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MINIMAL ORDER DISCRETE WIENER FILTER IN THE
PRESENCE OF COLORED MEASUREMENT NOISE

by

Violet B. Haas *

ABSTRACT

The minimal order Wiener filter is constructively derived for
a linear, time invariant, discrete system when the measurements are
corrupted by both white and colored noise. It is shown that as all noise
vanishes the steady-state error covariance associated with the filter
converges to a null matrix. No Luenberger observer is used in combination

with the filter.
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I. INTRODUCTION
Here we consider the discrete time system described by,

xk+l = ka + Bwk, k>0 (1.1)

zk = ka + Vk' k>0 (1.2)

where the state wvector xk belongs to Rn, the measurement vector z, belongs

k

to ' and the noise vector wk belongs to Rq. The Gaussian random

variable X, has mean §O and the stationary white noise processes'{wk}

and {vk} are mutually independent and independent of XO and possess the

statistics, w

" = N(O,Iq), v. = N(O,R), where R is positive semidefinite

k

and symmetric with rank r<m and Iq is the identity in RY. The matrix
H has rank g, the pair (H,F) is detectable and we seek the unbiased

minimum mean squared error estimate ¥

K+l (Wiener filter) given the

+
k'zk—l""'zk-ko) as k0 R

Systems of the form (1.1)-(1.2) having singular R arise for example

measurements (z

when'{vk} is not a white noise process, but a stionary Markov process.

If the process noise can be described by

Vk+l = Avk + nk ’ (1.3)

where {nk} is a stationary white noise process then the process noise
"ﬁ%} is stationary Markov (colored). In this case the state vector

may be augmented to xi where

a
X = (xj'(. v]'{)' '

and the augmented system has the form (1.1)-(1.2) with F replaced by



H replaced by (H,I) and R replaced by a null matrix. If some measurements
are corrupted by only white noise while other measurements are corrupted
by colored noise then a non-zero, but singular measurment noise intensity
occurs in the extended system. If the original pair (H,F) is detectable,

then the augmented pair,

F 0
(2,1),
0 A

is also detectable when the Markov process (1.3) is asymptotically stable.
Discrete Kalman filters for systems whose measurements contain
colored noise were first discussed by Bryson and Johansen [1] and by
Bryson and Henrikson [2]. In these papers only a restricted case was
discussed, which was essentially the case when the restriction of the
matrix HBB'H' to the kernel of R is nonsingular. More recently other
authors (e.g. [3]1-[7]) have considered the optimal, discrete state
estimation problem in the presence of colored measurement noise, but
they primarily concentrated upon obtaining a minimal order combined
observer-estimator, where the minimal order was unknown but bounded
below by n-m+r. References [1]-[7] all deal with finite horizon estima-
tion. Here we obtain a steady-state (infinite horizon) state estimator
whose order is exactly n-m+r, and our estimator is asymptotically stable
on the disturbable subspace, i.e. on the subspace of modes which are
disturbable by process noise. We obtain an optimal state estimator of

lowest possible order without the addition of an observer, and we show



that if R is null (all measurements are exact) then the covariance matrix
of the state estimation error approaches a null matrix as the process
noise intensity vanishes. This paper is a companion paper to [8], where

the continuous version of this problem is discussed.



II. A FILTER WITH A FIRST ORDER SINGULARITY

Let TO = (Ué, Wé) be a nonsingular coordinate transformation in the

space of measurement variables, and suppose that

U RU! > O, W.R = 0.

00 0
If R = 0 then W0 is Im and UO fails to exist. Define D0 = WOH and assume
that
Y > .
DOBB Do 0. (2.1)

In section III we shall abandon assumption_(z.l) and consider a more

general case. From (1.2) we have

A _ .
z, =U.z = UO(ka + Vk) (2.2)

1
k 07k
and

WOZk = Doxk . (2.3)

We shall consider (2.3) as an exact, or quiet, measurement and replace it

by its first order forward difference,

28
k

= - . 2.4
Wybz, = Dy[(F-I)x, + Bw,] (2.4)
Note that equation (1.1) together with (2.2) and (2.4) define a new optimal
filter problem. This problem has a nonsingular measurement noise intensity,
but process and measurement noise are correlated. If we would allow one more

measurement , namely z , in our original problem then the new optimal

k+1

filter problem would be equivalent to the original. (Alternatively, we



could replace (2.3) by its first order backward difference.)

Select an (n-m+r)xn matrix VO

so that the matrix (Dé,Vé) has full
rank and use this matrix to define a coordinate transformation in the

state space. Let (Dé,Vé)_l = (CO,EO)'. It was shown in [8] that when

(H,F) is a detectable pair then VO may be found so that the pair

(UOHEO, VCFEO) is also detectable. Define a new state variable Yy r of

dimension nO = n-m+r, by

Yy = vak' (2.5)
Then,

X = CoWoZy + Eg¥y - (2.6)
Substitution of (2.5) and (2.6) into (1.1) yields

Yip1 = VO(FEOyk + FCOWbZk + Bwk). (2.7)

Substitution of (2.6) into (2.2) and (2.4), defining new measurement variables

z' and Ci, and noting that D E. = 0 we find,

k 070
§1=U(—HCW ) = U_(HE + ) (2.8)
k 0%k 0" 0%k) T YooYk T Yk .
and
2 _
= Ax. - (F- = F
ck DO( X, (F I)COWOZk) DO( Eoyk + Bwk). (2.9)

Equation (2.7)-(2.9) together with (2.3) define a new estimation
problem in a reduced state space. This new problem is equivalent to the

original problem provided §O = VOQO' Note that if PO is the original

initial time state error covariance matrix then DOPO = 0. This condition

is merely an expression of the fact that the measurement WOZO is exact.



Furthermore, since W_z is exact for all integers k then D

0%k 0. Thus,

P =
0k
the steady-state limit P of the optimal state error covariance matrix

Pk must satisfy

DOP = 0. (2.10)

Note that VOP is to be determined by the estimator and that once this
quantity is determined then so is P.

The filter problem defined by (2.7)-(2.9) with §O = voio is
equivalent to the original problem, and in the next section we shall show

that the optimal estimate Vi1 is given by

A A l A
Yis1 = VOFEOyk + VOFCOWOZk + Kl(Ck - UOHEOyk)

2 D A — -
+ KZ(Ck - DOFEOYk)' yo = VOX0 (2.11)

where Kl.and K2 are found by solving a steady state Riccati equation

in Rno. We shall also show that under a certain nonsingular coordinate
transformation, the optimal estimator splits into two parts. One part

is defined on the "undisturbable subspace" of state coordinates that
cannot be disturbed by process noise, and consists of a deterministic
difference equation. The other part is an asymptotically stable estimator

defined on the "disturbable subspace", the subspace of modes that are

disturbable by process noise.



III. THE SEPARATION OF THE FILTER EQUATIONS

In this section we shall derive the formulas for the filter gains

Kl and K2 appearing in equation (2.11). We begin by uncorrelating

the process and measurement noise and transforming the system into

disturbable (controllable) canonical form. To this end we define

l
—_ 1 1] ] ¥

and add zero in the form

2
VOMO[z;k - DO(FEoyk + Bwk)]

to the right hand side of (2.7). We obtain,

2
= VO[(I—MODO)FEOYk + FC W z + MOCk + (I—MODO)Bwk]. (3.1)

Yer1 0"0%k

The process and measurement noise are now uncorrelated in the system described

by (3.1) and (2.8)-(2.9). The measurements z, and Ci may be considered

k

as known inputs for equation (3.1). Let j=0 and define

F, = (I-M.,D,)F, B, = (I-M.D,)B, M, = BB'D{(D.BB'D!)—l,
3 373 j i3 j 33 j
"o i-1
N={() Rer[(V.B,)'(E'F'WV')" "1,
, 073 0jo
i=1
and
= >
C <v0FjEOIIm(VOBj) ,
where

<alm B> 2 <alB> 2 B+ aB+...+ A" 1B



\Y%

Then N is the undisturbable subspace of the pair (V F.E o

n, 30

C is the orthogonal complement of N in R .
n

compatible with the decomposition R 0. N @ C we have,

B.) and
J

In a coordinate system

1
01 Yy
= = = : B ’
Yo Yy , ] By = (Egp v Byo)
Vo2 Yy
V0175501 0 0
VoFyEq = AN )
V__F.E V__B,
023701 Vy,F.E 0273

In this coordinate system equation (3.1) becomes,

1 1 2
Y1 = Vo1 F3Bor¥i * FGoMp2x * MGy )
and
2 -V (F.E. y> 4+ F.E .yl + FC.W.z +M.Z> + B.w )
i1 T Vo2 ¥ 5%02%k T F5%01Yk 070k T Tyt T Bk -

Equations (2.8) and (2.9) become respectively,

>

1

1 2
M = T = UpHEg ¥y = Ug (HEg vy + Vi)
and
2 A o 1 2
M = &k = DoFBp1¥y = Do (FEy, ¥y + Bwy) .

Note that yi is found from

(3.2)

(3.3)

(3.4)

(3.5)

a difference equation which is not corrupted

by noise together with the best available estimate ?é for yé, namely

?é = The pair (V , V

Vo1%0° 02F0%02" Vo2

L . YTyl iyt
the appendix that the pair (E02(H UO’ F DO) ’ 0275

BO) is controllable and we show in

v F'EOZ) is detectable.
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Thus, by standard theory [9] the optimal estimator is described by,

~1 A2 2 ~1

Yip1 = (F EOlyk + Fcowozk + MjCk). Yo = V'le0 (3.6)
o2 = (F E + F E + PC Wz + M ;2
Tr+1 Yk Olyk 0"0%k T 3%k
+R(1— )+1<( - D4FE 92)
1% = Yo ozyk ”k 027k’ 7
6% =v_ % (3.7)
Yo = Vo2¥o0 ¢ .
where
- - - -1
= = 1 ' .
(R, /K,) =K = v F.E TEy, (H'U, F'DJ )RJ , (3.8)
1 1 1] 1 1
) U (HE022E02H + R)UO UOHEOZZEOZF D!
R = ) (3.9)
¥ 1 1] ] T 1] ]
D FE, JE) H' U} D, (FE,,ZB),F' + BB')D!

- 2 is the unique positive definite symmetric solution of the steady state

Riccati equation,

= ' ' V! 7D [ 3.
% V (F EO2ZE02FJ + BJB ') 02 KRjK , (3.10)
and the matrix
v 2(Fj - KlUOH - K2DjF)E02 is stable. (3.11)

Note that equations (3.2)-(3.5) describe the same system as equations
(2.7)-(2.9) in appropriate coordinates, and that the variables in (3.2)-
(3.5) may be manipulated to compare Ki with ii' i=1,2. If fact, in our
canonical coordinate system (3.2) and (3.3) together are exactly the same

as (2.7) and the terms in (3.6)-(3.7) can be reassociated to yield



A
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A — . O l ~
Va1 = VoFEg¥p * VoFWgZy + [KlJ (T = UpHEyYy)
V..M,
+ | 013 (z® - D.FEY.) . (3.12)
K. +V_ M k 3 0%k
27702 5
Comparing (2.11) with (3.12) we see that
v = T [ - Ty v gy, .
Kl (O,Kl), K2 (MJVOl' K2 + MjVOZ) (3.13)

We also find by comparing (3.2) with (3.6) that V

Hence in our
01

P is null.

coordinate system we have

0 0
|- = tpt
VOva EOVOPVOEO
1
0 VOZva2
= [N
EOZVOZPVOZEOZ !

and

X =V__PV! .

02" '02 (3.14)

We summarize our results in the following theorem.

Theorem 3.1. Given the system described by (1.1)-(1.2) where H has full
rank, the matrix pair (H,F) is detectable and where the random variable
x, and the stationary white noise processes {wk} and {Vk} possess the

statistics indicated in the introduction.

Then there is a state estimator that

minimizes the limiting value of the trace of the state error covariance matrix as

the number of available measurements increases. There exist matrices C

o’ vO
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such that this estimator is described by (2.3) and (3.6) - (3.11) where
j=0 in an appropriate coordinate system. The order of the estimator is
nO = n-m+r, where n is the number of state variables, m is the number of

measurement variables and r is the rank of the measurement noise intensity.
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IV. A FILTER HAVING A HIGHER ORDER SINGULARITY

We shall now suppose that (2.1) does not hold. Then there is a

nonsingular transformation T1 = (Ui, Wi) of the measurement space such
that UlDOB has full rank and
D = . .
W, DB 0 (4.1)

1f DOB is null thenV%_is an identity matrix and U1 is absent. Pre-

multiplying equation (2.9) by Ul and pre-multiplying (2.4) by W, we find

1
respectively,
21 A 1 .
Ck = Ule = UlDO(FEOyk + Bwk) (4.2)
and

W WbAzk =W

1 DO(F—I)xk . (4.3)

1

Forming the first difference on both sides of (4.3) and noting (4.1) we

find,

2 2
WlwoA z, = WlDo[(F-I) x, + FBwk] . (4.4)

Applying the coordinate transformation (2.6) to (4.4) we find,

22 4 A2 2
T = W W A% - D (F-I)°C W

o 0zk) = WlDO(F—I)[(F—I)Eoyk + Bwk] . (4.5)

Note that WlDO(F—I)B = WlDOFB. Equations (2.7), (2.8), (4.2) and (4.5)

define a new optimal filtering problem. This problem is nonsingular: if the

measurement noise intensity matrix,
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D 1 1 ) v 1 ) 1
Ul OBB DOUl UlDOBB F DOWl
(4.6)
¥ \ ] 1 1 1 1
WlDOFBB DOU1 WlDOFBB P DOWl

is nonsingular. In this event we may proceed as before to find the
optimal filter. We note that because we made use of the second difference
of a measurement vector then the optimal filter is really a two-step
smoother.

Define the matrix Dl by

| Q- [Xei D!
D1 (DoUl, F DOWl) .

Then the matrix (4.6) is just D.BB'D!, and the condition D_BB'D!

IR B8Py > 0

guarantees that we can find the optimal steady state filter for the system
described by (2.7) (2.8), (4.2) and (4.5) by standard techniques.

If DlBB'Di does not ‘have full rank we define U2, W2 so that

U2W1DOFB has full rank and W2W1DOF1B = 0 and we difference equation

(4.4) pre-multiplied by W

¢

In general, let Ti = (Ui, Wi) be a sequence of nonsingular trans-
formations satisfying,

i-1 ) 1 i- e IR A [ v
UiWi_l...WZWlDOF BB' (F') 1DOW1W2...Wi__lUi 0,
wi...wzwlnoFl'lB =0, i=l,...,35-1

and define the matrix Di by

D! = (D'U!,FIDWITL, ..., (F) Y DWW UL), i=1,... 3

i 01" “o172’ ! 01 i-174i i

where Uj is an identity matrix. Note that F may be replaced by (F-I)

in the last three expressions. Suppose that
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DjBB'DB >0 . (4.7)

Then by procedures similar to those above, we can find an optimal steady-

state filter. We find that the optimal filter is described by

Yer1™ Vol Bk + VoTCoWoZi * Kp (T = UpHEY)
+ KD, ( 2 _ FE. . )
2P (o 0¥k
ko= U By, + v,) (4.8)
k o'oY T V¢ v .

and

2-— -
Ck = Dj((F I)EQY

x * Bwk) ’ (4.9)

where K1 and K2 satisfy (3.13) and (3.8)-(3.11). The details of the
calculations are similar +to ones in [8]. If there is no nonnegative
integer j for which (4.7) holds then an optimal Wiener filter does not

exist. If j does exist then by the Cayley-Hamilton theorem, j<n-1.

We summarize our results in the following theorem.

Theorem 4.1. Given the same hypothesis as in Theorem 3.1 except that
(2.1) is replaced by (4.7). Then j<n-1 and there exist matrices VO' C0

so that a steady-state optimal state estimator exists and can be represented

in an appropriate coordinate system by (2.3) together with (3.6)-(3.11).



-16-

V. CONVERGENCE OF THE STATE ERROR COVARIANCE AS THE PROCESS
' AND MEASUREMENTS BECOME QUIET

Here we consider the steady-state optimal estimation problem defined

by
X1 = ka + eBwk, k>0 (5.1)

= > 5.2
z), = Hx., k>0 ( )

where a small parameter € multiplies the process noise. The statistics
of X, and‘{wk} are the same as before and we again suppose that H has
full rank m and that (H,F) is a detectable pair. We shall show that as

€>0 the state error covariance matrix converges to a null matrix. For

simplicity of exposition we shall assume

Mt = THY > 0 .
DOBB DO HBB'H 0

If this is not true, but DkBB'Di > 0 for some positive integer k then

obvious modifications are to be made to the proof.
We need be concerned here only with I = VOZPV62' defined in (3.14).

For the problem of this section, repeating the procedure of section 3 we

find that the reduced order system is given by

1 1
Vs = Vol(FOEOlyk + FCozk + MoCk) (5.3)

2 2 1
- M

Yiee1 = Vo2 FoPoa¥x * FoPor¥x + FSo%k + "o%k T €Bo%k) (5.4)
= H(FE__y> + €Bw,) (5.5)

LY 02¥k X’ ! .

where

= H(FE..y> + FE__y° + €Bw ) (5.6)

Ly = 01¥x 02¥k k" :
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Equations (5.3) - (5.6) are the same as equations (3.2), (3.3),
(3.5) and (2.9) with D0 replaced by H, B replaced by €B and WO by I.

Equations (2.8) and (3.4) are absent since all original measurements are

guiet. The Wiener filter for the system is given by

Al A1
yk+l = Vol(FOEolyk + Fcozk + Mogk), (5.7)
o2 = V__(F.E o2 + F E ot + FC.z. + M )
Yee1 T Vo2 0%02¥k T To”01¥k 0%k T Yo"k
+ K(n_ - HFE__9°) (5.8
e 027k’ ’ .
where
= = -1
— 1 1 1 1] 1]
K = Vi, F By, B, F ' [H(FE TE;, + BBH'] (5.9)
=%y,

: Ze is the steady state error covariance matrix and T is the unique

symmetric, positive definite solution of the steady-state Riccati equation,

- ) AL [ '
X VOZ{(FOEozzEOZFO + BOBO) (5.10)

— — —l -
- . ' Vgt . ' ' ' ' 1 ' [
FOEO2ZE02F H [H(FZOZEEOZF + BB')H'] HFEOZZEOZF }VOZ .

Since none of the coefficients in (5.9) or in (5.10) depend on €, both

K and % are independent of €. Hence,

lim I, = lim e =0 . (5.11)

e>0 >0

We summarize our results in the following theorem.

Theorem 5.1. Given the steady-state optimal estimation problem defined by

(1.1)-(1.2), where the independent Gaussian random variable x0 and the



-18-

random processes {Vk} and {wk} are mutually independent and stationary

with the statistics described above. We assume that H has full rank and
that the matrix pair (H,F) is detectable. If DkBB'Di > 0 for some nonnegative

integer k the steady-state error covariance matrix I described by (3.8)-(3.10)

converges to a null matrix as all noise vanishes.
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VI. CONCLUSIONS

We have derived a discrete Wiener filter for a stationary linear system
when some measurements are corrupted by colored noise and others by
white noise. We have shown that in the limit as all noise disappears
the steady-state error covariance matrix resulting from the filter
approaches a null matrix. Our treatment includes systems whose measure-

ments are corrupted by asymptotically stable Markov noise.



10.
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APPENDIX

Here we shall show that if the matrix pair (UOHE , V FEO) is detectable

0 0

then so is the pair

((H'Ub V.. FE ) (a.1)

FI 1) ¥ ,
! DO) EO2; 02 002

where

E. = (E

v = v 1
o ) and V (V01' vi).

01’E02 0 02

Since (UOHE v FEO) is a detectable pair there exists a matrix G

o' 0
such that V. FE - GU HE_  is stable (i.e. all its eigenvalues are strictly

00 00
interior to the unit circle). If K1=G and K2 = —VOMO then
- ¥ 1 1 ] p ] _ - .
VOFOEO (Kl'KZ)(H UO' F DO) EO VOFE0 GUOHEO
Thus, the matrix pair
1 | 1] 1]
((H UO' F DO) EO, VOFOEO) (A.2)

is detectable and the unstable modes of E'F'V' lie in the controllable

0o0o0
subspace of the pair, (EéFéVé, Eé(H‘Ué, F‘Db)). Let X denote the vector
n
space R O, where n. = n-m+r, and let X denote the reduced space X (mod N)

0

where N is defined in section 3. Let T' denote the canonical projection

of ¥ on X, let F!

0 denote the unique map induced in X by E!F!V' and

0o0o

let 56 denote the unique map defined by BéVé = EéT'. Then the matrix

pair, (ﬁb, T'E{ (H'U), F'D))) is stabilizable and the matrix pair (éb, Eé)

is observable (see [10]). But FO = VOZFOEOZ' B0 = VOZBO' and

YR (It YY1 = (H'0Y Pyt
[T EO(H ul, F DO)] (H'u., F DO) E

0 o .. Thus, the pair (A.1l) is detectable

02

and in addition, the pair (ﬁo, EO) is controllable. These two properties

allow us to apply standard theory to the system described by (3.2)-(3.5).



