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Splashing transients of 2D plasmons launched
by swift electrons
Xiao Lin,1,2 Ido Kaminer,2* Xihang Shi,3 Fei Gao,3 Zhaoju Yang,3 Zhen Gao,3 Hrvoje Buljan,4

John D. Joannopoulos,2 Marin Soljačić,2 Hongsheng Chen,1* Baile Zhang3,5*

Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investi-
gate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a
swift electron generates plasmons in space and time has never been answered. We address this issue by calculating
and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of
excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydro-
dynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to
the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh
jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields
of graphene plasmons in EELS need to be reevaluated.
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INTRODUCTION
Since the first successful confirmation of surface plasmons (1, 2) on the
platform of thin metal films, swift electrons have long been used to in-
vestigate plasmonic properties of ultrathin, or two-dimensional (2D),
electron systems, including graphene plasmons recently (3–10). Elec-
tron energy–loss spectroscopy (EELS) (1, 3, 11), which uses swift elec-
trons as a probe, has been an indispensable tool in studying 2D
plasmons. On the other hand, despite the long history of studies of
2D plasmons (1, 2), the dynamic mechanism of how a swift electron
launches 2D plasmons has never been clearly revealed.

This is because the impact of an electron will generate not only plas-
mons but also photons [the so called “transition radiation” (12, 13)],
whose emission cannot be achieved at a single space-time point but
demands a finite space-time region. Historically, the concepts of “for-
mation time” and “formation zone” [that is, “it takes a relatively long
time and, therefore, a long distance for an energetic electron to create
a photon,” as retailed by Uggerhøj (14)] were first presented by Ter-
Mikaelian in Landau’s seminar in 1952 (15). Landau strongly
opposed these concepts at first (15), but soon realized their correct-
ness and significance and further developed them in the Landau-
Pomeranchuk-Migdal effect, which was experimentally confirmed 40
years later. The existence of formation time and formation zone reflects
our ignorance about the exact moment and location at which a photon
is generated. In the early days of the quantum uncertainty principle,
Bohr already commented on the impossibility of describing the electron-
photon interaction “without considering a finite space-time region” (16).
Later, it was Ginzburg and colleagues (12, 13) who included the formation
time and formation zone with mathematical form into the classical
framework of transition radiation (established by Ginzburg and Frank in
1945) while still admitting that “comparatively little is known.”
Although the above space-time discussions in the context of photon
emission have lasted for decades, similar discussions have never been
conducted on the generation of plasmons in EELS experiments. This
explains why the spatiotemporal process of 2D plasmon launching by
a swift electron remains elusive after a long research history.

In this paper, we introduce the concepts of formation time and for-
mation zone into plasmon generation in EELS. On the platform of a
graphene monolayer, we show within the framework of classical
electrodynamics the dynamical process of 2D plasmon launching by
a swift electron affecting on the graphene monolayer (see movie S1
for this process). We link this dynamical process during the formation
time of graphene plasmons to the deep-water hydrodynamic splashing
phenomenon, in which a picosecond jet-like rise of excessive charge
concentration is formed on graphene as an analog of the “Rayleigh
jet” (also called “Worthington jet”) in hydrodynamic splashing
(17, 18). In this newly revealed physical process, a significant part
of electromagnetic energy has already been dissipated before graphene
plasmons are generated. In view of this consideration, we show that pre-
vious estimates of graphene plasmon yields (3–6) from the electron
energy–loss (EEL) spectra need to be reevaluated. Note that although
we adopt graphene as the platform, our analysis is general in any
2D electron system. In addition, although the formal similarity of dis-
persion between hydrodynamic water waves and 2D electron systems
(19–23) [including graphene plasmons (24, 25)] has been investigated
with some hydrodynamic wave–like phenomena predicted (26–29),
the analog to the splashing phenomenon has never been discussed.
RESULTS
Modeling of 2D plasmon launching by swift electrons
Themodel of calculation is schematically shown in Fig. 1.We consider a
swift electron with charge q, moving with a velocity �v ¼ ẑv ¼ ẑbc,
where c is the speed of light in free space. Because the energy loss
of the electron (coupled to plasmons and transition radiation) is
much lower than the electron’s kinetic energy, the electron’s velocity
is treated as constant (13). The space-time dependence of the current
density due to the electron is classically described as �Jqð�r; tÞ ¼
ẑ Jqz ð�r; tÞ ¼ ẑqvdð�r � �vtÞ , in which t = 0 when the electron goes
through the origin. A graphene layer is located at the interface between
medium 1 (z < 0) with permittivity e1re0 and medium 2 (z > 0) with
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permittivity e2re0, where e0 is the permittivity of free space. To simplify
the analysis, we set mediums 1 and 2 to be free space. As a typical 2D
electron system, graphene can be characterized by two macroscopic
variables (24): the deviation of the electron density from its average val-
uednð�r; tÞand the associated current densityd�Jð�r; tÞ, which depends on
graphene’s surface conductivity ss. Here, we calculate graphene’s sur-
face conductivity based on the Kubo formula (see section S2) (30, 31)
and set the relaxation time to t = 0.5 ps and the chemical potential in
graphene to mc = 0.4 eV [well within experimental capabilities (32, 33)].
Because of the rotational symmetry of the system, all fields must be
transverse magnetic and thus can be characterized by an electric field
component Ez in the ẑ direction. By decomposing all the quantities into
Fourier components in time and in the coordinates�r⊥ ¼ x̂x þ ŷy with
corresponding wavevectors k̂⊥ ¼ x̂kx þ ŷky , we have

Jqz ð�r; tÞ ¼ ∫jq�k⊥;wðzÞeið�k⊥⋅�r⊥�wtÞd�k⊥dw ð1Þ

Ezð�r; tÞ ¼ ∫E�k⊥;wðzÞeið�k⊥⋅�r⊥�wtÞd�k⊥dw ð2Þ

By writing the fields due to the electron field asEq
�k⊥ ;w and the radiation

fields in regions of z < 0 and z > 0 asE1
�k⊥;w and E2

�k⊥;w, we can get the total
fields in regions of z < 0 and z > 0 as Eq

�k⊥;w þ E1
�k⊥;w and Eq

�k⊥;w þ E2
�k⊥;w,

respectively. Derivation from matching boundary conditions at the
graphene plane shows phase relations of Eq

�k⊥ ;w ∼ expðiwz=vÞ and
E1;2
�k⊥;w ∼ expð∓iwz=c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2⊥c
2=w2

p Þ, where “∓” in the exponent cor-
responds to “1,2” in the superscript of E1;2

�k⊥;w and k2⊥ ¼ k2x þ k2y (see
section S2).

Formation zone and formation time
Ginzburg estimated the length of the formation zone (denoted as
“formation length” Lf) for photon emission in transition radiation
based on the following considerations (13). Inside the formation
zone, the total energy of the fields Eq

�k⊥;w þ E1;2
�k⊥ ;w is proportional to

ðEq
�k⊥;w þ E1;2

�k⊥;wÞ2. The length Lf describes a boundary at which the total
Lin et al. Sci. Adv. 2017;3 : e1601192 27 January 2017
energy becomes practically equal to the sum of the energy of the elec-
tron field [that is, ðEq

�k⊥;wÞ2] and the energy of the radiation field [that is,
ðE1;2

�k⊥;wÞ2] meaning that the electron field and the radiation field are sepa-
rated from each other. That is, the interference termEq

�k⊥;w⋅ E
1;2
�k⊥;wmust play

a trivial role. Ginzburg thus set the phase difference of 2p between Eq
�k⊥;w

and E1;2
�k⊥;w to determine the length Lf. That is,

wLf
v ± wLf

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2⊥c2

w2

q
¼ 2p,

which gives

Lf 1 ¼ 2p

j wv þ w
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2⊥c2

w2

q
j
; Lf 2 ¼ 2p

j wv � w
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2⊥c2

w2

q
j

ð3Þ

where Lf1 and Lf2 correspond to the length of the formation zones in
regions of z < 0 and z > 0, respectively (see Fig. 1). Apparently, the
formation length depends not only on the frequency of emitted
photons and the swift electron’s velocity but also on the emission
angle of photons. As a numerical example, with the electron’s velocity
v = 0.8c, to emit a photon at frequency 10 THz in the backward −ẑ
direction ðk2⊥ ¼ 0Þ, it takes the electron about Lf 1v ¼ 0:06 ps to accom-
plish it. For photon emission in the forward +ẑ direction ðk2⊥ ¼ 0Þ at
the same frequency, it takes about Lf 2v ¼ 0:5 ps. These time intervals of
0.06 and 0.5 ps are considered as formation times for the backward
and forward photon emission at 10 THz.

Ginzburg’s estimation only applies to photon emission with the
condition k2⊥ < w2=c2 to satisfy the square root in Eq. 3. Yet, it is
well known that surface plasmons have k2⊥ > w2=c2. Compared to
the electron-photon interaction as analyzed by Ginzburg, in the in-
teraction between the electron and surface plasmons, only the elec-
tron field has phase variation along the z axis, whereas the surface
plasmons have zero phase variation. Therefore, along the line of
Ginzburg’s thought, the phase difference of 2p between Eq

�k⊥ ;w and
E1;2
�k⊥;w should only come from Eq

�k⊥;w, that is,
wLf
v ¼ 2p. This gives

Lf 1 ¼ Lf 2 ¼ 2pv
w

ð4Þ

Numerically, it means that it will take the electron about (Lf1 + Lf2)/
v = 0.2 ps to launch a 2D plasmon at 10 THz. The value 0.2 ps is
considered as the formation time for the 2D plasmon at 10 THz.

Transients of photon emission
It is interesting to see what happens during the formation time of 2D
plasmons when the electron goes through the formation zone, as sche-
matically illustrated in Fig. 1. The dynamical process of photon emis-
sion and 2Dplasmon launching by a swift electronmovingwith v= 0.8c
(or kinetic energy 340 keV), which can be conveniently realized inmod-
ern electron microscope systems (1, 34), is shown in movie S1. (The
relatively large velocity considered in this simulation shows that our the-
oretical analysis is not limited to low electron speeds.) The bandwidth of
calculation is from0 to 20THz, as justified in fig. S3. Figure 2 shows the
temporal evolution of photon emission. When the incident electron
moves close to the graphene interface (Fig. 2A), its evanescent field
touches graphene, expelling the conduction electrons from the vicinity
of the swift electron’s trajectory. Because of electromagnetic induction,
the induced surface current in turn blocks the penetration of the eva-
nescent electron field by accumulating fields on the upper side of gra-
phene (Fig. 2, A and B). Immediately after the electron crosses the
Fig. 1. Schematic of 2D plasmons launching with a swift electron penetrating
through a graphene monolayer. Lf1 and Lf2 are the lengths of the formation
zone in the region above and below the graphene layer, respectively.
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graphene (Fig. 2, B and C), the fields previously accumulated on the
upper side have lost direct contact with the electron and thus are
“shaken off” into the upper space. Meanwhile, the insufficient fields
on the lower side of graphene need to recover their strength in the pres-
ence of the electron and thus “shake off” radiation into the lower space
(Fig. 2, C andD). It can be seen that, at the central frequency (10THz) of
the calculation bandwidth, the formation time of 0.06 ps for the back-
ward radiation is consistent with Fig. 2 (A and B) and that of 0.5 ps for
the forward radiation is consistent with Fig. 2 (C and D).

Transients of 2D plasmon launching
Of greater interest is the charge motion on graphene itself. We plot the
dynamics of the deviation of electron density from its average value
dnð�r; tÞ on graphene during the penetration of the swift electron in
Fig. 3. Similarities to the hydrodynamic splashing scenario caused by a
little droplet falling on a 2D liquid surface are evident, as described below.

First, in hydrodynamics (17, 18), when a small droplet affects a calm,
deep-water surface, a crater is formed first andwater splashes to the side.
Lin et al. Sci. Adv. 2017;3 : e1601192 27 January 2017
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As the water rushes back to fill the crater, a central jet column called the
Rayleigh jet due to its instability (17), or the Worthington jet because
Worthington performed extensive observations back in 1908 (17, 18),
will rise above the initial water surface along the collapse axis. When it
comes to charge motion on graphene, a “crater” of the density of con-
duction electron in graphene is first formed when the incident electron
approaches the graphene layer (Fig. 3, A to C). Immediately after the
penetration of the electron through the graphene layer, a rebound of
the density of conduction electrons is formed with a central jet-like rise
(Fig. 3,DandE), analogous to the hallmark ofRayleigh jet orWorthington
jet in hydrodynamics. We observe, as in Fig. 3E, that the jet-like rise
reaches its peak at about t = 0.15 ps. Other analogs of this hydro-
dynamic splashing jet have also beenwidely discussed, including those
occurring during the meteor impact (17, 18) and during the interac-
tion between the highly focused femtosecond laser pulses and a metal
film surface (35).

Second, after the central jet-like rise falls down, ripples of 2D plas-
mons propagate outward as concentric circles, as shown in Fig. 3, F to
H. The excited 2D plasmons, which cover a broad spectrum of frequen-
cies, gradually spread into a sequence of plasmonic ripples where longer-
wavelength plasmons stay at the outer periphery and shorter-wavelength
plasmons stay closer to the inner boundary (Fig. 3H). This is because the
dispersion of 2D plasmons (including graphene plasmons) is typically
wº

ffiffiffiffiffi
k⊥

p
(24, 25), which is formally analogous to the dispersion of

deep-water waves; this is reflected in the fact that longer wavelengths
go out faster (see section S4), although they are formed later (for their
longer formation times) than the shorter wavelengths.

Energy of generated photons and 2D plasmons
Weplot in Fig. 4A the time evolution of total radiated photon energy by
numerically monitoring the Poynting power going through an imagi-
nary spherewith a large radiusR centered at the origin and then shifting
the time axis backward by R/c, where the photon radiation is analogous
to the sound emitted from a hydrodynamic splash. The total radiated
photon energy eventually saturates and approaches a value of 0.171 ×
10−4 eV that we calculate analytically by letting t = ∞ (see the Supple-
mentary Materials). It can be seen that most photon energy has been
radiated out before t = 0.15 ps, which is the moment when the jet-like
rise of charge reaches its maximum (Fig. 3E) because most photon
energy is shaken off by the charge jet. We also plot the time evolution
of “energy” of the induced fields without considering the interference
Fig. 2. Time evolution of magnetic field Hf(�r ,t) when a swift electron
perpendicularlypenetrates throughagraphenemonolayer. Thegreendashed line
represents graphene. The electron is located (A) above graphene, (B) at graphene, and
(C) below graphene.
 2017
Fig. 3. Time evolutionof the deviation of the electron density from its average value on graphene plane dn(�r, t) when a swift electron penetrates through agraphene
monolayer. The electron is located (A and B) above graphene, (C) at graphene, and (D to H) below graphene.
3 of 6
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fields of the swift electron. Note that the 2D plasmons have not been

fully generated before their formation times, so this energy should be

treated as a parameter related to the field strength ðE1;2
�k⊥;wÞ2 of induced

charges but not as the real energy. It can be seen that even before most

photon energy is radiated out, the field strength of ðE1;2
�k⊥;wÞ2 has already

started to drop.
We calculate the real energy of generated graphene plasmons by

checking the electromagnetic energy for each frequency component im-
mediately after the time t = Lf2/v. For the calculation spectrum of 2D
plasmons from 0 to 20 THz, the corresponding formation time (Lf1 +
Lf2)/v varies from ∞ to 0.1 ps, whose duration is comparable to the
propagation time (~0.5 ps) for graphene plasmons (see section S4).
The energy loss during the formation time cannot be taken into account
by simply resorting to the propagation time or propagation length of 2D
plasmons that are widely used to characterize the propagation of gra-
phene plasmons because this energy loss happens before the generation
of 2D plasmons themselves.

Only in the ideal lossless situation can one equate the EEL spectrum
to the energy spectrumof generated 2Dplasmons (the energy of emitted
photons generally occupies only <5% of the energy loss of the swift elec-
tron, and considerably less for lower electron velocities, and thus is neg-
ligible). We plot in Fig. 4B the spectrum of 2D plasmons in the ideal
lossless situation by taking t = ∞, which exactly agrees with the EEL
spectrum calculation (see sections S5 and S6 and fig. S4). We also
plot in Fig. 4B the spectrum of 2D plasmons for the realistic lossy
graphene (the relaxation time is finite) after formation time is taken
into account by taking t = Lf2/v. The comparison between the lossless
and lossy cases shows that a significant portion of energy (more than
25% total energy from 0 to 20 THz) has already been dissipated
before 2D plasmons are generated. In addition, the losses in gra-
phene, including those caused by defects, can be theoretically char-
acterized by the relaxation time, where a smaller relaxation time
indicates a larger loss. If more defects exist in the graphene sample,
this will unavoidably degrade the relaxation time used in this work
(0.5 ps), resulting in a larger loss in graphene, and it is thus expected
that a larger portion of energy will be dissipated before 2D plasmons
are generated.
Lin et al. Sci. Adv. 2017;3 : e1601192 27 January 2017
DISCUSSION
Recent advances in electron microscopy now suggest a new way to
observe the temporal dynamics of the plasmons, including its ultrafast
and subwavelength features, by using photon-induced near-field elec-
tron microscopy (7, 36). This exciting possibility will allow one to vi-
sualize the plasmonic splashing-like effects, instead of inferring them
indirectly through EELS or transition radiation measurements.

Because graphene is just one typical example of many different 2D
electron gas systems (19–23, 37, 38) that support 2D plasmons, our
analysis could be applicable to any 2D electron system. Therefore, other
2D electron gas systems (19–23), and particularly other 2D materials
(37, 38), will likely further enrich the potential implementations of plas-
monic splashing-like transients. However, we argue that graphene is
particularly suitable for this purpose because of the flexible tunability
of the chemical potential and the recent advances in the fabrication
of graphene samples with large area, high quality, and the precise con-
trol of the layer number. In addition, it is reported that van der Waals
materials can support different kinds of polaritons (38), such as phonon
polaritons in a boron nitride slab (37, 38). We thus expect more polari-
tonic splashing-like transient to be revealed in van derWaals materials.

The above results demonstrate the transients of 2D plasmon gener-
ation in EELS experiment. An intermediate process between the impact
of the swift electron and the formation of 2D plasmons is revealed as a
result of the space-time limitation on plasmon generation. This process
is found to be analogous to the hydrodynamic splashing phenomenon.
Explicit calculation that takes into account the energy dissipation before
2D plasmons are generated has shown that previous estimates on the
yields of graphene plasmons in EELS under the assumption of negligible
loss need to be reevaluated.
MATERIALS AND METHODS
Our rigorous analytical calculations are based on an extension of
Ginzburg and Frank’s theory on transition radiation within the
framework of macroscopic electrodynamics. This can give us an an-
alytical expression of the radiated fields induced by swift electrons.
From this, we can further analytically derive the spectrum of emitted
photons; with the assumption of trivial losses in the calculated sys-
tem, we can also analytically derive the EEL spectrum. Because the
EEL spectrum is derived without the assumption of the electrostatic
approximation, our analytical formula of the EEL spectrum is appli-
cable to the cases with high electron kinetic energies. Furthermore,
by choosing the appropriate Sommerfeld branch cut and using the
Sommerfeld integration path, numerical calculation of the radiated
fields at different times can be carried out. Therefore, the emitted pho-
ton energy, the induced field energy, and the energy spectrum of in-
duced charges on lossy graphene at different times can be numerically
obtained by applying these numerically calculated radiated fields.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/1/e1601192/DC1
section S1. Figure caption of movie S1.
section S2. Photon emission from graphene affected by swift electrons.
section S3. Energy spectrum of induced charges on graphene.
section S4. Dispersion relation and propagation length/time of graphene plasmons.
section S5. Analytical EEL spectrum.
section S6. Comparison of EEL spectra between previous work and our result.
section S7. Total energy of emitted photons.
Fig. 4. Energy dissipation during the plasmonic formation time. (A) Time evolu-
tion of emitted photon energy and the induced field energy [related to the induced
field strength ðE1;2�k⊥ ;wÞ2]. (B) Energy spectra of graphene plasmons by taking t =∞ in the
lossless case and by taking t = Lf2/v in the lossy case.
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section S8. Numerical implementation with Sommerfeld integration.
fig. S1. Dispersion curve of TM graphene plasmons.
fig. S2. Propagation time of TM graphene plasmons as a function of frequency.
fig. S3. EEL spectrum when an electron normally incident on an ideal lossless graphene
layer.
fig. S4. EEL spectra for an electron normally incident on graphene.
movie S1. Time evolution of 2D plasmons launched by swift electrons.
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