
Queues 

Lecturer: Stanley B. Gershwin 



Stochastic

processes 

• t is time. 

• X() is a stochastic process if X(t) is a random 
variable for every t. 

• t is a scalar — it can be discrete or continuous. 

• X(t) can be discrete or continuous, scalar or vector.




Stochastic Markov processes


processes 

• A Markov process is a stochastic process in which

the probability of finding X at some value at time

t + δt depends only on the value of X at time t.


• Or, let x(s), s ≤ t, be the history of the values of X 

before time t and let A be a possible value of X. 
Then 
prob{X(t + δt) = A|X(s) = x(s), s ≤ t} = 
prob{X(t + δt) = A|X(t) = x(t)} 



Stochastic Markov processes


processes 

• In words: if we know what X was at time t, we don’t 
gain any more useful information about X(t + δt) by 
also knowing what X was at any time earlier than t. 

• This is the definition of a class of mathematical 
models. It is NOT a statement about reality!! That 
is, not everything is a Markov process. 



Markov Example


processes 

• I have $100 at time t = 0. 

• At every time t ≥ 1, I have $N(t). 

⋆ A (possibly biased) coin is flipped. 
⋆ If it lands with H showing, N(t + 1) = N(t) + 1.

⋆ If it lands with T showing, N(t + 1) = N(t) − 1.


N(t) is a Markov process. Why? 



Markov 
processes 

Discrete state, discrete time 

States and transitions 

• States can be numbered 0, 1, 2, 3, ... (or with

multiple indices if that is more convenient).


• Time can be numbered 0, 1, 2, 3, ... (or 0, Δ, 2Δ, 
3Δ, ... if more convenient). 

• The probability of a transition from j to i in one time 
unit is often written Pij, where 

Pij = prob{X(t + 1) = i|X(t) = j} 
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Markov 
processes 

Discrete state, discrete time 

States and transitions 

Transition graph
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Pij is a probability. Note that Pii = 1 − m,m � Pmi.
=i 



Markov 
processes 

Discrete state, discrete time 

States and transitions 

Example : H(t) is the number of Hs after t coin flips. 

Assume probability of H is p. 

ppp p p 
0 1 2 3 4 

1−p 1−p 1−p 1−p 1−p 



Markov 
processes 

Discrete state, discrete time 

States and transitions 

Example : Coin flip bets on Slide 5. 

Assume probability of H is p. 

1−p 1−p 1−p 1−p 1−p 1−p 1−p 1−p 1−p 

100 1029896 10397 10199 
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Markov 
processes 

Discrete state, discrete time 

States and transitions 

• Define πi(t) = prob{X(t) = i}. 

• Transition equations: πi(t + 1) = j Pijπj(t).

(Law of Total Probability) 

• Normalization equation: i πi(t) = 1. 



Markov 
processes 

Discrete state, discrete time 

States and transitions 
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Transition equation: 

π4(t + 1) = π5(t)P45 

+π4(t)(1 − P14 − P24 − P64) 



Markov 
processes 

Discrete state, discrete time 

States and transitions 
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prob{X(t + 1) = 2} 

= prob{X(t + 1) = 2|X(t) = 1}prob{X(t)

+prob{X(t + 1) = 2|X(t) = 2}prob{X(t)

+prob{X(t + 1) = 2|X(t) = 4}prob{X(t)

+prob{X(t + 1) = 2|X(t) = 5}prob{X(t)

= 1} 

= 2} 

= 4} 

= 5} 



Markov 
processes 

Discrete state, discrete time 

States and transitions 
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Or, since 

Pij = prob{X(t + 1) = i|X(t) = j}


and


πi(t) = prob{X(t) = i},


π2(t + 1) = P21π1(t) + P22π2(t) + P24π4(t) + P25π5(t) 

Note that P22 = 1 − P52. 
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Discrete state, discrete time 

States and transitions 

limt→∞ πi(t), if it exists. 

Markov

processes


• Steady state: πi = 

• Steady-state transition equations: πi = j Pijπj. 

• Alternatively, steady-state balance equations: 
πi m,m � Pmi = j,j=i Pijπj=i �

• Normalization equation: i πi = 1. 
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Markov 
processes 

Discrete state, discrete time 

States and transitions 
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P Balance equation: 

π4(P14 + P24 + P64) 

= π5P45 

in steady state only .




Markov 
processes 

Discrete state, discrete time 

Geometric distribution 

Consider a two-state system. The system can go from 1 to 0, but 
not from 0 to 1. 

1 0 

p 

1−p 1 

Let p be the conditional probability that the system is in state 0 at 
time t + 1, given that it is in state 1 at time t. Then 

p = prob [α(t + 1) = 0|α(t) = 1] .




Markov Discrete state, discrete time


processes 
1 0 

p 

1−p 1 

Let π(α, t) be the probability of being in state α at time t. 

Then, since 

π(0, t + 1) = prob [α(t + 1) = 0|α(t) = 1] prob [α(t) = 1]


+ prob [α(t + 1) = 0|α(t) = 0] prob [α(t) = 0], 

we have 
π(0, t + 1) = pπ(1, t) + π(0, t), 

π(1, t + 1) = (1 − p)π(1, t), 

and the normalization equation 

π(1, t) + π(0, t) = 1.




Markov Discrete state, discrete time


processes 
1 0 

p 

1−p 1 

Assume that π(1, 0) = 1. Then the solution is


π(0, t) = 1 − (1 − p)t, 

π(1, t) = (1 − p)t. 



Markov Discrete state, discrete time


processes 
1 0 

p 

1−p 1 

Geometric Distribution 
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Markov 
processes 

Discrete state, discrete time 

Unreliable machine 

1=up; 0=down. 
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Markov 
processes 

Discrete state, discrete time 

Unreliable machine 

The probability distribution satisfies 

π(0, t + 1) = π(0, t)(1 − r) + π(1, t)p,


π(1, t + 1) = π(0, t)r + π(1, t)(1 − p).




Markov 
processes 

Discrete state, discrete time 

Unreliable machine 

It is not hard to show that 

π(0, t) = π(0, 0)(1 − p − r)t 

+ 
p � 

1 − (1 − p − r)t 
� 

, 
r + p 

π(1, t) = π(1, 0)(1 − p − r)t 

r � � 

+ 1 − (1 − p − r)t . 
r + p 



Markov 
processes 

Discrete state, discrete time 

Unreliable machine 

Discrete Time Unreliable Machine 
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Markov 
processes 

Discrete state, discrete time 

Unreliable machine 

As t → ∞, 
p

π(0) → , 
r + p


r

π(1) → 

r + p 
which is the solution of 

π(0) = π(0)(1 − r) + π(1)p,


π(1) = π(0)r + π(1)(1 − p).




Markov 
processes 

Discrete state, discrete time 

Unreliable machine 

If the machine makes one part per time unit when it is 
operational, the average production rate is 

r 
π(1) = 

r + p 



Markov 
processes 

Discrete state, continuous time 

States and transitions 

• States can be numbered 0, 1, 2, 3, ... (or with

multiple indices if that is more convenient).


• Time is a real number, defined on (−∞, ∞) or a 
smaller interval. 

• The probability of a transition from j to i during 
[t, t + δt] is approximately λijδt, where δt is small, 
and 

λijδt ≈ prob{X(t + δt) = i|X(t) = j} for i � j
= 



Markov 
processes 

Discrete state, continuous time 

States and transitions 

Transition graph
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λij is a probability rate. λijδt is a probability. 



Markov 
processes 

Discrete state, continuous time 

States and transitions 

Transition equation 

Define πi(t) = prob{X(t) = i}. Then for δt small, 

π5(t + δt) ≈ 

(1 − λ25δt − λ45δt − λ65δt)π5(t)


+λ52δtπ2(t)+ λ53δtπ3(t)+ λ56δtπ6(t)+ λ57δtπ7(t)




Markov 
processes 

Discrete state, continuous time 

States and transitions 

Or, 
π5(t + δt) ≈ π5(t)


−(λ25 + λ45 + λ65)π5(t)δt


+(λ52π2(t) + λ53π3(t) + λ56π6(t) + λ57π7(t))δt




Markov 
processes 

Discrete state, continuous time 

States and transitions 

Or, 
π5(t + δt) − π5(t) dπ5 

lim = (t) = 
δt→0 δt dt 

−(λ25 + λ45 + λ65)π5(t) 

+λ52π2(t) + λ53π3(t) + λ56π6(t) + λ57π7(t) 
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Markov 
processes 

Discrete state, continuous time 

States and transitions 

• Define πi(t) = prob{X(t) = i} 

• It is convenient to define λii = − j � λji =i 

• Transition equations: 
dπi(t)

= 
� 

λijπj(t). 
dt 

j 

• Normalization equation: i πi(t) = 1. 
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Discrete state, continuous time 

States and transitions 

= limt→∞ πi(t), if it exists. 

Markov

processes


• Steady state: πi 

• Steady-state transition equations: 0 = j λijπj. 

• Alternatively, steady-state balance equations: 
πi m,m � λmi = j,j=i λijπj=i �

• Normalization equation: i πi = 1. 
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Markov 
processes 

Discrete state, continuous time 

States and transitions 

Sources of confusion in continuous time models: 

• Never Draw self-loops in continuous time markov 
process graphs. 

• Never write 1 − λ14 − λ24 − λ64. Write 

⋆ 1 − (λ14 + λ24 + λ64)δt, or 
⋆ −(λ14 + λ24 + λ64) 

• λii = − j=� i λji is NOT a rate and NOT a 
probability. It is ONLY a convenient notation. 



Markov 
processes 

Discrete state, continuous time 

Exponential 

Exponential random variable T : the time to move from 
state 1 to state 0. 

1 0 

µ




Markov 
processes 

Discrete state, continuous time 

Exponential 

π(0, t + δt) = 

prob [α(t + δt) = 0|α(t) = 1] prob [α(t) = 1]+ 

prob [α(t + δt) = 0|α(t) = 0] prob[α(t) = 0]. 
or 

π(0, t + δt) = pδtπ(1, t) + π(0, t) + o(δt)


or 
dπ(0, t) 

= pπ(1, t). 
dt 



Markov 
processes 

Discrete state, continuous time 

Exponential 

Since π(0, t) + π(1, t) = 1, 

dπ(1, t) 
= −pπ(1, t). 

dt 
If π(1, 0) = 1, then 

π(1, t) = e−pt 

and 
π(0, t) = 1 − e−pt 



Markov 
processes 

Discrete state, continuous time 

Exponential 

The probability that the transition takes place at some 
T ∈ [t, t + δt] is 

prob [α(t + δt) = 0 and α(t) = 1] = e −ptpδt.


The exponential density function is pe−pt.


The time of the transition from 1 to 0 is said to be

exponentially distributed with rate p. The expected

transition time is 1/p. (Prove it!)




Markov 
processes 

Discrete state, continuous time 

Exponential 

• f(t) = µe −µt for t ≥ 0; f(t) = 0 otherwise; 
F (t) = 1 − e−µt for t ≥ 0; F (t) = 0 otherwise. 

• ET = 1/µ, VT = 1/µ2. Therefore, cv=1. 
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Markov 
processes 

Discrete state, continuous time 

Exponential 

• Memorylessness: 
P (T > t + x|T > x) = P (T > t) 

• P (t ≤ T ≤ t + δt|T ≥ t) ≈ µδt for small δt. 

• If T1, ..., Tn are independent exponentially 
distributed random variables with parameters 
µ1..., µn and T = min(T1, ..., Tn), then T is an 
exponentially distributed random variable with 
parameter µ = µ1 + ... + µn. 



Markov 
processes 

Discrete state, continuous time 

Unreliable machine 

Continuous time unreliable machine. MTTF=1/p; 
MTTR=1/r. 

r 

downup 

p
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Discrete state, continuous time 

Poisson Process 

t 

Markov

processes


T4T1 T2 T3 

0 T1 T1 + T2 T1 + T2 + T3 T1 + T2 + T3 +T4 

Let Ti, i = 1, ... be a set of independent exponentially distributed 
random variables with parameter λ that each represent the time 

nuntil an event occurs. Then i=0 Ti is the time required for n 

such events. 
 

 0 if T1 > t 
Define N(t) = 

 n such that 
�n Ti ≤ t, 

�n+1 Ti > t i=0 i=0 

Then N(t) is a Poisson process with parameter λ. 



Markov 
processes 

Discrete state, continuous time 

Poisson Distribution 

P (N(t) = n) = e −λt(λt)n


n! 
Poisson Distribution 
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Markov 
processes 

(λt)n 

Discrete state, continuous time 

Poisson Distribution 

P (N(t) = n) = e −λt , λ = 2 
n! 
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M/M/1 Queue 
Queueing theory 

µ

λ 

• Simplest model is the M/M/1 queue: 

⋆ Exponentially distributed inter-arrival times — mean is 1/λ; λ 

is arrival rate (customers/time). (Poisson arrival process.) 
⋆ Exponentially distributed service times — mean is 1/µ; µ is 

service rate (customers/time). 
⋆ 1 server. 
⋆ Infinite waiting area. 

• Define the utilization ρ = λ/µ. 



M/M/1 Queue 
Queueing theory 

Sample path 

Number of customers in the system as a function of 
time. 
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M/M/1 Queue 
Queueing theory 

State Space 

λ λ λ λ λ λ λ 

0 1 2 n−1 n n+1 

µ µ µ µ µ µ µ




M/M/1 Queue 
Queueing theory 

Performance of M/M/1 queue 

Let P (n, t) be the probability that there are n parts in 
the system at time t. Then, 

P (n, t + δt) = P (n − 1, t)λδt + P (n + 1, t)µδt 

+P (n, t)(1 − (λδt + µδt)) + o(δt) 

for n > 0 

and 
P (0, t+δt) = P (1, t)µδt+P (0, t)(1−λδt)+o(δt).




M/M/1 Queue 
Queueing theory 

Performance of M/M/1 queue 

Or, 
dP (n, t) 

= P (n − 1, t)λ + P (n + 1, t)µ − P (n, t)(λ + µ), 
dt 

n > 0 
dP (0, t) 

= P (1, t)µ − P (0, t)λ. 
dt 

If a steady state distribution exists, it satisfies 

0 = P (n − 1)λ + P (n + 1)µ − P (n)(λ + µ), n > 0 

0 = P (1)µ − P (0)λ. 

Why “if”? 



M/M/1 Queue 
Queueing theory 

Performance of M/M/1 queue 

Let ρ = λ/µ. These equations are satisfied by 

P (n) = (1 − ρ)ρn, n ≥ 0 

if ρ < 1. The average number of parts in the system is 

� ρ λ 
n̄ = nP (n) = = .


1 − ρ µ − λ 
n 



M/M/1 Queue 
Queueing theory 

Little’s Law 

• True for most systems of practical interest. 

• Steady state only. 

• L = the average number of customers in a system. 

• W = the average delay experienced by a customer in the 
system. 

L = λW 

In the M/M/1 queue, L = n̄ and 
1 

W = . 
µ − λ 



M/M/1 Queue 
Queueing theory 

Capacity 

W 
100

 80

 60

 40

 20

 0

 0  0.5  1  1.5  2 λ
µ=1


• µ is the capacity

of the system.


• If λ < µ, system 
is stable and 
waiting time 
remains bounded. 

• If λ > µ, waiting 
time grows over 
time. 



M/M/1 Queue 
Queueing theory 

Capacity 

• To increase 
capacity, increase 
µ. 

• To decrease delay 
for a given λ, 
increase µ.
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M/M/1 Queue 
Queueing theory 

Other Single-Stage Models 

Things get more complicated when: 

• There are multiple servers. 

• There is finite space for queueing. 

• The arrival process is not Poisson. 

• The service process is not exponential. 

Closed formulas and approximations exist for some 
cases. 



M/M/s Queue 
Queueing theory 

µ 

µ

λ 

µ


s-Server Queue, s = 3




M/M/s Queue 
Queueing theory 

State Space 

• The service rate when there are k > s customers in the 
system is sµ since all s servers are always busy. 

• The service rate when there are k ≤ s customers in the 
system is kµ since only k of the servers are busy. 

λ λ 
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M/M/s Queue 

 

 
skρk 

 

 P (0) , k ≤ s 
 

 k!

P (k) =


 

 
sρk 

 s
 

 P (0) , k > s 
s! 

Queueing theory 
Steady-State Probability Distribution 

where 
λ � 

ρ = < 1; P (0) chosen so that P (k) = 1 
sµ 

k 



M/M/s Queue 
Queueing theory 

Performance
W
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M/M/s Queue 
Queueing theory 

Performance
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M/M/s Queue 
Queueing theory 

Performance
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lambda lambda 

• Why do the curves go to infinity at the same value of λ? 

• Why is the (µ, s) = (.5, 8) curve the highest, followed by 
(µ, s) = (1, 4), etc.? 



Networks of

Queues 

• Set of queues where customers can go to another 
queue after completing service at a queue. 

• Open network: where customers enter and leave 
the system. λ is known and we must find L and W . 

• Closed network: where the population of the system

is constant. L is known and we must find λ and W .




Networks of Examples


Queues Open networks


• internet traffic 

• emergency room 

• food court 

• airport (arrive, ticket counter, security, passport 
control, gate, board plane) 

• factory with serial production system and no material 
control after it enters 



Networks of Examples 

Food Court Queues 

PIZZA McDonald’s 

Sbarro’s TCBY 
Frozen Yogurt 

E
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Person 

Person with Tray 

Tables 



Networks of Closed Networks


Queues 

• factory with material controlled by keeping the 
number of items constant (CONWIP) 

• factory with limited fixtures or pallets 



Jackson Benefits


Networks 

Queueing networks are often modeled as Jackson 
networks. 

• Easy to compute performance measures (capacity,

average time in system, average queue lengths).


• Easily gives intuition. 

• Easy to optimize and to use for design. 

• Valid (or good approximation) for a large class of 
systems ... 



Jackson Limitations


Networks 

• ... but not everything. Storage areas must be infinite 
(i.e., blocking never occurs). 

⋆ This assumption fails for systems with bottlenecks. 

• In Jackson networks, there is only one class. That is, 
all items are interchangeable. However, this 
restriction can be relaxed. 



Jackson Open Jackson Networks 

Networks Assumptions 

A 

A 

D 

A 

D 

Goal of analysis: say something about how much inventory there 

is in this system and how it is distributed. 
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Jackson Open Jackson Networks 

Networks Assumptions 

• Items arrive from outside the system to node i according to a 
Poisson process with rate αi. 

• αi > 0 for at least one i. 

• When an item’s service at node i is finished, it goes to node j 
next with probability pij. 

• If pi0 = 1 − pij > 0, then items depart from the network 
j 

from node i. 

• pi0 > 0 for at least one i. 

• We will focus on the special case in which each node has a 
single server with exponential processing time. The service 
rate of node i is µi. 
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Jackson Open Jackson Networks


Networks 
• Define λi as the total arrival rate of items to node i. 

This includes items entering the network at i and 
items coming from all other nodes. 

• Then λi = αi + pjiλj 

j 

• In matrix form, let λ be the vector of λi, α be the 
vector of αi, and P be the matrix of pij. Then


λ = α + PTλ


or 
λ = (I − PT)−1α 
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Networks 
Jackson Open Jackson Networks 

Product Form Solution 

• Define π(n1, n2, ..., nk) to be the steady-state 
probability that there are ni items at node i, 
i = 1, ..., k. 

• Define ρi = λi/µi; πi(ni) = (1 − ρi)ρi
ni . 

• Then 
π(n1, n2, ..., nk) = πi(ni) 

i


ρi

n̄i = Eni = 

1 − ρi 

Does this look familiar? 



Networks 
Jackson Open Jackson Networks 

Product Form Solution 

• This looks as though each station is an M/M/1 

queue. But even though this is NOT in general true, 
the formula holds. 

• The product form solution holds for some more 
general cases. 

• This exact analytic formula is the reason that the

Jackson network model is very widely used —

sometimes where it does not belong! 
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Jackson Closed Jackson Networks


Networks 

• Consider an extension in which 

⋆ αi = 0 for all nodes i. 
⋆ pi0 = 1 − pij = 0 for all nodes i. 

j 

• Then 

⋆ Since nothing is entering and nothing is departing from the network, the 
number of items in the network is constant . 

That is, ni(t) = N for all t. 
i 

⋆ λi = pjiλj does not have a unique solution:

j


If {λ1
∗, λ2

∗, ..., λk
∗} is a solution, then {sλ1

∗, sλ2
∗, ..., sλk

∗} is also a 
solution for any s ≥ 0. 
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Jackson Closed Jackson Networks


Networks 
For some s, define 

πo(n1, n2, ..., nk) = (1 − ρi)ρ
n

i 
i = (1 − ρi) ρ

n

i 
i 

i i i 

where 

sλ∗ 

ρi = i 

µi 

This looks like the open network probability distribution, but it is a 

function of s. 
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Jackson Closed Jackson Networks


Networks 
Consider a closed network with a population of N . Then if 

ni = N , 

πo(n1, n2, ..., nk)
π(n1, n2, ..., nk) = � 

πo(m1, m2, ..., mk) 
m1+m2+...+mk =N 

Since πo is a function of s, it looks like π is a function of s. But it is 
not because all the s’s cancel! There are nice ways of calculating 

C(k, N) = πo(m1, m2, ..., mk) 
m1+m2+...+mk =N 



Jackson Closed Jackson Networks 

Let {pij} be the set of 
routing probabilities, as 
defined on slide 67. 

1


q

1 

q 
2 piM = 1 if i � M=2 
q

M 3


(Transport

Station) q 3


M−1
 pMj = qj if j � M= 

pij = 0 otherwise 
Load/Unload


qM
 Service rate at Station i is 
M − 1 

µi. 
Solberg’s “CANQ” model. 

Networks Application — Simple FMS model 

M
(Transport

Station)

1

3

M - 1



Jackson Closed Jackson Networks 

Networks Application — Simple FMS model 

Let N be the number of pallets. 

The production rate is 

C(M, N − 1) 
P = µm 

C(M, N) 

and C(M, N) is easy to calculate in this case. 

• Input data: M, N, qj, µj(j = 1, ..., M ) 

• Output data: P, W, ρj(j = 1, ..., M ) 
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Networks Application — Simple FMS model 
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Networks Application — Simple FMS model 

Average time in system
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Networks Application — Simple FMS model 

Utilization
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P

Networks Application — Simple FMS model 
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Networks Application — Simple FMS model 

Average time in system
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Networks Application — Simple FMS model 

Utilization 
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