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ABSTRACT

The minimal order Wiener filter is constructively derived for

a linear, time invariant, discrete system when the measurements are

corrupted by both white and colored noise. It is shown that as all noise

vanishes the steady-state error covariance associated with the filter

converges to a null matrix. No Luenberger observer is used in combination

with the filter.
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I. INTRODUCTION

Here we consider the discrete time system described by,

Xk+l = Fxk + Bwk' k>0 (1.1)

Zk = Hxk + vk k>0 (1.2)

where the state vector xk belongs to Rn, the measurement vector zk belongs

to em and the noise vector wk belongs to Rq . The Gaussian random

variable x0 has mean x0 and the stationary white noise processes {Wk }

and {vk } are mutually independent and independent of x0 and possess the

statistics, wk = N(O,Iq), vk = N(O,R), where R is positive semidefinite

and symmetric with rank r<m and I is the identity in Rq. The matrix

H has rank q, the pair (H,F) is detectable and we seek the unbiased

minimum mean squared error estimate Xk+l (Wiener filter) given the

measurements (Zkzk-_l,.. zk-k ) as k0 -+ .

Systems of the form (1.1)-(1.2) having singular R arise for example

when {vk } is not a white noise process, but a stionary Markov process.

If the process noise can be described by

Vk+l = AV k + nk (1.3)

where {nk } is a stationary white noise process then the process noise

{vk } is stationary Markov (colored). In this case the state vector

may be augmented to a where

a
xk ( kv) l

and the augmented system has the form (1.1)-(1.2) with F replaced by
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O

H replaced by (H,I) and R replaced by a null matrix. If some measurements

are corrupted by only white noise while other measurements are corrupted

by colored noise then a non-zero, but singular measurment noise intensity

occurs in the extended system. If the original pair (H,F) is detectable,

then the augmented pair,

HIis also detectable when the Markov process (1.3) is asymptotically stable.

is also detectable when the Markov process (1.3) is asymptotically stable.

Discrete Kalman filters for systems whose measurements contain

colored noise were first discussed by Bryson and Johansen [1] and by

Bryson and Henrikson [2]. In these papers only a restricted case was

discussed, which was essentially the case when the restriction of the

matrix HBB'H' to the kernel of R is nonsingular. More recently other

authors (e.g. [3]-[7]) have considered the optimal, discrete state

estimation problem in the presence of colored measurement noise, but

they primarily concentrated upon obtaining a minimal order combined

observer-estimator, where the minimal order was unknown but bounded

below by n-m+r. References [1]-[7] all deal with finite horizon estima-

tion. Here we obtain a steady-state (infinite horizon) state estimator

whose order is exactly n-m+r, and our estimator is asymptotically stable

on the disturbable subspace, i.e. on the subspace of modes which are

disturbable by process noise. We obtain an optimal state estimator of

lowest possible order without the addition of an observer, and we show
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that if R is null (all measurements are exact) then the covariance matrix

of the state estimation error approaches a null matrix as the process

noise intensity vanishes. This paper is a companion paper to [8], where

the continuous version of this problem is discussed.
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II. A FILTER WITH A FIRST ORDER SINGULARITY

Let To = (U;, W;) be a nonsingular coordinate transformation in the

space of measurement variables, and suppose that

UoRU' > 0, WOR = 0.

If R = 0 then W0 is I and U0 fails to exist. Define D = WOH and assume

that

DoBB'D' > 0. (2.1)

In section III we shall abandon assumption (2.1) and consider a more

general case. From (1.2) we have

1A
Zk = U0Zk =U(Hx + vk) (2.2)

and

W0zk = DOk . (2.3)

We shall consider (2.3) as an exact, or quiet, measurement and replace it

by its first order forward difference,

2A
Zk Wozk = D [(F-I)xk + Bwk]. (2.4)

Note that equation (1.1) together with (2.2) and (2.4) define a new optimal

filter problem. This problem has a nonsingular measurement noise intensity,

but process and measurement noise are correlated. If we would allow one more

measurement, namely Zk+l1 in our original problem then the new optimal

filter problem would be equivalent to the original. (Alternatively, we
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could replace (2.3) by its first order backward difference.)

Select an (n-m+r)xn matrix V0 so that the matrix (D ,VI) has full

rank and use this matrix to define a coordinate transformation in the

-1
state space. Let (D;,V') = (CO,Eo) '. It was shown in [8] that when

(H,F) is a detectable pair then V0 may be found so that the pair

(UoHE0 , VOFEO) is also detectable. Define a new state variable Yk' of

dimension no = n-m+r, by

Yk = VOxk. (2.5)

Then,

Xk COWoZk + E0 yk (2.6)

Substitution of (2.5) and (2.6) into (1.1) yields

Yk+l = V(FE0Yk + FC0W0zk + Bwk). (2.7)

Substitution of (2.6) into (2.2) and (2.4),defining new measurement variables

k and ,k' and noting that DO E = 0 we find,

1 A

Ck = U U(Zk-HCOWOk) = U (HEYk + vk) (2.8)

and

Ck = DO(Axk - (F-I)CoWOzk) = D (FEyk + Bwk)2.9)

Equation (2.7)-(2.9) together with (2.3) define a new estimation

problem in a reduced state space. This new problem is equivalent to the

original problem provided yO = V0 x0 Note that if P is the original

initial time state error covariance matrix then D0 Po = 0. This condition

is merely an expression of the fact that the measurement W0z0 is exact.
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Furthermore, since W zk is exact for all integers k then DOPk = 0. Thus,

the steady-state limit P of the optimal state error covariance matrix

Pk must satisfy

D0P = 0. (2.10)

Note that V0P is to be determined by the estimator and that once this

quantity is determined then so is P.

The filter problem defined by (2.7)-(2.9) with y0 = V0x0 is

equivalent to the original problem, and in the next section we shall show

that the optimal estimate Yk+l is given by

Yk+l = VoFE + VFC0W0 K(k K0 UoHEk)

+ 2( DOFEO), y0 = V0x0 (2.11)

where K1 and K2 are found by solving a steady state Riccati equation

in R . We shall also show that under a certain nonsingular coordinate

transformation, the optimal estimator splits into two parts. One part

is defined on the "undisturbable subspace" of state coordinates that

cannot be disturbed by process noise, and consists of a deterministic

difference equation. The other part is an asymptotically stable estimator

defined on the "disturbable subspace", the subspace of modes that are

disturbable by process noise.
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III. THE SEPARATION OF THE FILTER EQUATIONS

In this section we shall derive the formulas for the filter gains

K1 and K2 appearing in equation (2.11). We begin by uncorrelating

the process and measurement noise and transforming the system into

disturbable (controllable) canonical form. To this end we define

MO = BB'D (DoBB'DD)

and add zero in the form

VoMo [ - DO (FEYk + Bwk)

to the right hand side of (2.7). We obtain,

Yk+l = V0[(I-MoDO)FEOYk + FCWZk + M0k 2 + (I-MD)Bk] (3.1)

The process and measurement noise are now uncorrelated in the system described

by (3.1) and (2.8)-(2.9). The measurements zk and Ck may be considered

as known inputs for equation (3.1). Let j=O and define

-1
F. = (I-M.jD)F, Bj = (I-M jD)B, M = BB'D' (D BB'Dj)

no

N = r Ker[(VB j ) '(E0FjVO) ],

and

C = <VoFjEO Im(VOBj)>

where

<A|Im B> - <AIB > B + AB +...+ An-l 
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Then N is the undisturbable subspace of the pair (V0FjEo, VOBj) and

C is the orthogonal complement of N in R . In a coordinate system

compatible with the decomposition R = N D C we have,

01
Vo (k 

VoFOlFjEOl = 

V 02 FjE 0 1VFE 0 2 BjV 0 2 02

In this coordinate system equation (3.1) becomes,

1 1 (2j01
ykl = V (F.EyE + FCoW k + ) (3.2)
Yk+ 01 0lk 01k j

and

2 2 1 2
Yk+l =V 2 (F.E02 Yk + FjE01Yk + FCOWOZk 

+ Mjk + Bjk) (33)

Equations (2.8) and (2.9) become respectively,

1 1A 1 1 2 + v(3.4)
k Tk - UoHEO1Yk = U0 (HE02Yk k

and

2 A 2 1 y2 (35)
= k - Do 01 k = (FE0o2 k + Bwk) 

Note that Yk is found from a difference equation which is not corrupted

^1 1
by noise together with the best available estimate y0 for y0 , namely

.O = V01O' The pair (V02 FE02' V02BO) is controllable and we show in

the appendix that the pair (E' (H' U, F'D)', V02FjE02) is detectable.02 02 i 02
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Thus, by standard theory [9] the optimal estimator is described by,

YV1 (E0 2 2 (3 .
yk+l = V (FjEYk + FCoWZk + Mj V x (3.6)

,2 2 ,l 2

Yk+l V02 jE 02Yk + Fj 01Yk + FCW0 k + Mj k

-1 ,2 2 ^2
+ K1( n k UoHE02Yk K2 (k - Dj FE0 2Yk)

^2 

YO =V 0 2 O ' (3.7)

where

(K1 K2) = K = V02FjE02E2(H'UI, F'D!)Rj (3.8)

/ (HE02ZE 2 H + R)U' UoHE02ZE 2F 'D'

R. = , (3.9)

DjFE2 ZE'I H'U Dj (FE 2ZE' F' + BB')D)j 02 02 0 j 02 02 +

Z is the unique positive definite symmetric solution of the steady state

Riccati equation,

Z = V02(FjE 02ZE2Fj + B.jB)V' - KR.K' (3.10)

and the matrix

Vo2(Fj - K1UOH - K2DjF)E02 is stable. (3.11)

Note that equations (3.2)-(3.5) describe the same system as equations

(2.7)-(2.9) in appropriate coordinates, and that the variables in (3.2)-

(3.5) may be manipulated to compare Ki with Ki, i=1,2. If fact, in our

canonical coordinate system (3.2) and (3.3) together are exactly the same

as (2.7) and the terms in (3.6)-(3.7) can be reassociated to yield



k+l = VOFEO1k + VWzk + (k U OHEOYk)

+[v 0 j 1 M. 1 Dj FE0k) (3.12)

LK2+V0 2 Mji

Comparing (2.11) with (3.12) we see that

K' = (O,K'), K2 = (MWV1l, K' + MV02). (3.13)
1 1 2 -'3 2 = 0V

We also find by comparing (3.2) with (3.6) that VOlP is null. Hence in our

coordinate system we have

(0 0 0

VoPV' = E OVOPVoE;

0 02 02 02

= Eo2Vo2PVo2E2 ,

and

Z V0 2 PV;2 . (3.14)

We summarize our results in the following theorem.

Theorem 3.1. Given the system described by (1.1)-(1.2) where H has full

rank, the matrix pair (H,F) is detectable and where the random variable

x and the stationary white noise processes {wk} and {vk } possess the

statistics indicated in the introduction. Then there is a state estimator that

minimizes the limiting value of the trace of the state error covariance matrix as

the number of available measurements increases. There exist matrices C 0, V0
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such that this estimator is described by (2.3) and (3.6) - (3.11) where

j=0 in an appropriate coordinate system. The order of the estimator is

no = n-m+r, where n is the number of state variables, m is the number of

measurement variables and r is the rank of the measurement noise intensity.
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IV. A FIL4TER HAVING A HIGHER ORDER SINGULARITY

We shall now suppose that (2.1) does not hold. Then there is a

nonsingular transformation T1 = (UM, WI) of the measurement space such

that U1DoB has full rank and

W1DoB = 0 . (4.1)

If DB is null then W1 is an identity matrix and U1 is absent. Pre-

multiplying equation (2.9) by U1 and pre-multiplying (2.4) by W 1 we find

respectively,

21 A 1
k U~lk UlDo(FE'Yk + BWk) (4.2)

and

1WoAz k = W1D0 (F-I)xk (4.3)

Forming the first difference on both sides of (4.3) and noting (4.1) we

find,

WlwA Zk = W1D [(F-I) 2 xk + FBwk] . (4.4)

Applying the coordinate transformation (2.6) to (4.4) we find,

22 A 2
~k =W1 (W-A Zk D0 (F-I) C Wk) = W1D0 (F-I) [(F-I)EYk + BWk] (4.5)

Note that W1DO(F-I)B = W DoFB. Equations (2.7), (2.8), (4.2) and (4.5)

define a new optimal filtering problem. This problem is nonsincular if the

measurement noise intensity matrix,
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U 1DOBB'D6U1 U D BB'F'D'Wi

(4.6)

iW1DFBB'D;Ul W1DoFBB'F'D;WW

is nonsingular. In this event we may proceed as before to find the

optimal filter. We note that because we made use of the second difference

of a measurement vector then the optimal filter is really a two-step

smoother.

Define the matrix D1 by

' = (D'U', F' D'W')D1 (DoU1i F'D0W -

Then the matrix (4.6) is just D1 BB'D{, and the condition DlBB'D' > 0

guarantees that we can find the optimal steady state filter for the system

described by (2.7) (2.8), (4.2) and (4.5) by standard techniques.

If DiBB'D { does not have full rank we define U2, W2 so that

U2WlDoFB has full rank and W2W D F B = 0 and we difference equation

(4.4) pre-multiplied by W2.

In general, let T. = (U!, W!) be a sequence of nonsinqular trans-

formations satisfying,

i-l i-l
U.Wi W W D'F BB'(F') DWIW ...W!U' > 0,
i i-l. 2 1 0 0 1 2 1U

Wi ... F FiB = 0, i=l,.,j-
1 2 1 0

and define the matrix D. by
1

D= (DUF'DWU (F ) i W il,...,j,
0 01t2"'0 ' 1- 1

where U. is an identity matrix. Note that F may be replaced by (F-I)

in the last three expressions. Suppose that



DjBB'D' > 0 . (4.7)

Then by procedures similar to those above, we can find an optimal steady-

state filter. We find that the optimal filter is described by

Yk+l= V0FE0Yk + VOFCOWOzk + K1( - U OHE k)

+ K2Dj(k - FEO0k)

Uk = U0(HEOYk + ) , (4.8)

and

2k = Dj((F-I)E + Bwk) (4.9)

where K1 and K2 satisfy (3.13) and (3.8)-(3.11). The details of the

calculations are similar to ones in [8]. If there is no nonnegative

integer j for which (4.7) holds then an optimal Wiener filter does not

exist. If j does exist then by the Cayley-Hamilton theorem, j<n-l.

We summarize our results in the following theorem.

Theorem 4.1. Given the same hypothesis as in Theorem 3.1 except that

(2.1) is replaced by (4.7). Then j<n-l and there exist matrices V0 , CO

so that a steady-state optimal state estimator exists and can be represented

in an appropriate coordinate system by (2.3) together with (3.6)-(3.11).
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V. CONVERGENCE OF THE STATE ERROR COVARIANCE AS THE PROCESS

AND MEASUREMENTS BECOME QUIET

Here we consider the steady-state optimal estimation problem defined

by

Xk+1 = Fxk + eBwk, k>O (5.1)

zk = Hxk, k>O (5.2)

where a small parameter e multiplies the process noise. The statistics

of x0 and {Wk} are the same as before and we again suppose that H has

full rank m and that (H,F) is a detectable pair. We shall show that as

e+O the state error covariance matrix converges to a null matrix. For

simplicity of exposition we shall assume

D BB'D' = HBB'H' > 0 .
O O

If this is not true, but DkBB'D' > 0 for some positive integer k then

obvious modifications are to be made to the proof.

We need be concerned here only with Z = V02PV 2, defined in (3.14).

For the problem of this section, repeating the procedure of section 3 we

find that the reduced order system is given by

1 1

Yk+l1 = V01 (FOEO1k + FC0Zk + M(53)

2 2 1
Yk+l = V02 (FE2Yk + FE01Yk + FCZk + Mk + eBwk) (5.4)

n = H(FE02Yk + eBw (5.5)

where

5k = H(FE01 + FE02Yk + eBwk (5.6)
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Equations (5.3) - (5.6) are the same as equations (3.2), (3.3),

(3.5) and (2.9) with DO replaced by H, B replaced by eB and W0 by I.

Equations (2.8) and (3.4) are absent since all original measurements are

quiet. The Wiener filter for the system is given by

^1 11
k+l = V01 (FoEOYk + FC0zk + M0 k) (5.7)

A2 ,2 -
Yk+l = V0 2 (F EQ2Yk + FOEolYk + FCO Zk + MoCk)

^2
+ K(1k - HFE02Yk) (5.8)

where

K = V E020E0'2 F'H'[H(FE , E' +BB')H'] , (5.9)K = V02FoE0020E2 F H [H02

- -2
* z =e X,

Z> is the steady state error covariance matrix and E is the unique

symmetric, positive definite solution of the steady-state Riccati equation,

Z = V02 {(FOE-2E' 2F + BOB;) (5.10)

- oEo2EE2 F'H H' [H(FZ 02EE2F' + BBI)HI'] HFE-02l E 2F N2

Since none of the coefficients in (5.9) or in (5.10) depend on e, both

K and Z are independent of e. Hence,

lim Ee = lim e2 = o . (5.11)
EIO e ezO

We summarize our results in the following theorem.

Theorem 5.1. Given the steady-state optimal estimation problem defined by

(1.1)-(1.2), where the independent Gaussian random variable x0 and the
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random processes {vk } and {wk } are mutually independent and stationary

with the statistics described above. We assume that H has full rank and

that the matrix pair (H,F) is detectable. If D BB'D' > 0 for some nonnegative
k k

integer k the steady-state error covariance matrix Z described by (3.8)-(3.10)

converges to a null matrix as all noise vanishes.



-19-

VI. CONCLUSIONS

We have derived a discrete Wiener filter for a stationary linear system

when some measurements are corrupted by colored noise and others by

white noise. We have shown that in the limit as all noise disappears

the steady-state error covariance matrix resulting from the filter

approaches a null matrix. Our treatment includes systems whose measure-

ments are corrupted by asymptotically stable Markov noise.
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APPENDIX

Here we shall show that if the matrix pair (UoHE0 , VOFE0) is detectable

then so is the pair

((H'Uo, F' D)'E 02 V02F0E 02 (A.1)

where

E0 = (E01E 02) and V0 (V01, V02)

Since (UOHEO, VOFEO) is a detectable pair there exists a matrix G

such that VOFE0 - GUoHE0 is stable (i.e. all its eigenvalues are strictly

interior to the unit circle). If K1=G and K2 = -V0M0 then

VoFoE - (K1,K ) (H'U, F'D) 'Eo = VOFEO - GU HE

Thus, the matrix pair

((H'U, F'Do)'Eo, VOFOEO) (A.2)

is detectable and the unstable modes of E'F'V' lie in the controllable

subspace of the pair, (EoF0V0, E%(H'U0 , F'D;)). Let X denote the vector

space R , where no = n-m+r, and let X denote the reduced space X (mod N)

where N is defined in section 3. Let T' denote the canonical projection

of X on X, let F- denote the unique map induced in X by E'F'V' and

let B' denote the unique map defined by B'V' = B'T'. Then the matrix

pair, (F', T'E'(H'U6, F'D6)) is stabilizable and the matrix pair (Bo, F6)

is observable (see [10]). But F = V02 FoE02' B = V02 B' and

[T'E(H' U, F'Do)]' = (H'U0 , F'D;)'E 2. Thus, the pair (A.1) is detectable

and in addition, the pair (F0o BO) is controllable. These two properties

allow us to apply standard theory to the system described by (3.2)-(3.5).


