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Study of J=ψ Production in Jets

R. Aaij et al.*

(LHCb Collaboration)
(Received 19 January 2017; published 8 May 2017)

The production of J=ψ mesons in jets is studied in the forward region of proton-proton collisions using
data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet
transverse momentum carried by the J=ψ meson, zðJ=ψÞ≡ pTðJ=ψÞ=pTðjetÞ, is measured using jets with
pTðjetÞ > 20 GeV in the pseudorapidity range 2.5 < ηðjetÞ < 4.0. The observed zðJ=ψÞ distribution for
J=ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt
J=ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first
measurement of the pT fraction carried by prompt J=ψ mesons in jets at any experiment.

DOI: 10.1103/PhysRevLett.118.192001

The production of J=ψ mesons in hadron-hadron colli-
sions occurs at the transition between the perturbative and
nonperturbative regimes of quantum chromodynamics
(QCD), resulting in a rich phenomenology that is yet to
be fully understood. Differential J=ψ production cross
sections measured at both the Tevatron [1,2] and the
LHC [3–9] can be described using the nonrelativistic
QCD (NRQCD) [10–12] effective field theory approach.
However, many NRQCD-based calculations [13–15] pre-
dict a large degree of transverse polarization, whereas
minimal polarization is observed in data [16–19]. This
discrepancy indicates that further studies are needed to gain
a better understanding of J=ψ production.
Quarkonium production is often used as a probe of QCD

phenomenology [20]. In proton-lead (pPb) collisions, J=ψ
production is used to study cold-nuclear-matter effects such
as parton shadowing and nuclear absorption [21–23], while
hadron melting in the quark-gluon plasma is investigated
using J=ψ production in PbPb collisions [24–26]. Double-
J=ψ production is used to measure the effective cross
section for double parton scattering [27–31], which is
commonly assumed to be universal for all processes. If
the prevailing picture of J=ψ meson production directly in
parton-parton scattering is not valid, then many quarko-
nium-production results may need to be reinterpreted.
Another striking, yet untested, prediction of the direct-

production paradigm is that J=ψ mesons are largely
produced isolated, except for any soft gluonic radiation
emitted by the cc̄ state and potentially some particles from
the underlying hadron-hadron collision. An alternative to
the standard approach, which is also based on NRQCD, is

the calculation of J=ψ meson production within jets using
either analytic resummation [32] or the parton shower of a
Monte Carlo event generator [33]. Quarkonium production
in the parton shower, which can explain the lack of
observed polarization [34], predicts that J=ψ mesons are
rarely produced in isolation. Consequently, it is of great
interest to study the radiation produced in association
with quarkonium states, e.g., J=ψ mesons in jets, to
distinguish between these two different pictures of quar-
konium production.
This Letter reports a study of J=ψ mesons produced in

jets in the forward region of pp collisions. The fraction of
the jet transverse momentum carried by the J=ψ meson,
zðJ=ψÞ≡ pTðJ=ψÞ=pTðjetÞ, is measured for J=ψ mesons
produced promptly and for those produced in b-hadron
decays. The data sample corresponds to an integrated
luminosity of 1.4 fb−1 collected at a center-of-mass energy
of

ffiffiffi
s

p ¼ 13 TeV with the LHCb detector in 2016. Only
events containing exactly one reconstructed pp collision
are used as these provide the best resolution on pTðjetÞ. The
analysis is performed using jets clustered with the anti-kT
algorithm [35] using a distance parameter R ¼ 0.5 and
within the following kinematic fiducial region: jets are
required to have pTðjetÞ > 20 GeV (c ¼ 1 throughout this
Letter) in the pseudorapidity range 2.5 < ηðjetÞ < 4.0; J=ψ
mesons, which are reconstructed using the J=ψ → μþμ−

decay, must satisfy 2.0 < ηðJ=ψÞ < 4.5; and muons are
required to have pTðμÞ > 0.5 GeV, pðμÞ > 5 GeV, and
2.0 < ηðμÞ < 4.5. No requirements are placed on the
multiplicity of jets per event or particles per jet, so that
jets consisting of only a J=ψ candidate are allowed. This is
the first measurement of zðJ=ψÞ in prompt J=ψ production
at any experiment.
The LHCb detector is a single-arm forward spectrometer

covering the range 2 < η < 5, described in detail in
Refs. [36,37]. Simulated data samples are used to evaluate
the muon reconstruction efficiency, the detector response
for jet reconstruction, and to validate the analysis. In the
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simulation, pp collisions are generated using PYTHIA8 [38]
with a specific LHCb configuration [39]. Decays of
hadronic particles are described by EVTGEN [40], in which
final-state radiation is generated using PHOTOS [41]. The
interaction of the generated particles with the detector, and
its response, are implemented using the GEANT4 toolkit
[42] as described in Ref. [43].
The online event selection is performed by a trigger [44],

which consists of a hardware stage using information from
the calorimeter and muon systems, followed by a software
stage, which performs the J=ψ candidate reconstruction.
The hardware stage selects events with at least one dimuon
candidate with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTðμþÞpTðμ−Þ

p
greater than a threshold

that varied between 1.3 and 1.5 GeV during the 2016 data
taking. In the software stage, two muon candidates with
pTðμÞ > 0.5 GeV are required to form a J=ψ candidate
whose invariant mass is within 150 MeVof the known J=ψ
mass [45]. Additional selection criteria are applied offline
to the J=ψ candidates: the tracks are required to satisfy
stringent muon-identification criteria; and the muon and
J=ψ candidates are required to be within the fiducial region
of this analysis, where the detector is well understood.
A new data-taking scheme was introduced by LHCb in

2015 that enables offline-like performance in the online
system. The alignment and calibration are performed in
near real time [46] and are available in the trigger
reconstruction [47]. Furthermore, an increase in the online
CPU resources makes it possible to run the offline track
reconstruction in the online system. This analysis is based
on a data sample where all online-reconstructed particles in
the event are stored, but most lower-level information is
discarded, greatly reducing the event size. This data-storage
strategy makes it possible to record all events containing a
J=ψ candidate without placing any requirements on
pTðJ=ψÞ, or on the displacement of the J=ψ decay from
the primary vertex (PV).
Jet reconstruction is performed offline on this data

sample by clustering the J=ψ candidates with charged
and neutral particle-flow candidates [48], all reconstructed
online, using the anti-kT clustering algorithm as imple-
mented in FASTJET [49]. This is the first LHCb analysis to
use online-reconstructed particles that were not involved in
the trigger decision. The J=ψ candidates, rather than their
component muons, are used in the clustering to prevent
muons from a single J=ψ decay being clustered into
separate jets. Reconstructed jets with pTðjetÞ > 15 GeV
and 2.5 < ηðjetÞ < 4.0 are kept for further analysis, where
jets in the pTðjetÞ range 15–20 GeV are retained for use in
unfolding the detector response. The ηðjetÞ requirement,
which is included in the fiducial region definition, ensures
a nearly uniform resolution of 20%–25% on the pT of the
non-J=ψ component of the jet, with minimal pT depend-
ence above 10 GeV. This is similar to the resolution
achieved on data events [48] when using offline
reconstruction for pT below 20 GeV, but worse at higher

pT where the resolution in such events is about 15%. This
degradation arises largely because calorimeter information
not associated with particle-flow candidates is not stored in
this data sample.
The jet momenta are not corrected for reconstruction bias.

Instead, the effect of the detector response on the zðJ=ψÞ
distributions is removed using an unfolding procedure. This
involves first determining the reconstructed J=ψ yields in
bins of ½zðJ=ψÞ; pTðjetÞ�, then correcting them for detection
efficiency. Bin migration, which occurs largely due to the
resolution on the non-J=ψ component of the jet, is accounted
for by unfolding the ½zðJ=ψÞ; pTðjetÞ� distributions of
corrected J=ψ yields using an iterative Bayesian procedure

]50,51 ] (see the Supplemental Material [52] for a detailed
discussion of the unfolding). Finally, the unfolded
½zðJ=ψÞ; pTðjetÞ� distributions are integrated for pTðjetÞ >
20 GeV to produce the measured zðJ=ψÞ spectra. The
binning scheme employs ten equal-width zðJ=ψÞ bins,
and three pTðjetÞ bins of 15–20, 20–30, and > 30 GeV.
The yield of J=ψ → μþμ− decays reconstructed in each

½zðJ=ψÞ; pTðjetÞ� bin, which includes J=ψ mesons pro-
duced promptly and in b-hadron decays, is determined
from an unbinned maximum likelihood fit to the corre-
sponding dimuon invariant-mass distribution. The signal
component is modeled as the sum of two Crystal Ball
functions [53] that share all shape parameters except the
width. The combinatorial background is described by an
exponential function. Both the signal and background
shapes are allowed to vary in each bin independently.
An example of the invariant-mass distribution from one
½zðJ=ψÞ; pTðjetÞ� bin is shown in Fig. 1 along with the fit
result. The total J=ψ signal yield in the data sample is
almost 2 × 106.
The fraction of J=ψ mesons that originates from b-hadron

decays is determined by fitting the distribution of the pseudo-
decay-time ~t≡ λmðJ=ψÞ=pLðJ=ψÞ, where λ denotes the
difference in position along the beam axis between the
J=ψ decay and primary vertices, mðJ=ψÞ is the known J=ψ
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FIG. 1. Example dimuon invariant-mass distribution with the
fit result superimposed from the bin ½0.4 < zðJ=ψÞ < 0.5;
20 < pTðjetÞ < 30 GeV�. The signal is modeled as the sum of
two Crystal Ball functions, while the background is described by
an exponential function.
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mass [45], and pLðJ=ψÞ is the component of the J=ψ
momentum longitudinal to the beam axis. Only candidates
with j~tj < 10 ps, corresponding to about seven b-hadron
lifetimes, and amass consistentwith the known J=ψ mass are
used in these unbinned maximum likelihood fits. The ~t
distribution from one ½zðJ=ψÞ; pTðjetÞ� bin is shown in
Fig. 2. The prompt-J=ψ component is modeled by a Dirac
δ function, while the b-hadron component is modeled by an
exponential decay function with a variable lifetime param-
eter; both are convolved with a double-Gaussian resolution
function. A long and nearly symmetric tail in the ~t distribu-
tion arises due to J=ψ candidates produced in additional pp
collisions that are not reconstructed. The shape of this
component, the contribution of which is found to be
Oð0.1%Þ in all bins, is modeled by constructing the
distribution with ~t calculated using J=ψ and PV candidates
from different data events. Finally, the shape of the non-J=ψ
component in each bin is parametrized using an empirical
function obtained from a fit to the ~t distribution observed in
themðμþμ−Þ sidebands,while its normalization is fixed from
the mðμþμ−Þ fit in the bin. The fraction of J=ψ mesons that
are produced in b-hadron decays is determined to be in the
range 20%–60%, depending on the ½zðJ=ψÞ; pTðjetÞ� bin.
The J=ψ yields are corrected for detection efficiency by

applying per-candidate weights of ε−1tot , where εtot is the total
detection efficiency determined as the product of the
reconstruction, selection, and trigger efficiencies. The
use of per-candidate weights within a fiducial region where
the efficiency is nonzero throughout produces accurate
efficiency-corrected yields without requiring knowledge of
the J=ψ → μþμ− angular distribution or, equivalently, the
J=ψ polarization. The weights, which are similar for nearly
all candidates, are rarely greater than 5 and never greater
than 20. Consequently, there is negligible impact on the
statistical variance due to the use of weighted candidates,
since the vast majority of events in each ½zðJ=ψÞ; pTðjetÞ�
bin contribute nearly equally.
The muon reconstruction efficiency is obtained from

simulation in bins of ½pðμÞ; ηðμÞ�. Scale factors that correct
for discrepancies between the data and simulation are

determined using a data-driven tag-and-probe approach
on an independent sample of J=ψ → μþμ− decays [54].
A small pTðJ=ψÞ-dependent correction is applied to the
yields of J=ψ mesons produced in b-hadron decays to
account for a drop in the efficiency at large b-hadron flight
distances. Within the fiducial region of this analysis, the
J=ψ reconstruction efficiency is on average about 90%.
The dominant contribution to the selection inefficiency is

from the muon-identification performance, which is mea-
sured in bins of ½pTðμÞ; ηðμÞ� using a highly pure calibra-
tion data sample of J=ψ → μþμ− decays. The efficiency
of selecting a reconstructed J=ψ candidate varies from
80% for zðJ=ψÞ ≲ 0.1 to nearly 100% for zðJ=ψÞ ≳ 0.5.
The trigger efficiency is measured in bins of
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pTðμþÞpTðμ−Þ
p

; ηðJ=ψÞ� using a subset of this J=ψ
calibration sample. Events selected by the hardware trigger
independently of the J=ψ candidate, e.g., due to the
presence of a high-pT hadron, are used to determine the
trigger efficiency directly from the data. The fraction of
J=ψ candidates in each ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pTðμþÞpTðμ−Þ
p

; ηðJ=ψÞ� bin that
are selected by the dimuon hardware trigger gives the
efficiency, which is about 40% on average for zðJ=ψÞ≲ 0.1
and 80% for zðJ=ψÞ ≳ 0.5.
The effects of ½zðJ=ψÞ; pTðjetÞ� bin migration, which are

predominantly due to the detector response to the non-J=ψ
component of the jet, are corrected for using an unfolding
technique [50–52]. The detector-response matrices for J=ψ
mesons produced promptly and in b-hadron decays are
dissimilar for two reasons: the pT -dependent particle
multiplicities are different, and the undetected momentum
carried by K0 and Λ particles is, on average, larger for jets
that contain a b-hadron decay. The pTðjetÞ -dependent
mean and width of the reconstructed particle multiplicity
distributions for jets in simulation are adjusted to match
those observed in data. The detector response is studied
using the pT -balance distribution of pTðjetÞ=pTðZÞ in
nearly back-to-back Z þ jet events using the same data-
driven technique as in Ref. [48]. Small adjustments are
applied to the pTðjetÞ scale and resolution in simulation
obtaining the best agreement with data. The unfolding
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matrix for jets that contain a prompt J=ψ meson is shown in
Fig. 3, while the corresponding matrix for b-hadron
production is provided in the Supplemental Material [52].
Systematic uncertainties on the zðJ=ψÞ distributions

apply to both the prompt and b-hadron production modes.
Uncertainty on the J=ψ yields arises from the efficiency
corrections and from possible mismodeling of the compo-
nents in the invariant-mass and pseudo-decay-time fits. The
uncertainty on each component of the total efficiency is
assessed by repeating the data-driven efficiency studies on
simulated events, where the difference between the true
and efficiency-corrected J=ψ yields in bins of ½pTðJ=ψÞ;
ηðJ=ψÞ� is used to determine the systematic uncertainty.
The relative uncertainty on the reconstruction efficiency is
determined to be 2%, which includes the unknown J=ψ
polarization. The relative uncertainties on the trigger and
selection efficiencies are in the ranges 2%–5% and 0%–2%,
respectively, depending on the ½zðJ=ψÞ; pTðjetÞ� bin.

The uncertainty on the total J=ψ yield obtained from the
invariant-mass fits (1%) is studied by replacing the nominal
signal and background models with single Crystal Ball and
quadratic functions, respectively. The relative uncertainty
on the fraction of J=ψ mesons produced in b-hadron decays
(1%) is determined by comparing the fit results obtained
from simulated ~t distributions to the true fractions. Potential
mismodeling of the non-J=ψ and wrong-PV components is
found to contribute negligible uncertainty. The total relative
uncertainty on the J=ψ yields is 3%–6% depending on
the ½zðJ=ψÞ; pTðjetÞ� bin, which corresponds to a bin-
dependent absolute uncertainty on zðJ=ψÞ of 0.001–0.005.
The uncertainty associated with the detector response to

the non-J=ψ component of the jet is studied by building
alternative unfolding matrices, where the pT scale and
resolution are varied within the uncertainties obtained
from the data-driven pT -balance study of Z þ jet events.
The data are unfolded using these alternative matrices, with
the differences in the zðJ=ψÞ distribution used to assign
zðJ=ψÞ -dependent absolute uncertainties of 0.001–0.014.
The pTðjetÞ and zðJ=ψÞ spectra used to generate the
unfolding matrices, along with the unfolding procedure
itself, are also potential sources of uncertainty. These are
studied by simulating data samples similar to the exper-
imental data, then unfolding them using response matrices
constructed from pTðjetÞ and zðJ=ψÞ distributions that are
different from those used to generate the samples. Based on
these studies, an uncertainty of 0.01 is assigned to each
zðJ=ψÞ bin due to unfolding. Finally, the uncertainties
due to the fragmentation model and due to the K0 and Λ
components of the jet are found to be negligible. The total
absolute systematic uncertainty in each zðJ=ψÞ bin, which
dominates over the statistical one, is 0.010–0.015.
The measured normalized zðJ=ψÞ distributions for J=ψ

mesons produced promptly and for those produced in
b-hadron decays are shown in Fig. 4 (the numerical values
are provided inRef. [52]). Theb-hadron results are consistent
with the PYTHIA8 prediction [52], where the uncertainty
shown is due tob-quark fragmentation [55,56] (other sources
of uncertainty are ignored [52]). The prompt-J=ψ results do
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not agree with the leading-order (LO) NRQCD-based
prediction as implemented in PYTHIA8, which includes both
color-octet and color-singlet mechanisms using long-
distance matrix elements determined empirically [52]. At
small zðJ=ψÞ, PYTHIA8 predicts thatmostpTðjetÞ arises from
a parton-parton scatter other than the one that produced the
J=ψ meson. The dominant source of uncertainty on the
prompt-J=ψ prediction at large zðJ=ψÞ is due to the under-
lying event; however, since no rigorous method exists for
determining this uncertainty, no uncertainty is assigned to the
prediction. Given that the underlying event at LHCb is well
described by PYTHIA8, e.g., the energy flow is accurately
predicted at the 5% level [57], the prompt-J=ψ results cannot
be reconciled with this prediction. Furthermore, LO and
partial next-to-leading-order (NLO*) calculations in both the
color-singlet and color-octet models similarly fail to describe
the data [52,58].
Prompt J=ψ mesons in data are observed to be much less

isolated than predicted, which qualitatively agrees with the
alternative picture of quarkonium production presented
in Ref. [32] (after this Letter was submitted, Ref. [59]
demonstrated quantitative agreement). The lack of isolation
observed for prompt J=ψ production may be related to the
long-standing quarkonium polarization puzzle. If high-pT
J=ψ mesons are predominantly produced within parton
showers, rather than directly in parton-parton scattering,
then the observed lack of both polarization and isolation
could be explained [34]. Future related measurements of
J=ψ production in jets should help shed light on the nature
of quarkonium production [60,61].
In summary, the production of J=ψ mesons in jets is

studied using pp-collision data collected by LHCb atffiffiffi
s

p ¼ 13 TeV in the fiducial region: pTðjetÞ > 20 GeV
and 2.5 < ηðjetÞ < 4.0; 2.0 < ηðJ=ψÞ < 4.5; and pTðμÞ >
0.5 GeV, pðμÞ > 5 GeV, and 2.0 < ηðμÞ < 4.5. The frac-
tion of the jet pT carried by the J=ψ meson is measured for
J=ψ mesons produced promptly and for those produced in
b-hadron decays. The observed distribution for J=ψ mes-
ons produced in b-hadron decays is consistent with the
PYTHIA8 prediction; however, the prompt-J=ψ results do
not agree with predictions based on fixed-order NRQCD as
implemented in PYTHIA8.

We express our gratitude to our colleagues in the CERN
accelerator departments for the excellent performance of the
LHC. We thank the technical and administrative staff at the
LHCb institutes. We acknowledge support from CERN and
from the national agencies: CAPES, CNPq, FAPERJ and
FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France);
BMBF, DFG and MPG (Germany); INFN (Italy); FOM
and NWO (The Netherlands); MNiSW and NCN (Poland);
MEN/IFA (Romania); MinES and FASO (Russia); MinECo
(Spain); SNSF and SER (Switzerland); NASU (Ukraine);
STFC (United Kingdom); NSF (USA). We acknowledge the
computing resources that are provided by CERN, IN2P3
(France), KIT and DESY (Germany), INFN (Italy), SURF

(The Netherlands), PIC (Spain), GridPP (United Kingdom),
RRCKI and Yandex LLC (Russia), CSCS (Switzerland),
IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and
OSC (USA). We are indebted to the communities behind the
multiple open source software packages on which we
depend. Individual groups or members have received support
from AvH Foundation (Germany), EPLANET, Marie
Skłodowska-Curie Actions and ERC (European Union),
Conseil Général de Haute-Savoie, Labex ENIGMASS and
OCEVU, Région Auvergne (France), RFBR and Yandex
LLC (Russia), GVA, XuntaGal and GENCAT (Spain),
Herchel Smith Fund, The Royal Society, Royal
Commission for the Exhibition of 1851 and the
Leverhulme Trust (United Kingdom).

[1] D. Acosta et al. (CDF Collaboration), Measurement of the
J=ψ meson and b-hadron production cross sections in pp̄
collisions at

ffiffiffi
s

p ¼ 1960 GeV, Phys. Rev. D 71, 032001
(2005).

[2] S. Abachi et al. (D0 Collaboration), J=ψ production in pp̄
collisions at

ffiffiffi
s

p ¼ 1.8 TeV, Phys. Lett. B 370, 239 (1996).
[3] R. Aaij et al. (LHCb Collaboration), Measurement of

forward J=ψ production cross-sections in pp collisions atffiffiffi
s

p ¼ 13 TeV, J. High Energy Phys. 10 (2015) 172.
[4] R. Aaij et al. (LHCb Collaboration), Production of J=ψ and

ϒ mesons in pp collisions at
ffiffiffi
s

p ¼ 8 TeV, J. High Energy
Phys. 06 (2013) 064.

[5] R. Aaij et al. (LHCb Collaboration), Measurement of J=ψ
production in pp collisions at

ffiffiffi
s

p ¼ 2.76 TeV, J. High
Energy Phys. 02 (2013) 041.

[6] R. Aaij et al. (LHCb Collaboration), Measurement of J=ψ
production in pp collisions at

ffiffiffi
s

p ¼ 7 TeV, Eur. Phys. J. C
71, 1645 (2011).

[7] G. Aad et al. (ATLAS Collaboration), Measurement of the
differential cross-sections of prompt and non-prompt pro-
duction of J=ψ and ψð2SÞ in pp collisions at

ffiffiffi
s

p ¼ 7 and
8 TeV with the ATLAS detector, Eur. Phys. J. C 76, 283
(2016).

[8] V. Khachatryan et al. (CMS Collaboration), Measurement
of J=ψ and ψð2SÞ Prompt Double-Differential Cross
Sections in pp Collisions at

ffiffiffi
s

p ¼ 7 TeV, Phys. Rev. Lett.
114, 191802 (2015).

[9] B. Abelev et al. (ALICE Collaboration), Inclusive J=ψ
production in pp collisions at

ffiffiffi
s

p ¼ 2.76 TeV, Phys. Lett.
B 718, 295 (2012); CorrigendumPhys. Lett. B748, 472
(2015).

[10] G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD
analysis of inclusive annihilation and production of heavy
quarkonium, Phys. Rev. D 51, 1125 (1995); Erratum, Phys.
Rev. D 55, 5853(E) (1997).

[11] P. Cho and A. K. Leibovich, Color octet quarkonia pro-
duction, Phys. Rev. D 53, 150 (1996).

[12] P. L. Cho and A. K. Leibovich, Color octet quarkonia
production 2, Phys. Rev. D 53, 6203 (1996).

[13] J. M. Campbell, F. Maltoni, and F. Tramontano, QCD
Corrections to J=ψ and ϒ Production at Hadron Colliders,
Phys. Rev. Lett. 98, 252002 (2007).

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-5

https://doi.org/10.1103/PhysRevD.71.032001
https://doi.org/10.1103/PhysRevD.71.032001
https://doi.org/10.1016/0370-2693(96)00067-6
https://doi.org/10.1007/JHEP10(2015)172
https://doi.org/10.1007/JHEP06(2013)064
https://doi.org/10.1007/JHEP06(2013)064
https://doi.org/10.1007/JHEP02(2013)041
https://doi.org/10.1007/JHEP02(2013)041
https://doi.org/10.1140/epjc/s10052-011-1645-y
https://doi.org/10.1140/epjc/s10052-011-1645-y
https://doi.org/10.1140/epjc/s10052-016-4050-8
https://doi.org/10.1140/epjc/s10052-016-4050-8
https://doi.org/10.1103/PhysRevLett.114.191802
https://doi.org/10.1103/PhysRevLett.114.191802
https://doi.org/10.1016/j.physletb.2012.10.078
https://doi.org/10.1016/j.physletb.2012.10.078
https://doi.org/10.1016/j.physletb.2015.06.058
https://doi.org/10.1016/j.physletb.2015.06.058
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1103/PhysRevD.53.150
https://doi.org/10.1103/PhysRevD.53.6203
https://doi.org/10.1103/PhysRevLett.98.252002


[14] J. P. Lansberg, On the mechanisms of heavy-quarkonium
hadroproduction, Eur. Phys. J. C 61, 693 (2009).

[15] B. Gong and J.-X. Wang, Next-to-Leading-Order QCD
Corrections to J=ψ Polarization at Tevatron and Large
Hadron Collider Energies, Phys. Rev. Lett. 100, 232001
(2008).

[16] R. Aaij et al. (LHCb Collaboration), Measurement of J=ψ
polarization in pp collisions at

ffiffiffi
s

p ¼ 7 TeV, Eur. Phys. J. C
73, 2631 (2013).

[17] B. Abelev et al. (ALICE Collaboration), J=ψ Polarization in
pp Collisions at

ffiffiffi
s

p ¼ 7 TeV, Phys. Rev. Lett. 108, 082001
(2012).

[18] A. Abulencia et al. (CDF Collaboration), Polarization of
J=ψ and ψð2SÞ Mesons Produced in pp̄ Collisions atffiffiffi
s

p ¼ 1.96 TeV, Phys. Rev. Lett. 99, 132001 (2007).
[19] S. Chatrchyan et al. (CMS Collaboration), Measurement of

the prompt J=ψ and ψð2SÞ polarizations in pp collisions atffiffiffi
s

p ¼ 7 TeV, Phys. Lett. B 727, 381 (2013).
[20] A. Andronic et al., Heavy-flavour and quarkonium pro-

duction in the LHC era: From proton-proton to heavy-ion
collisions, Eur. Phys. J. C 76, 107 (2016).

[21] R. Aaij et al. (LHCb Collaboration), Study of J=ψ pro-
duction and cold nuclear matter effects in pPb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5 TeV, J. High Energy Phys. 02 (2014) 072.
[22] R. Aaij et al. (LHCb Collaboration), Study of ψð2SÞ

production cross-sections and cold nuclear matter effects
in pPb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5 TeV, J. High Energy Phys.
03 (2016) 133.

[23] G. Aad et al. (ATLAS Collaboration), Measurement of
differential J=ψ production cross sections and forward-
backward ratios in p-Pb collisions with the ATLAS detector,
Phys. Rev. C 92, 034904 (2015).

[24] G. Aad et al. (ATLAS Collaboration), Measurement of the
centrality dependence of J=ψ yields and observation of Z
production in lead-lead collisions with the ATLAS detector
at the LHC, Phys. Lett. B 697, 294 (2011).

[25] V. Khachatryan et al. (CMS Collaboration), Measurement
of Prompt ψð2SÞ → J=ψ Yield Ratios in Pb-Pb and p − p
Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. Lett. 113,
262301 (2014).

[26] A. M. Sirunyan et al. (CMS Collaboration), Relative modi-
fication of prompt ψð2SÞ and J=ψ yields from pp to PbPb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, arXiv:1611.01438.
[27] C. H. Kom, A. Kulesza, and W. J. Stirling, Prospects for

observation of double parton scattering with four-muon final
states at LHCb, Eur. Phys. J. C 71, 1802 (2011).

[28] J.-P. Lansberg and H.-S. Shao, J=ψ -pair production at large
momenta: Indications for double parton scatterings and
large 5

s contributions, Phys. Lett. B 751, 479 (2015).
[29] R. Aaij et al. (LHCb Collaboration), Measurement of the

J=ψ pair production cross-section in pp collisions atffiffiffi
s

p ¼ 13 TeV, arXiv:1612.07451.
[30] V. M. Abazov et al. (D0 Collaboration), Observation and

studies of double J=ψ production at the Tevatron, Phys. Rev.
D 90, 111101 (2014).

[31] V. Khachatryan et al. (CMS Collaboration), Measurement
of prompt J=ψ pair production in pp collisions atffiffiffi
s

p ¼ 7 TeV, J. High Energy Phys. 09 (2014) 094.
[32] R. Bain, L. Dai, A. Hornig, A. K. Leibovich, Y. Makris, and

T. Mehen, Analytic and Monte Carlo studies of jets with

heavy mesons and quarkonia, J. High Energy Phys. 06
(2016) 121.

[33] P. Ernström and L. Lönnblad, Generating heavy quarkonia
in a perturbative QCD cascade, Z. Phys. C 75, 51 (1997).

[34] M.Baumgart, A. K. Leibovich, T.Mehen, and I. Z. Rothstein,
Probing quarkonium production mechanisms with jet sub-
structure, J. High Energy Phys. 11 (2014) 003.

[35] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kT jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[36] A. A. Alves Jr. et al. (LHCb Collaboration), The LHCb
detector at the LHC, J. Instrum. 3, S08005 (2008).

[37] R. Aaij et al. (LHCb Collaboration), LHCb detector
performance, Int. J. Mod. Phys. A 30, 1530022 (2015).

[38] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4
physics and manual, J. High Energy Phys. 05 (2006)
026; T. Sjöstrand, S. Mrenna, and P. Skands, A brief
introduction to PYTHIA 8.1, Comput. Phys. Commun.
178, 852 (2008).

[39] I. Belyaev et al., Handling of the generation of primary
events in Gauss, the LHCb simulation framework, J. Phys.
Conf. Ser. 331, 032047 (2011).

[40] D. J. Lange, The EvtGen particle decay simulation package,
Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152
(2001).

[41] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision
tool for QED corrections in Z andW decays, Eur. Phys. J. C
45, 97 (2006).

[42] J. Allison et al. (Geant4 Collaboration), Geant4 develop-
ments and applications, IEEE Trans. Nucl. Sci. 53, 270
(2006); S. Agostinelli et al. (Geant4 Collaboration), Geant4:
A simulation toolkit, Nucl. Instrum. Methods Phys. Res.,
Sect. A 506, 250 (2003).

[43] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi,
M. Pappagallo, and P. Robbe, The LHCb simulation appli-
cation, Gauss: Design, evolution and experience, J. Phys.
Conf. Ser. 331, 032023 (2011).

[44] R. Aaij et al., The LHCb trigger and its performance in
2011, J. Instrum. 8, P04022 (2013).

[45] C. Patrignani et al. (Particle Data Group), Review of particle
physics, Chin. Phys. C 40, 100001 (2016).

[46] G. Dujany and B. Storaci, Real-time alignment and cali-
bration of the LHCb Detector in Run II, J. Phys. Conf. Ser.
664, 082010 (2015).

[47] R. Aaij et al., Tesla: An application for real-time data
analysis in high energy physics, Comput. Phys. Commun.
208, 35 (2016).

[48] R. Aaij et al. (LHCb Collaboration), Study of forward
Z þ jet production in pp collisions at

ffiffiffi
s

p ¼ 7 TeV, J. High
Energy Phys. 01 (2014) 033.

[49] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72, 1896 (2012).

[50] G. D’Agostini, A multidimensional unfolding method based
on Bayes’ theorem, Nucl. Instrum. Methods Phys. Res.,
Sect. A 362, 487 (1995).

[51] T. Adye, Unfolding algorithms and tests using RooUnfold,
arXiv:1105.1160.

[52] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.192001 for details
on unfolding the detector response, the uncertainties on the

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-6

https://doi.org/10.1140/epjc/s10052-008-0826-9
https://doi.org/10.1103/PhysRevLett.100.232001
https://doi.org/10.1103/PhysRevLett.100.232001
https://doi.org/10.1140/epjc/s10052-013-2631-3
https://doi.org/10.1140/epjc/s10052-013-2631-3
https://doi.org/10.1103/PhysRevLett.108.082001
https://doi.org/10.1103/PhysRevLett.108.082001
https://doi.org/10.1103/PhysRevLett.99.132001
https://doi.org/10.1016/j.physletb.2013.10.055
https://doi.org/10.1140/epjc/s10052-015-3819-5
https://doi.org/10.1007/JHEP02(2014)072
https://doi.org/10.1007/JHEP03(2016)133
https://doi.org/10.1007/JHEP03(2016)133
https://doi.org/10.1103/PhysRevC.92.034904
https://doi.org/10.1016/j.physletb.2011.02.006
https://doi.org/10.1103/PhysRevLett.113.262301
https://doi.org/10.1103/PhysRevLett.113.262301
http://arXiv.org/abs/1611.01438
https://doi.org/10.1140/epjc/s10052-011-1802-3
https://doi.org/10.1016/j.physletb.2015.10.083
http://arXiv.org/abs/1612.07451
https://doi.org/10.1103/PhysRevD.90.111101
https://doi.org/10.1103/PhysRevD.90.111101
https://doi.org/10.1007/JHEP09(2014)094
https://doi.org/10.1007/JHEP06(2016)121
https://doi.org/10.1007/JHEP06(2016)121
https://doi.org/10.1007/s002880050446
https://doi.org/10.1007/JHEP11(2014)003
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1142/S0217751X15300227
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1088/1742-6596/331/3/032047
https://doi.org/10.1088/1742-6596/331/3/032047
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1140/epjc/s2005-02396-4
https://doi.org/10.1140/epjc/s2005-02396-4
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1088/1742-6596/331/3/032023
https://doi.org/10.1088/1742-6596/331/3/032023
https://doi.org/10.1088/1748-0221/8/04/P04022
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1742-6596/664/8/082010
https://doi.org/10.1088/1742-6596/664/8/082010
https://doi.org/10.1016/j.cpc.2016.07.022
https://doi.org/10.1016/j.cpc.2016.07.022
https://doi.org/10.1007/JHEP01(2014)033
https://doi.org/10.1007/JHEP01(2014)033
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1016/0168-9002(95)00274-X
http://arXiv.org/abs/1105.1160
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.192001


PYTHIA predictions, and for additional plots and numerical
results.

[53] T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics,
Krakow, 1986, DESY-F31-86-02.

[54] R. Aaij et al. (LHCb Collaboration), Measurement of the
track reconstruction efficiency at LHCb, J. Instrum. 10,
P02007 (2015).

[55] P. Nason et al., Bottom production, arXiv:hep-ph/0003142.
[56] V. Khachatryan et al. (CMS Collaboration), Measurement

of the top quark mass using charged particles in pp
collisions at

ffiffiffi
s

p ¼ 8 TeV, Phys. Rev. D 93, 092006
(2016).

[57] R. Aaij et al. (LHCb Collaboration), Measurement of
the forward energy flow in pp collisions at

ffiffiffi
s

p ¼ 7 TeV,
Eur. Phys. J. C 73, 2421 (2013).

[58] H.-S. Shao, HELAC-Onia 2.0: An upgraded matrix-
element and event generator for heavy quarkonium physics,
Comput. Phys. Commun. 198, 238 (2016).

[59] R. Bain et al., NRQCD confronts LHCb data on quarko-
nium production within jets, arXiv:1702.05525.

[60] Z.-B. Kang et al., J=ψ production and polarization within a
jet, arXiv:1702.03287.

[61] P. Ilten, N. L. Rodd, J. Thaler, and M. Williams, Disen-
tangling heavy flavor at colliders, arXiv:1702.02947.

R. Aaij,40 B. Adeva,39 M. Adinolfi,48 Z. Ajaltouni,5 S. Akar,59 J. Albrecht,10 F. Alessio,40 M. Alexander,53 S. Ali,43

G. Alkhazov,31 P. Alvarez Cartelle,55 A. A. Alves Jr.,59 S. Amato,2 S. Amerio,23 Y. Amhis,7 L. An,3 L. Anderlini,18

G. Andreassi,41 M. Andreotti,17,a J. E. Andrews,60 R. B. Appleby,56 F. Archilli,43 P. d’Argent,12 J. Arnau Romeu,6

A. Artamonov,37 M. Artuso,61 E. Aslanides,6 G. Auriemma,26 M. Baalouch,5 I. Babuschkin,56 S. Bachmann,12 J. J. Back,50

A. Badalov,38 C. Baesso,62 S. Baker,55 V. Balagura,7,b W. Baldini,17 A. Baranov,35 R. J. Barlow,56 C. Barschel,40 S. Barsuk,7

W. Barter,56 F. Baryshnikov,32 M. Baszczyk,27 V. Batozskaya,29 B. Batsukh,61 V. Battista,41 A. Bay,41 L. Beaucourt,4

J. Beddow,53 F. Bedeschi,24 I. Bediaga,1 A. Beiter,61 L. J. Bel,43 V. Bellee,41 N. Belloli,21,c K. Belous,37 I. Belyaev,32

E. Ben-Haim,8 G. Bencivenni,19 S. Benson,43 S. Beranek,9 A. Berezhnoy,33 R. Bernet,42 A. Bertolin,23 C. Betancourt,42

F. Betti,15 M.-O. Bettler,40 M. van Beuzekom,43 Ia. Bezshyiko,42 S. Bifani,47 P. Billoir,8 T. Bird,56 A. Birnkraut,10

A. Bitadze,56 A. Bizzeti,18,d T. Blake,50 F. Blanc,41 J. Blouw,11 S. Blusk,61 V. Bocci,26 T. Boettcher,58 A. Bondar,36,e

N. Bondar,31,40 W. Bonivento,16 I. Bordyuzhin,32 A. Borgheresi,21,c S. Borghi,56 M. Borisyak,35 M. Borsato,39 F. Bossu,7

M. Boubdir,9 T. J. V. Bowcock,54 E. Bowen,42 C. Bozzi,17,40 S. Braun,12 M. Britsch,12 T. Britton,61 J. Brodzicka,56

E. Buchanan,48 C. Burr,56 A. Bursche,2 J. Buytaert,40 S. Cadeddu,16 R. Calabrese,17,a M. Calvi,21,c M. Calvo Gomez,38,f

A. Camboni,38 P. Campana,19 D. H. Campora Perez,40 L. Capriotti,56 A. Carbone,15,g G. Carboni,25,h R. Cardinale,20,i

A. Cardini,16 P. Carniti,21,c L. Carson,52 K. Carvalho Akiba,2 G. Casse,54 L. Cassina,21,c L. Castillo Garcia,41 M. Cattaneo,40

G. Cavallero,20 R. Cenci,24,j D. Chamont,7 M. Charles,8 Ph. Charpentier,40 G. Chatzikonstantinidis,47 M. Chefdeville,4

S. Chen,56 S.-F. Cheung,57 V. Chobanova,39 M. Chrzaszcz,42,27 X. Cid Vidal,39 G. Ciezarek,43 P. E. L. Clarke,52

M. Clemencic,40 H. V. Cliff,49 J. Closier,40 V. Coco,59 J. Cogan,6 E. Cogneras,5 V. Cogoni,16,40,k L. Cojocariu,30

G. Collazuol,23,l P. Collins,40 A. Comerma-Montells,12 A. Contu,40 A. Cook,48 G. Coombs,40 S. Coquereau,38 G. Corti,40

M. Corvo,17,a C. M. Costa Sobral,50 B. Couturier,40 G. A. Cowan,52 D. C. Craik,52 A. Crocombe,50 M. Cruz Torres,62

S. Cunliffe,55 R. Currie,55 C. D’Ambrosio,40 F. Da Cunha Marinho,2 E. Dall’Occo,43 J. Dalseno,48 P. N. Y. David,43

A. Davis,3 K. De Bruyn,6 S. De Capua,56 M. De Cian,12 J. M. De Miranda,1 L. De Paula,2 M. De Serio,14,m P. De Simone,19

C. T. Dean,53 D. Decamp,4 M. Deckenhoff,10 L. Del Buono,8 M. Demmer,10 A. Dendek,28 D. Derkach,35 O. Deschamps,5

F. Dettori,40 B. Dey,22 A. Di Canto,40 H. Dijkstra,40 F. Dordei,40 M. Dorigo,41 A. Dosil Suárez,39 A. Dovbnya,45

K. Dreimanis,54 L. Dufour,43 G. Dujany,56 K. Dungs,40 P. Durante,40 R. Dzhelyadin,37 A. Dziurda,40 A. Dzyuba,31

N. Déléage,4 S. Easo,51 M. Ebert,52 U. Egede,55 V. Egorychev,32 S. Eidelman,36,e S. Eisenhardt,52 U. Eitschberger,10

R. Ekelhof,10 L. Eklund,53 S. Ely,61 S. Esen,12 H. M. Evans,49 T. Evans,57 A. Falabella,15 N. Farley,47 S. Farry,54 R. Fay,54

D. Fazzini,21,c D. Ferguson,52 G. Fernandez,38 A. Fernandez Prieto,39 F. Ferrari,15,40 F. Ferreira Rodrigues,2

M. Ferro-Luzzi,40 S. Filippov,34 R. A. Fini,14 M. Fiore,17,a M. Fiorini,17,a M. Firlej,28 C. Fitzpatrick,41 T. Fiutowski,28

F. Fleuret,7,n K. Fohl,40 M. Fontana,16,40 F. Fontanelli,20,i D. C. Forshaw,61 R. Forty,40 V. Franco Lima,54 M. Frank,40

C. Frei,40 J. Fu,22,o W. Funk,40 E. Furfaro,25,h C. Färber,40 A. Gallas Torreira,39 D. Galli,15,g S. Gallorini,23 S. Gambetta,52

M. Gandelman,2 P. Gandini,57 Y. Gao,3 L. M. Garcia Martin,69 J. García Pardiñas,39 J. Garra Tico,49 L. Garrido,38

P. J. Garsed,49 D. Gascon,38 C. Gaspar,40 L. Gavardi,10 G. Gazzoni,5 D. Gerick,12 E. Gersabeck,12 M. Gersabeck,56

T. Gershon,50 Ph. Ghez,4 S. Gianì,41 V. Gibson,49 O. G. Girard,41 L. Giubega,30 K. Gizdov,52 V. V. Gligorov,8 D. Golubkov,32

A. Golutvin,55,40 A. Gomes,1,p I. V. Gorelov,33 C. Gotti,21,c E. Govorkova,43 R. Graciani Diaz,38 L. A. Granado Cardoso,40

E. Graugés,38 E. Graverini,42 G. Graziani,18 A. Grecu,30 R. Greim,9 P. Griffith,47 L. Grillo,21,40,c B. R. Gruberg Cazon,57

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-7

https://doi.org/10.1088/1748-0221/10/02/P02007
https://doi.org/10.1088/1748-0221/10/02/P02007
http://arXiv.org/abs/hep-ph/0003142
https://doi.org/10.1103/PhysRevD.93.092006
https://doi.org/10.1103/PhysRevD.93.092006
https://doi.org/10.1140/epjc/s10052-013-2421-y
https://doi.org/10.1016/j.cpc.2015.09.011
http://arXiv.org/abs/1702.05525
http://arXiv.org/abs/1702.03287
http://arXiv.org/abs/1702.02947


O. Grünberg,67 E. Gushchin,34 Yu. Guz,37 T. Gys,40 C. Göbel,62 T. Hadavizadeh,57 C. Hadjivasiliou,5 G. Haefeli,41

C. Haen,40 S. C. Haines,49 B. Hamilton,60 X. Han,12 S. Hansmann-Menzemer,12 N. Harnew,57 S. T. Harnew,48 J. Harrison,56

M. Hatch,40 J. He,63 T. Head,41 A. Heister,9 K. Hennessy,54 P. Henrard,5 L. Henry,8 E. van Herwijnen,40 M. Heß,67

A. Hicheur,2 D. Hill,57 C. Hombach,56 H. Hopchev,41 W. Hulsbergen,43 T. Humair,55 M. Hushchyn,35 D. Hutchcroft,54

M. Idzik,28 P. Ilten,58 R. Jacobsson,40 A. Jaeger,12 J. Jalocha,57 E. Jans,43 A. Jawahery,60 F. Jiang,3 M. John,57 D. Johnson,40

C. R. Jones,49 C. Joram,40 B. Jost,40 N. Jurik,57 S. Kandybei,45 M. Karacson,40 J. M. Kariuki,48 S. Karodia,53 M. Kecke,12

M. Kelsey,61 M. Kenzie,49 T. Ketel,44 E. Khairullin,35 B. Khanji,12 C. Khurewathanakul,41 T. Kirn,9 S. Klaver,56

K. Klimaszewski,29 T. Klimkovich,11 S. Koliiev,46 M. Kolpin,12 I. Komarov,41 P. Koppenburg,43 A. Kosmyntseva,32

A. Kozachuk,33 M. Kozeiha,5 L. Kravchuk,34 K. Kreplin,12 M. Kreps,50 P. Krokovny,36,e F. Kruse,10 W. Krzemien,29

W. Kucewicz,27,q M. Kucharczyk,27 V. Kudryavtsev,36,e A. K. Kuonen,41 K. Kurek,29 T. Kvaratskheliya,32,40 D. Lacarrere,40

G. Lafferty,56 A. Lai,16 G. Lanfranchi,19 C. Langenbruch,9 T. Latham,50 C. Lazzeroni,47 R. Le Gac,6 J. van Leerdam,43

A. Leflat,33,40 J. Lefrançois,7 R. Lefèvre,5 F. Lemaitre,40 E. Lemos Cid,39 O. Leroy,6 T. Lesiak,27 B. Leverington,12 T. Li,3

Y. Li,7 T. Likhomanenko,35,68 R. Lindner,40 C. Linn,40 F. Lionetto,42 X. Liu,3 D. Loh,50 I. Longstaff,53 J. H. Lopes,2

D. Lucchesi,23,l M. Lucio Martinez,39 H. Luo,52 A. Lupato,23 E. Luppi,17,a O. Lupton,40 A. Lusiani,24 X. Lyu,63

F. Machefert,7 F. Maciuc,30 O. Maev,31 K. Maguire,56 S. Malde,57 A. Malinin,68 T. Maltsev,36 G. Manca,16,k G. Mancinelli,6

P. Manning,61 J. Maratas,5,r J. F. Marchand,4 U. Marconi,15 C. Marin Benito,38 M. Marinangeli,41 P. Marino,24,j J. Marks,12

G. Martellotti,26 M. Martin,6 M. Martinelli,41 D. Martinez Santos,39 F. Martinez Vidal,69 D. Martins Tostes,2

L. M. Massacrier,7 A. Massafferri,1 R. Matev,40 A. Mathad,50 Z. Mathe,40 C. Matteuzzi,21 A. Mauri,42 E. Maurice,7,n

B. Maurin,41 A. Mazurov,47 M. McCann,55,40 A. McNab,56 R. McNulty,13 B. Meadows,59 F. Meier,10 M. Meissner,12

D. Melnychuk,29 M. Merk,43 A. Merli,22,o E. Michielin,23 D. A. Milanes,66 M.-N. Minard,4 D. S. Mitzel,12 A. Mogini,8

J. Molina Rodriguez,1 I. A. Monroy,66 S. Monteil,5 M. Morandin,23 P. Morawski,28 A. Mordà,6 M. J. Morello,24,j

O. Morgunova,68 J. Moron,28 A. B. Morris,52 R. Mountain,61 F. Muheim,52 M. Mulder,43 M. Mussini,15 D. Müller,56

J. Müller,10 K. Müller,42 V. Müller,10 P. Naik,48 T. Nakada,41 R. Nandakumar,51 A. Nandi,57 I. Nasteva,2 M. Needham,52

N. Neri,22 S. Neubert,12 N. Neufeld,40 M. Neuner,12 T. D. Nguyen,41 C. Nguyen-Mau,41,s S. Nieswand,9 R. Niet,10

N. Nikitin,33 T. Nikodem,12 A. Nogay,68 A. Novoselov,37 D. P. O’Hanlon,50 A. Oblakowska-Mucha,28 V. Obraztsov,37

S. Ogilvy,19 O. Okhrimenko,46 R. Oldeman,16,k C. J. G. Onderwater,70 J. M. Otalora Goicochea,2 A. Otto,40 P. Owen,42

A. Oyanguren,69 P. R. Pais,41 A. Palano,14,m M. Palutan,19 A. Papanestis,51 M. Pappagallo,14,m L. L. Pappalardo,17,a

W. Parker,60 C. Parkes,56 G. Passaleva,18 A. Pastore,14,m G. D. Patel,54 M. Patel,55 C. Patrignani,15,g A. Pearce,40

A. Pellegrino,43 G. Penso,26 M. Pepe Altarelli,40 S. Perazzini,40 P. Perret,5 L. Pescatore,47 K. Petridis,48 A. Petrolini,20,i

A. Petrov,68 M. Petruzzo,22,o E. Picatoste Olloqui,38 B. Pietrzyk,4 M. Pikies,27 D. Pinci,26 A. Pistone,20 A. Piucci,12

V. Placinta,30 S. Playfer,52 M. Plo Casasus,39 T. Poikela,40 F. Polci,8 A. Poluektov,50,36 I. Polyakov,61 E. Polycarpo,2

G. J. Pomery,48 S. Ponce,40 A. Popov,37 D. Popov,11,40 B. Popovici,30 S. Poslavskii,37 C. Potterat,2 E. Price,48 J. D. Price,54

J. Prisciandaro,39 A. Pritchard,54 C. Prouve,48 V. Pugatch,46 A. Puig Navarro,42 G. Punzi,24,t W. Qian,50 R. Quagliani,7,48

B. Rachwal,27 J. H. Rademacker,48 M. Rama,24 M. Ramos Pernas,39 M. S. Rangel,2 I. Raniuk,45 F. Ratnikov,35 G. Raven,44

F. Redi,55 S. Reichert,10 A. C. dos Reis,1 C. Remon Alepuz,69 V. Renaudin,7 S. Ricciardi,51 S. Richards,48 M. Rihl,40

K. Rinnert,54 V. Rives Molina,38 P. Robbe,7,40 A. B. Rodrigues,1 E. Rodrigues,59 J. A. Rodriguez Lopez,66

P. Rodriguez Perez,56 A. Rogozhnikov,35 S. Roiser,40 A. Rollings,57 V. Romanovskiy,37 A. Romero Vidal,39

J. W. Ronayne,13 M. Rotondo,19 M. S. Rudolph,61 T. Ruf,40 P. Ruiz Valls,69 J. J. Saborido Silva,39 E. Sadykhov,32

N. Sagidova,31 B. Saitta,16,k V. Salustino Guimaraes,1 D. Sanchez Gonzalo,38 C. Sanchez Mayordomo,69

B. Sanmartin Sedes,39 R. Santacesaria,26 C. Santamarina Rios,39 M. Santimaria,19 E. Santovetti,25,h A. Sarti,19,u

C. Satriano,26,v A. Satta,25 D. M. Saunders,48 D. Savrina,32,33 S. Schael,9 M. Schellenberg,10 M. Schiller,53 H. Schindler,40

M. Schlupp,10 M. Schmelling,11 T. Schmelzer,10 B. Schmidt,40 O. Schneider,41 A. Schopper,40 H. F. Schreiner,59

K. Schubert,10 M. Schubiger,41 M.-H. Schune,7 R. Schwemmer,40 B. Sciascia,19 A. Sciubba,26,u A. Semennikov,32

A. Sergi,47 N. Serra,42 J. Serrano,6 L. Sestini,23 P. Seyfert,21 M. Shapkin,37 I. Shapoval,45 Y. Shcheglov,31 T. Shears,54

L. Shekhtman,36,e V. Shevchenko,68 B. G. Siddi,17,40 R. Silva Coutinho,42 L. Silva de Oliveira,2 G. Simi,23,l S. Simone,14,m

M. Sirendi,49 N. Skidmore,48 T. Skwarnicki,61 E. Smith,55 I. T. Smith,52 J. Smith,49 M. Smith,55 l. Soares Lavra,1

M. D. Sokoloff,59 F. J. P. Soler,53 B. Souza De Paula,2 B. Spaan,10 P. Spradlin,53 S. Sridharan,40 F. Stagni,40 M. Stahl,12

S. Stahl,40 P. Stefko,41 S. Stefkova,55 O. Steinkamp,42 S. Stemmle,12 O. Stenyakin,37 H. Stevens,10 S. Stevenson,57

S. Stoica,30 S. Stone,61 B. Storaci,42 S. Stracka,24,t M. E. Stramaglia,41 M. Straticiuc,30 U. Straumann,42 L. Sun,64

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-8



W. Sutcliffe,55 K. Swientek,28 V. Syropoulos,44 M. Szczekowski,29 T. Szumlak,28 S. T’Jampens,4 A. Tayduganov,6

T. Tekampe,10 G. Tellarini,17,a F. Teubert,40 E. Thomas,40 J. van Tilburg,43 M. J. Tilley,55 V. Tisserand,4 M. Tobin,41

S. Tolk,49 L. Tomassetti,17,a D. Tonelli,40 S. Topp-Joergensen,57 F. Toriello,61 E. Tournefier,4 S. Tourneur,41 K. Trabelsi,41

M. Traill,53 M. T. Tran,41 M. Tresch,42 A. Trisovic,40 A. Tsaregorodtsev,6 P. Tsopelas,43 A. Tully,49 N. Tuning,43 A. Ukleja,29

A. Ustyuzhanin,35 U. Uwer,12 C. Vacca,16,k V. Vagnoni,15,40 A. Valassi,40 S. Valat,40 G. Valenti,15 R. Vazquez Gomez,19

P. Vazquez Regueiro,39 S. Vecchi,17 M. van Veghel,43 J. J. Velthuis,48 M. Veltri,18,w G. Veneziano,57 A. Venkateswaran,61

M. Vernet,5 M. Vesterinen,12 J. V. Viana Barbosa,40 B. Viaud,7 D. Vieira,63 M. Vieites Diaz,39 H. Viemann,67

X. Vilasis-Cardona,38,f M. Vitti,49 V. Volkov,33 A. Vollhardt,42 B. Voneki,40 A. Vorobyev,31 V. Vorobyev,36,e C. Voß,9

J. A. de Vries,43 C. Vázquez Sierra,39 R. Waldi,67 C. Wallace,50 R. Wallace,13 J. Walsh,24 J. Wang,61 D. R. Ward,49

H. M. Wark,54 N. K. Watson,47 D. Websdale,55 A. Weiden,42 M.Whitehead,40 J. Wicht,50 G. Wilkinson,57,40 M.Wilkinson,61

M. Williams,40 M. P. Williams,47 M. Williams,58 T. Williams,47 F. F. Wilson,51 J. Wimberley,60 J. Wishahi,10 W. Wislicki,29

M. Witek,27 G. Wormser,7 S. A. Wotton,49 K. Wraight,53 K. Wyllie,40 Y. Xie,65 Z. Xing,61 Z. Xu,4 Z. Yang,3 Y. Yao,61

H. Yin,65 J. Yu,65 X. Yuan,36,e O. Yushchenko,37 K. A. Zarebski,47 M. Zavertyaev,11,b L. Zhang,3 Y. Zhang,7 Y. Zhang,63

A. Zhelezov,12 Y. Zheng,63 X. Zhu,3 V. Zhukov,33 and S. Zucchelli15

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China

4LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France

6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

10Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

12Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13School of Physics, University College Dublin, Dublin, Ireland

14Sezione INFN di Bari, Bari, Italy
15Sezione INFN di Bologna, Bologna, Italy
16Sezione INFN di Cagliari, Cagliari, Italy
17Sezione INFN di Ferrara, Ferrara, Italy
18Sezione INFN di Firenze, Firenze, Italy

19Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20Sezione INFN di Genova, Genova, Italy

21Sezione INFN di Milano Bicocca, Milano, Italy
22Sezione INFN di Milano, Milano, Italy
23Sezione INFN di Padova, Padova, Italy

24Sezione INFN di Pisa, Pisa, Italy
25Sezione INFN di Roma Tor Vergata, Roma, Italy
26Sezione INFN di Roma La Sapienza, Roma, Italy

27Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland

29National Center for Nuclear Research (NCBJ), Warsaw, Poland
30Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

31Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia

33Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

35Yandex School of Data Analysis, Moscow, Russia
36Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia

37Institute for High Energy Physics (IHEP), Protvino, Russia
38ICCUB, Universitat de Barcelona, Barcelona, Spain

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-9



39Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40European Organization for Nuclear Research (CERN), Geneva, Switzerland

41Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42Physik-Institut, Universität Zürich, Zürich, Switzerland

43Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
44Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands

45NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

47University of Birmingham, Birmingham, United Kingdom
48H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
49Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

50Department of Physics, University of Warwick, Coventry, United Kingdom
51STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

52School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
55Imperial College London, London, United Kingdom

56School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
57Department of Physics, University of Oxford, Oxford, United Kingdom
58Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

59University of Cincinnati, Cincinnati, Ohio, USA
60University of Maryland, College Park, Maryland, USA

61Syracuse University, Syracuse, New York, USA
62Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

(associated with Institution Universidade Federal do Rio de Janeiro (UFRJ),
Rio de Janeiro, Brazil)

63University of Chinese Academy of Sciences, Beijing, China
(associated with Institution Center for High Energy Physics,

Tsinghua University, Beijing, China)
64School of Physics and Technology, Wuhan University, Wuhan, China

(associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
65Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China

(associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
66Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia

(associated with Institution LPNHE, Université Pierre et Marie Curie, Université Paris Diderot,
CNRS/IN2P3, Paris, France)

67Institut für Physik, Universität Rostock, Rostock, Germany
(associated with Institution Physikalisches Institut,

Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
68National Research Centre Kurchatov Institute, Moscow, Russia

[associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]
69Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

(associated with Institution ICCUB, Universitat de Barcelona, Barcelona, Spain)
70Van Swinderen Institute, University of Groningen, Groningen, Netherlands

(associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

aAlso at Università di Ferrara, Ferrara, Italy.
bAlso at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
cAlso at Università di Milano Bicocca, Milano, Italy.
dAlso at Università di Modena e Reggio Emilia, Modena, Italy.
eAlso at Novosibirsk State University, Novosibirsk, Russia.
fAlso at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
gAlso at Università di Bologna, Bologna, Italy.
hAlso at Università di Roma Tor Vergata, Roma, Italy.
iAlso at Università di Genova, Genova, Italy.
jAlso at Scuola Normale Superiore, Pisa, Italy.
kAlso at Università di Cagliari, Cagliari, Italy.
lAlso at Università di Padova, Padova, Italy.
mAlso at Università di Bari, Bari, Italy.
nAlso at Laboratoire Leprince-Ringuet, Palaiseau, France.

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-10



oAlso at Università degli Studi di Milano, Milano, Italy.
pAlso at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
qAlso at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications,
Kraków, Poland.
rAlso at Iligan Institute of Technology (IIT), Iligan, Philippines.
sAlso at Hanoi University of Science, Hanoi, Viet Nam.
tAlso at Università di Pisa, Pisa, Italy.
uAlso at Università di Roma La Sapienza, Roma, Italy.
vAlso at Università della Basilicata, Potenza, Italy.
wAlso at Università di Urbino, Urbino, Italy.

PRL 118, 192001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
12 MAY 2017

192001-11


