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Active Learning for Electrodermal Activity Classification

Victoria Xia', Natasha Jaques', Sara Taylor', Szymon Fedor!, and Rosalind Picard’

Abstract—To filter noise or detect features within physio-
logical signals, it is often effective to encode expert knowledge
into a model such as a machine learning classifier. However,
training such a model can require much effort on the part of
the researcher; this often takes the form of manually labeling
portions of signal needed to represent the concept being trained.
Active learning is a technique for reducing human effort by
developing a classifier that can intelligently select the most
relevant data samples and ask for labels for only those samples,
in an iterative process. In this paper we demonstrate that
active learning can reduce the labeling effort required of
researchers by as much as 84% for our application, while
offering equivalent or even slightly improved machine learning
performance.

I. INTRODUCTION

In order to extract meaningful information from physio-
logical signals, researchers are often forced to painstakingly
review large quantities of signal data in order to determine
which portions contain poor quality signal or noise, and
which contain useful information. In the case of large-
scale studies which gather hundreds of thousands of hours
of noisy, ambulatory data (e.g., [22]), this is extremely
impractical. For this reason, recent research efforts have
focused on training automated algorithms to recognize noise
in physiological signals, including electrocardiogram (ECG)
(e.g., [16], [17], [27]), electrodermal activity (EDA) (e.g.,
[28]), and electroencephalography (EEG) (e.g., [30]). While
these automated techniques have proven successful, training
them still requires a large amount of effort on the part of
human researchers.
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Fig. 1. Raw EDA signal containing normal skin conductance responses

(SCRs) that occur in response to temperature, exertion, stress, or emotion.

This research focuses on more efficiently training auto-
matic algorithms to extract meaningful information from
electrodermal activity (EDA) data. EDA refers to electrical
activity on the surface of the skin, which increases in
response to exertion, temperature, stress, or strong emotion
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[2]. For this reason, EDA has been frequently used to study
emotion and stress (e.g., [12], [13], [23]). Improvements in
the devices used to monitor EDA have allowed for 24-hour-
a-day, ambulatory monitoring, enabling important research
into how the body responds physiologically to stress and
emotional stimuli during daily life [22]. However, this type
of in-situ monitoring comes at a price; ambulatory EDA is
often too voluminous to be inspected by hand, and noisy,
containing artifacts generated from fluctuations in contact or
pressure between the sensor and the skin. In order to extract
meaningful information from this data, it is important to au-
tomatically distinguish between skin conductance responses
(SCRs) (which may indicate increased stress or emotion),
and noise (see Figures 1 and 2).
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Fig. 2. This figure shows a typical artifact, where the left side of the figure
is the raw signal, and the right side is the signal after applying a low-pass
Butterworth filter (order= 6, fo = 1 Hz). Simple filtering and smoothing
is insufficient to remove artifacts.

Typical methods for removing noise from EDA signal
involve exponential smoothing (e.g., [9]) or low-pass filtering
(e.g., [10], [13], [20], [23]); these techniques are unable
to deal with large-scale artifacts such as those shown in
Figure 2, and may result in these artifacts being mistaken for
SCRs. Similarly, commonly employed heuristic techniques
for detecting SCRs (e.g., [1], [26], [24]) are also error
prone. A more effective approach is to encode the knowledge
of human experts into a mathematical model or machine
learning algorithm (e.g., [5], [18], [28]). This approach was
successfully used to train a machine learning classifier that
could identify artifacts in an EDA signal with over 95%
accuracy [28]. However, encoding this knowledge required
significant effort; two experts had to label over 1500 five-
second epochs of EDA data to achieve this recognition rate
[28]. Further, this type of encoding can lead to a highly
specific model that cannot generalize to other applications.



Active learning is a promising technique for encoding ex-
pert knowledge in a machine learning classifier with minimal
human effort. Rather than require an expert researcher to
label a dataset of thousands of examples, an active learning
classifier can intelligently select which samples would be
most informative to the classification problem, and only
request labels for those. This paper will explore how to
employ active learning in two different problems within the
domain of EDA signal processing: artifact detection and
detection of SCRs. Both problems showed promising results.

II. BACKGROUND

The following sections will introduce concepts and previ-
ous work related to the machine learning and active learning
algorithms we use in this research.

A. Support Vector Machines

Support Vector Machines (SVMs) are a machine learning
classification algorithm that have been found to be highly
effective with active learning [14] [25] [29]. SVMs work by
finding a decision boundary that separates one class from
another (e.g., SCR vs. non-SCR). For a separable dataset,
there are many possible decision boundaries that could divide
the data into the two classes. SVMs choose the boundary
that maximizes the size of the margin, the space between
the decision boundary hyperplane and the points closest! to
it (see Figure 3 for an illustration of this concept) [8].

B. Active Learning

The purpose of active learning is to intelligently select
data samples that can be used to train an effective machine
learning classifier, so not all samples have to be labeled
by human experts. In pool-based active learning, the active
learner selects batches of data samples, or query sets, for
which to request labels, from a provided collection of unla-
beled samples.

A reasonable way to obtain the initial batch is to cluster
the data, and include the samples closest to the centroid of
each cluster in the first query set [11]. This approach allows
the classifier to begin developing a representative decision
boundary; increasing the number of clusters improves the
initial decision boundary, but requires the human expert to
provide more labels. Various strategies can then be used
to select successive query sets. We will introduce several
below based on active learning with SVMs. After each query
set, the SVM is re-trained, and the new decision boundary
produced is used to help evaluate which data samples should
be included in the next query set.

The following are various SVM-based query strategies:

1) Simple Margin: This strategy is one of many uncer-
tainty sampling algorithms. Uncertainty sampling techniques
choose to query samples the classifier is unsure how to label,
with the expectation that learning how to label these samples
will improve the classifier the most [15]. In the case of
SVMs, one heuristic for how uncertain the classifier is about

"Here “closest” is a measure of distance defined by the feature space and
kernel function.

Fig. 3. The SVM decision boundary is shown as the thick black line, and
the margin is the distance between the thin lines to either side. Large red
and blue points represent those samples that have been labeled (into one
of two possible classes), while small points are unlabeled samples. Though
the gray point may be an outlier, Simple Margin would choose to query it
first. In contrast, Mirroshandel et al.’s method queries the green points first.

each sample is the distance of the sample to the decision
boundary. Thus, Simple Margin queries the samples closest
to the decision boundary of the SVM [3].

2) Mirroshandel’s Algorithm (2011): As shown in Figure
3, a drawback of Simple Margin is that it may query outliers.
To prevent this, Mirroshandel et al. [19] proposed balancing
uncertainty with representativeness, by combining distance
to the decision boundary (uncertainty) with average distance
to the other samples (representativeness). These factors are
combined by placing a weight of o on uncertainty and 1 — «
on representativeness.

3) Xu’s Algorithm (2003): Naively querying the sam-
ples closest to the decision boundary (as Simple Margin
does) is problematic, both because these samples may not
be representative of the other samples (the motivation for
Mirroshandel’s algorithm), but also because these samples
may be redundant among themselves. To remedy both these
issues, Xu et al. [32] proposed running a clustering algorithm
on the samples near the decision boundary, and then querying
the centers of each cluster. Samples chosen using this method
will be close to the boundary, likely representative of the
surrounding samples, and different from each other. Xu’s
algorithm chooses to cluster on samples within the margin.

4) MaxMin Margin: Another uncertainty sampling tech-
nique, MaxMin Margin seeks to more intelligently shrink the
space of consistent decision boundaries (i.e., version space)
by maximizing the guaranteed change in version space size
with each query. To do so, MaxMin Margin follows the
algorithm below [29]:

1) For each unlabeled sample, ::

a) Treat ¢ as a positive example. Compute mj’, the
size of the resulting margin.

b) Treat 7 as a negative example. Compute m, , the
size of the resulting margin.

¢) Find the minimum of m;." and m, . Call it m;.

2) Query the samples that have the greatest m; values.
3) Repeat 1) and 2) until some stopping criterion is
reached.



C. Automatic Stopping Criterion

Because the goal of active learning is to allow experts
to label only a fraction of the data required for supervised
learning, an important question is how to decide when
enough samples have been queried. One option would be to
allow human experts to periodically evaluate the performance
of the classifier and stop when satisfied, but this is unreliable
and time-consuming. Ideally, the active learner itself would
be able to suggest a stopping point. Schohn and Cohn
[25] proposed a simple stopping criterion that has been
empirically proven to be highly effective: continue querying
until all samples within the margin of the SVM have been
labeled.

III. DATA COLLECTION
A. Dataset 1

Building on previous work [28], we began by applying
active learning to the problem of artifact detection in EDA.
We use the same dataset that was analyzed in the the original
work [28], which was obtained from a study in which par-
ticipants wore Affectiva Q EDA sensors while experiencing
physical, cognitive and emotional stressors [6]. The collected
data were split into non-overlapping five-second epochs;
1560 epochs were selected for expert labeling. Two experts
labeled each epoch as either containing an artifact or not
based on an agreed-upon set of criteria, using the procedure
described in Section IV-A.

B. Dataset 11

In order to provide a more robust test of the effectiveness
of active learning, we obtained novel data collected in a
different setting, for a different application, using a different
sensor—the Empatica E4. The study collected data from
participants while they were sleeping at home. A total of
3001 non-overlapping epochs were labeled by two experts
using the procedure described in Section IV-A, but this time
epochs were labeled for skin conductance responses (SCRs)
rather than for artifacts. The experts agreed beforehand to
label SCRs based on Boucsein’s characterization of a typical
SCR [2]. Automatically detecting SCRs during sleep could
potentially be very useful, especially in studying EDA “sleep
storms”, bursts of activity in which many SCRs occur during
slow-wave sleep [21].

IV. METHODS
A. Expert Labeling

Our experts labeled each epoch as belonging to one of
two classes (artifact or non-artifact for Dataset I, SCR or
non-SCR for Dataset II) using an online tool we built, EDA
Explorer (eda-explorer.media.mit.edu). The site
automatically splits raw EDA data into five-second epochs,
generates and displays plots for epochs one at a time, and
records input labels associated with each plot. For each
epoch, the experts were shown a plot of both the raw
and low-pass-filtered five-second EDA signal, a context plot
showing the surrounding five seconds of signal on either side

(if applicable), and also plots of the relevant accelerometer
and temperature signals (collected by the sensor). Using
these plots, each expert chose to assign one of two possible
labels to the epoch, or skip it (if they did not wish to assign
a label).

Note that although the experts were shown accelerometer
and temperature plots to aid in their decision-making, this
information was not provided to any of our classifiers, as
in the original work [28]. By withholding this information
from our classifiers, we allow them to generalize to EDA
signal collected by any EDA sensor, regardless of whether
accelerometer and temperature data were also collected.

B. Partitioning Data

For each dataset, epochs which were skipped and those
for which the two experts did not agree on a label were
removed, following the original work [28]. This choice was
made because it is impossible to determine a ground truth
classification for epochs on which the experts disagree.
Further, we seek to establish the effectiveness of active
learning in comparison to previous work on automatic signal
classification, and using the same dataset as previous work
[28] allows us to do so. For Dataset II, the experts identified
four times as many epochs that did not contain an SCR
as epochs that did, so we randomly subsampled non-SCR
epochs to create a balanced dataset.

In total, Dataset I contained 1050 epochs, and Dataset II
contained 1162. The epochs for each dataset were randomly
split into training, validation, and test sets in a 60/20/20%
ratio. Feature selection was performed using the training
data, parameter selection was performed using the validation
data, and the testing data was held-out until the algorithms
were finalized, and used to provide an estimate of the
classifier’s generalization performance.

C. Feature Extraction

From each dataset, we extracted the same features as
in the original work [28]. These features included shape
features (e.g., amplitude, first and second derivatives) of
both the raw signal and the signal after a 1Hz low-pass
filter had been applied. We computed additional features by
applying a Discrete Haar Wavelet Transform to the signal.
Wavelet transforms are a time-frequency transformation; the
Haar wavelet transform computes the degree of relatedness
between subsequent samples in the original signal, and there-
fore can detect edges and sharp changes [31]. We obtained
wavelet coefficients at 4Hz, 2Hz, and 1Hz, and computed
statistics related to those coefficients for each five-second
epoch. At this stage we were unconcerned with redundancy
of features, as we later performed feature selection (see
Section IV-D). Finally, we standardized each feature to have
mean 0 and variance 1 over epochs in the training set.

D. Feature Selection

The features provided to the classification algorithm were
selected using wrapper feature selection (WFS) applied to



Dataset I, as in the original work [28]. WEFS tests clas-
sifier performance using different subsets of features, and
aims to select the subset of features which yields the best
performance [7]. Because this is computationally expensive,
we used a greedy search strategy to search through the
space of possible subsets. Because feature selection requires
knowledge of the true classification label, we did not re-
select new features for Dataset II. We reasoned this would
be a more robust test of active learning, in which the true
classification label of the data samples in the training set is
not known in advance, and allow us to assess how our active
learning pipeline will generalize to novel EDA data.

E. Active Learning

The previous work on detecting artifacts in an EDA signal
explored many different machine learning algorithms [28],
and found SVMs to be the most effective. For this reason,
and because SVMs make for excellent active learners, we
chose to focus on the SVM classifier for this work.

Our active learning methodology is as follows. The initial
query set provided to the active learner was determined
by running an approximate k-means algorithm to cluster
the unlabeled samples into num-clusters clusters, and
choosing the sample closest to the centroid of each cluster
to be part of the query set?. Subsequent query sets of size
batch-size samples were selected using one of four
different query strategies. After assessing the effectiveness
of a range of values, we selected num-clusters = 30
and batch-size =5.

The four query strategies we tested were discussed above
(in II-B): Simple Margin, Mirroshandel’s representativeness
algorithm, Xu’s clustering algorithm, and MaxMin Margin.
For our implementation of Mirroshandel’s algorithm, we
tested o values ranging from 0.40 to 0.75, based on values
reported in previous work [19]. For Xu’s algorithm, we
experimented with clustering on varying amounts of sam-
ples closest to the boundary (e.g., closest 5% of unlabeled
samples to the boundary, closest 30 unlabeled samples, etc.).
In order to assess whether our active learning methods
provide a benefit over a simple passive learner, we also
implemented a query strategy which simply chooses the
query set randomly. Note that this random sampler still
benefits from the initial query set provided by the clustering
algorithm. Any improvements upon the random sampler must
therefore be due to the benefit of active learning, rather than
clustering.

We also assessed the effectiveness of employing the stop-
ping criterion presented in Section II-C to the Simple Margin
query strategy. We did not test it with the other techniques;
the criterion does not apply well to them, since they are not
are not guaranteed to query samples within the margin first.

V. RESULTS
Because the approximate clustering algorithm used to se-
lect the initial query set contains randomness, query sets (and

’In the event that the same sample was chosen multiple times, the next
closest sample not yet in the query set was added to the query set instead.

consequently, classifier performance) vary across different
runs of the algorithm. Thus, all of our reported results are
averaged over 100 runs. We report our results in terms
of accuracy; that is, the proportion of correctly classified
examples in the validation or test set.

A. Dataset I - Artifacts

We began by searching the parameter space of each
active learning algorithm to find the values that gave the
best performance on the validation set. For Xu’s clustering
algorithm, we found clustering on the 30 samples closest to
the margin to be most effective. For the representativeness
algorithm, o = 0.65 was found to give the best performance,
which agrees with what was found previously [19].

Figure 4(a) shows the performance of each strategy in
classifying artifacts in Dataset I. We see that three of the
techniques outperform the Random baseline, indicating that
active learning on this problem is highly effective. Using
Simple Margin, for example, a higher validation accuracy is
obtained after only 100 samples have been labeled than is
ever obtained by passive learning. After this initially high
performance, the accuracy of Simple Margin drops steadily
to meet the level of the classifier trained on the entire
dataset. Others have observed this phenomenon as well (e.g.,
[4], [25]). We suspect the initially superior performance of
the active learning methods may be due to their ability to
successfully query relevant samples. As the rest of the data,
including irrelevant examples, are added to the classifier, the
classifiers may begin to overfit to the training data [4].

In comparing the performance of Simple Margin with that
of the Xu’s and Mirroshandel’s algorithm, we see that they
are roughly equivalent for the first 300 samples. After this
point, Mirroshandel’s and Xu’s algorithm appear to outper-
form Simple Margin. Because the goal of active learning is to
have the human researcher label as few examples as possible,
this later performance difference is of little interest. However,
we can see from Figure 4(a) that MaxMin Margin does not
offer a performance improvement over Random Sampling.
We suspect this is because our dataset may not be separable,
due to a combination of noise and having only selected
nine features, thus violating the separability assumption of
MaxMin Margin [29].

Figure 4(b) and Table I show the results obtained using
Schohn and Cohn’s automatic stopping criterion. On average,
the algorithm chose to stop after only 96.7 samples had
been queried, and ended with an average validation accuracy
greater than that achieved using the entire training set and
reported in the original work [28]. Because this stopping
criterion is so effective, we chose to apply Simple Margin
with this criterion to the testing data to obtain a final
estimate of the ability of our technique to generalize to
novel data. Figure 4(c) shows the accuracy obtained on
the held-out test dataset. As with the validation set, Simple
Margin with Schohn and Cohn’s automatic stopping criterion
ended, on average, with a test accuracy higher than that
achieved by training on the entire training set. This suggests
that with active learning, the same (or even slightly better)
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TABLE I
RESULTS OF SIMPLE MARGIN (WITH THE STOPPING CRITERION) ON
THE ARTIFACTS DATASET

TABLE II
RESULTS OF SIMPLE MARGIN (WITH THE STOPPING CRITERION) ON
THE PEAKS DATASET

Samples Queried Val. Acc.  Test Acc. Samples Queried Val. Acc.  Test Acc.
Active Learner 96.7 0.975 0.958 Active Learner 155.4 0.942 0.949
Passive Learner 612 0.970 0.952 Passive Learner 682 0.939 0.941

classification performance can be achieved with one-sixth
the number of labeled training epochs, allowing for a large
reduction in the amount of labor required of human experts.

B. Dataset II - Peaks

To demonstrate that active learning is also effective for
novel problems and novel sensor technologies, we apply the
same methodology to Dataset II in order to detect SCRs
within an EDA signal. In this case, we found clustering on
the 5% of peaks closest to the decision boundary to be most
effective with Xu’s algorithm, and once again found o =
0.65 to work best with Mirroshandel’s algorithm.

As shown in Figure 5(a), we observed similar relative
performance of the various query strategies for this second
dataset as for the first. Note that the performance advantage
offered by additional training data is smaller. We suspect
this is because the problem is easier; SCRs tend to have
a consistent shape whereas artifacts and noise can vary.
Schohn and Cohn’s automatic stopping criterion performed
well once again (see Figures 5(b) and Table II). On average,
the algorithm stopped after 155.4 samples (23% of the entire
training set), and still achieved slightly better performance
than training on the entire dataset. In Figure 5(c), we plot the
performance of the active learner on the held-out test dataset.
We can see once again that the generalization performance
of active learning is higher than that of passive learning,
yet requires only 23% of the effort on the part of human
researchers.

VI. CONCLUSION AND FUTURE WORK

We have shown that active learning is a promising tech-
nique for reducing the labeling effort required to train a
machine learning algorithm in signal classification. In our
case, the active learner can achieve equivalent or even
slightly superior performance using as little as 16% of the
data. We found Simple Margin to be an effective and reliable
strategy, which if deployed with Schohn and Cohn’s stopping
criteria can automatically determine when to stop querying
for more labels. The results from Dataset II are of particular
interest because they correspond to the performance we can
expect when employing our active learning techniques on a
novel EDA dataset.

Though our exploration focused on EDA signals, our
techniques could likely be extended to other types of signals,
such as ECG or photoplethysmogram (PPG). We are also
planning to incorporate our active learning algorithm into
the online tool we have built for processing EDA signals,
eda-explorer.media.mit.edu. Researchers will be
able to use our site to label data to train a classifier, while the
active learner intelligently selects which epochs need to be
labeled. Future work may also include extending the active
learning techniques for EDA signal classification discussed
here to multiclass classification. For example, we may be
interested in classifying epochs into one of three categories:
artifact, SCR, or neither.
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