , ​​m​i​​​ , and ​​σ​i​​  >  0​ are parameters. 
This induces discrete-time processes

	​​ v​t​​  = ​ γ​B​​ ​v​t−1​​ + (1 − ​γ​B​​)​m​B​​ + ​ε​B, t​​,

	​ c​t​​  = ​ γ​S​​ ​c​t−1​​ + (1 − ​γ​S​​)​m​S​​ + ​ε​S, t​​,​

where ​​γ​i​​  = ​ e​​ −​α​i​​Δ​​ , and the distribution of the independent shocks ​​ε​i, t​​​ is 

​N​(0, (1 − ​γ​ i​ 2​)​ 
​σ​ i​ 2​ ___ 2​α​i​​

 ​)​​. We assume that ​​​V ̃ ​​0​​​ and ​​​C ̃ ​​0​​​ (and, hence, ​​V​0​​​ and ​​C​0​​​) are distrib-

uted according to the invariant distributions ​N​(​m​i​​, ​ 
​σ​ i​ 2​ ___ 2​α​i​​

 ​)​​. Stationary Gaussian types 

are thus defined by a collection ​{r, Δ, ​(​α​i​​, ​σ​i​​, ​m​i​​)​i∈{B, S}​​}​ , where ​r  >  0​ , ​Δ  >  0​ , ​​
α​i​​  >  0​ , ​​σ​i​​  >  0​ , and ​​m​i​​  ∈  ℝ​ (for ​i  ∈  {B, S}​). Such processes are smooth, and, 
hence, Proposition 1 can be applied to obtain the following striking result, which is 
the starting point for our second-best analysis.20

Proposition 4: If ​μ​ is an E, IC, IR​​​​0​​​ mechanism in an environment with station-
ary Gaussian types, then ​μ​ does not satisfy BB​​​​0​​​. In particular,

	​ (1 − δ)​E​​ μ​​[​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​  =  E[Y ] .​

That is, efficient, individually rational trade requires a subsidy equal to the expected 
first-best gains from trade for any choice of the mean reversion and discount rates, the 
long-run means, or the length of the period! We relegate the proof into the Appendix 
along all other proofs omitted from this section, but the argument is simple: By Pro
position 1 and Remark 2, it suffices to establish that ​​inf​ ​v​0​​​ 

​ ​  E[Y | ​v​0​​]  = ​ inf​ ​c​0​​​ 
​ ​  E[Y | ​c​0​​]  

=  0​. This in turn follows from the unbounded supports. Namely, given any  
​{r, Δ, ​(​α​i​​, ​σ​i​​, ​m​i​​)​i∈{B, S}​​}​ and ​ε  >  0​ , we may choose ​​v​0​​​ small enough and ​​c​0​​​ large 

20 The result extends a priori to the case where some or all of the parameters ​(​α​i​​, ​σ​i​​, ​m​i​​)​ are private information. 
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enough so that conditional on ​​v​0​​​ or ​​c​0​​​ , convergence to the invariant distribution takes 
arbitrarily long, which results in the expected gains from trade being less than ​ε​ despite 
the fact that ​​α​i​​​ and ​​m​B​​ − ​m​S​​​ may be large and ​r​ may be small.21

As the first step toward second-best mechanisms, we extend a part of the charac-
terization of static IC, IR, and BB trading mechanisms by Myerson and Satterthwaite 
(1983).

Lemma 1: Consider an environment with stationary Gaussian types. If ​μ​ is an IC, 
IR​​​​0​​​ , and BB​​​​0​​​ mechanism, then

(3)	​ ​E​​ μ​​[​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​ ​X​t​​​(​V​t​​ − ​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​ ​ γ​ B​ t ​ − ​C​t​​ − ​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​ ​γ​ S​ t ​)​]​  ≥  0 .​

The left-hand side of (3) is the expected dynamic virtual surplus, which is shown 
to be nonnegative by an argument exactly analogous to the static case. Note that the 
result only invokes the weakest versions of the three conditions.

By Lemma 1, the expected gains from trade in any IC, IR​​​​0​​​ , and BB​​​​0​​​ mechanism 
are bounded from above by

(4)	​ ​y​​ ∗∗​ := ​ sup​ 
​
​​ ​​ {​(1 − δ)​E​​ μ​​[ ​ ∑ 

t=0
​ 

∞
 ​​ ​δ​​ t​ ​X​t​​​(​V​t​​ − ​C​t​​)​]​|​ μ satisfies (3)}​, ​

where both the objective function and the constraint depend on ​μ​ only through the 
allocation rule. We say that ​μ​ is a second-best mechanism if ​μ​ is IC, IR​​​​0​​​ , and BB​​​​0​​​ , 
and the gains from trade under ​μ​ achieve ​​y​​ ∗∗​​ , which we refer to correspondingly as 
the expected second-best gains from trade. Next, we show that such mechanisms 
exist, and that we can ask them to satisfy stronger conditions at no cost.

Proposition 5: The following hold in every environment with stationary 
Gaussian types:

	 (i)	 There exist a public second-best mechanism that is PIC, IR​​​​0​​​ , and BB.

	 (ii)	 There exist a public second-best mechanism that is EPIC, IR, and BB​​​​0​​​.

Furthermore, the allocation rule in any second-best mechanism is almost surely 
given by the allocation rule ​​x​​ ∗∗​​ defined by setting (for all ​t​) ​​x​ t​ ∗∗​  =  1​ if and only if

(5)	​ ​v​t​​ − ​c​t​​  ≥ ​   λ ____ 
1 + λ ​​(​ 1 − ​F​0​​(​v​0​​) ________ ​f​0​​(​v​0​​)

 ​ ​ γ​ B​ t ​ + ​ ​G​0​​(​c​0​​) ______ ​g​0​​(​c​0​​)
 ​ ​γ​ S​ t ​)​, ​

where ​λ  >  0​ is the Lagrange multiplier on the constraint (3) in the optimization 
problem (4).

21 It can be shown that if the distributions of ​​V​0​​​ and ​​C​0​​​ are truncated, respectively, from below and above, then 
inequality (1) is satisfied for any ​r​ small enough. Thus, Proposition 4 relies on the non-compact supports, which are 
a consequence of our assumption that the processes be started from the stationary distribution. 
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To sketch the proof, we observe first that the supremum in (4) is achieved by some 
mechanism ​μ​ since both the expected gains from trade and the expected dynamic 
virtual surplus are continuous in the allocation rule, and the set of allocation rules 
is compact. As both the objective function and the constraint in (4) are linear, the 
allocation rule in the mechanism ​μ​ must almost surely be equal to the allocation rule ​​
x​​ ∗∗​​ defined in Proposition 5 for some Lagrange multiplier ​λ  >  0​ , which is strictly 
positive by Proposition 4. Note that ​​x​​ ∗∗​​ is “strongly monotone” as for all ​s  ≤  t​ , 
increasing ​​v​s​​​ or decreasing ​​c​s​​​ weakly increases ​​x​ t​ ∗∗​​. Since the processes are stochas-
tically monotone, Corollary 1 of PST implies that there exists a transfer rule ​​p​​ ∗∗​​ 
such that the public mechanism ​​μ​​ ∗∗​ :=  (​x​​ ∗∗​, ​p​​ ∗∗​)​ is PIC. The other properties are 
established using arguments resembling the proofs of Proposition 1 and Lemma 1.

Analogously to the static case, trade occurs in a second-best mechanism only 
if the buyer’s value exceeds the seller’s cost by a sufficient margin, which in the 
current setting depends on the agents’ (reported) first-period types. Recalling that ​​
γ​i​​  = ​ e​​ −​α​i​​Δ​  <  1​ , we see by inspection of (5) that this margin converges to zero as ​
t  →  0​ , and, hence, distortions vanish over time. As we discuss further in the next 
subsection, this result is best viewed as a consequence of the fact that the impulse 
response of each agents’ AR(1) process, which is given by ​​γ ​ i​ t​​ , decays over time.

Inequality (5) features the Lagrange multiplier ​λ​ , and, hence, it is not immedi-
ately obvious how ​​y​​ ∗∗​​ varies in relation to ​E​[Y]​​ as we vary the parameters. However, 
it is possible to use approximation arguments to show that the findings for the lim-
its ​r  →  0​ and ​Δ  →  0​ are qualitatively different. In order to state the result, let ​​
y​​ ∗​ :=  E​[​(​V​0​​ − ​C​0​​)​​ +​]​  =  E​[Y ]​​ , where the second equality follows because initial 
types are drawn from the stationary distribution.

Proposition 6: Let ​​y​​ ∗∗​(r, Δ)​ denote the expected second-best gains from trade 
in an environment with stationary Gaussian types given discount rate ​r  >  0​ and 
period length ​Δ  >  0​. Then,

	 (i)	 for all ​Δ  >  0​ , ​​lim​ r→0​ ​ ​ ​ y​​ ∗∗​(r, Δ)  = ​ y​​ ∗​​ ,

	 (ii)	 for all ​r  >  0​ , ​​lim​ Δ→0​ ​ ​ ​ y​​ ∗∗​(r, Δ)  < ​ y​​ ∗​​.

The first part gives a limit efficiency result for patient agents, which is somewhat 
surprising given the negative result of Proposition 4. The reason for the seeming 
discrepancy is that the large information rents under the first-best rule are in part due 
to the types far in the tails of the distributions, which contribute little to the expected 
gains from trade. In particular, a mechanism where trade breaks down permanently 
given a very low value of ​​v​0​​​ or a very high value of ​​c​0​​​ , but where trading is efficient 
otherwise, results in a small loss in surplus but yields a large reduction in informa-
tion rents. As ​r  →  0​ , we may move the truncations arbitrarily far out in the tails to 
obtain an approximately efficient mechanism.22

22 This is closely related to the observation in footnote 21. 
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In contrast, for the frequent-interaction limit ​Δ  →  0​ , the discount rate ​r​ is held 
constant, and, hence, the lack of uniform bounds on the convergence of the ​t​-step 
distributions ​​F​​ (t)​( · | ​v​0​​)​ across ​​v​0​​​ yields the inefficiency result in the second part 
of Proposition 6. While the formal arguments differ, the intuition for the finding is 
similar to that for Proposition 4.

B. Second Best with Private Parameters

As a second example, we consider a setting where the initial private information 
is about a parameter of the type process. Specifically, suppose that ​V ​ and ​C​ are 
the linear AR(1) processes of Example 3 as above, but now the long-run means ​​m​B​​​ 
and ​​m​S​​​ are private information, i.e., ​​θ​B​​  = ​ m​B​​​ and ​​θ​S​​  = ​ m​S​​​. To keep initial private 
information one-dimensional, we assume that ​​v​0​​​ and ​​c​0​​​ are known (i.e., ​​​0​​​ and ​​​0​​​ 
are singletons). It is straightforward to verify that this environment is smooth.23

Lemma 1 immediately extends to the current setting with inequality (3) replaced 
by

(6)  	​​E​​ μ​​[​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​ ​X​t​​​(​V​t​​ − ​ 1 − ​F​0​​(​Θ​B​​)  ________ ​f​0​​(​Θ​B​​)
 ​  (1 − ​γ​ B​ t ​) − ​C​t​​ − ​ ​G​0​​(​Θ​S​​) ______ ​g​0​​(​Θ​S​​)

 ​(1 − ​γ​ S​ t ​))​]​  ≥  0 .​

The proof is the same and, hence, omitted.24 Second-best mechanisms are then 
defined analogously to the previous subsection by substituting inequality (6) for 
constraint (3) in the second-best problem (4).

There are two differences in the expected dynamic virtual surpluses (3) and (6). 
The first is due to the hazard rates, which simply reflect what is assumed to be pri-
vate information in period ​0​. The second difference is due to the impulse responses 
of the type processes to changes in the agents’ initial information. For the linear 
AR(1) processes they can be derived simply by writing out the moving-average 
representation of the process. For example, for the buyer we have

	​ ​v​t​​  = ​ γ​ B​ t ​ ​v​0​​ + (1 − ​γ​ B​ t ​)​m​B​​ + ​ ∑ 
s=1

​ 
t

  ​​ ​γ​ B​ t−s​ ​ε​B, s​​ .​

Thus, when ​​m​B​​​ is common knowledge, as in the previous subsection, we have 
the impulse response ​​∂​​v​0​​​​ ​v​t​​  = ​ γ​ B​ t ​​ , which decays over time. In contrast, when ​​
m​B​​​ is private information (and ​​v​0​​​ is known), the impulse response becomes ​​∂​​m​B​​​​ ​v​t​​  
=  1 − ​γ​ B​ t ​​ , which is increasing over time whenever ​​γ​B​​  >  0​. Note that ​​γ​B​​  =  0​ 

23 It is even easier to verify regularity in the sense of Definition A.2: Put ​ψ(​θ​B​​, v, ​ε​B​​)  = ​ γ​B​​v + (1 − ​γ​B​​)​θ​B​​ + ​
ε​B​​​. Then ​​∂​v​​ψ  = ​ γ​B​​​ and ​​∇​​θ​B​​​​ψ  =  1 − ​γ​B​​​ , which are bounded in the desired sense. 

24 The only difference is in the expressions for the derivatives. For example, formula (A4) now becomes

​​U​ 0​ ′ ​(​θ​B​​)  =  (1 − δ)​E​​ μ​​[​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​(1 − ​γ​ B​ t ​)​X​t​​ | ​θ​B​​]​   a.e. ​θ​B​​,​

where we have omitted conditioning on the known constant ​​v​0​​​. 
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corresponds to values being drawn independent and identically distributed from a 
distribution with a privately known mean—a special case of Example 1—in which 
case the impulse response is constant over time.

We refer the reader to PST for the general definition and discussion of impulse 
responses, and their role in optimal mechanism design. For our purposes, the rele-
vant observation is that the dynamics of the impulse responses translate to dynamics 
of distortions in the second-best mechanisms:

Proposition 7: Consider the above environment with Gaussian linear AR(1) 
processes, where the long-run means are private information, and the sets ​​​0​​​ and ​​

​0​​​ are singletons. Assume that the maps ​​θ​B​​  ↦ ​  1 − ​F​0​​(​θ​B​​) _______ ​f​0​​(​θ​B​​)
 ​ ​ and ​​θ​S​​  ↦  − ​ ​G​0​​(​θ​S​​) _____ ​g​0​​(​θ​S​​)

 ​​ are 
nonincreasing. Then,

	 (i)	 There exist a public second-best mechanism that is PIC, IR​​​​0​​​ , and BB.

	 (ii)	 There exist a public second-best mechanism that is EPIC, IR, and BB​​​​0​​​.

Furthermore, the allocation rule in any second-best mechanism is almost 
surely given by the allocation rule ​​x​​ ∗∗∗​​ defined by setting (  for all ​t​) ​​x​ t​ ∗∗∗​  =  1​  
if and only if

	​ ​v​t​​ − ​c​t​​  ≥ ​   λ ____ 
1 + λ ​​[​ 1 − ​F​0​​(​θ​B​​) ________ ​f​0​​(​θ​B​​)

 ​  (1 − ​γ​ B​ t ​) + ​ ​G​0​​(​θ​S​​) ______ ​g​0​​(​θ​S​​)
 ​(1 − ​γ​ S​ t ​)]​,​

where ​λ  ≥  0​ is the Lagrange multiplier on inequality (6) in the second-best 
problem.

The proof is essentially the same as for Proposition 5, the only subtlety rising 
from having to establish implementability of an inefficient allocation rule in a 
non-Markov environment.

By inspection, whenever inequality (1) is not satisfied so that the second-best 
mechanism differs from the first best, the buyer’s value has to exceed the seller’s cost 
by some margin for trade to take place. In period ​0,​ trade is actually efficient given the 
commonly known values ​​v​0​​​ and ​​c​0​​​. Thereafter, the margin stays constant in the case 
of conditionally independent and identically distributed types, but increases over 
time whenever types are autocorrelated. In contrast, by Proposition 4, distortions 
decrease over time when the private information is about ​​v​0​​​ and ​​c​0​​​. Heuristically, the 
difference is due to the fact that distortions are introduced to screen the agents based 
on their initial information. Hence, it is efficient to distort more in periods where 
types are more sensitive to changes in the agents’ initial information, the relevant 
sense of stochastic dependence being captured by the impulse responses—see PST 
for further discussion.

The above findings about distortions with privately known means mirror the 
results by Boleslavsky and Said (2013) who study monopolistic screening of an 
agent who is privately informed about a parameter of his value process. Exploring 
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the properties of optimal dynamic mechanisms when agents have private informa-
tion about the parameters of their type processes appears to be an interesting direc-
tion for future research.

VI.  Concluding Remarks

We explore the feasibility of efficient dynamic contracting by deriving, inter-
preting, and applying a necessary and sufficient condition for the existence of effi-
cient, unsubsidized, and individually rational contracts in a setting where agents 
may have private information about the evolution of their personal uncertainty. 
The condition is given by inequality (1), which corresponds to an upper bound 
on the sensitivity of the expected gains from trade to the agents’ initial private 
information. As illustrated in Section IV, the effects of considerations such as 
persistence, patience, number and frequency of interactions, or asymmetric infor-
mation about process parameters on the prospects of efficient contracting can be 
either simply read off of, or computed from, inequality (1). The result relies on 
a dynamic payoff-equivalence theorem for settings with multidimensional initial 
information, which may be useful elsewhere.

Our methods apply as such to general dynamic Bayesian collective choice prob-
lems in quasi-linear environments. To illustrate this, consider the following class of ​
n​-agent problems: In each period ​t  =  0, 1, … , T​ , with ​T  ∈  ℕ ∪ {∞}​ , a decision 
is chosen from a measurable space ​​. If the decision in period ​t​ is ​​x​t​​  ∈  ​ and agent ​
i  ∈  I :=  {1, … , n}​ receives ​​p​i, t​​​ units of the numeraire, then the resulting flow pay-
off to agent ​i​ is ​​u​i​​(​x​t​​, ​z​i, t​​) + ​p​i, t​​​ for some (measurable) ​​u​i​​ :  × ​​i​​  →  ℝ​. The type ​​
z​i, t​​​ is private information of agent ​i​ and evolves on the interval ​​​i​​  ⊂  ℝ​ according 
to a parameterized Markov process ​​Z​i​​​ generated by ​(​H​i, 0​​, {H​( · | · ; ​θ​i​​}​​θ​i​​∈​Ω​i​​​​)​ , which is 
thus of the same form as the value and cost processes ​V​ and ​C​ in the bilateral trade 
problem. The agents evaluate streams of flow payoffs according to their discounted 
average using a common discount factor ​δ  ∈  [0, 1]​ with ​δ  <  1​ if ​T  =  ∞​.

We normalize the outside option of each agent to zero, and assume that there exists 
a decision ​x′  ∈  ​ such that ​​u​i​​(x′, ​z​i​​)  =  0​ for all ​i  ∈  I​ , all ​​z​i​​  ∈ ​ ​i​​​. Applications 
fitting this framework include repeated versions of allocation problems such as dou-
ble auctions, sharing a common resource within a team, and the provision of exclud-
able public goods.

Direct mechanisms and their properties are defined for the above dynamic col-
lective choice problems as in Section II, and the payoff-equivalence property can be 
defined analogously to Definition 5. Our proof of payoff equivalence (Proposition 
A1) extends verbatim to show that a sufficient condition for the latter is that (1) the 
type processes are smooth in the sense of Definition 6 (or, more generally, regular as 
in Definition A2), and (2) for each agent ​i  ∈  I​ and every decision ​x  ∈  ​ , ​​u​i​​(x,  · )​ 
is differentiable and the family ​​{​u​i​​(x,  · )}​x∈​​​ is equi-Lipschitz.

Denote the first-best social surplus by

	​ S  := ​   1 − δ ______ 
1 − ​δ​​ T+1​

 ​ ​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​ ​ ∑ 
i=1

​ 
n

  ​​ ​u​i​​(​χ​​ ∗​(​Z​1, t​​, … ​Z​n, t​​), ​Z​i, t​​),​
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where ​​χ​​ ∗​​ is a static first-best allocation rule.25 We then have the following general-
ization of Proposition 1, which provides a dynamic version of the characterization 
by Makowski and Mezzetti (1994).26

Proposition 1′: Suppose that the dynamic Bayesian collective choice prob-
lem defined above has the payoff-equivalence property. Then the following are 
equivalent:

	 (i)	 The first-best social surplus, ​S​ , satisfies

		  (7)	 ​​ ∑ 
i=1

​ 
n

  ​​ ​ inf​ 
​θ​i​​, ​z​i, 0​​

​ 
​
 ​  E[S | ​θ​i​​, ​z​i, 0​​]  ≥  (n − 1)E[S] .​

	 (ii)	 There exists a blind mechanism that is E, IC, IR​​​​0​​​ , and BB​​​​0​​​.

	 (iii)	 There exists a public mechanism that is E, PIC, IR​​​​0​​​ , and BB.

	 (iv)	 There exists a public mechanism that is E, EPIC, IR, and BB​​​​0​​​.

Proposition 1′ permits an analysis analogous to Section IV for any problem in the 
above class. For example, it allows exploring how the performance of markets orga-
nized as double auctions is affected by trading frequency, persistence of valuations, 
or asymmetric information about the processes generating the valuations.

Another application of Proposition 1′ comes from repeated Bayesian games. 
Namely, while the above collective choice problems assume transferable utility, 
inequality (7) obviously remains a necessary condition for the existence of an equi-
librium that maximizes the sum of the players’ payoffs even if utility is nontransfer-
able. This observation can be used, for example, to put bounds on firms’ ability to 
collude when their cost structures are private information, thus providing a way of 
extending the results of Miller (2012), who shows for the case of independent and 
identically distributed costs that first-best collusion (or E) is unattainable under ex 
post incentives and ex post budget balance (or EPIC and BB).

Remark 3: Proposition 1′ is by no means the most general possible statement. 
Indeed, we assume payoffs to be additively separable across time and evolution of 
types to be independent of decisions for the ease of exposition, and because for such 
environments our proof of payoff equivalence goes through verbatim. But since 
payoff equivalence is simply an assumption for the result, Proposition 1′ immedi-
ately extends—with first-best social surplus ​S​ appropriately defined—to the gen-
eral environments studied by Athey and Segal (2013) and Bergemann and Välimäki 
(2010) as we may take their efficient dynamic mechanisms as the starting point in 

25 I.e., ​​χ​​ ∗​(​z​1​​,  … , ​z​n​​)  ∈   arg ​max​ x∈X​ ​ ​​ ∑ i=1​ 
n  ​​​u​i​​(x, ​z​i​​)​ for all type profiles ​(​z​1​​,  … , ​z​n​​)  ∈ ​ ​1​​ × ⋯ × ​​n​​​. 

26 Define the mechanism ​μ  =  (​x​​ ∗​, p)​ in the beginning of the proof of Proposition 1 to consist of the repeti-
tion of the static Groves’ scheme ​​p​i, t​​  = ​ ∑ j≠i​ 

  ​​ ​ u​j​​(​x​ t​ ∗​, ​z​i, t​​)​. Then ​μ​ is E, EPIC, and IR with budget deficit equal to  
​(n − 1)E[S]​. The rest of the proof now goes through with the obvious adjustments. 
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the proof. Sufficient conditions for the payoff-equivalence property to hold can then 
be obtained as in this paper by applying or extending the results of PST.

Finally, we have abstracted from institutional detail throughout the paper in order 
to focus on the informational problems inherent in dynamic contracting. A natural 
question for future research is to investigate to what extent the results are affected 
by the introduction of additional concerns. For example, as noted above, inequality 
(1) is in general not enough to simultaneously guarantee ex post budget balance and 
individual rationality in every period. Hence, while (1) remains a necessary con-
dition for any environment, it need not be sufficient in some institutional settings. 
An example is provided by relational contracting with third-party financing if only 
bounded credit lines are available. (See Athey and Miller 2007, for an exploration of 
these issues in the independent and identically distributed case, or Athey and Segal 
2007, 2013, for positive limit results in settings with serial dependence.) The design 
of second-best mechanisms when initial information is multidimensional is another 
natural but challenging next step.

Appendix

A. Sufficient Conditions for Payoff Equivalence

We introduce regular environments and show that they have the payoff-equiva-
lence property by extending the “first-order approach” of PST to our setting, where 
the agents’ initial information is multidimensional.

The following definition adapts the concept of a state representation from PST 
to our environment (see also Eső and Szentes 2007). For definiteness we use the 
notation for the buyer’s type process throughout this section; the seller’s process is 
treated analogously.

Definition A1: A state representation of the process ​V​ is a triple ​(, Q, ψ)​ , 
where ​​ is a measurable space, ​Q​ is a probability distribution on ​​ , and 
​ψ : ​Ω​B​​ ×  ×   →  ​ is a (measurable) function such that, for all  
​​(​θ​B​​, v)​  ∈ ​ Ω​B​​ × ​ , ​ψ​(​θ​B​​, v, ·)​ :   →  ​ is a random variable with distribution  
​F​(· | v; ​θ​B​​)​​.

Given a state representation ​(, Q, ψ)​ , we can think of the buyer’s values as being 
generated as follows: Draw the initial information ​(​θ​0​​, ​v​0​​)​ according to ​​F​0​​​ , and draw 
a sequence ​​(​ε​t​​)​ t=1​ T ​   ∈ ​ ​​ T​​ of “independent shocks” according to the product measure ​​
Π​ t=1​ T ​ Q​. Values for periods ​t > 0​ are then obtained by iterating ​​v​t​​  =  ψ​(​θ​B​​, ​v​t−1​​, ​ε​t​​)​​.  
Note that this amounts to simply extending the standard construction of a Markov 
chain in terms of independent and identically distributed random variables (see, 
e.g., Williams (1991, 209)) to a mixture over the parameterized collection of 
Markov chains ​​​{​⟨​v​0​​, F​(· | v; ​θ​B​​)​⟩​}​​(​θ​B​​, ​v​0​​)∈​Ω​B​​×​​0​​​​​ , and hence a state representation 
exists. For example, the canonical representation obtains by taking ​  =  [0, 1]​  
and ​ψ(​θ​B​​, v,  · )  = ​ F​​ −1​​(· | v; ​θ​B​​)​​ for all ​(​θ​B​​, v)​ , and letting ​Q​ to be the uniform 
distribution.
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Definition A2: The process ​V​ is regular if there exists a state representa-
tion ​(, Q, ψ)​ of ​V​ and constants ​b  < ​  1 _ δ ​​ , ​d  <  ∞​ such that, for all ​(​θ​B​​, v, ε) 
∈ ​ Ω​B​​ ×  × ​ , ​ψ(​θ​B​​, v, ε)​ is a differentiable function of ​(​θ​B​​, v)​ satisfying

	 (i)	​​ ‖​∇​​θ​B​​​​ ψ‖​  ≤  d​ , and

	 (ii)	​ ​|​∂​v​​ψ|​  ≤  b​.

If ​T​ is finite, it suffices that the constant ​b​ be finite.
The environment is regular if the processes ​V​ and ​C​ are regular.

An easy-to-check sufficient condition for regularity is provided by the notion of 
smoothness introduced in Definition 6 in the main text.

Lemma A1: Every smooth environment is regular.

Proof:
It suffices to show that a smooth process is a regular process. We do this by 

showing that the canonical representation of a smooth process satisfies the condi-
tions of Definition A2. For definiteness, suppose the buyer’s process ​V​ is smooth, 
and consider the canonical representation ​([0, 1], Q, ​F​​ −1​)​ , where ​Q​ is the uniform 
distribution on ​[0, 1]​. Smoothness implies that the kernel ​F( · | · ; · )​ is continuously 
differentiable, and for all ​(v, ​θ​B​​)​ , there is a density ​f ( · | v; ​θ​B​​)​ strictly positive on ​​. 
Therefore, for all ​(ε, v, ​θ​B​​)​ and ​v′ := ​ F​​ −1​(ε | v; ​θ​B​​)​ , the Implicit Function Theorem 
implies

	​ ​∂​v​​ ​F​​ −1​(ε | v; ​θ​B​​)  =  − ​ ​∂​v​​ F(​v ′ ​ | v; ​θ​B​​)  ____________  
f (​v ′ ​ | v; ​θ​B​​)

 ​ ,​

where the right-hand side is bounded by some ​b  < ​  1 _ δ ​​ in absolute value by smooth-
ness. Thus, ​([0, 1], Q, ​F​​ −1​)​ satisfies the second condition in Definition A2. Similarly, 
we have

	​​ ∇​​θ​B​​​​ ​F​​ −1​(ε | v; ​θ​B​​)  =  − ​ 
​∇​​θ​B​​​​ F(​v ′ ​ | v; ​θ​B​​)  ___________  

f (​v ′ ​ | v; ​θ​B​​)
 ​ ,​

where the right-hand side is bounded in the norm by some constant ​d​ by smooth-
ness. Thus, ​([0, 1], Q, ​F​​ −1​)​ satisfies also the first condition of Definition A2.

An example of a nonsmooth regular environment is provided by the renewal 
model:

Lemma A2: Consider the renewal model of Example 2. Suppose that the inverses 
of the initial conditional distributions, ​​F​ 0​ −1​( · | ​θ​B​​)​ and ​​G​ 0​ −1​( · | ​θ​S​​)​ , are differ-
entiable functions of ​​θ​B​​​ and ​​θ​S​​​ , respectively, with uniformly bounded gradients 

i.e., ​∃ d  <  ∞  : ​‖​∇​​θ​B​​​​ ​F​ 0​ −1​‖​ ∨ ​‖​∇​​θ​S​​​​ ​G​ 0​ −1​‖​  ≤  d​. Then the environment is regular.
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Note that the assumed differentiability of the inverses is satisfied, e.g., if 
the environment is with known parameters, or if ​​F​0​​( · | ​θ​B​​)​ and ​​G​0​​( · | ​θ​S​​)​ have 

strictly positive densities given any ​θ  ∈  Ω​ , and the ratios ​​ 
​‖​∇​​θ​B​​​​ ​F​0​​(v | ​θ​B​​)‖​

  __________ ​f​0​​(v | ​θ​B​​)
 ​ ​ and 

​​ 
​‖​∇​​θ​S​​​​​G​0​​(c | ​θ​S​​)‖​

  _________ ​g​0​​(c | ​θ​S​​)
 ​ ​ are bounded uniformly in ​(θ, v, c)  ∈  Ω ×  × ​.

Proof:
Consider the buyer’s process ​V​. Define the state representation ​(, Q, ψ)​ as fol-

lows: Put ​  =  [0, 1] × {0, 1}​ , and let ​Q  = ​ Q​1​​ × ​Q​2​​​ , where ​​Q​1​​​ is the uniform 
distribution on ​[0, 1]​ , and the distribution ​​Q​2​​​ on ​{0, 1}​ is defined by ​Pr {​ε​2​​  =  1}  
= ​ γ​B​​​. Define ​ψ​ by setting

	​ ψ(​θ​B​​, v, ε)  = ​ ε​2​​ v + (1 − ​ε​2​​)​F​ 0​ −1​(​ε​1​​ | ​θ​B​​) .​

Verifying that this indeed defines a state representation is straightforward. 
Moreover, ​ψ(​θ​B​​, v, ε)​ is clearly a differentiable function of ​(​θ​B​​, v)​ , and we have 
​​‖​∇​​θ​B​​​​ ψ‖​  ≤ ​ ‖​∇​​θ​B​​​​ ​F​ 0​ −1​‖​  ≤  d​ for some ​d  <  ∞​ , and ​​|​∂​v​​ψ|​  = ​ ε​2​​  ≤  1  < ​  1 _ δ ​​. 
Therefore, the buyer’s process ​V​ is regular. The seller’s process ​C​ is treated similarly.

We may now establish our payoff-equivalence result.

Proposition A1: Every regular environment has the payoff-equivalence property.

In the special case where each agent’s initial private information is one dimen-
sional, Proposition A1 follows from the results of PST. The extension to the 
multidimensional case presented here is novel. The proof, which combines the 
standard payoff-equivalence argument from static multidimensional models can be 
sketched as follows: Fix an IC mechanism, and let ​α​ be a smooth path (e.g., a line 
segment) between two initial types of the buyer, say, ​(​v​ 0​ 0​, ​θ​ B​ 0 ​)​ and ​(​v​ 0​ 1​, ​θ​ B​ 1 ​)​. Consider 
an auxiliary problem where a buyer, whose true initial type is in ​α​ , is restricted 
to report a type in ​α​ in period 0 (but may report any ​​v​t​​​ in periods ​t  >  0​). In this 
problem, the agent’s initial type is one-dimensional. Since the mechanism is IC, a 
truthful strategy is still optimal for the buyer and results in the same payoff as in 
the original model. Furthermore, if the environment is regular, then this auxiliary 
problem satisfies the assumptions of Theorem 1 of PST. This implies that the payoff 
difference between any two types in ​α​ is pinned down by the allocation rule alone. 
As ​(​v​ 0​ 0​, ​θ​ B​ 0 ​)​ and ​(​v​ 0​ 1​, ​θ​ B​ 1 ​)​ were arbitrary, the result follows.

Proof of Proposition A1:
Fix some IC mechanism ​μ  =  (x, p)​ , and two initial buyer types ​(​θ​ B​ 0 ​, ​v​ 0​ 0​)​ , 

​(​θ​ B​ 1 ​, ​v​ 0​ 1​)  ∈ ​ Ω​B​​ × ​​0​​​ with ​(​θ​ B​ 0 ​, ​v​ 0​ 0​)  ≠  (​θ​ B​ 1 ​, ​v​ 0​ 1​)​. (The seller is treated analogously.) 
The proposition is proven by establishing that the equilibrium-payoff difference 
​​U​​ μ​(​θ​ B​ 1 ​, ​v​ 0​ 1​) − ​U​​ μ​(​θ​ B​ 0 ​, ​v​ 0​ 0​)​ depends only on the allocation rule ​x​ if ​V​ is regular.27

27 To see this, fix an arbitrary ​a  ∈ ​ Ω​B​​ × ​​0​​​. Given any IC mechanisms ​μ​ , ​η​ with the same allocation rule ​x​ , 
let ​k := ​ U​​ μ​(a) − ​U​​ η​(a)​. Then for all ​b  ∈ ​ Ω​B​​ × ​​0​​​ , ​​U​​ μ​(b) − ​U​​ μ​(a)  = ​ U​​ η​(b) − ​U​​ η​(a)​ , or ​​U​​ μ​(b) − ​U​​ η​(b) = k​. 
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Fix a smooth path ​α : [0, 1]  → ​ Ω​B​​ × ​​0​​​ from ​(​θ​ B​ 0 ​, ​v​ 0​ 0​)​ to ​(​θ​ B​ 1 ​, ​v​ 0​ 1​)​ , i.e., a con-
tinuously differentiable map ​λ  ↦  α(λ)  =  (​α​θ​​(λ), ​α​v​​(λ))  ∈ ​ Ω​B​​ × ​​0​​​ , where ​
λ  ∈  [0, 1]​ , such that ​α(0)  =  (​θ​ B​ 0 ​, ​v​ 0​ 0​)​ and ​α(1)  =  (​θ​ B​ 1 ​, ​v​ 0​ 1​)​. (Such paths exist by 
the convexity of ​​Ω​B​​ × ​​0​​​.) In the remainder of the proof we restrict attention to the 
path ​α​ and hence (abusing terminology) refer to ​λ​ as the buyer’s initial type.

Given a strategy profile ​σ​ and an initial type ​λ  ∈  [0, 1]​ , define ​​W​​ σ​(λ)   
:= ​ U​​ μ, σ​(α(λ))​ and ​W(λ)  := ​ W​​ ​σ​​ ∗​​(λ)​. By IC, we have for all ​λ  ∈  [0, 1]​ ,

  ​  W(λ)  = ​ max​ 
​σ​B​​

​ ​ ​ ​ W​​ (​σ​B​​, ​σ​ S​ ∗​)​(λ)

	 = ​ max​ 
​σ​B​​

​ ​ ​  {​W​​ (​σ​B​​, ​σ​ S​ ∗​)​(λ)  : ​σ​B, 0​​(α(λ))  =  α(​λ ′ ​  ) for some ​λ ′ ​  ∈  [0, 1]},​

where the second equality follows since the optimal truthful report remains feasible. 
By inspection of the second line, we can view ​W​ as the value function to a family of 
dynamic optimization problems parameterized by the initial type ​λ  ∈  [0, 1]​ , where 
in period 0 the buyer with true initial type ​λ​ is restricted to report some initial type ​​
λ ′ ​  ∈  [0, 1]​ and makes a report ​​​v ̂ ​​t​​  ∈  ​ in periods ​t  >  0​ , as usual. As the initial type ​
λ​ is one-dimensional, this auxiliary problem is amenable to the first-order approach 
of PST. In particular, their Theorem 1 implies that under certain conditions, ​W​ is 
Lipschitz-continuous with a derivative ​​W ′ ​​ independent of ​p​ , so the independence 
of ​​U​​ μ​(​θ​ B​ 1 ​, ​v​ 0​ 1​) − ​U​​ μ​(​θ​ B​ 0 ​, ​v​ 0​ 0​)​ of ​p​ then follows from the Fundamental Theorem of 
Calculus by observing that

	​ ​U​​ μ​(​θ​ B​ 1 ​, ​v​ 0​ 1​) − ​U​​ μ​(​θ​ B​ 0 ​, ​v​ 0​ 0​)  =  W(1) − W(0)  = ​ ∫ 
0
​ 
1
​​​W ′ ​(λ)dλ .​

Thus, to complete the proof, it suffices to verify that if the process ​V​ is regular, then 
the auxiliary problem satisfies the assumptions of Theorem 1 of PST.

The buyer’s type in the auxiliary problem is given by a sequence 
​(λ, ​v​1​​, ​v​2​​, … , ​v​T​​)​ , and his payoff takes the time-separable form

	​ ​  1 − δ ______ 
1 − ​δ​​ T+1​

 ​ [​x​0​​ ​α​v​​(λ) + ​p​B, 0​​ + ​ ∑ 
t=1

​ 
T

  ​​ ​δ​​ t​(​x​t​​ ​v​t​​ + ​p​B, t​​)] .​

Thus, the utility function is clearly differentiable and equi-Lipschitz continu-
ous in types in the sense of PST’s conditions U-D and U-ELC (see PST, section 
2.1). Similarly, condition F-BE, which requires the expected discounted type to be 
finite conditional on any history, follows immediately from our assumption that 
​E​[​∑ t=0​ 

T  ​​ ​δ​​ t​ | ​V​t​​ || ​θ​B​​, ​v​0​​]​​ be finite for all ​(​θ​B​​, ​v​0​​)  ∈ ​ Ω​B​​ × ​​0​​​.
It remains to show that the type process in the auxiliary problem has “bounded 

impulse responses” and thus satisfies condition F-BIR. Since we will apply the 
envelope formula only in the initial period, it suffices to verify this for period 0 (i.e., 
that PST’s condition F-BIR holds for ​s  =  0​). Given initial type ​λ​ , future types are 
distributed as follows:

(A1)	​ ​
​v​1​​  ∼  F( · | ​α​v​​(λ); ​α​θ​​(λ)),

​   
​v​t​​  ∼  F( · | ​v​t−1​​; ​α​θ​​(λ))    for t  =  2, … , T.

​​
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As ​V​ is regular, we can take a state representation ​(, Q, ψ)​ satisfying our 
Definition A2, and define the functions ​​z​1​​ :  [0, 1] ×   →  ℝ​ , and ​​
z​t​​ :  × [0, 1] ×   →  ℝ​ , ​t  =  2, … , T​ , by

	​​ z​1​​(λ, ε)  =  ψ(​α​θ​​(λ), ​α​v​​(λ), ε),

	​ z​t​​(v, λ, ε)  =  ψ(​α​θ​​(λ), v, ε)    for t  =  2, … , T.​

We note for future reference that, given the properties of ​ψ​ , we have the global 
existence of the partial derivatives

	​​ ∂​λ​​ ​z​1​​  = ​ ∇​(θ, v)​​ ψ · α′,

	​ ∂​λ​​ ​z​t​​  = ​ ∇​θ​​ ψ · ​α​θ​ ′ ​ 	 for t  =  2, … , T,

	​ ∂​v​​ ​z​t​​  = ​ ∂​v​​ψ 	 for t  =  2, … , T.​

Furthermore, given any constants ​b​ and ​d​ that satisfy Definition A2, we may put ​
K  :=  (d + b)​max​ λ​ ​ ​​‖α′(λ)‖​​ to obtain the bounds

	​​ |​∂​λ​​ ​z​t​​|​  ≤  K     for t  =  1, … , T,

	​ |​∂​v​​ ​z​t​​|​  ≤  b       for t  =  2, … , T.​

By construction, the collection ​(, Q, z)​ , where ​z := ​ (​z​t​​)​ t=1​ T ​ ​ , defines a state repre-
sentation of the kernels (A1) in the sense of PST, section 2.28 By their equation (4), 
it suffices to show the finiteness of the sum ​​∑ t=0​ 

T  ​​ ​δ​​ t​ ​|​I​t​​|​,​ where ​​I​0​​  ≡  1​ and

	​ ​I​t​​ := ​  ∑ 
τ=1

​ 
t

  ​​ ​∂​λ​​ ​z​τ​​ ​  ∏ 
s=τ+1

​ 
t
  ​​ ​∂​v​​ ​z​s​​    for t  =  1, … , T.​

By the above bounds on the partials of the functions ​​(​z​t​​)​ t=1​ T ​ ​ , we have for all ​t​ ,

	​ ​|​I​t​​|​  ≤ ​  ∑ 
τ=1

​ 
t

  ​​ K ​  ∏ 
s=τ+1

​ 
t
  ​​ b  =  K ​ ∑ 

τ=1
​ 

t

  ​​ ​b​​ t−τ​  ≤  Kt ​b​​ t​,​

where the last inequality follows, since we may assume without loss that ​b  ≥  1​. 
Therefore,

	​ ​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​ ​|​I​t​​|​  ≤  K ​ ∑ 
t=0

​ 
T

  ​​ t​(δb)​​ t​ .​

Because either ​b  < ​  1 _ δ ​​ or ​T  <  ∞​ , the last sum is finite, which implies the result.

28 Note that we can put ​​​t​​  =  ​ and ​​G​t​​  =  Q​ for all ​t​. 
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Finally, we show that the environment in Example 7 is regular and hence has the 
payoff-equivalence property.

Lemma A3: The environment in Example 7 is regular.

Proof:
By symmetry, it suffices to consider the buyer’s process ​V​. By the properties of 

the twice-reflected Brownian motion (see, e.g., Harrison 1985), the kernel ​​ 
_
 F ​(​v ′ ​ | v)​ 

is a differentiable function of ​(v′, v)​ with a density ​​ 
_
 f ​(v′ | v)​ bounded away from zero 

uniformly in ​(v′, v)​ and with a uniformly bounded partial derivative ​​∂​v​​ ​ 
_

 F ​​. Therefore, 
there exists ​ε  >  0​ and ​K  <  ∞​, such that for all ​(v′, v, ​θ​B​​)  ∈ ​ [0, 1]​​ 3​​ ,

	​​ 
​|​∂​v​​ F(v′ | v; ​θ​B​​)|​  ___________  

f (​v ′ ​ | v; ​θ​B​​)
 ​   = ​ 

​|​∂​v​​ ​ 
_
 F ​(v′ | v)|​
  _______________  

​θ​B​​ ​ 
_
 f ​(v′ | v) + 1 − ​θ​B​​

 ​  ≤ ​   K _________  ​θ​B​​ε + 1 − ​θ​B​​
 ​  ≤ ​  K __ ε ​ .​

Similarly, we have

	​​ 
​|​∇​​θ​B​​​​ F(v′ | v; ​θ​B​​)|​  ____________  

f (v′ | v; ​θ​B​​)
 ​   = ​ 

​|​ 
_

 F ​(v′ | v) − v′|​
  _______________  

​θ​B​​ ​ 
_
 f ​(v′ | v) + 1 − ​θ​B​​

 ​  ≤ ​  1 __ ε ​ .​

Thus, the process ​V​ is smooth, save for the constant ​​ K __ ε ​​ being possibly greater than 
​​ 1 _ δ ​​. However, as ​T  <  ∞​ , ​V​ is regular by inspection of Definition A2 and the proof 
of Lemma A1.

B. Omitted Proofs

Proof of Proposition 1:
The implication ​(iii) ∨ (iv)  ⇒  (ii)​ follows immediately from Definitions 1–  4 

(see Remark 1). Hence, it suffices to show ​(i)  ⇒  (iii) ∧ (iv)​ , and ​(ii)  ⇒  (i)​.
We establish ​(i)  ⇒  (iv)​ by showing that if (1) holds, there is a simple mech-

anism that has the desired properties. Consider first the public mechanism 
​μ  =  (​x​​ ∗​, p)​ , which consists of running a static Groves’ scheme in every 
period; i.e., the allocation rule ​​x​​ ∗​​ and the payment rule ​p​ are defined by set-
ting, for all ​t​ , ​​x​ t​ ∗​  = ​ 1​{​v​t​​≥​c​t​​}​​​ , ​​p​B, t​​  =  −​1​{​v​t​​≥​c​t​​}​​ ​c​t​​​ , and ​​p​S, t​​  = ​ 1​{​v​t​​≥​c​t​​}​​​v​t​​​.

29 By con-
struction, ​μ​ is E, and each player’s payoff equals the first-best gains from trade ​​
(​V​t​​ − ​C​t​​)​​ +​​ in each period ​t​. Thus, ​μ​ is IR, and period-0 payoffs are given by ​​U​ 0​ 

μ​(​θ​B​​, ​v​0​​)  
= E[Y | ​θ​B​​, ​v​0​​]​ and ​​Π​ 0​ 

μ​(​θ​S​​, ​c​0​​) = E[Y | ​θ​S​​, ​c​0​​]​ for all ​(θ, ​v​0​​, ​c​0​​) ∈ Ω × ​​0​​ × ​​0​​​. 
Furthermore, in each period ​t​ , the agents’ reports only affect the current alloca-
tion and transfers, and thus ​μ​ is EPIC by the usual static argument. Finally, note 
that ​μ​ runs an expected budget deficit equal to the expected gains from trade, or 
​​  1 − δ _____ 
1 − ​δ​​ T+1​

 ​ ​E​​ μ​​[​∑ t=0​ 
T  ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​ = E[Y ]​.

29 In our environment, this mechanism coincides with the team mechanism of Athey and Segal (2013) and the 
Dynamic Pivot mechanism of Bergemann and Välimäki (2010). 
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In order to recover the budget deficit, we add “participation fees” to the mech-
anism ​μ​ by constructing a new transfer rule ​​p​​ ∗​​ from ​p​ by setting ​​p​ t​ ∗​  = ​ p​t​​​ for all ​
t  >  0​ , and defining the new period-0 transfers by

	​ ​p​ B, 0​ ∗ ​   := ​ p​B, 0​​ − ​ 1 − ​δ​​ T+1​ ______ 
1 − δ ​ ​  inf​ 

​θ​ B​ ′ ​, ​v​ 0​ ′ ​
​ 

​
  ​ E[Y | ​θ​B​ ′ ​, ​v​0​ ′ ​],    and

	​ p​ S, 0​ ∗ ​   := ​ p​S, 0​​ − ​ 1 − ​δ​​ T+1​ ______ 
1 − δ ​ ​  inf​ 

​θ​S​ ′ ​, ​c​0​ ′ ​
​ 

​
 ​  E[Y | ​θ​S​ ′ ​, ​c​0​ ′ ​] .​

Denote the public mechanism so obtained by ​​μ​​ ∗​  =  (​x​​ ∗​, ​p​​ ∗​)​. As we just sub-
tracted constants, ​​μ​​ ∗​​ is E and EPIC. It is IR, since periods ​t  >  0​ are unaffected, and

(A2)	​​  inf​ 
​θ​B​​, ​v​0​​

​ 
​
 ​ ​ U​ 0​ 

​μ​​ ∗​​(​θ​B​​, ​v​0​​)  = ​  inf​ 
​θ​B​​, ​v​0​​

​ 
​
 ​​ (​U​ 0​ 

μ​(​θ​B​​, ​v​0​​) − ​ inf​ 
​θ​B​ ′ ​, ​v​0​ ′ ​

​ 
​
 ​  E[Y | ​θ​B​ ′ ​, ​v​0​ ′ ​])​

	 = ​  inf​ 
​θ​B​​, ​v​0​​

​ 
​
 ​  E[Y | ​θ​B​​, ​v​0​​] − ​ inf​ 

​θ​B​ ′ ​, ​v​0​ ′ ​
​ 

​
 ​  E[Y | ​θ​B​ ′ ​, ​v​0​ ′ ​]  =  0,​

and similarly for the seller. Note that

(A3) ​​   1 − δ ______ 
1 − ​δ​​ T+1​

 ​ ​E​​ ​μ​​ ∗​​​[​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​  = ​   1 − δ ______ 
1 − ​δ​​ T+1​

 ​​E​​ μ​​[​ ∑ 
t=0

​ 
T

  ​​​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​ 

 	 − ​(​ inf​ 
​v​0​​, ​θ​B​​

​ 
​
  ​ E[Y | ​v​0​​, ​θ​B​​] + ​ inf​ 

​c​0​​, ​θ​S​​
​ 

​
  ​ E[Y | ​c​0​​, ​θ​S​​])​ 

	 =  E[Y ] − ​(​ inf​ 
​v​0​​, ​θ​B​​

​ 
​
  ​ E[Y | ​v​0​​, ​θ​B​​] + ​ inf​ 

​c​0​​, ​θ​S​​
​ 

​
  ​ E[Y | ​c​0​​, ​θ​S​​])​ .​

Thus, if (1) is satisfied, then ​​μ​​ ∗​​ is also BB​​​​0​​​ , and hence ​(i)  ⇒  (iv)​.
We show then that ​(ii)  ⇒  (i)​. Let ​η  =  (x′, q)​ be an E, IC, IR​​​​0​​​ , and BB​​​​0​​​ blind 

mechanism, and let ​​μ​​ ∗​  =  (​x​​ ∗​, ​p​​ ∗​)​ be the public mechanism constructed above by 
adding participation fees to the repetition of the static Groves’ scheme. Since ​η​ and ​​
μ​​ ∗​​ are both E, we have ​x′  = ​ x​​ ∗​​ , and hence ​​U​ 0​ 

η​  = ​ U​ 0​ 
​μ​​ ∗​​ + a​ and ​​Π​ 0​ 

η ​  = ​ Π​ 0​ 
​μ​​ ∗​​ + b​ for 

some constants ​a, b  ∈  ℝ​ by IC and the payoff-equivalence property. Since ​η​ is IR​​​​0​​​ , 
we have

​0  ≤ ​  inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​ ​ U​ 0​ 

η​(​v​0​​, ​θ​B​​) + ​ inf​ 
​c​0​​, ​θ​S​​

​ 
​
 ​ ​ Π​ 0​ 

η ​(​c​0​​, ​θ​S​​)  =

	 ​   inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​ ​ U​ 0​ 

​μ​​ ∗​​(​v​0​​, ​θ​B​​) + a + ​ inf​ 
​c​0​​, ​θ​S​​

​ 
​
 ​ ​ Π​ 0​ 

​μ​​ ∗​​(​c​0​​, ​θ​S​​) + b  =  a + b,​

where the last equality follows by (A2). Thus, ​​U​ 0​ 
η​ + ​Π​ 0​ 

η ​  ≥ ​ U​ 0​ 
​μ​​ ∗​​ + ​Π​ 0​ 

​μ​​ ∗​​​ , which in 

turn implies ​​E​​ η​​[​∑ t=0​ 
T  ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​  ≥ ​ E​​ ​μ​​ ∗​​​[​∑ t=0​ 

T  ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​​ as ​x′  = ​ x​​ ∗​​. 
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But ​η​ is BB​​​​0​​​ by assumption, and hence

​	 0  ≥ ​   1 − δ ______ 
1 − ​δ​​ T+1​

 ​ ​E​​ η​​[ ​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​

	 ≥ ​   1 − δ ______ 
1 − ​δ​​ T+1​ 

 ​​E​​ ​μ​​ ∗​​​[ ​ ∑ 
t=0

​ 
T

  ​​  ​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​

	 =  E[Y ] − ​(​ inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​  E[Y | ​v​0​​, ​θ​B​​] + ​ inf​ 

​c​0​​, ​θ​S​​
​ 

​
 ​  E[Y | ​c​0​​, ​θ​S​​])​,​

where the last equality follows by (A3). Thus (1) is satisfied.
It remains to establish ​(i)  ⇒  (iii)​. Note that the public mechanism ​​μ​​ ∗​  

=  (​x​​ ∗​, ​p​​ ∗​)​ constructed above is PIC. Hence, by the “balancing trick” of Athey and 
Segal (2013, proposition 2), there exists a public mechanism ​​​μ ̅ ​​​ ∗​  =  (​x​​ ∗​, ​​p ̅ ​​​ ∗​)​ that 
is PIC and BB. Since the allocation rule is unchanged, ​​​μ ̅ ​​​ ∗​​ is also E, and the pay-
off-equivalence property implies that ​​U​ 0​ 

​​μ ̅ ​​​ ∗​​  = ​ U​ 0​ 
​μ​​ ∗​​ + a​ and ​​Π​ 0​ 

​​μ ̅ ​​​ ∗​​  = ​ Π​ 0​ 
​μ​​ ∗​​ + b​ for 

some constants ​a, b  ∈  ℝ​. By (1) and (A3) we then have

​a + b  =  E​[​U​ 0​ 
​​μ ̅ ​​​ ∗​​(​V​0​​, ​Θ​B​​) + ​Π​ 0​ 

​​μ ̅ ​​​ ∗​​(​C​0​​, ​Θ​S​​)]​ − E​[​U​ 0​ 
​μ​​ ∗​​(​V​0​​, ​Θ​B​​) + ​Π​ 0​ 

​μ​​ ∗​​(​C​0​​, ​Θ​S​​)]​

	 =  E[Y ] − ​[2E[Y ] − ​(​ inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​  E[Y | ​v​0​​, ​θ​B​​] + ​ inf​ 

​c​0​​, ​θ​S​​
​ 

​
 ​  E[Y | ​c​0​​, ​θ​S​​])​]​

	 =  − E[Y ] + ​(​ inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​  E[Y | ​v​0​​, ​θ​B​​] + ​ inf​ 

​c​0​​, ​θ​S​​
​ 

​
 ​  E[Y | ​c​0​​, ​θ​S​​])​  ≥  0 .​

In particular, this implies that

  ​​   inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​ ​ U​ 0​ 

​​μ ̅ ​​​ ∗​​(​v​0​​, ​θ​B​​) + ​ inf​ 
​c​0​​, ​θ​S​​

​ 
​
 ​ ​ Π​ 0​ 

​​μ ̅ ​​​ ∗​​(​c​0​​, ​θ​S​​) 

        = ​  inf​ 
​v​0​​, ​θ​B​​

​ 
​
 ​ ​ U​ 0​ 

​μ​​ ∗​​(​v​0​​, ​θ​B​​) + a + ​ inf​ 
​c​0​​, ​θ​S​​

​ 
​
 ​ ​ Π​ 0​ 

​μ​​ ∗​​(​c​0​​, ​θ​S​​) + b  =  a + b  ≥  0 .​

Thus, ​​​μ ̅ ​​​ ∗​​ can be made to satisfy IR​​​​0​​​ by adding a type-independent transfer between 
the agents in period 0. We conclude that ​(i)  ⇒  (iii)​.

Proof of Proposition 2:
Suppose ​(V, C)​ and ​(​V ′ ​, ​C ′ ​ )​ satisfy the assumptions, and let ​Y​ and ​​Y ′ ​​ denote the 

first-best gains from trade under ​(V, C)​ and ​(​V ′ ​, ​C ′ ​ )​ , respectively. By conditions (i) 
and (ii) of Definition 7, ​E[Y ]  =  E[​Y ′ ​  ]​. By inspection of (1) it thus suffices to show 
that

	​​ inf​ ​v​0​​
​ 

​
 ​  E[​Y ′ ​ | ​v​0​​]  ≥ ​ inf​ ​v​0​​

​ 
​
 ​  E[Y | ​v​0​​],  and ​ inf​ ​c​0​​

​ 
​
 ​  E[​Y ′ ​ | ​c​0​​]  ≥ ​ inf​ ​c​0​​

​ 
​
 ​  E[Y | ​c​0​​] .​



Vol. 7 No. 4� 287Skrzypacz and Toikka: Mechanisms for Repeated Trade

Consider the first inequality. The distributions of ​​V​0​​​ and ​​V​ 0​ ′ ​​ agree by Definition 7 so 
that by compactness there exists ​w :=  min  ​​0​​  =  min  ​​ 0​ ′ ​​. Note that the degenerate 
distribution at ​w​ , denoted ​​μ​w​​​ , is (first-order stochastically) dominated by every other 
distribution on ​​​0​​​. As the ​t​-step distributions of a stochastically monotone chain pre-
serve dominance (see, e.g., Daley 1968), ​​F​​ (t)​( · | w)​ and ​​F ′ ​​ ​​ (t)​( · | w)​ are dominated 
by ​​F​​ (t)​( · | ​v​0​​)​ and ​​F ′ ​​ ​​ (t)​( · | ​v​0​​)​ , respectively, for all ​t​ and all ​​v​0​​​. Because the period-​t​ 
gains from trade, ​​(​v​t​​ − ​c​t​​)​​ +​​ , increase in ​​v​t​​​ , this implies that the infima are achieved 
at ​​v​0​​  =  w​. Furthermore, it suffices to show that for all ​t​ , ​​F ′ ​​ ​​ (t)​( · | w)​ dominates 
​​F​​ (t)​( · | w)​. To this end, note that by condition (iii) of Definition 7,

	​ ​|​F​​ (t)​(v | w) − Φ(v)|​  ≥ ​ |​F ′ ​​ ​​ (t)​(v | w) − Φ(v)|​     for all v  ∈  ,​

where ​Φ​ is the common invariant distribution. Since ​Φ​ dominates ​​μ​w​​​ , and the chains 
are stochastically monotone, ​Φ​ dominates ​​F​​ (t)​( · | w)​ and ​​F ′ ​​ ​​ (t)​( · | w)​.30 Thus, we 
may dispense with the absolute value operator to get

	​ ​F​​ (t)​(v | w)  ≥ ​ F ′ ​​ ​​ (t)​(v | w)    for all v  ∈  ,​

which is equivalent to saying that ​​F ′ ​​ ​​ (t)​( · | w)​ dominates ​​F​​ (t)​( · | w)​. The second 
inequality involving the infima with respect to ​​c​0​​​ is established analogously.

Proof of Proposition 4:
Fix ​{r, Δ, ​(​α​i​​, ​σ​i​​, ​m​i​​)​i∈{B, S}​​}​. By Proposition 1 and Remark 2, it suffices to show 

that ​​inf​ ​v​0​​​ ​ ​  E[Y | ​v​0​​]  = ​ inf​ ​c​0​​​ ​ ​  E[Y | ​c​0​​]  =  0​. By symmetry, it is enough to con-
sider ​​inf​ ​v​0​​​ ​ ​  E[Y | ​v​0​​]​. Let ​​v​0​​  ≤ ​ m​B​​​ , and note that for all ​t​ , conditional on ​​V​0​​  = ​ v​0​​​ ,  
​​V​t​​ − ​C​t​​​ is Normally distributed with mean ​​γ​ B​ t ​(​v​0​​ − ​m​B​​) + ​m​B​​ − ​m​S​​​ and variance ​

(1 − ​γ​ B​ 2t​)​ ​σ​ B​ 2 ​ ___ 2​α​B​​
 ​ + ​ ​σ​ S​ 2​ ___ 2​α​S​​

 ​​. Thus,

	​ E[​​(​V​t​​ − ​C​t​​)​​​ +​ | ​v​0​​]  ≤  E[​Z​ t​ +​],​

where ​​Z​t​​​ is distributed ​N(​γ​ B​ t ​(​v​0​​ − ​m​B​​) + m, ​σ​​ 2​)​ , where ​m := ​ m​B​​ − ​m​S​​​ and ​​
σ​​ 2​  := ​  ​σ​ B​ 2 ​ ___ 2​α​B​​

 ​ + ​ ​σ​ S​ 2​ ___ 2​α​S​​
 ​​. Letting ​ϕ​ and ​Φ​ denote the pdf and the cumulative distribution 

function for ​N(0, 1)​ , we have by standard formulae,

​​ 
E[​Z​ t​ +​]  ___________________   

1 − Φ​(​ − ​γ​ B​ t ​(​v​0​​ − ​m​B​​) − m  ___________ σ ​ )​
 ​  =  E[​Z​t​​ | ​Z​t​​  ≥  0] 

	 = ​ γ​ B​ t ​(​v​0​​ − ​m​B​​) + m + ​ 
ϕ​(​ − ​γ​ B​ t ​(​v​0​​ − ​m​B​​) − m  ___________ σ ​ )​

   ___________________   
1 − Φ​(​ − ​γ​ B​ t ​(​v​0​​ − ​m​B​​) − m  ___________ σ ​ )​

 ​ σ,​

30 To see this, note that the ​t​-step distribution starting from the invariant distribution ​Φ​ is ​Φ​ itself. 
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and hence,

​E[Y | ​v​0​​]  ≤  (1 − δ)​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​​[​(1 − Φ​(​ − ​γ​ B​ t ​(​v​0​​ − ​m​B​​) − m  _____________ σ ​ )​)​(​γ​ B​ t ​(​v​0​​ − ​m​B​​) + m)​

​	 + ϕ​(​ − ​γ​ B​ t ​(​v​0​​ − ​m​B​​) − m  _____________ σ ​ )​σ .]​​

As ​​v​0​​  ≤ ​ m​B​​​ , the summand is dominated by ​​δ​​ t​(​m​B​​ + m + σ)​ for all ​t​. Thus, 
taking the limit ​​v​0​​  →  −∞​ , we may pass the limit through the sum by the dom-
inated convergence theorem to find that the sum converges to zero. Therefore, 
​0  ≤ ​ inf​ ​v​0​​​ 

​  ​ E[Y | ​v​0​​]  ≤  0​.

Proof of Lemma 1: 
Suppose that ​μ​ is an IC, BB​​​​0​​​ , IR​​​​0​​​ mechanism. Since the environment is smooth 

and ​μ​ is IC, PSTs Theorem 1 implies that ​​U​0​​(​v​0​​)  := ​ U​ 0​ μ​(​v​0​​)​ is Lipschitz continuous 
in ​​v​0​​​ with derivative given by (omitting the known parameter ​θ​ in the notation)

(A4)	​​ U​ 0​ ′ ​(​v​0​​)  =  (1 − δ)​E​​ μ​​[ ​ ∑ 
t=0

​ 
∞

 ​​​​(δ ​γ​B​​)​​​ t​​X​t​​ | ​v​0​​]​     a.e. ​v​0​​ .​

By inspection, ​​U​0​​​ is nondecreasing. Thus, ​​lim​ v→−∞​ ​ ​​ U​0​​(v)​ is well-defined, and for 
all ​​v​0​​​ ,

	​ ​  lim​ 
v→−∞​ 

​
 ​ ​ U​0​​(v)  = ​ U​0​​(​v​0​​) − ​  lim​ 

v→−∞​ 
​
 ​ ​ ∫ 

v
​ 
​v​0​​
​​ ​U​ 0​ ′ ​(r) dr  = ​ U​0​​(​v​0​​) − ​∫ 

−∞
​ 

​v​0​​
 ​​ ​U​ 0​ ′ ​(r) dr,​

where the last equality follows by the monotone convergence theorem since ​​U​ 0​ ′ ​  ≥  0​.  
An analogous result obtains for the seller’s equilibrium payoff ​​Π​0​​​ , which is seen to 
be nonincreasing. Therefore, we have

(A5)  ​0  ≤ ​   lim​ 
v→−∞​ 

​
 ​ ​ U​0​​(v) + ​ lim​ 

c→∞​ 
​
 ​ ​ Π​0​​(c)

 	  = ​ E​​ μ​​[​U​0​​(​V​0​​) − ​∫ 
−∞

​ 
​V​0​​

 ​​​ U​ 0​ ′ ​(r) dr + ​Π​0​​(​C​0​​) − ​∫ ​C​0​​​ 
∞

​​ ​Π​ 0​ ′ ​(y) dy]​ 

 	  = ​ E​​ μ​​[​U​0​​(​V​0​​) − ​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​ ​ U​ 0​ ′ ​(​V​0​​) + ​Π​0​​(​C​0​​) − ​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​ ​Π​ 0​ ′ ​(​C​0​​)]​ 

 	  ≤  (1 − δ)​E​​ μ​​[ ​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​ ​X​t​​​(​V​t​​ − ​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​ ​ γ​ B​ t ​ − ​C​t​​ − ​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​ ​γ​ S​ t ​)​]​, ​

where the first line follows by IR​​​​0​​​ , the second by the fundamental theorem of calcu-
lus, the third by Fubini’s theorem, and the last by BB​​​​0​​​ , the law of iterated expecta-
tions, and the envelope formula (A4) (and its analog for the seller).
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Proof of Proposition 5:
The argument in the text gives the form of the allocation rule ​​x​​ ∗∗​​ and the exis-

tence of a PIC mechanism ​​μ​​ ∗∗​  =  (​x​​ ∗∗​, ​p​​ ∗∗​)​ that solves the second-best problem 
(4). By balancing the transfers as in Athey and Segal (2013, proposition 2), we may 
take ​​μ​​ ∗∗​​ to be BB. Since ​​μ​​ ∗∗​​ satisfies (3), IR​​​​0​​​ follows by reversing the steps in (A5) 
once we note that the inequality on the last line holds as equality due to BB. This 
establishes the first claim.

In the interest of space, we only sketch the proof of the second claim. Note 
that since ​​x​​ ∗∗​​ is ex post monotone in the sense of Corollary 1 of PST, there exist 
transfers ​p​ such that ​μ  =  (​x​​ ∗∗​, p)​ is EPIC (see PST, Remark 5). In periods ​t  >  0​ , 
given (not necessarily truthful) first-period reports ​​v​0​​​ and ​​c​0​​​ , the transfers ​​p​t​​​ can 
be simply taken to be the static Groves’ scheme from the proof of Proposition 1, 
adjusted to account for the wedge in (5). Hence, we have IR for periods ​t  >  0​. 
Suppose then that we add constant participation fees ​​π​B​​​ and ​​π​S​​​ in period 0 such that 
​​π​B​​ + ​π​S​​  = ​  1 − δ ____ 

1 − ​δ​​ T​
 ​ ​E​​ μ​​[​∑ t=0​ 

T  ​​​δ​​ t​​(​P​B, t​​ + ​P​S, t​​)​]​​. We then have a mechanism 

​​μ ′ ​  = (​x​​ ∗∗​, p​′ )​ that is EPIC, BB​​​​0​​​ , and IR for ​t  >  0​. So it remains to check IR in period ​0​.  
But since BB​​​​0​​​ holds as equality, this follows again by reversing the steps in (A5) 
because ​​x​​ ∗∗​​ satisfies (3).

Proof of Proposition 6:
We start by establishing the first claim. To this end, fix ​Δ  >  0​ , and note that then ​

r  →  0​ if and only if ​δ  →  1​ , so we may work with the latter.
For ​b  ∈ ​ R​+​​​ , define the allocation rule ​​x​​ b​​ by

	​ ​x​ t​ b​  =  1 if and only if ​v​t​​  ≥ ​ c​t​​, ​v​0​​  ≥  −b, and ​c​0​​  ≤  b.​

Let ​y(δ, b)​ denote the expected gains from trade under ​​x​​ b​​. Then

	​ y(δ, b)  =  (1 − ​F​0​​(−b))​G​0​​(b)E[Y | − ​v​0​​, ​c​0​​  ≤  b] .​

Note that ​​lim​ δ→1​ ​ ​ E[Y | − ​v​0​​, ​c​0​​  ≤  b]  = ​ y​​ ∗​​.
Now fix ​ε  ∈  (0, ​y​​ ∗​)​. For any ​b​ , let ​​δ​b​​  <  1​ be such that ​E[Y | − ​v​0​​, ​c​0​​  ≤  b]  

> ​ y​​ ∗​ − ​ ε _ 2 ​​ for all ​δ  > ​ δ​b​​​. Pick ​​ b ̅ ​​ large enough such that for all ​b  > ​  b ̅ ​​ , we have

	​ (1 − ​F​0​​( − b))​G​0​​(b)  > ​  ​y​​ 
∗​ − ε _____ 

​y​​ ∗​ − ​ ε _ 2 ​
 ​ .​

Then for all ​b  > ​  b ̅ ​​ and ​δ  > ​ δ​b​​​ ,

	​ y(δ, b)  >  (1 − ​F​0​​( − b))​G​0​​(b)​(​y​​ ∗​ − ​ ε __ 
2
 ​)​  > ​ y​​ ∗​ − ε .​

To finish the proof, we show that for ​b​ and ​δ​ large enough, ​​x​​ b​​ satisfies (3). Define 
the “expected information rents” under ​​x​​ b​​ as

​r(δ, b)  :=  (1 − δ)​E​​ ​x​​ b​​​[​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​​X​t​​​(​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​ ​ γ​ B​ t ​ + ​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​ ​γ​ S​ t ​)​]​ .​
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We have

​r(δ, b) ≤ (1 − δ)​E​​ ​x​​ b​​​[​​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​ ​X​t​​​(​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​ ​ γ​ B​ t ​ + ​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​ ​γ​ S​ t ​)​|​ ​V​0​​ ≥ −b, ​C​0​​ ≤ b]​

	 ≤ ​  1 − δ _____ 
1 − δ​γ​S​​

 ​ E​[​​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​ |​ ​V​0​​  ≥  −b]​ + ​ 1 − δ _____ 

1 − δ​γ​S​​
 ​ E​[​​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​|​ ​C​0​​  ≤  b]​,​

where for all ​b​ , the conditional expectations on the second line are finite. Thus, for 
any ​b​ , there exists ​​δ​ b​ ′ ​  <  1​ such that ​r(δ, b)  < ​ y​​ ∗​ − ε​ for all ​δ  > ​ δ​ b​ ′ ​​. Therefore, 
if we let ​​​ δ ̅ ​​b​​  =   max {​δ​b​​, ​δ​ b​ ′ ​}​ , then for all ​b  > ​  b ̅ ​​ and ​δ  > ​​  δ ̅ ​​b​​​ , we have the desired 
gains from trade as

	​ y(δ, b)  > ​ y​​ ∗​ − ε,​

and, condition (3) is satisfied as

	​ y(δ, b) − r(δ, b)  > ​ y​​ ∗​ − ε − (​y​​ ∗​ − ε)  =  0 .​

Hence, ​​y​​ ∗∗​​(​ −log δ _____ Δ ​ , Δ)​  ≥  y(δ, b)  > ​ y​​ ∗​ − ε​ for ​δ​ large enough, or equivalently, 
for ​r​ small enough. Since ​ε  >  0​ was arbitrary, this establishes the first part of 
Proposition 6.

For the second part, fix ​r  >  0​ , and let ​​y​​ ∗∗​(Δ)  := ​ y​​ ∗∗​(r, Δ)​. To simplify 
notation, we present the proof for the symmetric case where ​​m​B​​  = ​ m​S​​  =  0​ , 
​​α​B​​  = ​ α​S​​  =: α​ , and ​​σ​B​​  = ​ σ​S​​  =:  σ​. The general case follows by an analogous 
argument.

Given allocation rule ​x​ , denote the expected gains from trade by

	​ y(x, Δ) :=  (1 − ​e​​ −rΔ​)​E​​ x​​[​ ∑ 
t=0

​ 
∞

 ​​ ​e​​ −rΔt​ ​X​t​​(​V​t​​ − ​C​t​​)]​,​

and denote the expected information rents by

	​ r(x, Δ) :=  (1 − ​e​​ −rΔ​)​E​​ x​​[​ ∑ 
t=0

​ 
∞

 ​​ ​e​​ −(r+α)Δt​ ​X​t​​​(​ 1 − ​F​0​​(​V​0​​) ________ ​f​0​​(​V​0​​)
 ​  + ​ ​G​0​​(​C​0​​) ______ ​g​0​​(​C​0​​)

 ​)​]​ .​

Then for any ​Δ  >  0​ , the second-best problem (4) becomes

	​ ​y​​ ∗∗​(Δ)  = ​ max​ 
​
​​ ​​ {y(x, Δ)| y(x, Δ) − r(x, Δ)  ≥  0}​ .​

Observe that ​y( · ,  · )​ and ​r( · ,  · )​ are continuous on ​{x : ​x​t​​  ≤ ​ x​ t​ ∗​​ ​∀ t} × (0,  ∞)​. 
(Note that the restriction ​​x​t​​  ≤ ​ x​ t​ ∗​​ all ​t​ is not binding as by inspection of (5), 
​​x​ t​ ∗∗​  ≤ ​ x​ t​ ∗​​ all ​t​ , but it guarantees that ​y(x, Δ) − r(x, Δ)​ is finite and allows for a 
straightforward continuity proof by the dominated convergence theorem.) Thus, 
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​​y​​ ∗∗​(Δ)​ is a continuous function of ​Δ​ by the theorem of the maximum, and 
​​lim​ Δ→0​ ​ ​ ​ y​​ ∗∗​(Δ)  ≤ ​ y​​ ∗​​ exists. Furthermore, by Proposition 5, we have ​​y​​ ∗∗​(Δ)  
=  y(​x​​ ∗∗​(Δ), Δ)  =  r(​x​​ ∗∗​(Δ), Δ)​ for all ​Δ  >  0​ , and, hence, ​​lim​ Δ→0​ ​ ​  r(​x​​ ∗∗​(Δ), Δ) 
= ​ lim​ Δ→0​ ​ ​ ​ y​​ ∗∗​(Δ)​.

Suppose toward contradiction that ​​lim​ Δ→0​ ​ ​ ​ y​​ ∗∗​(Δ)  = ​ y​​ ∗​​. By inspection of (5) 
this requires that ​lim  ​inf​ Δ→0​ ​ ​  λ(Δ)  =  0​ , where ​λ(Δ)​ is the Lagrange multiplier on 
the constraint (3).

For ​q  ≥  0​ , define the allocation rule ​​x​​ q​​ by setting ​​x​ t​ q​  =  1​ if and only if

	​ ​v​t​​ − ​c​t​​  ≥ ​   q ____ 
1 + q ​​(​ 1 − ​F​0​​(​v​0​​) ________ ​f​0​​(​v​0​​)

 ​  + ​ ​G​0​​(​c​0​​) ______ ​g​0​​(​c​0​​)
 ​)​ .​

Observe that ​​x​​ 0​  = ​ x​​ ∗​​.

Claim A1: For all ​Δ  >  0​ , all ​q′  >  q​ , ​r(​x​​ ​q ′ ​​, Δ)  ≤  r(​x​​ q​, Δ)​ and ​r(​x​​ λ(Δ)​, Δ)  
≤  r(​x​​ ∗∗​(Δ), Δ)​.

Let ​Δ  >  0​. The first inequality follows by noting that ​q′  >  q​ implies ​​x​ t​ q​  ≤ ​ x​ t​ ​q ′ ​​​ 
for all ​t​ , and the second by noting that ​​x​ t​ λ(Δ)​  ≤ ​ x​ t​ ∗∗​​ for all ​t​. This establishes the 
claim.

Recalling that ​​lim​ Δ→0​ ​ ​  r(​x​​ ∗∗​(Δ), Δ)  = ​ lim​ Δ→0​ ​ ​ ​ y​​ ∗∗​(Δ)​ , we now obtain the 
desired contradiction from the following claim:

Claim A2: If ​lim  ​inf​ Δ→0​ ​ ​ λ(Δ)  =  0​ , then ​​lim​ Δ→0​ ​ ​  r(​x​​ ∗∗​(Δ), Δ)  ≥  2​y​​ ∗​​.

To establish Claim A2, note that if ​lim  ​inf​ Δ→0​ ​ ​  λ(Δ)  =  0​ , then there exists a 
monotone sequence ​(​Δ​n​​)​ with ​​Δ​n​​  →  0​ such that ​​λ​n​​ :=  λ(​Δ​n​​)​ defines a monotone 
sequence ​(​λ​n​​)​ with ​​λ​n​​  →  0​. By Claim A1, for all ​n​ and ​k​ , with ​n  >  k​ , we have

	​ r(​x​​ ∗∗​(​Δ​n​​), ​Δ​n​​)  ≥  r(​x​​ ​λ​n​​​, ​Δ​n​​)  ≥  r(​x​​ ​λ​k​​​, ​Δ​n​​) .​

Thus, for all ​k​ ,

	​ ​ lim​ 
n→∞​ 

​
 ​  r(​x​​ ∗∗​(​Δ​n​​), ​Δ​n​​)  ≥ ​  lim​ 

n→∞​ 
​
 ​  r(​x​​ ​λ​k​​​, ​Δ​n​​) .​

Note that

​​ lim​ 
n→∞​ 

​
 ​  r(​x​​ ​λ​k​​​, ​Δ​n​​)

= ​ lim​ 
Δ→0

​ 
​
 ​ (1 − ​e​​ −rΔ​)​ ∑ 

t=0
​ 

∞
 ​​​e​​ −​(r+α)​ Δt​E​

[
Φ​

(
​ 
​e​​ −αΔt​(​V​0​​ − ​C​0​​) − ​  ​λ​k​​ ____ 

1 + ​λ​k​​
 ​H(​V​0​​, ​C​0​​)
   _______________________  

​√ 
_________

  (1 − ​e​​ −2αΔt​)​ ​σ​​ 2​ __ α ​ ​
 ​

)
​ H(​V​0​​, ​C​0​​)]

​

= r​∫ 
0
​ 
∞

​​​e​​ −(r+α)t​E​
[
Φ​

(
​ 
​e​​ −αt​(​V​0​​ − ​C​0​​) − ​  ​λ​k​​ ____ 

1 + ​λ​k​​
 ​H(​V​0​​, ​C​0​​)
   _____________________  

​√ 
________

  (1 − ​e​​ −2αt​)​ ​σ​​ 2​ __ α ​ ​
 ​

)
​ H(​V​0​​, ​C​0​​)]

​ dt  = : r(​x​​ ​λ​k​​​, 0),​
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where ​Φ​ denotes the cumulative distribution function of ​N(0, 1)​ and ​H(​V​0​​, ​C​0​​)    
:= ​  1 − ​F​0​​(​V​0​​) _______ ​f​0​​(​V​0​​)

 ​  + ​ ​G​0​​(​C​0​​) _____ ​g​0​​(​C​0​​)
 ​​ , and where the third line follows by Karamata’s (1930) gen-

eralization of a theorem of Hardy and Littlewood. By the monotone convergence 
theorem, we have,

  ​​   lim​ 
k→∞

​ 
​
 ​  r(​x​​ ​λ​k​​​, 0)  =  r​∫ 

0
​ 
∞

​​  ​e​​ −(r+α)t​E​
[
Φ​

(
​ ​e​​ 

−αt​(​V​0​​ − ​C​0​​)  __________  
​√ 

________
  (1 − ​e​​ −2αt​)​ ​σ​​ 2​ __ α ​ ​
 ​
)

​ H(​V​0​​, ​C​0​​)
]
​ dt

	 = ​  lim​ 
Δ→0

​ 
​
 ​  r(​x​​ ∗​, Δ)  =  2​y​​ ∗​,​

where the second equality obtains by another application of Karamata’s theo-
rem, and the last equality follows since by Proposition 4, ​r(​x​​ ∗​, Δ)  =  2​y​​ ∗​​ for all 
​Δ  >  0​. Collecting from above, we have ​​lim​ n→∞​ ​ ​  r(​x​​ ∗∗​(​Δ​n​​), ​Δ​n​​)  ≥ 
​lim​ k→∞​ ​ ​ ​ lim​ n→∞​ ​ ​ r(​x​​ ​λ​k​​​, ​Δ​n​​)  =  2​y​​ ∗​​.

Proof of Proposition 7:
The form of the allocation rule ​​x​​ ∗∗∗​​ is established by an argument analogous to 

that given in the text after Proposition 5. The existence of a public EPIC mechanism ​​
μ​​ ∗∗∗​  =  (​x​​ ∗∗∗​, p)​ then follows by Proposition S2 of PST. For statement 1 we may 
use the balancing argument of Athey and Segal (2013, proposition 2) to get a pub-
lic PIC and BB mechanism, which is shown to be IR​​​​0​​​ verbatim as in the proof of 
Proposition 5. Statement 2 can then be proven starting from the EPIC mechanism ​​
μ​​ ∗∗∗​  =  (​x​​ ∗∗∗​, p)​ exactly the same way as the corresponding claim in Proposition 5.
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