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ABSTRACT 
Risers are fluid conduits from subsea equipment to surface 

floating production platforms. The integrity of a riser system 

plays a very important role in deepwater developments. Riser 

dynamic analysis is an important part to the system design. This 

paper investigates riser dynamic analysis using the WKB-Based 

dynamic stiffness method. 

 

This paper first presents a theoretical formulation of the 

dynamic stiffness method. It then combines the dynamic 

stiffness method with the WKB theory, which assumes that the 

coefficients in the differential equation of motion are slowly 

varying. The WKB-based dynamic stiffness method is derived 

and a frequency dependent shape function is expressed 

implicitly. The Wittrick and Williams (W-W) algorithm is 

further extended to solve eigen value problem for a general 

non-uniform marine riser. 

 

Examples of non-uniform riser are analyzed and the results 

show the efficiency of this method. In addition, a pipe-in-pipe 

riser system is analyzed for natural frequencies and mode 

shapes using the WKB-based dynamic stiffness method with the 

W-W algorithm. The characteristic of the mode shapes is 

described for such a riser system. 

 

INTRODUCTION 

A riser is a fluid conduit from subsea equipment to the surface 

floating production system such as a Spar or TLP. It is a key 

component in a deepwater drilling and production system. Its 

dynamic design and analysis is very important in the deepwater 

applications. 

Historically, Kolousek first presented the idea of Dynamic 

Stiffness Method (DSM) in the early 1940s [1], and gave an 

elaborate formulation of this method in 1950 [2]. Since then the 

DSM has been widely used in the vibration analysis of beam 

structures. Improvements on calculating natural frequencies 

have been made by the Williams and Wittrick (W-W) algorithm 

[3, 4]. 

The DSM has a great appeal for an exact dynamic analysis of a 

uniform beam structure, as it is based on the exact dynamic 

stiffness matrix derived from the free vibration analysis. The 

DSM performs free and forced vibration analysis within the 

differential equation theory of beams, thus avoiding assumed 

modes and lumped masses. This method enables one to analyze 

an infinite number of natural frequencies and modes accurately 

by means of fewer degrees of freedom, compared with a 

traditional finite element method by using a polynomial shape 

function.  

 

This paper develops the WKB-based dynamic stiffness 

formulation for a riser system, which assumes that the 

coefficients in the differential equation of motion are slowly 

varying. The WKB-based dynamic stiffness method is derived 

and a frequency dependent shape function is expressed 

implicitly. 

 

The Wittrick and Williams (W-W) algorithm is extended to 

solve eigen value problem for a general non-uniform marine 

riser. Examples are analyzed and the results show the efficiency 

of this method. In addition, a pipe-in-pipe riser system is 

analyzed for natural frequencies and mode shapes using the 

WKB-based dynamic stiffness method with the W-W algorithm. 
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The characteristic of the mode shapes is described for such a 

riser system. 

 

THEORETICAL FORMULATION OF A RISER SYSTEM 

WKB-based dynamic stiffness matrix 

A great deal of research has focused on vibration analysis of 

a beam structure. For a uniform Euler beam under a constant 

axial load, the effect of the axial load on the natural 

frequencies has been found by considering the natural 

frequencies to be functions of a non-dimensional load 

parameter and boundary conditions. Using a power series 

expansion, Dareing and Huang [5] found the natural 

frequencies of a uniform marine drilling riser.  

A dynamic riser model is needed which is able to account for 

non-uniform properties such as mass density, bending 

rigidity and tension distribution, and discontinuities such as 

intermediate supports. A closed form solution to such a 

system is not generally possible. An approximation to the 

vibration analysis of such a riser may be accomplished by 

replacing the variable parameters with constant ones. For 

example, a variable axial load is often approximated by a 

tension that is constant over each element. However, many 

degrees of freedom in the approximation are required in 

order to obtain accurate results. 

This paper investigates the vibration analysis of marine risers 

by combining the dynamic stiffness method with the WKB 

theory, which assumes that the coefficients in the differential 

equation of motion are slowly varying.  

A general marine riser is a long slender beam system with 

variable tension distribution, bending rigidity and mass 

density. The mass/length changes are often discontinuous. 

Such a riser can be discretized into elements having 

continuously varying properties within the elements and 

allowing discontinuities to occur between elements.  

The equation of motion of a riser is written as: 
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where w  is the transverse displacement of riser, E  is the 

Young's modulus of the material, )(xI  is the area moment 

inertia of the beam, )(xT  is the tension of the riser, )(xm  

is mass per unit length, and ),( txf  is external force per 

unit length. 

The dimensionless parameters are defined as follows: 
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Where the subscript '0' represents the values at a reference 

cross section, l is length of a riser element and 
0D  is a 

reference diameter for the riser. 

Eq. (1) is thus written into the following non-dimensional 

form: 
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Assuming   iesRsY )(),( and substituting it into Eq. (2) 

result in the following equation of motion of a free vibration: 
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where  is a dimensionless frequency, 
0/ . 

Assuming that )(sP , )(sQ  and )(sU  in Eq. (3) vary 

slowly with respect to s , compared with variations of 

)(sR , )(sR  and )(sR  , rewrite Eq. (3) as: 

0)()()]()([)(2)( 22

2

2
24

3

3
4

4

4
4  RzU

dz

dR
zQ

dz

Rd
zQzP

dz

Rd
zP

dz

Rd
zP 

      (4) 

Where sz  ,  is a small parameter. 

The formal WKB expansion is written as: 
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The following asymptotic solution can be found by 

substituting Eq. (5) into (4), identifying the same order 

terms, truncating the series and selecting   . 
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Where, )41( toiCi  are constants of integrations; 

)21()(),( toishsT ii  are functions of )(sP , )(sQ  , 

)(sU and  . 
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Neglecting higher order terms, then the element nodal 

displacement vector, Ve, can be formulated in the following 

matrix form: 
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The Eq. (7) can be written in abbreviated form as: 

Ve = D0 G C.          (8)  

The nodal forces, Fe, for an element with changing properties 

are formulated as: 
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Substituting R(s) from Eq. (6), Eqs. (9) can be written as the 

following matrix form: 

Fe =D0 H C.         (10) 

The relationship between the element nodal forces and 

displacements can be established by combining Eq. (8) with 

Eq. (10): 

Fe = Ke(ω)Ve ,                        (11)  

In which Ke(ω) = H G
-1

, is the WKB-based dynamic element 

stiffness matrix, whose elements were derived by using 

Maple V.  

 

Frequency Dependent Shape Function  

In order to derive the frequency dependent shape function, 

rewrite Eq. (6) as: 
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The constants of integrations )41( toiCi  are solved from 

Eq. (8) as: 

C = 1/D0 G
-1

 Ve .                                                        (13) 

Substituting Eq. (13) into Eq. (12) results in: 

R(s) = Φ Ve ,                  (14) 

Where Φ is the frequency dependent shape function. 

 

Global Dynamic Stiffness Matrix Formulation  

The dynamic stiffness formulation of a riser system is 

obtained by establishing a weak form of the equation of 

motion using the Galerkin procedure. Integrating over the 

domain of interest s and transforming to lower the order of 

the derivatives and incorporate the boundary conditions as 

forcing terms gives the variational equations to be 

discretized by finite element interpolations. 

The formulation of the spectrum element method for a riser 

system is thus developed by following the procedure of the 

conventional finite element method [8], in which local 

elements are cast into a global form by coordinate 

transformations. The equation of motion of free vibration in 

the restrained global dynamic stiffness form can be written 

as: 

KG (ω) X = 0.                                                                   (15) 

The elements of global stiffness matrix, KG (ω), are 

generally transcendental functions of circular frequency ω. 

Natural frequencies can be found by equating to zero the 

determinant of the global dynamic stiffness matrix, KG (ω). 

The eigenvalues, or the natural frequencies, are obtained by 

plotting det (KG (ω)) and finding the roots. 

For a uniform beam member, Wittrick and Williams (W-W) 

[3] presented an automatic computation of natural 

frequencies. For a tapered beam whose section properties 

vary regularly, Banerjee and Williams [4] gave a procedure 

to calculate natural frequencies. 

However, a typical marine riser has non-uniform properties 

including mass distribution, bending rigidity and tension. 

The procedures in [3, 4] can‟t be directly used for the 
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application in this paper. The W-W algorithm is thus 

extended to a general non-uniform riser system for an 

automatic computation of natural frequencies [6]. 

Once the natural frequencies are found, one can use Eq. (15) 

to solve for a specific mode shape. An effective way is to use 

a triangular decomposition.  

Similarly, the equation of motion for a riser system under a 

forced excitation can be formulated as: 

KG (ω) X = F (ω) .                                                           (16) 

The riser frequency response can be solved by using the 

algorithms based on Gauss elimination [7]. The skyline 

reduction method is used in the computer implementation of 

the Gauss elimination.  

A computational program has been developed to solve for 

the natural frequencies and mode shapes, and the frequency 

response for a generally riser system. 

In addition, the above WKB-based dynamic stiffness 

formulation has been extended to a coupled pipe-in-pipe 

riser system [9]. 

RESULTS 

Uniform Drilling Riser under Linearly Varying Tension [5] 

The parameters of a simply supported riser are: 

Length 500L  feet; 

Outer diameter 240 d inches; 

Wall Thickness 625.0t inches; 

Young's modulus 
61030E lbf/in

2
; 

Mass per unit length 8.20m  slugs/ft (includes mass of 

drilling mud and sea water); 

Tension at the bottom ball joint 0T =286,000 lbs; and 

Net weight of riser per unit length in sea water 214w  lb/ft 

(including 38 lb/ft for choke and kill lines). 

Figure 1 shows the determinant of the dynamic stiffness matrix 

of the 500-ft riser versus frequency.  

Table 1 lists the first five natural frequencies found from Figure 

1. In order to verify the results, a finite element procedure 

which assumed constant tension over each beam element was 

developed. Converged values for natural frequencies were 

found employing 60 elements in the FEM. The approximation 

result [5] obtained by means of a power series expansion is also 

included for comparison. It is observed from Table 1 that the 

natural frequencies acquired by the WKB-based dynamic 

stiffness method using only five elements are accurate. Figure 2 

depicts the first three mode shapes. 

Table 1 indicates that the natural frequencies obtained by 

Dareing and Huang [5] are also accurate, compared with those 

obtained by using the FEM and the WKB-based dynamic 

stiffness method. However, their finding of ``points of 

inflection'' in mode shapes is not correct. 

In addition, only one element is needed to obtain accurate 

natural frequencies by using the W-W algorithm. 

 

Table 1 Comparison of Circular Natural Frequencies 

Order 
Dareing and 

Huang [5] 

FEM  

(60 elements) 

WKB-DSM 

(5 elements) 

1 0.8150 0.8150 0.8150 

2 1.8036 1.8038 1.8037 

3 3.0876 3.0879 3.0875 

4 4.7375 4.7377 4.7375 

5 6.7890 6.7896 6.7890 

 

Non-Uniform Riser under Linearly Varying Tension 

Due to attachments such as buoyancy modules, a typical marine 

riser is a system with variable properties including tension and 

mass density. Such a riser system, simply supported, has the 

following properties:  

Length 29.689L m; 

Outer steel diameter 00.21od inches; 

Wall Thickness 625.0t inches; and 

Buoyancy diameter 50.44bd  inches. 

Figures 3 and 4 show the variations of the mass and tension at 

the measured points which are marked respectively. The 

position is measured from the bottom. These figures 

demonstrate that the mass density does not change continuously, 

and tension does not vary linearly. 

There are eleven (11) segments in Figures 3 and 4, each of 

which has continuous variation of mass and tension. Figure 5 

shows the first 20 natural frequencies found by using the WKB-

based dynamic stiffness analysis with 11 elements. The 

approximate results using Shear7, which assumed the riser to be 

an equivalent uniform beam with an average linearly varying 

tension along the riser, are included for comparison. The Shear7 

results are accurate only for lower order natural frequencies.  

Figure 6 depicts the 20th mode shape, slope and curvature. The 

modal information is important to predict VIV fatigue damages 

to the riser. The locations of the antinodes are not evenly 

spaced. Therefore, the mode differs from trigonometric ones. 
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It is found that 282 elements are needed for the standard finite 

element method to obtain a good 20th mode shape and a 

converged natural frequency of 0.6952 Hz. This is close to 

0.6955 Hz by the WKB-based dynamic stiffness method with 

only 11 elements. Very few elements are necessary if they are 

chosen wisely. Within each element, properties must vary 

slowly so as to satisfy the WKB assumptions. Discontinuities 

should occur at the junctions of elements. In this example, the 

mass/length changes abruptly ten times requiring a total of 

eleven elements to adequately model the system. 

 

Coupled Pipe-In-Pipe Riser System 

A coupled pipe-in-pipe riser system, shown in Figure 7, is used 

for demonstrating the applications. Both the external and 

internal casings are simply supported and their specifications 

are as follows: 

Outer diameter of external pipe =13.375 inches; 

Wall thickness of external pipe =0.380 inches; 

Added mass coefficient for external pipe=1.0; 

Outer diameter of internal pipe =9.75 inches; 

Wall thickness of internal pipe =0.2975 inches; 

Young's modulus E =30000 ksi;  

Length of both cylinders L =1944 ft; 

Minimum tension on external pipe 4

10 105.2 T  lbs; 

Tension varying factor of external pipe = 47.00 lbf/ft; 

Minimum tension on internal pipe 4

20 100.1 T  lbs; 

Tension varying factor of internal pipe =30.63 lbf/ft; 

Number of evenly distributed identical centralizers=19; and 

The distance between centralizers l = 97.2 ft. 

Each riser is discretized into 20 evenly distributed elements. 

The centralizers are evenly distributed along the risers. The 

following dimensionless stiffness 
*k  is used to describe the 

relative stiffness of centralizers. 

00

3* 48/ IElkk n ,   

where the subscript „0‟ denotes the standard reference values 

for the pipe and l is the distance between centralizers.  

The pipe-in-pipe riser system is coupled by centralizers and 

ideal fluid in the annulus. Table 2 lists the natural frequencies 

and includes those coupling cases for springs and fluid only for 

comparison. This table demonstrates that the fluid lowers the 

natural frequencies. The case coupled by fluid only generates 

the lowest natural frequencies while that coupled by centralizers 

only generates the highest natural frequencies. The natural 

frequencies for a general case coupled by fluid and centralizers 

lie in between the two other cases. 

Figure 8 illustrates the first 8 mode shapes )8,1(, ii  of the 

coupled riser system. It indicates that when the system is weakly 

coupled by centralizers, its mode shapes are either in-phase or 

out-of-phase. The difference in the first two modes, 
1
 and 

2
, is 

that the deformation of the internal riser is larger in mode one, 

1 , while that of the external riser is larger in mode 2, 
2 . 

The natural frequencies of the coupled system increase with the 

stiffness of centralizers.  

 

Table 2  Natural frequencies (Hz) of a coupled riser 
system 

Order 
Springs 

only 

Fluid 

only 
Spring/Fluid 

1 0.0344 0.0144 0.0294 

2 0.0692 0.0290 0.0368 

3 0.0778 0.0335 0.0408 

4 0.0982 0.0439 0.0525 

5 0.1050 0.0591 0.0658 

6 0.1259 0.0672 0.0681 

7 0.1417 0.0748 0.0804 

8 0.1576 0.0912 0.0960 

9 0.1796 0.1020 0.1023 

10 0.1923 0.1082 0.1125 

 

CONCLUSIONS 

This paper investigates the riser dynamic analysis using WKB-

based dynamic stiffness method. The conclusions that can be 

drawn from the work in this paper are:  

(1) The theoretical formulation for a general non-uniform 

riser system is constructed by using a spectrum element method 

and WKB-based frequency-dependent shape functions. The 

theoretical formulation can be extended to a coupled pipe-in-

pipe riser system.  

(2) The W-W algorithm is extended to the WKB-based 

dynamic stiffness method for an automatic computation of 

natural frequencies for a non-uniform riser. The minimum 

elements are needed to accurately compute natural frequencies 

and modal information. The advantage of this approach is 

evident for solving high order natural frequencies. 
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 (3) The fluid/riser coupling can be designed to suppress 

the vibration of an external casing caused by VIV [9]. The 

coupling can be optimized to provide damping to the external 

casing. 
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Figure 1  Determinant of the Dynamic Stiffness Matrix 
 

 

Figure 2 First Three Natural Mode Shapes 
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Figure 3  Mass Variation along the Riser 
 

 

Figure 4  Tension Variation along the Riser 
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Figure 5  Natural Frequencies of a Non-Uniform Riser 
 

 

Figure 6  20th Modal Shape, Slope and Curvature of the Riser 
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Figure 7  Schematic of Two Concentric Pipes Containing Viscous Fluid 
 

 

Figure 8  First 8 Mode Shapes of the Coupled Riser System  

( *k =0.02, solid line: external riser; dash-dot line: internal riser)
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