Lecture Note 6 – Compensated and Uncompensated Demand Functions with an Application to Giffen Goods

David Autor, MIT Department of Economics

14.03/14.003 Applied Microeconomics and Public Policy, Fall 2010
1 The effect of price changes on Marshallian demand

- A simple change in the consumer’s budget (i.e., an increase or decrease or \(I \)) involves a parallel shift of the feasible consumption set inward or outward from the origin. This economics of this are simple. Since this shift preserves the price ratio \(\left(\frac{p_x}{p_y} \right) \), it typically has no effect on the consumer’s marginal rate of substitution (MRS), \(\left(\frac{U_x}{U_y} \right) \), unless the chosen bundle is either initially or ultimately at a corner solution.

- A rise in the price of one good holding constant both income and the price of other goods has economically more complex effects:

 1. It shifts the budget set inward toward the origin for the good whose price has risen. In other words, the consumer is now effectively poorer. This component is the ‘income effect.’
 2. It changes the slope of the budget set so that the consumer faces a different set of market trade-offs. This component is the ‘price effect.’

- Although both shifts occur simultaneously, they are conceptually distinct and have potentially different implications for consumer behavior.

1.1 Income effect

First, consider the “income effect.” What is the impact of an inward shift in the budget set in a 2-good economy \((X_1, X_2)\):

1. Total consumption? [Falls]

2. Utility? [Falls]

3. Consumption of \(X_1 \)? [Answer depends on normal, inferior]

4. Consumption of \(X_2 \)? [Answer depends on normal, inferior]

1.2 Substitution effect

- In the same two good economy, what happens to consumption of \(X_1 \) if

\[
\frac{p_1}{p_2} \uparrow
\]

but utility is held constant?

- In other words, we want the sign of

\[
\text{Sign} \left(\frac{\partial X_1}{\partial p_1} \bigg|_{U=U_0} \right).
\]
• Provided that the axiom of diminishing MRS applies, we’ll have \(\frac{\partial x_1}{\partial p_1} \bigg|_{U=U_0} < 0. \)

• In words, holding utility constant, the substitution effect is \emph{always} negative.

• By contrast, as we established above, the sign of the income effect is ambiguous,

\[
\frac{\partial x_1}{\partial I} \geq 0,
\]

depending on whether \(x_1 \) is a normal or inferior good.

1.3 Types of goods

The fact that the substitution effect is always negative but the income effect has an ambiguous sign gives rise to three types of goods:

1. Normal good: \(\frac{\partial x}{\partial I} > 0, \frac{\partial x}{\partial p} \bigg|_{U=U_0} < 0. \) For this type of good, a rise in its price and a decline in income have complementary effects—less consumption.
Although we only observe the movement from C_1 to C_2, we can conceive of this movement as having two parts: the movement from C_1 to S (substitution effect) and the movement from S to C_2 (income effect).

2. Inferior good: $\frac{\partial X}{\partial I} < 0$, $\frac{\partial X}{\partial P_S}|_{U=U_0} < 0$. For this type of good, the income and substitution effects are countervailing. Although both derivatives have the same sign, they have opposite effects because a rise in price reduces real income—thereby increasing consumption through the income effect while reducing consumption through the substitution effect.
Here, the substitution effect is the $S - C_1$ and the income effect is $C_2 - S$.

3. Strongly inferior good (‘Giffen’ good). $\frac{\partial X}{\partial I} < 0$, $\frac{\partial X}{\partial p_2}|_{I=I_0} < 0$. Similar to a conventional inferior good, the income and substitution effects are countervailing. But what’s special about a Giffen good is that the income effect dominates the substitution effect (in some range). Hence, a rise in the price of a Giffen good causes the consumer to buy more of it—demand is upward sloping. Even though a price increase reduces demand due to the substitution effect holding utility constant, the consumer is effectively so much poorer due to the income loss that her demand for the inferior good rises.

The notion of a Giffen good is interesting because it’s a highly non-obvious (in fact, barely plausible) implication of consumer theory; it’s hard to imagine a case where when the price of a good rises, demand increases. But theory says such goods can exist. The Jensen and Miller paper represents the first rigorous scientific evidence that such goods exist (at least for humans; there is lab evidence of Giffen behavior among some other species). This evidence may speak to the relevance or plausibility of the underlying theory.

Question: The price of gasoline rises just about every summer, as does the gallons of gas consumed per household. Is gas a Giffen good?

1.4 Marshallian and Hicksian demand

Alfred Marshall was the first economist to draw supply and demand curves. The ‘Marshallian cross’ is the staple tool of blackboard economics. Marshallian demand curves are simply conventional market
or individual demand curves. They answer the question:

- Holding *income and all other prices constant*, how does the quantity of good X demanded change with p_x? We notate this demand function as $d_x(p_x, p_y, I)$. Marshallian demand curves implicitly combine income and substitution effects. They are ‘net’ demands that sum over these two conceptually distinct behavioral responses to price changes.

![Marshallian demand](image)

One can also conceive of a demand curve that is composed solely of substitution effects. This is called Hicksian demand (after the economist J. R. Hicks) and it answers the question:

- Holding *consumer utility constant*, how does the quantity of good X demanded change with p_x. We notate this demand function as $h_x(p_x, p_y, U)$. The presence of U as a parameter in the Hicksian demand function indicates that this function holds consumer utility constant—the same indifference curve—as prices change. Hicksian demand is also called ‘compensated’ demand. This name follows from the fact that to keep the consumer on the same indifference curve as prices vary, one would have to adjust the consumer’s income, i.e., compensate them. For the analogous reason, Marshallian demand is called ‘uncompensated’ demand.
1.5 Relationship between Compensated and Uncompensated demand

- These two demand functions are quite closely related (as show below). But they are not identical.

- Recall from the prior lecture the Expenditure Function,

\[E(p_x, p_y, \bar{U}), \]

which is the function that gives the minimum expenditure necessary to obtain utility \(\bar{U} \) given prices \(p_x, p_y \).

- For any chosen level of utility \(\bar{U} \), the following identity will hold:

\[h_x(p_x, p_y, \bar{U}) = d_x(p_x, p_y, E(p_x, p_y, \bar{U})). \]

- In other words, for any chosen level of utility, compensated and uncompensated demand must equal to one another. Another way to say this: Fix prices at \(p_x, p_y \). Fix utility at \(\bar{U} \). Use the expenditure function to determine the income \(\bar{I} \) necessary to attain utility \(\bar{U} \) given \(p_x, p_y \). It must be the case that \(h_x(p_x, p_y, \bar{U}) = d_x(p_x, p_y, \bar{I}) \).

- Although these demand curves cross (by construction) at any chosen point, they do not respond identically to a price change. In particular differentiating the prior equality with respect to \(p_x \) yields the following equation:

\[\frac{\partial h_x}{\partial p_x} = \frac{\partial d_x}{\partial p_x} + \frac{\partial d_x}{\partial I} \frac{\partial E}{\partial p_x}. \] (1)
Rearranging yields,
\[
\frac{\partial d_x}{\partial p_x} = \frac{\partial h_x}{\partial p_x} - \frac{\partial d_x}{\partial T} \frac{\partial E}{\partial p_x},
\]
(2)

- In words, the uncompensated demand response to a price change is equal to the compensated demand response \(\frac{\partial h_x}{\partial p_x}\) minus another term,
\[
\frac{\partial d_x}{\partial T} \frac{\partial E}{\partial p_x}.
\]
This term deserves closer inspection.

- The \(\frac{\partial d_x}{\partial T}\) term should look familiar. It is the income effect on demand for good \(X\). But what is \(\frac{\partial E}{\partial p_x}\)?

- Recall the expenditure minimization problem that yields \(E(p_x, p_y, \bar{U})\). This problem looks as follows:
\[
\min_{X,Y} p_x X + p_y Y \ s.t. U(X,Y) \geq \bar{U}.
\]
- The Langragian for this problem is:
\[
\ell = p_x X + p_y Y + \lambda(\bar{U} - U(X,Y)).
\]

- The first order conditions for this problem are:
\[
\begin{align*}
\frac{\partial \ell}{\partial X} &= p_x - \lambda U_x = 0, \\
\frac{\partial \ell}{\partial Y} &= p_y - \lambda U_y = 0, \\
\frac{\partial \ell}{\partial \lambda} &= \bar{U} - U(X,Y).
\end{align*}
\]
- The solutions to this problem will have the following Langragian multipliers:
\[
\lambda = \frac{p_x}{U_x} = \frac{p_y}{U_y}.
\]
- As we know from the Envelope Theorem, at the solution to this problem,
\[
\frac{\partial E}{\partial \bar{U}} = \lambda.
\]
In other words, relaxing the minimum utility constraint by one unit, raises expenditures by the ratio of prices to marginal utilities.
• But what is $\partial E/\partial p_x$? That is, holding utility constant, how do optimal expenditures respond to a minute change in the price of one good? The answer is:

$$\frac{\partial E}{\partial p_x} = X + \left(p_x \frac{\partial X}{\partial p_x} - \lambda U_x \frac{\partial X}{\partial p_x} \right) + \left(p_y \frac{\partial Y}{\partial p_x} - \lambda U_y \frac{\partial Y}{\partial p_x} \right)$$

$$= X + \left(p_x \frac{\partial X}{\partial p_x} - p_x \frac{\partial X}{\partial p_x} \right) + \left(p_y \frac{\partial Y}{\partial p_x} - p_y \frac{\partial Y}{\partial p_x} \right)$$

$$= X + 0 + 0$$

$$= X.$$

Note that we are using the following identities from above:

$$p_x = \lambda U_x$$

$$p_y = \lambda U_y.$$

• So, the short answer is that $\partial E/\partial p_x = X$, and more specifically, $\partial E/\partial p_x = h_x$, where h_x is the Hicksian demand function.

• This result, called Shephard’s Lemma, follows directly from the envelope theorem for constrained problems. Since X and Y are optimally chosen, a minute change in p_x or p_y will not affect the optimal quantity consumed of either good holding utility constant (as is always the case with the expenditure function). [See proof below.]

• But a price increase will change total expenditures (because, to hold utility constant, expenditures must rise when prices rise).

• Since the consumer is already consuming X units of the good, a rise in price of 1 raises total expenditures needed to maintain the same level of utility by X.

• Concrete example. If you buy 2 cups of coffee a day and the price of coffee rises by 1 cent per cup, how much do we need to compensate you to hold utility constant? To a first approximation, 2 cents (it could never be more, it could actually be less). To hold utility constant given the price change, your expenditures must rise by the price change times the initial level of consumption.

• Question: Is the X obtained from $\partial E/\partial p_x$ equal to h_x or d_x, i.e., compensated or uncompensated demand? Answer: h_x.

• Because the expenditure function holds utility constant, any demand function that arises from the expenditure function must also hold utility constant—and so is a compensated demand function.
• So, to reiterate: The derivative of the Expenditure function with respect to the price of a good is the Hicksian (compensated) demand function for that good.

• Graphically the relationship between the two demand functions can be described as follows, according to the type of good.

\[p_x \]

Normal good

\[\frac{dx}{dI} > 0 \]

Inferior good

\[\frac{dx}{dI} < 0 \]
1.6 Longer Demonstration of Shephard’s Lemma [optional]

Recall the dual of the consumer’s problem: minimizing expenditures subject to a utility constraint.

\[\min p_x x + p_y y \]
\[\text{s.t.} U(x, y) \geq v^* \]
\[\mathcal{L} = p_x x + p_y y + \lambda (U(x, y) - \bar{U}) , \]

which gives \(E^* = p_x x^* + p_y y^* \) for \(U(x^*, y^*) = v^* \).

Bear in mind the following first order conditions:

\[\lambda = \frac{p_x}{U_x} = \frac{p_y}{U_y} . \]

Now, calculate

\[\frac{\partial \mathcal{L}}{\partial p_x} = x + \left(p_x \frac{\partial x}{\partial p_x} - \lambda U_x \frac{\partial x}{\partial p_x} \right) + \left(p_y \frac{\partial y}{\partial p_x} - \lambda U_x \frac{\partial y}{\partial p_x} \right) . \]

Substitute in for \(\lambda \)

\[\frac{\partial \mathcal{L}}{\partial p_x} = x + \left(p_x \frac{\partial x}{\partial p_x} - p_x U_x \frac{\partial x}{\partial p_x} \right) + \left(p_y \frac{\partial y}{\partial p_x} - p_y U_y \frac{\partial y}{\partial p_x} \right) = x . \]

Hence,

\[\frac{\partial \mathcal{L}}{\partial p_x} = \frac{\partial E}{\partial p_x} = x . \]

Note that this \(x \) is actually \(h_x (p_x, p_y, \bar{U}) \) since utility is held constant.
1.7 Applying Shephard’s lemma

- Returning to equation 2, we can substitute back in using Shephard’s Lemma to obtain:

\[
\frac{\partial d_x}{\partial p_x} = \frac{\partial h_x}{\partial p_x} - \frac{\partial d_x}{\partial I} \cdot X.
\]

- This identity is called the Slutsky equation.

- It says that the difference between the uncompensated demand response to a price change (the left-hand side, \(\partial d_x/\partial p_x\)) is equal to the compensated demand response (\(\partial h_x/\partial p_x\)) minus the income effect scaled by the effective change in income due to the price change (recalling that \(X = \partial E/\partial p_x\)).

- Notice also the economic content of the final term, \(\frac{\partial d_x}{\partial I} \cdot X\). The size of the income effect on total demand for good \(X\) in response to a change in \(p_x\) depends on the amount of \(X\) that the consumer is already purchasing.

- If the consumer is buying large quantities of \(X\), an increase in \(p_x\) has a large income effect. If the consumer is consuming zero of good \(X\) initially, the income effect of a change in \(p_x\) is zero.

- Applying the Slutsky equation to the three types of goods, it’s easy to see that:

 - For a normal good \((\frac{\partial d_x}{\partial I} > 0)\), the income and substitution effects are complementary.
 - For an inferior good \((\frac{\partial d_x}{\partial I} < 0)\), the income and substitution effects are countervailing.
 - For a Giffen good, the income effect dominates: \(\left|\frac{\partial d_x}{\partial I}\right| \cdot X > \left|\frac{\partial h_x}{\partial p_x}\right|\) note that they are both negative.

- **Effect of rise of \(p_x\) in two good economy \((X,Y)\).**

<table>
<thead>
<tr>
<th></th>
<th>Uncompensated Demand</th>
<th>Compensated Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘Marshallian’</td>
<td>‘Hicksian’</td>
</tr>
<tr>
<td>Consumption of (X)</td>
<td>Substitution: –</td>
<td>Substitution: –</td>
</tr>
<tr>
<td>Income:</td>
<td>+/-</td>
<td>Income: 0</td>
</tr>
<tr>
<td>Consumption of (Y)</td>
<td>Substitution: +</td>
<td>Substitution: +</td>
</tr>
<tr>
<td>Income:</td>
<td>+/-</td>
<td>Income: 0</td>
</tr>
</tbody>
</table>

1.8 Uncompensated demand and the indirect utility function.

- We concluded above that the compensated demand function can be derived just by differentiating the expenditure function. Is there a similar trick for deriving the uncompensated demand function? Glad you asked!
• Recall the Lagrangian for the indirect utility function:

\[V = \max_{x,y} U(X, Y) \text{ s.t. } Xp_x + Yp_y \leq I, \]
\[\mathcal{L} = U(X, Y) + \lambda(I - Xp_x - Yp_y), \]
\[\frac{\partial \mathcal{L}}{\partial X} = U_x - \lambda p_x = \frac{\partial V}{\partial \lambda} = U_y - \lambda p_y = \frac{\partial \mathcal{L}}{\partial \lambda} = I - Xp_x - Yp_y = 0. \]

• Now, by the envelope theorem for constrained problems:

\[\frac{\partial \mathcal{L}}{\partial I} = \frac{\partial V}{\partial I} = \frac{U_y}{p_y} = \frac{U_x}{p_x} = \lambda. \] (3)

The shadow value of additional income is equal to the marginal utility of consumption of either good divided by the cost of the good.

• And by a similar envelope theorem argument:

\[\frac{\partial V}{\partial p_x} = \frac{\partial \mathcal{L}}{\partial p_x} = -\lambda X + U_x \frac{\partial X}{\partial p_x} - \lambda p_x \frac{\partial X}{\partial p_x} + U_y \frac{\partial Y}{\partial p_x} - \lambda p_y \frac{\partial Y}{\partial p_x} \] (4)
\[= -\lambda X + \left(U_x \frac{\partial X}{\partial p_x} - \lambda p_x \frac{\partial X}{\partial p_x} \right) + \left(U_y \frac{\partial Y}{\partial p_x} - \lambda p_y \frac{\partial Y}{\partial p_x} \right) \] (5)
\[= -\lambda X + \left(\lambda p_x \frac{\partial X}{\partial p_x} - \lambda p_x \frac{\partial X}{\partial p_x} \right) + \left(\lambda p_y \frac{\partial Y}{\partial p_x} - \lambda p_y \frac{\partial Y}{\partial p_x} \right) \] (6)
\[= -\lambda X \] (7)

• Notice the logic of this expression. The utility cost of a one unit price increase in \(p \) is equal to the additional monetary cost (which is simply equal to \(X \), the amount you are already consuming, times one) multiplied by the shadow value of additional income.

• Returning to the coffee example, a 1 cent price rise costs you 2 cents if you were planning to buy 2 cups. And the value of 2 cents in foregone utility is simply \(\lambda \) times 2 cents.

• Putting together 3 and 8, we get the following expression:

\[-\frac{\partial V(P, I)/\partial P}{\partial V(P, I)/\partial I} = -\frac{\lambda X}{\lambda} = X = d_x \] (8)

which is called Roy’s identity. Notice that we have substituted \(d_x \) for \(X \) here because we have recovered the Marshallian (uncompensated) demand function. That is, this is the demand for \(X \) holding income and other prices constant, not the demand for \(X \) holding utility and other prices constant.
• Roy’s identity is analogous to Shephard’s lemma above; both recover demand functions by differentiating solutions to the consumer’s problems with respect to prices. The difference is that by differentiating the expenditure function, Shephard’s lemma gives the compensated demand function, whereas by differentiating the indirect utility function, Roy’s identity gives the uncompensated demand function.

• We are now ready to put these tools to work...

2 Giffen goods in China (Jensen and Miller)

2.1 Context

• In China in 2005, about 10% of the population survived on less than one dollar per day. (Given China’s rapid growth, the contemporaneous number would surely be lower.)

• For this study, the sample included 650 households each in Hunan and Gansu provinces (1,300 households and 3,661 individuals).

• Households were selected from the list of “urban poor.” Thus, this sample is meant to be representative of the poor population, not the full population.

• Urban poor households by this definition have incomes averaging $0.41 to $0.82 per person per day.

• About 90 million Chinese households meet this definition.

• The diet among the poor is very simple, consisting mostly of rice and noodles, plus some pork and other meat.

• Most consumers in this sample get 70% of total calories from rice or noodles alone.

• Importantly for the study, regional preferences for rice versus noodles vary considerably (Table 1).
 In the South (Hunan), rice is the staple.
 In the North (Gansu), noodles are the staple.

• Meat is generally preferred to rice or noodles, but it is considerably more expensive. Meat typically provides only one-third the calories or protein per Yuan as rice or noodles (Table 2).
2.2 The experiment

- Within each group (Hunan, Gansu), households were randomly assigned to either a control group or one of three treatment groups.

- HH’s in the treatment group were given printed vouchers entitling them to prices reductions of 0.10, 0.20 or 0.30 yuan off the price of each 500g (1 jin) of the staple good (rice or noodles).

- Each treated household received vouchers for 5 months, with the vouchers distributed at the beginning of each month.

- The vouchers were for large quantities, amounting to 750g per person per day for each month of treatment. In practice, this means that households would be very unlikely to use their full quotas. That’s important because it means that as far as the household is concerned, the voucher is equivalent to a price reduction in the staple good with no quantity constraint.

- It’s important to note also that because these households are extremely poor, they generally only consume the lowest quality variety of the staple good. Thus, substitution to higher qualities is not likely to create confounding measurement issues.

- An important subtlety is that Giffen behavior is unlikely to be relevant for households that are either ‘too poor’ or ‘too rich.’

 - Households that are so poor that they are barely meeting their caloric needs are unlikely to be in the range where an increase in effective income due to a decline in the staple price would cause them to buy less of the staple and more of the fancy good. The marginal dollar will still go towards the staple.

 - Households that are wealthy enough that they are easily meeting their caloric needs are unlikely to exhibit Giffen behavior because a fall in the price of the staple good does not substantially increase their wealth, and so even if the staple is an inferior good, the income effect will not dominate the substitution effect and so they will tend to buy more of the staple.

 - Households that are poor enough that they are approximately on the subsistence constraint but not substantially above it may exhibit Giffen behavior. For them, a decline in the price of the staple increases effective income so that they may be able to meet their nutritional needs and consume some of the fancy good (e.g., pork). Thus, a reduction in the staple price may cause them to consume less of the staple and more of the preferred good.
2.3 Data analysis

- One interesting thing about this ‘experiment’ as implemented in the paper is that each household provides its own pre-post comparison over multiple time periods. This means that Jensen and Miller are also assuming *causal transience*, meaning that the causal effect of a change in food prices on household food consumption is reversible. This seems plausible here.

- I will let you develop the notation for analyzing this experiment.

2.4 What they find

- The key results for Hunan are found in Table 3 (with additional robustness tests in Table 4).

- Be sure also to study Figure 2. Notice that the percentage change in consumption of the staple is non-monotone in the initial staple calorie share. It’s negative for the wealthier and poorer households in the sample (those that have low and high staple consumption shares) and positive for those with high (60 to 80 percent) but non-corner-solution consumption shares.

- The results for Gansu province are less clear cut. Jensen and Miller discuss at length why that might be.

- What are the major threats to validity in this experiment?

- Are there any alternative interpretations?

- Do these results have any relevance to policy?