Queues

Lecturer: Stanley B. Gershwin

Stochastic processes

- t is time.
- $\boldsymbol{X}()$ is a stochastic process if $\boldsymbol{X}(\boldsymbol{t})$ is a random variable for every t.
$\bullet t$ is a scalar - it can be discrete or continuous.
- $\boldsymbol{X}(t)$ can be discrete or continuous, scalar or vector.

Stochastic

Markov processes

- A Markov process is a stochastic process in which the probability of finding \boldsymbol{X} at some value at time $\boldsymbol{t}+\delta \boldsymbol{t}$ depends only on the value of \boldsymbol{X} at time \boldsymbol{t}.
- Or, let $x(s), s \leq t$, be the history of the values of X before time \boldsymbol{t} and let \boldsymbol{A} be a possible value of \boldsymbol{X}.
Then
$\operatorname{prob}\{X(t+\delta t)=A \mid X(s)=x(s), s \leq t\}=$ $\operatorname{prob}\{X(t+\delta t)=A \mid X(t)=x(t)\}$

Stochastic processes

Markov processes

- In words: if we know what \boldsymbol{X} was at time \boldsymbol{t}, we don't gain any more useful information about $X(t+\delta t)$ by also knowing what \boldsymbol{X} was at any time earlier than \boldsymbol{t}.
- This is the definition of a class of mathematical models. It is NOT a statement about reality!! That is, not everything is a Markov process.

Markov

Example

- I have $\$ 100$ at time $\boldsymbol{t}=\mathbf{0}$.
- At every time $t \geq 1$, I have $\$ N(t)$.
\star A (possibly biased) coin is flipped.
\star If it lands with H showing, $N(t+1)=N(t)+1$.
\star If it lands with T showing, $N(t+1)=N(t)-1$.
$N(t)$ is a Markov process. Why?

Markov

Discrete state, discrete time

processes

States and transitions

- States can be numbered $0,1,2,3, \ldots$ (or with multiple indices if that is more convenient).
- Time can be numbered $0,1,2,3, \ldots$ (or $0, \Delta, 2 \Delta$, 3Δ, ... if more convenient).
- The probability of a transition from j to i in one time unit is often written $\boldsymbol{P}_{i j}$, where

$$
P_{i j}=\operatorname{prob}\{X(t+1)=i \mid X(t)=j\}
$$

Markov processes

Discrete state, discrete time

States and transitions

Transition graph

$\boldsymbol{P}_{i j}$ is a probability. Note that $\boldsymbol{P}_{i i}=\mathbf{1}-\sum_{m, m \neq i} \boldsymbol{P}_{m i}$.

Markov processes

States and transitions

Example: $\boldsymbol{H}(\boldsymbol{t})$ is the number of Hs after t coin flips.

Assume probability of H is \boldsymbol{p}.

Markov processes

States and transitions

Example: Coin flip bets on Slide 5.

Assume probability of H is \boldsymbol{p}.

Markov
 processes

Discrete state, discrete time

States and transitions

- Define $\pi_{i}(t)=\operatorname{prob}\{X(t)=i\}$.
- Transition equations: $\pi_{i}(t+1)=\sum_{j} P_{i j} \pi_{j}(t)$. (Law of Total Probability)
- Normalization equation: $\sum_{i} \boldsymbol{\pi}_{i}(t)=1$.

Markov
 processes

Discrete state, discrete time

States and transitions

Markov
 processes

Discrete state, discrete time

States and transitions

Markov
 processes

Discrete state, discrete time

States and transitions

$\pi_{2}(t+1)=P_{21} \pi_{1}(t)+P_{22} \pi_{2}(t)+P_{24} \pi_{4}(t)+P_{25} \pi_{5}(t)$

Note that $P_{22}=1-P_{52}$.

Markov
 processes

Discrete state, discrete time

States and transitions

- Steady state: $\pi_{i}=\lim _{t \rightarrow \infty} \pi_{i}(t)$, if it exists.
- Steady-state transition equations: $\boldsymbol{\pi}_{i}=\sum_{j} \boldsymbol{P}_{i j} \boldsymbol{\pi}_{j}$.
- Alternatively, steady-state balance equations:
$\boldsymbol{\pi}_{i} \sum_{m, m \neq i} \boldsymbol{P}_{m i}=\sum_{j, j \neq i} \boldsymbol{P}_{i j} \boldsymbol{\pi}_{j}$
- Normalization equation: $\sum_{i} \pi_{i}=1$.

Markov Discrete state, discrete time

States and transitions

Balance equation:
$\pi_{4}\left(P_{14}+P_{24}+P_{64}\right)$
$=\pi_{5} P_{45}$
in steady state only.

Markov processes

Discrete state, discrete time

Geometric distribution

Consider a two-state system. The system can go from 1 to 0 , but not from 0 to 1 .

Let \boldsymbol{p} be the conditional probability that the system is in state 0 at time $t+1$, given that it is in state 1 at time t. Then

$$
p=\operatorname{prob}[\alpha(t+1)=0 \mid \alpha(t)=1]
$$

Markov processes

Discrete state, discrete time

Let $\pi(\alpha, t)$ be the probability of being in state α at time t.
Then, since

$$
\begin{aligned}
\pi(0, t+1) & =\operatorname{prob}[\alpha(t+1)=0 \mid \alpha(t)=1] \operatorname{prob}[\alpha(t)=1] \\
& +\operatorname{prob}[\alpha(t+1)=0 \mid \alpha(t)=0] \operatorname{prob}[\alpha(t)=0]
\end{aligned}
$$

we have

$$
\begin{aligned}
& \pi(0, t+1)=p \pi(1, t)+\pi(0, t) \\
& \pi(1, t+1)=(1-p) \pi(1, t)
\end{aligned}
$$

and the normalization equation

$$
\pi(1, t)+\pi(0, t)=1
$$

Markov processes

Discrete state, discrete time

Assume that $\pi(1,0)=1$. Then the solution is

$$
\begin{aligned}
& \pi(0, t)=1-(1-p)^{t}, \\
& \pi(1, t)=(1-p)^{t} .
\end{aligned}
$$

Markov processes

Discrete state, discrete time

Geometric Distribution

Markov processes

Unreliable machine

$1=$ up; $0=$ down.

Markov processes

Unreliable machine

The probability distribution satisfies

$$
\begin{aligned}
& \pi(0, t+1)=\pi(0, t)(1-r)+\pi(1, t) p \\
& \pi(1, t+1)=\pi(0, t) r+\pi(1, t)(1-p)
\end{aligned}
$$

Markov
 processes

Discrete state, discrete time

Unreliable machine

It is not hard to show that

$$
\begin{aligned}
\pi(0, t)= & \pi(0,0)(1-p-r)^{t} \\
& +\frac{p}{r+p}\left[1-(1-p-r)^{t}\right] \\
\pi(1, t)= & \pi(1,0)(1-p-r)^{t} \\
& +\frac{r}{r+p}\left[1-(1-p-r)^{t}\right]
\end{aligned}
$$

Markov processes

Discrete state, discrete time

Unreliable machine

Discrete Time Unreliable Machine

Markov
Discrete state, discrete time

processes

Unreliable machine

As $t \rightarrow \infty$,

$$
\begin{aligned}
& \pi(0) \rightarrow \frac{p}{r+p} \\
& \pi(1) \rightarrow \frac{r}{r+p}
\end{aligned}
$$

which is the solution of

$$
\begin{aligned}
& \pi(0)=\pi(0)(1-r)+\pi(1) p \\
& \pi(1)=\pi(0) r+\pi(1)(1-p)
\end{aligned}
$$

Markov processes

Unreliable machine

If the machine makes one part per time unit when it is operational, the average production rate is

$$
\pi(1)=\frac{r}{r+p}
$$

Discrete state, continuous time

processes

States and transitions

- States can be numbered $0,1,2,3, \ldots$ (or with multiple indices if that is more convenient).
- Time is a real number, defined on $(-\infty, \infty)$ or a smaller interval.
- The probability of a transition from \boldsymbol{j} to \boldsymbol{i} during $[t, t+\delta t]$ is approximately $\lambda_{i j} \delta t$, where δt is small, and
$\lambda_{i j} \delta t \approx \operatorname{prob}\{X(t+\delta t)=i \mid X(t)=j\}$ for $i \neq j$

Markov Discrete state, continuous time

 processes
States and transitions

Transition graph

$\lambda_{i j}$ is a probability rate. $\lambda_{i j} \delta t$ is a probability.

States and transitions

Transition equation
Define $\pi_{i}(t)=\operatorname{prob}\{\boldsymbol{X}(t)=i\}$. Then for δt small,

$$
\begin{gathered}
\pi_{5}(t+\delta t) \approx \\
\left(1-\lambda_{25} \delta t-\lambda_{45} \delta t-\lambda_{65} \delta t\right) \pi_{5}(t)
\end{gathered}
$$

$+\lambda_{52} \delta t \pi_{2}(t)+\lambda_{53} \delta t \pi_{3}(t)+\lambda_{56} \delta t \pi_{6}(t)+\lambda_{57} \delta t \pi_{7}(t)$

Markov
 Discrete state, continuous time

processes

States and transitions

Or,

$$
\begin{gathered}
\pi_{5}(t+\delta t) \approx \pi_{5}(t) \\
-\left(\lambda_{25}+\lambda_{45}+\lambda_{65}\right) \pi_{5}(t) \delta t
\end{gathered}
$$

$$
+\left(\lambda_{52} \pi_{2}(t)+\lambda_{53} \pi_{3}(t)+\lambda_{56} \pi_{6}(t)+\lambda_{57} \pi_{7}(t)\right) \delta t
$$

Markov Discrete state, continuous time

processes

States and transitions

Or,

$$
\begin{gathered}
\lim _{\delta t \rightarrow 0} \frac{\pi_{5}(t+\delta t)-\pi_{5}(t)}{\delta t}=\frac{d \pi_{5}}{d t}(t)= \\
-\left(\lambda_{25}+\lambda_{45}+\lambda_{65}\right) \pi_{5}(t) \\
+\lambda_{52} \pi_{2}(t)+\lambda_{53} \pi_{3}(t)+\lambda_{56} \pi_{6}(t)+\lambda_{57} \pi_{7}(t)
\end{gathered}
$$

States and transitions

- Define $\pi_{i}(t)=\operatorname{prob}\{X(t)=i\}$
- It is convenient to define $\boldsymbol{\lambda}_{i i}=-\sum_{j \neq i} \boldsymbol{\lambda}_{j i}$
-Transition equations: $\frac{d \pi_{i}(t)}{d t}=\sum_{j} \lambda_{i j} \pi_{j}(t)$.
- Normalization equation: $\sum_{i} \pi_{i}(t)=1$.

States and transitions

- Steady state: $\pi_{i}=\lim _{t \rightarrow \infty} \pi_{i}(t)$, if it exists.
- Steady-state transition equations: $\mathbf{0}=\sum_{j} \boldsymbol{\lambda}_{i j} \boldsymbol{\pi}_{j}$.
- Alternatively, steady-state balance equations:
$\boldsymbol{\pi}_{i} \sum_{m, m \neq i} \boldsymbol{\lambda}_{m i}=\sum_{j, j \neq i} \boldsymbol{\lambda}_{i j} \boldsymbol{\pi}_{j}$
- Normalization equation: $\sum_{i} \pi_{i}=1$.

Discrete state, continuous time

processes

States and transitions

Sources of confusion in continuous time models:

- Never Draw self-loops in continuous time markov process graphs.
- Never write $1-\lambda_{14}-\lambda_{24}-\lambda_{64}$. Write

$$
\begin{array}{ll}
\star & 1-\left(\lambda_{14}+\lambda_{24}+\lambda_{64}\right) \delta t, \text { or } \\
\star & -\left(\lambda_{14}+\lambda_{24}+\lambda_{64}\right)
\end{array}
$$

- $\boldsymbol{\lambda}_{i i}=-\sum_{j \neq i} \boldsymbol{\lambda}_{j i}$ is NOT a rate and NOT a probability. It is ONLY a convenient notation.

Markov processes

Discrete state, continuous time

Exponential

Exponential random variable T : the time to move from state 1 to state 0.

Markov
 Discrete state, continuous time

processes

Exponential

$\pi(0, t+\delta t)=$
$\operatorname{prob}[\alpha(t+\delta t)=0 \mid \alpha(t)=1] \operatorname{prob}[\alpha(t)=1]+$ $\operatorname{prob}[\alpha(t+\delta t)=0 \mid \alpha(t)=0] \operatorname{prob}[\alpha(t)=0]$.
or

$$
\pi(0, t+\delta t)=p \delta t \pi(1, t)+\pi(0, t)+o(\delta t)
$$

or

$$
\frac{d \pi(0, t)}{d t}=p \pi(1, t)
$$

Discrete state, continuous time

processes

Exponential

Since $\pi(0, t)+\pi(1, t)=1$,

$$
\frac{d \pi(1, t)}{d t}=-p \pi(1, t)
$$

If $\pi(1,0)=1$, then

$$
\pi(1, t)=e^{-p t}
$$

and

$$
\pi(0, t)=1-e^{-p t}
$$

Exponential

The probability that the transition takes place at some $T \in[t, t+\delta t]$ is

$$
\operatorname{prob}[\alpha(t+\delta t)=0 \text { and } \alpha(t)=1]=e^{-p t} p \delta t .
$$

The exponential density function is $p e^{-p t}$.
The time of the transition from 1 to 0 is said to be exponentially distributed with rate p. The expected transition time is $\mathbf{1} / \boldsymbol{p}$. (Prove it!)

Markov

Discrete state, continuous time

processes

Exponential

- $f(t)=\mu e^{-\mu t}$ for $t \geq 0 ; f(t)=0$ otherwise; $F(t)=1-e^{-\mu t}$ for $t \geq 0 ; F(t)=0$ otherwise.
- $E T=1 / \mu, V_{T}=1 / \mu^{2}$. Therefore, $\mathrm{cv}=1$.

Exponential

- Memorylessness:
$P(T>t+x \mid T>x)=P(T>t)$
- $P(t \leq T \leq t+\delta t \mid T \geq t) \approx \mu \delta t$ for small δt.
- If T_{1}, \ldots, T_{n} are independent exponentially distributed random variables with parameters $\mu_{1} \ldots, \mu_{n}$ and $T=\min \left(T_{1}, \ldots, T_{n}\right)$, then T is an exponentially distributed random variable with parameter $\mu=\mu_{1}+\ldots+\mu_{n}$.

Markov processes

Discrete state, continuous time

Unreliable machine

Continuous time unreliable machine. MTTF=1/p; MTTR=1/r.

Markov
 Discrete state, continuous time

 processes
Poisson Process

Let $T_{i}, i=1, \ldots$ be a set of independent exponentially distributed random variables with parameter $\boldsymbol{\lambda}$ that each represent the time until an event occurs. Then $\sum_{i=0}^{n} \boldsymbol{T}_{\boldsymbol{i}}$ is the time required for \boldsymbol{n} such events.
Define $N(t)=\left\{\begin{array}{l}0 \text { if } T_{1}>t \\ n \text { such that } \sum_{i=0}^{n} T_{i} \leq t, \quad \sum_{i=0}^{n+1} T_{i}>t\end{array}\right.$
Then $N(t)$ is a Poisson process with parameter λ.

Discrete state, continuous time

Poisson Distribution

$$
P(N(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

$$
\lambda t=6
$$

Markov
 processes

 Discrete state, continuous time
Poisson Distribution

$$
P(N(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad \lambda=2
$$

Queueing theory

$M / M / 1$ Queue

- Simplest model is the $M / M / 1$ queue:
\star Exponentially distributed inter-arrival times — mean is $1 / \boldsymbol{\lambda} ; \boldsymbol{\lambda}$ is arrival rate (customers/time). (Poisson arrival process.)
\star Exponentially distributed service times - mean is $1 / \mu ; \mu$ is service rate (customers/time).
$\star 1$ server.
* Infinite waiting area.
- Define the utilization $\rho=\lambda / \mu$.

Queueing theory

Sample path

Number of customers in the system as a function of time.

Queueing theory

$M / M / 1$ Queue

State Space

Queueing theory

$M / M / 1$ Queue

Performance of $M / M / 1$ queue

Let $\boldsymbol{P}(\boldsymbol{n}, \boldsymbol{t})$ be the probability that there are \boldsymbol{n} parts in the system at time t. Then,

$$
\begin{aligned}
P(n, t+\delta t)= & P(n-1, t) \lambda \delta t+P(n+1, t) \mu \delta t \\
& +P(n, t)(1-(\lambda \delta t+\mu \delta t))+o(\delta t) \\
& \text { for } n>0
\end{aligned}
$$

and

$$
P(0, t+\delta t)=P(1, t) \mu \delta t+P(0, t)(1-\lambda \delta t)+o(\delta t)
$$

Queueing theory

$M / M / 1$ Queue

Performance of $M / M / 1$ queue

Or,

$$
\begin{aligned}
\frac{d P(n, t)}{d t}= & P(n-1, t) \lambda+P(n+1, t) \mu-P(n, t)(\lambda+\mu) \\
& n>0 \\
\frac{d P(0, t)}{d t}= & P(1, t) \mu-P(0, t) \lambda .
\end{aligned}
$$

If a steady state distribution exists, it satisfies

$$
\begin{aligned}
& 0=P(n-1) \lambda+P(n+1) \mu-P(n)(\lambda+\mu), n>0 \\
& 0=P(1) \mu-P(0) \lambda . \\
& \text { Why "if"? }
\end{aligned}
$$

$M / M / 1$ Queue

Queueing theory

Performance of $M / M / 1$ queue

Let $\rho=\lambda / \mu$. These equations are satisfied by

$$
P(n)=(1-\rho) \rho^{n}, n \geq 0
$$

if $\rho<1$. The average number of parts in the system is

$$
\bar{n}=\sum_{n} n P(n)=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}
$$

Queueing theory

$M / M / 1$ Queue

Little's Law

- True for most systems of practical interest.
- Steady state only.
- $L=$ the average number of customers in a system.
- $W=$ the average delay experienced by a customer in the system.

$$
L=\lambda W
$$

In the $M / M / 1$ queue, $L=\bar{n}$ and

$$
W=\frac{1}{\mu-\lambda} .
$$

Queueing theory

$M / M / 1$ Queue

Capacity

- μ is the capacity of the system.
- If $\boldsymbol{\lambda}<\boldsymbol{\mu}$, system is stable and waiting time remains bounded.
- If $\lambda>\mu$, waiting time grows over time.

Queueing theory

$M / M / 1$ Queue

Capacity

- To increase capacity, increase μ.
- To decrease delay for a given λ, increase μ.

Queueing theory

$M / M / 1$ Queue

Other Single-Stage Models

Things get more complicated when:

- There are multiple servers.
- There is finite space for queueing.
- The arrival process is not Poisson.
- The service process is not exponential.

Closed formulas and approximations exist for some cases.

Queueing theory

$M / M / s$ Queue

Queueing theory

$M / M / s$ Queue

State Space

- The service rate when there are $k>s$ customers in the system is $s \mu$ since all s servers are always busy.
- The service rate when there are $k \leq s$ customers in the system is $k \mu$ since only k of the servers are busy.

Queueing theory

$M / M / s$ Queue

Steady-State Probability Distribution

$$
P(k)= \begin{cases}P(0) \frac{s^{k} \rho^{k}}{k!}, & k \leq s \\ P(0) \frac{s^{s} \rho^{k}}{s!}, & k>s\end{cases}
$$

where

$$
\rho=\frac{\lambda}{s \mu}<1 ; \quad P(0) \text { chosen so that } \sum_{k} P(k)=1
$$

Queueing theory

$M / M / s$ Queue

Performance

Queueing theory

$M / M / s$ Queue

Performance

Queueing theory

$M / M / s$ Queue

Performance

- Why do the curves go to infinity at the same value of λ ?
- Why is the $(\mu, s)=(.5,8)$ curve the highest, followed by $(\mu, s)=(1,4)$, etc.?

Networks of Queues

- Set of queues where customers can go to another queue after completing service at a queue.
- Open network: where customers enter and leave the system. $\boldsymbol{\lambda}$ is known and we must find L and W.
- Closed network: where the population of the system is constant. L is known and we must find λ and W.

Networks of Queues

Examples

Open networks

- internet traffic
- emergency room
- food court
- airport (arrive, ticket counter, security, passport control, gate, board plane)
- factory with serial production system and no material control after it enters

Networks of Queues

Examples

Food Court

Networks of Queues

- factory with material controlled by keeping the number of items constant (CONWIP)
- factory with limited fixtures or pallets

Jackson Networks

Benefits

Queueing networks are often modeled as Jackson networks.

- Easy to compute performance measures (capacity, average time in system, average queue lengths).
- Easily gives intuition.
- Easy to optimize and to use for design.
- Valid (or good approximation) for a large class of systems ...

Jackson Networks

Limitations

-... but not everything. Storage areas must be infinite (i.e., blocking never occurs).

* This assumption fails for systems with bottlenecks.
- In Jackson networks, there is only one class. That is, all items are interchangeable. However, this restriction can be relaxed.

Jackson Networks

Open Jackson Networks

Assumptions

Goal of analysis: say something about how much inventory there is in this system and how it is distributed.

Jackson Networks

Open Jackson Networks

Assumptions

- Items arrive from outside the system to node i according to a Poisson process with rate α_{i}.
- $\boldsymbol{\alpha}_{\boldsymbol{i}}>\mathbf{0}$ for at least one \boldsymbol{i}.
- When an item's service at node i is finished, it goes to node j next with probability $\boldsymbol{p}_{\boldsymbol{i j}}$.
- If $\boldsymbol{p}_{\boldsymbol{i 0}}=\mathbf{1}-\sum_{j} \boldsymbol{p}_{\boldsymbol{i j}}>\mathbf{0}$, then items depart from the network from node \boldsymbol{i}.
- $\boldsymbol{p}_{\boldsymbol{i 0}}>\mathbf{0}$ for at least one \boldsymbol{i}.
- We will focus on the special case in which each node has a single server with exponential processing time. The service rate of node i is μ_{i}.

Jackson
 Networks

Open Jackson Networks

- Define $\boldsymbol{\lambda}_{i}$ as the total arrival rate of items to node i. This includes items entering the network at i and items coming from all other nodes.
- Then $\lambda_{i}=\alpha_{i}+\sum_{j} p_{j i} \lambda_{j}$
- In matrix form, let $\boldsymbol{\lambda}$ be the vector of $\boldsymbol{\lambda}_{i}, \boldsymbol{\alpha}$ be the vector of α_{i}, and P be the matrix of $\boldsymbol{p}_{i j}$. Then

$$
\boldsymbol{\lambda}=\boldsymbol{\alpha}+\mathrm{P}^{T} \boldsymbol{\lambda}
$$

or

$$
\lambda=\left(I-P^{T}\right)^{-1} \alpha
$$

Jackson Networks

Open Jackson Networks

Product Form Solution

- Define $\pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ to be the steady-state probability that there are n_{i} items at node i, $i=1, \ldots, k$.
- Define $\rho_{i}=\lambda_{i} / \mu_{i} ; \quad \pi_{i}\left(n_{i}\right)=\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}$.
- Then

$$
\begin{gathered}
\pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\prod_{i} \pi_{i}\left(n_{i}\right) \\
\bar{n}_{i}=E n_{i}=\frac{\rho_{i}}{1-\rho_{i}}
\end{gathered}
$$

Does this look familiar?

Jackson Networks

Open Jackson Networks

Product Form Solution

- This looks as though each station is an $M / M / \mathbf{1}$ queue. But even though this is NOT in general true, the formula holds.
- The product form solution holds for some more general cases.
- This exact analytic formula is the reason that the Jackson network model is very widely used sometimes where it does not belong!

Jackson Networks

Closed Jackson Networks

- Consider an extension in which
$\star \alpha_{i}=0$ for all nodes i.
$\star p_{i 0}=1-\sum_{j} p_{i j}=0$ for all nodes i.
- Then
* Since nothing is entering and nothing is departing from the network, the number of items in the network is constant.

That is, $\sum_{i} n_{i}(t)=N$ for all t.
$\star \lambda_{i}=\sum p_{j i} \lambda_{j}$ does not have a unique solution:
If $\left\{\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{k}^{*}\right\}$ is a solution, then $\left\{s \lambda_{1}^{*}, s \lambda_{2}^{*}, \ldots, s \lambda_{k}^{*}\right\}$ is also a solution for any $s \geq \mathbf{0}$.

Jackson Networks

For some s, define
$\pi^{o}\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\prod_{i}\left[\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}\right]=\left[\prod_{i}\left(1-\rho_{i}\right)\right]\left[\prod_{i} \rho_{i}^{n_{i}}\right]$
where

$$
\rho_{i}=\frac{s \lambda_{i}^{*}}{\mu_{i}}
$$

This looks like the open network probability distribution, but it is a function of s.

Jackson Networks

Closed Jackson Networks

Consider a closed network with a population of N. Then if $\sum_{i} n_{i}=N$,

$$
\pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\frac{\pi^{o}\left(n_{1}, n_{2}, \ldots, n_{k}\right)}{\sum_{m_{1}+m_{2}+\ldots+m_{k}=N} \pi^{o}\left(m_{1}, m_{2}, \ldots, m_{k}\right)}
$$

Since π^{o} is a function of s, it looks like π is a function of s. But it is not because all the s 's cancel! There are nice ways of calculating

$$
C(k, N)=\sum_{m_{1}+m_{2}+\ldots+m_{k}=N} \pi^{o}\left(m_{1}, m_{2}, \ldots, m_{k}\right)
$$

Jackson Networks

Closed Jackson Networks

Application - Simple FMS model

Solberg's "CANQ" model.

Let $\left\{p_{i j}\right\}$ be the set of routing probabilities, as defined on slide 67.
$p_{i M}=1$ if $i \neq M$
$p_{M j}=q_{j}$ if $j \neq M$
$\boldsymbol{p}_{i j}=\mathbf{0}$ otherwise
Service rate at Station i is μ_{i}.

Jackson Networks

Closed Jackson Networks

Application - Simple FMS model

Let N be the number of pallets.
The production rate is

$$
P=\frac{C(M, N-1)}{C(M, N)} \mu_{m}
$$

and $C(M, N)$ is easy to calculate in this case.

- Input data: $M, N, q_{j}, \mu_{j}(j=1, \ldots, M)$
- Output data: $P, W, \rho_{j}(j=1, \ldots, M)$

Jackson Networks

Closed Jackson Networks

Application - Simple FMS model

Closed Jackson Networks

Application - Simple FMS model

Average time in system

Closed Jackson Networks

Application - Simple FMS model

Closed Jackson Networks

Application - Simple FMS model

Closed Jackson Networks

Application - Simple FMS model

Average time in system

Closed Jackson Networks

Application - Simple FMS model

MIT OpenCourseWare
http://ocw.mit.edu

2.854 / 2.853 Introduction to Manufacturing Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

