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Compatible systems of symplectic Galois representatiods a
the inverse Galois problem lll.
Automorphic construction of compatible systems with dalga
local properties.

Sara Arias-de-Reyriduis V. Dieulefaif Sug Woo ShihGabor Wiese

28th August 2014

Abstract

This article is the third and last part of a series of thre&lag about compatible systems of
symplectic Galois representations and applications tintrerse Galois problem.

This part proves the following new result for the inversediaproblem for symplectic groups.
For any even positive integerand any positive integet, PSp,, (F,«) or PGSp,, (F,«) occurs as
a Galois group over the rational numbers for a positive dgsst of primed. The result depends
on some work of Arthur’s, which is conditional, but expectedbecome unconditional soon.

The result is obtained by showing the existence of a regalggbraic, self-dual, cuspidal
automorphic representation 6fL,,(Ag) with local types chosen so as to obtain a compatible
system of Galois representations to which the results frarhIPof this series apply.

MSC (2010): 11F80 (Galois representations); 12F12 (Irv&alois theory).

1 Introduction

This article is the last part of a series of three on compatiylstems of symplectic Galois repres-
entations and applications to the inverse Galois probldnAdDW134d], [AdDW13h]). Our main
theorem is the following new result for the inverse Galoisigem overQ for symplectic groups.
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Theorem 1.1. For any even positive integet and for any positive integedi there exists a set of
rational primes of positive density such that, for everyy@¥ in this set, the grouf?GSp,,(F,a) or
PSp,,(F,a) is realised as a Galois group ovép. The corresponding number field ramifies at most
at ¢/ and two more primes, which are independent.of

The result depends on Arthur’s work on the endoscopic dieason for odd orthogonal groups,
which is conditional, but expected to become unconditicaan, see Remalk 3.3. In Rembrk]3.5 we
sketch an alternative approach for making the result uriionell.

In fact, one of the two auxiliary primes in Theoréml1.1 candeh to be any prime, the other one
can be chosen from a set of primes of positive density defigeshbexplicit Chebotarev condition.
The set of primeg depends on the two previous choices and the choice of an agpbio form, and
is also given by a Chebotarev condition (in the projectiviel fid definition (seel[AdDW13a], Section
6) of the compatible system of Galois representations lathto the automorphic form (see below))
except for a density zero set.

Theoren 1.1l is complementary to the main result of Kharesérmmand Savin [KLS08], in the
sense that it is in the horizontal direction in the termigyl@f [DW11], whereas loc. cit. is in the
vertical one, that is¢ is fixed andd runs. The horizontal direction needs quite a different apph
from the vertical one. Nevertheless, some ideas of [KL.Sfi8]instance that ofn, p)-groups, are
crucially used also in our approach. The overall strateglegribed in the introduction to Part I.

The goal in this Part lll is to construct compatible systef@alois representations satisfying the
conditions in the main result on the inverse Galois probléfifdDW13b] (Corollary 1.6). In order
to do so, we prove the existence of a regular, algebraicdself, cuspidal automorphic representation
of GL,,(Ag) with the required local types by adapting the results fromiIg]. This automorphic
representation is such that the compatible system of Gadpigsentations attached to it is symplectic,
generically irreducible, has a maximally induced plgcaf a certain prime ordep, and locally at a
primet contains a transvection. In order to show that the tranewedt preserved in the image of the
residual representation, at least for a density one setimiegr we will apply a level-lowering result
from [BLGGT14] over suitable quadratic imaginary fields.

The structure of this paper is the following. In Sectidn 2 weall general facts about regular
self-dual automorphic representations and their corredipg compatible systems of Galois repres-
entations (everything in this section can be found in [BLAQ]). In Section B we show the existence
of the sought for automorphic representation. In Sedtionedspecify the conditions on the rami-
fied primes that we will need and explain the properties ofdbmpatible system attached to the
automorphic representation from Sectidn 3. In Sedtion 5 aréopm the level-lowering argument.
Finally, in Sectiori.b we derive the main conclusions thabfelfrom the combination of the results
in our three papers.
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2 RAESDC automorphic representations and the Galois repremta-
tions attached to them

The reader is referred tb [BLGGT14] for more details conrggranything in this section except the
v = [ case of [(b) below, for which we refer to [Cai12]. For a fiéldve adopt the notatiod;, to
denote the absolute Galois groupkof

Let Z™* be the set ofi-tuplesa = (a;) € Z" such thata; > ay > .... > a,. Leta € Z™T,
and let=, be the irreducible algebraic representationdf,, with highest weighta. A RAESDC
(regular, algebraic, essentially self-dual, cuspidalX@morphic representation @kL,,(Ag) is a pair
(m, ) consisting of a cuspidal automorphic representatiai GL,,(Aq) and a continuous character
s Ag/Q* — C* such that:

(1) (regular algebraick., has the same infinitesimal character=sfor a € Z™*. We say thatr
has weighta.

(2) (essentially self-duaby = 7V @ (i o det).

Such a pair(w, 1) is an instance of a polarised representation in the send8l@ET14, 2.1].
In this situation, there exists an integersuch that, for everyt < i < n, a; + apy1-; = w. Let
S be the (finite) set of primes such thatr, is ramified. There exist a number fiedd C C, which
is finite over the field of rationality ofr in the sense of [Clo90], and a strictly compatible system of
semisimple Galois representations (see [BLGGT14, 5.1thismotion; in particular the characteristic
polynomial of a Frobenius element at almost every finite plaas coefficients id/)

p)\(ﬂ') : GQ - GLn(M)\)a
pa(p) : Gg — My,

where)\ ranges over all finite places of (together with fixed embeddingg < My — M, where
My is an algebraic closure dif,) such that the following properties are satisfied.



(1) pa(m) = pa(m)Y @ xoye o (1), Wherexy denotes thé-adic cyclotomic character.

C

(2) The representations, (m) andp, () are unramified outsid8 U {¢}, where/ denotes the rational
prime belowA.

(3) Locally at/ (i.e., when restricted to a decomposition groug)athe representations, (=) and
px(p) are de Rham, and if ¢ S, they are crystalline.

(4) The setIT(py (7)) of Hodge-Tate weights gf, () is equal to:
{a1 +(n—=1),a2+(n—2),...,a,}.

(The Hodge-Tate weight of.. is —1.) In particular, they are different numbers and they are
independent of and/. Therefore, the representations are regular.

(5) The system is strictly compatible, as implied by thedwiing compatibility with local Langlands:
Fix any isomorphism : M ~ C compatible with the inclusiod/ c C w.r.t. the already fixed
embeddingl — M) — M . Whetherv { £ or v|¢, we have:

tWD(pa(m)|ag, )T ™ = rec(m, @ | det | 7/2). (2.1)

Here WD denotes the Weil-Deligne representation attached to @septation of7g,, F — ss
means the Frobenius semisimplification, awd is the notation for the (unitarily normalised)
local Langlands correspondence, which attaches to anuciiglé admissible representation of
GL,(Q,) aWD representation of the Weil grodyy, .

Remark 2.1. We did not include in the notation since the isomorphism clasggfr) is independent
of the choice of. This is easy to deduce from the fact that the Frobenius sratall but finitely many
places are inM via the Chebotarev density theorem.

Remark 2.2. For every primep of good reduction forr, and for each\ 1 p prime of M, the trace
of the image undep, () of the Frobenius ap belongs to the field of rationality of (hence toM)

since the mapec twisted by| det |(*=™)/2 commutes with all field automorphisms@f Therefore,
if the residual representatiop, () is absolutely irreducible, it follows from Théoréme 2 [of [G4]

that the representatiop, () can be defined over/,.

Remark 2.3. Observe that the above properfy (5) implies that as long asd ¢ are different, the
behaviour locally aw of the representationg, () is independent of, and it can be determined (up
to Frobenius semisimplification) from the admissible repreationr,, via local Langlands.

Fix a symmetric form orfWK, and a symplectic form ifi is even. Thus we have the subgroup
GO, (M), and alsaGSp,,(M ) if n is even, ofGL,, (M ). It is important for us to know a criterion
for the image ofp, () to be contained ifGSp,,(M ) (for any fixed choice of symplectic form on
HK) up to conjugation. This is deduced from a result of Bellaiegmd Chenevier. Noting that
must be an algebraic Hecke characterylet Z denote the unique integer such that | =" is a finite
character. The integer ring i , will be denotedOyy, .
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Lemma 2.4. Suppose thap, () is residually irreducible. Ifn is even anduy(—1) = (—1)"
(resp. ifn is odd orpe(—1) # (—1)") then the image op,(r) is contained inGSp,, (O, ) (resp.
GOn(OMA)) possibly after a conjugation by an elementdit,, (M ).

Remark 2.5. Whenn is even, it may happen that the imagepafr) is contained inGSp,, (O, )

as well asGOn(OMA) after conjugation, cf. footnote 1 af [BCI11] for an exampleenh = 2. The
point is that whilep, (7) is completely characterised byalone, there are generally several choices
of 11 for the samer with different values ofio.(—1).

Proof. By an argument as in Section 2 of [AdDW1.3a] (where the residreducibility is used), the
proof is reduced to showing that the image is contained heettSp,, (M ) or GO,,(M ).

We start with an easy observation. Let: ' — GL(V) be an irreducible representation on
an n-dimensional vector spacg over M,. Fix a basis{e;} for V and write {e} for the dual
basis. Suppose th&p',VV) ~ (p ® x,V) for a charactery of I. Let A be ann x n matrix
representing one such isomorphism. Thén= §A for 6 € {£1}, which is called the sign of
(p,x). (See the introduction of [BC11].) Then elementary lindgebra shows that i§ = 1 (resp.
§ = —1) then there exists a nondegenerate symmetric (resp. aitegh formV @ V' — M, such
that B(yv,yw) = x(v)B(v,w) for v € T'andv,w € V.

So the lemma amounts to the assertion thak) = (pa(7), px(r)) has sign 1 (resp-1) if n is
even andus(—1) = (—1)" (resp. otherwise). This is exactly [BC11, Cor 1.3]. O

3 Existence of self-dual automorphic representations withprescribed
local conditions

The goal of this section is to prove the existence of a reqifgbraic self-dual cuspidal automorphic
representation o&L,,(Ag) with some particular local properties wheris even, for the application
to the inverse Galois problem in Sectidn 6. As we utilise Arshclassification for representations of
classical groups, our result depends on a few hypotheseh s work depends on. (See Renmfark 3.3
below.) The reader may skip to the next section after gettingliar with the notation of[&314 if he or
she is willing to accept Theorem 8.4 below.

We adopt the convention that all irreducible representatiaf p-adic or real groups are assumed
admissible. Whenever it is clear from the context, we ofteiteva representation or airparameter
to mean an appropriate isomorphism or equivalence claseaha favour of simplicity. We did
not specialize taF" = Q when recalling facts in[83.2 and_&B.3 below since the exjpostiardly
simplifies by doing so. The attentive reader will notice thheoren{ 3.4 easily extends to the case
over any totally real field.

3.1 Plancherel measures

This subsection is a reminder of some facts about Planchexatsures op-adic groups. Le be a
connected reductive group over a non-archimedean or aeckgam local fields. Write G(K)" for
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the unitary dual of7(K'), namely the set of all irreducible unitary representatioh&( K') equipped
with the Fell topology. LetX ', (G(K)) denote the set of all unitary unramified character&:/0K)

in the usual sense. (Thisis1X (G) on page 239 of [Wal03].) Harish-Chandra proved (cf. [Wa)03]
that there is a natural Borel measuiﬂé onG(K)", called the Plancherel measure, satisfying

o(1) = / H)iP, e CX(G(K)),
G(K)N

where ¢ is the function defined by () := trr(¢). Let ©(G(K)) denote the Bernstein variety,
which is a (typically infinite) disjoint union of affine algedic varieties ovefC. Viewing ©(G(K))
also as the set of-points with complex topology, the association of supepaed support defines
a continuous map : G(K)" — O(G(K)) ([Tad88, Thm 2.2]). In prescribing local conditions for
automorphic representations we will often consider thipwdhg kind of subsets. The terminology is
non-standard and only introduced to save words.

Definition 3.1. A subsel/ of the unitary dualG(K)" is said to beprescribablef
e U is a Borel set which igP!-measurable with finite positive volume,
e v(U) is contained in a compact subset®fG(K)), and

e for each Levi subgroud. of G and each discrete seriesof L(K), consider the function on
X (L(K)) whose value af is the number of irreducible subquotients lyinglin(counted

with multiplicity) of the normalized induction of ® x to G. Then the set of points of discon-
tinuity has measure 0.

To show the flavour of this somewhat technical definition, wantion three examples for such
subsets. The first example is the subset of unramified (rgsyerisal) representations @&(K)" if
K is non-archimedean (resp. archimedean). The second exasnble set of alr € G(K)" in a
fixed Bernstein component, i.e. thosavith the same supercuspidal support up to inertia equicalen
Finally the sef{T ® x : x € X' (G(K))} for a unitary discrete seriesof G(K') also satisfies the
requirements. (By a discrete series we mean an irreduaplesentation whose matrix coefficients
are square-integrable modulo center.)Glfis anisotropic overX (which is true ifG is semisimple)
then X (G(K)) is trivial so the last example is a singleton.

unit

3.2 Existence of automorphic representations

In this subsection we recall one of the few existence thesiarfEhil2], which are based on the prin-
ciple that the local components of automorphic represiemistat a fixed prime are equidistributed
in the unitary dual according to the Plancherel measure. réader is invited to see its introduc-
tion for more references in this direction. There is a défdgrapproach to the existence of cuspidal
automorphic representations via Poincaré series (withming equidistribution), cf[[KLS08, §4],
[Mui10].

Let G be a connected reductive group over a totally real numbe fieduch that
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e ( has trivial center and
e G(F,) contains armR-elliptic maximal torus for every real place of F'.

The first condition was assumed in [Shil12] and it is kept heri¢ ia harmless for our purpose below.
However it should be possible to dispense with the conditipfixing central character in the trace

formula argument there. Now |ét be a finite set of finite places @f. Let MEI denote the Plancherel
measure oii(F,)" forv € S. LetU, ¢ G(F,)" be a prescribable subset for eack S.

Proposition 3.2. There exists a cuspidal automorphic representatiaf G(A ) such that
1. r,eU,forallves,
2. 7 is unramified at all finite places away frof)

3. 7, is a discrete series whose infinitesimal character is seffity regular for every infinite
placew.

The regularity condition above should be explained. Fix aimal torusT’ and a Borel subgroup
B containingT in GG overC (the base change @f to C viaw : F — C). Let(2 denote the Weyl
group of " in G. The infinitesimal charactey,, of 7, above, which may be viewed as an element
of X*(T) ®z Q, is sufficiently regularif there is ano € Q such that(ox.,,«") > 0 for every B-
positive coroote” of T in G. (Precisely the condition is thdtx,,, ") > C, whereC is a large
enough constant depending only 6n.S and{Uv}veg.) This condition is independent of the choice
of T'and B.

Proof. Our proposition is the analogue of Theorem 5.8 of [Shil2gxc¢hat a priori a weaker con-
dition on U := [Loes U, is assumed here. Let us explain this point. By the very definiof
prescribable subsets, the characteristic functioty pdenotedl ;, belongs to the class of functions to
which Sauvageot’s density principle [Sau97, Thm 7.3] apli(Our last condition in Definitidn 3.1
corresponds to condition (a)(1) in his theorem.) Hence wetake f = 15 in [ShilZ, Thm 4.11] so
that we have the analogue bf[Shi12, Cor 4.12] for BurTherefore the analogue 6f[Shi12, Thm 5.8]
is deduced through the same argument deriving that thea@m[Bhil2, Cor 4.12] originally. O

3.3 Arthur’s endoscopic classification forSO,,,, 1

Arthur [Art13] classified local and global automorphic repentations of symplectic and special or-
thogonal groups via twisted endoscopy relative to genareat groups. For our purpose it suffices to
recall some facts in the case of odd orthogonal groups.

Let ' be a number field. Denote I30-,,,11 the split special orthogonal group over Note that
the dual group 080211 IS Sps,,, (C). Write

€ : Spay (C) = GL2in (C)



for the standard embedding, and g, := Wg, (resp.Lr, := W, x SLa(C)) according as is
an infinite (resp. finite) place. Afh-parametew, : Lr, — GLa,(C) is said to beof symplectic
typeif it preserves a suitable symplectic form on the-dimensional space, or equivalently,dif
factors througlt (after conjugating by an element 6fL,,,,(C)). For a place of F, letrec, denote
the (unitarily normalised) local Langlands bijection frdire set of irreducible representations of
GL,(F,) to the set ofL-parameter<r, — GL,(C) for anyr € Z>;. Whenv is finite, there is
a standard dictionary for going between lodaparameters fof5L,. andr-dimensional Frobenius-
semisimple Weil-Deligne representationsWifz, in a bijective manner.

For each localL-parameterp, : Lr, — Sp,,,(C) (or a local L-parameter foiGLy,, of sym-
plectic type), Arthur associates drpacketIly, consisting of finitely many irreducible representa-
tions of SO, +1(F;,). Moreover each irreducible representation belongs td tpacket for a unique
parameter (up to equivalence). ¢f, has finite centraliser group ifip,,,(C) so that it is a discrete
parameter, theil,, consists only of discrete series. A similar constructiors waown earlier by
Langlands (deriving from Harish-Chandra’s results on reductive groups) when is an infinite
place ofF.

Now let 7 be a discrete automorphic representatio8©%,,,+1 (Ar). Arthur shows the existence
of a self-dual isobaric automorphic representationf GLo,,(Ar) which is a functorial lift of
along the embeddin§p,,,(C) — GLa,,(C). In the generic case (in Arthur’s sense, i.e. when the
SLo-factor in the globald-parameter for- has trivial image), this means that for the unighesuch
thatr, € II,,, we have

recy (my) =~ €y, V.

Remark 3.3. Arthur’s result [Art13] is conditional mainly because thtakilisation of the twisted
trace formula is yet to be established. Good news is that Moagd Waldspurger have been actively
making progress on this issue (five preprints are alreadyilalbke when our paper is written) so we
expect his result to become unconditional soon. (There #egvdechnical results to be completed, cf.
[ST, Footnote 10] for a discussion, but these are all relelyvminor and to be addressed by ongoing
projects by others.) For this reason the authors think tha¢ meed not strive hard to avoid using
them. However see Remarkl3.5 below for a possible altemativ

3.4 Application: Existence of self-dual representations

We seek self-dual representations with specific local ¢amdi. To describe them we need to set
things up. It is enough to restrict the material of previoulsgctions to the cadé = Q. Letn be

a positiveeveninteger. Letp, ¢, t be distinct rational primes and assume that the ordermbdp is

n. Denote byQ,~ an unramified extension dp, of degreen. Choose a tamely ramified character
Xq : Qgn — C* of order2p such thaty,(q) = —1 andxq\qun is of orderp (cf. Section 3.1 of [KLS08]
and the definition of maximal induced places of ordenade in Part | (Section 6 af |[AdDW1Ba]). By
local class field theory we also regayd as a character afg, (or Wg,). Put



We write WD (p,) for the associated Weil-Deligne representation, givisg tb a localL-parameter
¢q for GL,(Qq). Sincep, is irreducible and symplectic[(IKLS08, Prop 3.1]), the paeder ¢,
factors througrSOTH\(C) = Sp,,(C) C GL,(C) (after conjugation if necessary) and defines a
discreteL-parameter 080,,,1(Q,). So theL-packetlls, consists of finitely many discrete series of
SOn+1(Qy). (Infact [KLSO8, §5.3] exploits the fact due to Jiang and &gucf. [JSO3, Thm 6.4] and
[JS04, Thm 2.1], thall,, contains a generic supercuspidal representation. In othiadet suffices
to have the weaker fact tha,, contains a discrete series.)

It is a little more complicated to explain the objectstatLet Sty denote the Steinberg repres-
entation of GL(Q;) which appears as a subquotient of the unnormalized pacabwluction of
the trivial character. SincBt, has trivial central character, it corresponds tolaparameter val-
ued inSLy(C). Let M be a Levi subgroup 080,,;; isomorphic t0SO3 x (GL1)2 ! so that
M ~ SLy(C) x GL;(C)2~!. Consider a localL-parameter}’ : Wq, x SLy(C) — M having
the form

o1 = (reci(Sta) d1,+ 03 1), 61 € X (W),

where X, (Wq,) denotes the set of unitary unramified charactersVef,. Then¢ is a discrete
parameter forM/. Writing n™ : M — Sp,,(C) for a Levi embedding (canonical up to conjugacy),
we see thatn™ ¢ is the L-parameter folGL,, corresponding to the-dimensional Weil-Deligne

representation
21

recy(Ste) @ @ o; D (b

Arthur associates a Ioc;EJ-packeﬂIW of irreducible M (Q;)-representations t}. Definel; to be
the set of all irreducible subquotients of the paraboliaiztibn of 7 ® x from M (Q;) t0 SO,, 11 (Q)
astM runs overl, andy runs overX . (M (Q¢)). Since the effect of the parabolic induction on
L-parameters is simply composition with! (this is implicit in the proof of the proposition 2.4.3 in
[Art13]), the L-parameter for any, € U, has the following form (after composing wit:

21

Aorec (Ste) @ @)\Zqﬁz@)\ ¢ ;A € Xinie(Wa,), 0 < <
=1

n
——1. 3.2
5 (32)
Notice thatl; is a prescribable subset. Among the conditions of DefinBdhwe only check the last
one as the others are reasonably easy. By theliay constructed, the function aki™*. (L(F)) in

unit
that condition is either identically zero unlebs= M (up to conjugacy) and is in the X'\ (L(F'))-
orbit of 7 for somer"’ € I1,ur. So we may assume that= M and thar = 7. Then a version
of the generic irreducibility of parabolic induction (sé&alu97, Thm 3.2] attributed to Waldspurger,
cf. the fourth entry in Appendix A of [Shil2] for a minor coation) implies that the function is the

constant function 1 away from a closed measure zero set.VEhiges the condition as desired.
Theorem 3.4. There exists a cuspidal automorphic representatiasf GL,,(Ag) such that

(i) = is unramified away from andt¢,



(i) recy(my) =~ WD(p,),
(i) rect(m:) has the form(3.2),
(iv) 7 is of symplectic type and regular algebraic,
(v) # ~ 7V, and
(vi) the central character of is trivial.
As we rely on Arthur’s work[[Art13], our theorem is conditi@inas explained in Remaik3.3.

Proof. Apply Propositiori3.2 witls = {q, ¢}, U, = I1, andU; as above. We have seen tiigtand
U, are prescribable. Hence there exists a cuspidal autontorppiesentation of SO2p,+1(Ag) such
that

1. 7, is unramified at every finite place¢ {q,t},

2. 14 € Iy,

3.1 € Ut,

4. 1, is a discrete series whose infinitesimal character is seifilsi regular.

Then the functorial liftr of 7 as in §3.B has the desired propertigs (i)—(v) of the theorgrodn-
struction. (To verify the regular algebraicity of it is enough to note that ths:-many exponents for
z/Zz in the parameter fotr.,, coming from that ofr.., at infinite places are iéZ\Z and mutually
distinct, cf. the bottom line of [KLS08, p.557].) To see thespidality ofr, it suffices to note that the
parameter forr is generic in Arthur’'s sense thanks to condition 4 al@)hencewq is supercuspidal
sincerec,(my) ~ WD(p,), which is irreducible. Finally[(¥i) is derived from the faittat the central
character is trivial at (almost) all finite places. Indeegl tlentral character corresponds to the determ-
inant of theL-parameter fotr at each place via local class field theory, but the deternbiisamivial
since the parameter factors throg,, 1 (C). O

The existence of can be shown by using Theorem 5.13 [of [Shi12], which is okthivia the
simple trace formula foZ, instead of using Propositidn 8.2, at the expense of losorgral of
ramification at two auxiliary primes (but with the ability thooser,, to be any discrete series).

Remark 3.5. We sketch the idea for a different approach, which would ntizékeesults of this section
(thus also the main theorem of this paper) unconditionahd& tletails are worked out. (However
we have not pursued this path for the reason mentioned in ReéBd.) The idea is to imitate the
arguments for[[CC09, Thm 3.2] to prove the existence wfithout going through representations of

"Here we are excluding the possibility that the global patamfer  is non-generic at the same timegsbelongs to a
non-genericA-packet, in which case the parameterfgrwould be the transfer of the non-generic parameterfdso not
supercuspidal). We thank Gordan Savin for asking to clarify
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G (thus avoiding the use of twisted endoscopy) via the simdtetd trace formula fozL,, as long as
one is willing to allow ramification at one auxiliary prime {f). (This is harmless for our purpose.) To
this end one describes test functiongyat and infinite place using the twisted Paley-Wiener theorem
due to Rogawski and Mezo and show that the geometric sideattefbrmula is nonzero.

4 Compatible systems attached to the RAESDC representatignfrom
the previous section

Let n be an even integer and lebe an arbitrary prime. Choose a primdifferent fromt¢ such that
p =1 mod n. Chebotarev’s density theorem allows us to choose a pyiditferent from¢ (out of a
positive density set) such thet/2 = —1 mod p.

From now on, we will restrict to triples of primes satisfyitigese conditions, and we will keep the
notationp, ¢, t for these primes, chosen in the order specified above. Tlddion is also compatible
with the one in the previous section.

Consider an automorphic representatioms in Theorern 314 and the trivial charactesf Aé JQ*.
Then(r, 1) is a RAESDC representation by construction, to which thésfa€ Sectioi 2 apply. So
there are a number fielt/ C C and a compatible system of Galois representatjoyis) : Go —
GL, (M) asA ranges over all places off with the following properties for every (below,? denotes
the rational prime dividing\).

(1) palm) = pa(m)Y @ xey anddet py () = a2,

(2) pa(m) and its residual representation are absolutely irrededfl 1 p, g,
(3) pa(m) is unramified away fronk = {q,t} and the residue characteristic af

4 pA(ﬂ')\GQE is de Rham and has Hodge-Tate weights as described in SEtiorparticular they
are independent of and distinct,

(5) pA(ﬂ')\GQl is crystalline if¢ ¢ R,
(6) pa(m) has image irGSp,, (Oyy, ) (after a conjugation) by Lemnia 2.4)ft p, q,
(7) The multiplier ofp () is x&;",

(8) WD(pA(w)|GQq)F—SS ~ WD(p,) ®|-|2=™/2if At q. In particular,px (m)|cq, =~ pg® a, Where
ay : Go, — M; is an unramified character (i.¢is a maximally induced place of ordgrin the
terminology of Part I[[AdDW13a]), Section 6, and

9) WD(pA(w)|GQt)F—SS has the form[(3]2) i 1 ¢. In particular the image af, underp, () is gen-
erated by a transvection, because;(St) is the Weil-Deligne representation having restriction
. 1
to [; of the form(1, V) with N = 8 0 |
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All these are easy consequences of the facts recollecteédtioB[2. Note that for\ { p,q,
the residual representation pf () is irreducible since its restriction t6'g, is irreducible for the
reason thap, modulo \ is irreducible (IKLSO08, Prop 3.1]). In particular the irggbility hypo-
thesis of Lemma 214 is satisfied. After a conjugation we may &ill assume that the image lies
in GSp,,(Ow, ). The determinant o, () is computed easily by relating it to the central character
of 7, which is trivial (Theoreni_3]4_(\/i)), keeping in mind thaktihormalisation of the correspond-
ence involves a twist by - |(1=")/2 cf. part [B) of Sectiof]2. Finally in order to see the second
isomorphism follows from the first in (8), observe tHatD(p,) is already Frobenius semisimple.
Since p, is irreducible, this forcesW.D(px(m)|c,,) to be already Frobenius semisimple. Thus
WD(pa(7)lag,) = WD(pg) ® |- |(=")/2, which implies thap (r)|¢,, ~ pg®|-|1 /% sinceWD
is a fully faithful functor.

5 Level-lowering and transvections

Throughout this section will denote the (fixed) automorphic representation considén Section ¥,
and (px(m))a, for A running through the primes of a number field C C, the compatible system
attached tor. As before we denote by, (7) the residual representation f(r).

The aim of this section is to study the transvection conthimethe image ofp,(7) given by
its restriction tol,, for every? # t, A | £. We want to show that when reducing modwahis
transvection is preserved, or equivalently, that the tegidhod )\ representation is ramified &t at
least for a density one set of priméand every\ | £. The main tool will be a level-lowering argument
based on Theorem 4.4.1 of [BLGGT14].

One of the hypotheses in this theorem is that, when redrictehe Galois group of a suitable
cyclotomic extension, the residual representation islireéble. The following lemma will be used to
meet this requirement:

Lemma 5.1. There exists a sef of Dirichlet density one of rational primes with the followgi prop-
erty:

For any/ € L, for any \ | £ and any quadratic field extensidn/Q such that; and¢ are

unramified, the representati@(wﬂgml) is irreducible.

Proof. By Proposition 5.3.2 of [BLGGT14], there exists a ggtof Dirichlet density one of rational
primes/ such that, for any\ | ¢, if py () is irreducible, therﬁk(ﬂ)]GQw) is irreducible. The set
L = Lo\ {q} satisfies that, for alt € £, for all A | ¢, ﬁ)\(w)|GQ(CZ) is irreducible because so g ()
due to the parameter at We will now prove thatC has the property stated in the lemma.

Let2 < ¢ € £, A | ¢ and letF/Q be a quadratic field extension, unramifiedgaand¢. If
the equalityp, (7)(Gr(c,)) = Pa(m)(Gg,)) holds then we are done. Otherwise, denoteibyhe
number field such tha¥ i = ker p, (7). Since the equality above does not hditi(,) N K Z Q({p).
But the only primes ink/Q which can ramify arey, ¢t and/. Hence the field extensioff' N K)/Q
has degree at most 2, ramifies onlyaand is not contained i@({,). This is a contradiction. [
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For the remainder of the section, Jébe a set of Dirichlet density one of rational primes satigfyi
the property in Lemm@a?5].1.

The following lemma allows us to control the case where atedirepresentation in our system
can lose ramification at at least over certain imaginary quadratic fields.

Lemma 5.2. Let F' be an imaginary quadratic field such thatind ¢, the primes where ramifies,
are split. Then among the primésc £ that are split inF’, there are only finitely man§such that the
residual representatiop, () is unramified at for some) abovel. In particular, the residual mod
representation contains a transvection given by the imdde for all but finitely many primeg € £
that are split inF, for every\ | ¢.

Proof. We restrict our reasoning to priméghat are split inF’, different fromgq, ¢, and belonging to
L. Note that we can apply Lemrhab.1 to the residual medpresentation.

Observe that, sinceis split in F', for every? # t and every\ | ¢, the restrictiorp, (r)|q, rami-
fies at the primes irF' abovet, and of course, if we assume that the modepresentation becomes
unramified at then the same happens to its restrictiorGte. Thus, we can work ovetrr and this
is the setting where the problem of losing ramification carattacked because the available level-
lowering results only work, to this day, over CM fields. By @inatic) base change due to Arthur and
Clozel, the restriction t@- » of our compatible system is also attached to an automorgiesent-
ation, namely the base changg of =, an automorphic representation GL,,(Ar). (Note thatrp
is cuspidal sincey ()|, is absolutely irreducible and that- paired with the trivial character is a
polarised representation in the sense_of [BLGGT14]. Olsliowr is also regular algebraic, so we
can speak of a compatible system attachedtQ

Thus, we take a primé split in F', ¢ € £, and we assume tha (r) (and, a fortiori, its re-
striction to Gr) is unramified at (the primes inF dividing ¢, respectively). To ease notation, let
Pr i= pa(m)|ap- This residual representation has an automorphigliftr) given by the\-adic
representation attached tg-, and sincep, (7 r) is ramified at the primes abovewhile o , is not,
we can apply a level-lowering result in this situation. Namee want to apply Theorem 4.4.1 from
[BLGGT14] taking S to be the ramification set gfz », i.e., we will takeS = {/,¢}. In particular,t
will not be in S. Let us first discuss the idea informally before going inttads. The theorem gives,
for a residual representation that is known to be automorghé existence of another automorphic
lift with prescribed local types, under some conditiond #iv@ met in our situation. We insist on the
new automorphic lift to have the same local type at ramifidch@s as the given one except at the
places abovewhere we are assuming the residual representation to bmifiad, since we want this
new automorphic form to be unramified at the places aboVéis is the reason why, in our situation,
this theorem can be considered as a level-lowering result.

Going back to Theorem 4.4.1 of [BLGGT14], we need to checktiye conditions there. The
A-adic lift p)(7mr) is potentially diagonalisable at the primes dividiAigvhenever/ is sufficiently
large, because then we are in a Fontaine-Laffaille sitngtd Lemma 1.4.3 (2) of [BLGGT14] for a
precise statement of the criterion for potential diag@adility). This verifies the first condition. The
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second condition is immediately satisfied by Lenima 5.1 @sd. We choose one place dividing
q and one place dividing in F and if we call.S’ the set of these two primes, for anye S’ we
fix as n-dimensional\-adic representatiop, of G, the restriction taG g, of py(7r). Having this
fixed, we can apply Theorem 4.4.1 in [BLGGT14] to conclude thare exists another automorphic
representation’, of GL,,(Ar) such that:

(1) 7 is cuspidal, regular algebraic, and polarisable in the s@fidBLGGT14] (more precisely
RAECSDC when paired with a suitable Hecke character; thismaogous to the RAESDC rep-
resentation in Sectidd 2 except that conjugate self—guajtlaces self—duality there), in particu-
lar equipped with an associated compatible systepir’)),, indexed by the primes of some
number field)’,

(2) 7' is unramified outside,
(3) there is a place’ of M’ abovel such thap,, (77.) = pp .y,

(4) ifv € 5, thenpy ()|, connects te, (see [BLGGT14] for the definition afonnect

On the one hand, by known properties of the connected ralétio [BLGGT14], Section 1.4),
Condition [4) at | £ implies that the Weil-Deligne representationspgf(n)|c ., andp,, restricted
to the inertia group at, are isomorphic. Sincg, is known to be crystalline, we can conclude that
px (7)|ay, is crystalline. Moreover the connected relation implieg definition) that they have
both the same Hodge-Tate numbers. From this (and conjugasntial self-duality) we deduce that
> has level prime td and that it has the same infinitesimal characteras

On the other hand, at the prime 1 aboveq, sayw, the Weil-Deligne representations corres-
ponding topy (7%)|c, andp, have isomorphic restrictions to inertia. Indeed, singeand n},
are cuspidal automorphic representationszéf, (A ), the local components,, andwgyw are gen-
eric. Hence, by Lemma 1.3.2 of [BLGGT14\(7)|cy, = pw @andpy (7y)|cy, are smooth. From
Lemma 1.3.4 (2) of [BLGGT14] (due to Choi) we conclude that ithertial types ofr andr/, atw
agree.

Observe that in particular, independently/pthe automorphic representatiafy. has fixed infin-
itesimal character ato, fixed ramification set and fixed types at the ramified primefollbws from
the finiteness result of Harish-Chandra (cf. (1.7) and (df4BJ79]) that there are only finitely many
possibilities fomﬁm@ (We see from[[BJ79] that there are finitely mamfy with fixed infinitesimal
character ato such that the finite part of,. has a nonzero invariant vector under a fixed open com-
pact subgroup of the finite part 6fL,,(Ar). So it boils down to showing that the conductorzdf
is bounded. The latter can be seen via local Langlands fratrvh fix the ramification set of/. as
well as the types at the primes therein.)

2More precisely there are only finitely many irreducible sjisesentations isomorphic 4¢. in the space of cuspforms
on GL, (Ar) (with trivial central character).
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Now assume that the residual representatign ¢f ) is unramified at for infinitely many primes
£ (we keep the assumption that we are only working with prithes. that are split inf"). For each
¢ we find 7, as above (which a priori depends 6n Since there are only finitely many possibilities
for 7> as¢ varies, we conclude that there exists’aas in (1) and[(2) such that the congrueride (3)
and condition[(4) hold true for infinitely many. Let: : M — C (resp..’ : M’ — C) be the
fixed embeddings giving rise to the compatible systemstathtor andr’,. For any primev not
aboveg, t, we can view the trace, (resp. a)) of py(7r)(Frob,) (resp. py (7%)(Frob,)), which is
independent of the primé not belowv, as elements of the compositutiV/)./(M’). Since there
are congruences betweep anda., in infinitely many different residual characteristics,sttiorces
them to be equal. Pick a primg X | ¢ a prime of the compositum(})./(M’) and letA, X' be
the corresponding primes ¥, M’. Using Chebotarev’s density theorem combined with the &rau
Nesbitt theorem we conclude that(w ) andp, (1) are isomorphic. But looking at the restriction at
a decomposition group atwve get a contradiction, because due to compatibility witald.anglands,
(pa(mr))a is known to be ramified at the places abewehile (p, (7)), is unramified at the places
abovet by construction. This contradiction proves that the residepresentatiory, (7) can be
unramified at only for finitely many primed (among the primes of that are split inF"). O

We can apply the previous lemma over any imaginary quadratiober field of the formF" =
Q(v/—w) wherew is a prime such that andt are split inF. It is clear that there are infinitely many
such fields; consider an infinite sequeriég ),, of distinct such fields. Let us cdll, the set of primes
¢ € L that are split in one of thé}, i = 1,...n, and letL’ be the set of primeé such thaip, () is
unramified at for some) | ¢. ThenZ’ N T, is finite for anyn € N. But asn grows, the set§}, have
Dirichlet density arbitrarily close td. This implies thatZ’ must have Dirichlet density.

6 Conclusion

The aim of this section is to show that the system of Galoisasmtations studied in the previous two
sections, attached to the automorphic form constructee@ati®[3, does satisfy all the conditions in
Corollary 1.6 of [AdDW13Db]. Let us check this in detail. (lnet set-up in Section 1 of [AdDW13b],
we takeN; = t, No = 1, N = t, andLy = Q). First, observe that the primgsandp as in Section 4
satisfy thatg is completely split inQ, andp =1 (mod n),p | ¢" — 1 butpfq% —1.

The systen{p, (7)), of representations d¥g is a. e. absolutely irreducible and symplectic, and
it satisfies the following properties:

e The ramification set of the systemis= {q,t};

e The system is Hodge-Tate regular with constant Hodge-Tatighis and for every ¢ R
and \ | ¢, the representatiop, () is crystalline. Leta € Z be the smallest Hodge-Tate
weight and let be the biggest difference between any two Hodge-Tate nusnBgrFontaine-
Laffaille theory, we conclude that for evely ¢ R, ¢ > k + 2, A | ¢, the representation
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X§ ® py () is regular in the sense of Section 3 lof [AdDW13b], and the tamagia weights of
this representation are bounded hbyjin fact, these weights for thedeagree with the Hodge-
Tate numbers of the system minus

e As we have seen in Sectidh 5, for a set of Dirichlet denstiy afngrimes? # ¢ and for every
A | ¢, the transvection corresponding to the imagd,ofinderp, (w) (cf. (@) of Sectiori4) is
preserved in the reduction mod hencep, (7) contains a nontrivial transvection;

e As we have already observed (df] (8) of Section 4), for evert q, for every A | ¢, the
representatiom, ()|c,, = pg ® ax for some unramified charactes, : Gg, — My andp,

is, by definition,Indggq (x4) for x, as defined in Sectidd 3;
qn

e For every! # t and for every\|¢, the image ofl; underp,(m) consists of either a group
generated by a transvection or the trivial grouppstr)(I;) is in any case afrgroup, therefore
it has order prime ta! for any/ larger tham.

Thus, Corollary 1.6 of [AdDW13b] can be applied, and we dedine following theorem:

Theorem 6.1. Let m be the automorphic representation given by Thedrem 3.4 aifd®é3, with the
ramified primes; andt satisfying the conditions specified in Secfidn 4. Then, dmepatible system
(p, (7)) has huge residual image for a set of Dirichlet density onerohes/, for every\|/, i.e.,
im(p, (7)) is a huge subgroup &&Sp,,(F,) for a set of primes of Dirichlet density one.

To derive our Galois theoretic result (i.e. Theoiflenj 1.1)jwseobserve that, for any given integer
d > 0, we can change the conditign= 1 (mod n) at the beginning of Sectidd 4 by the stronger
conditionp =1 (mod dn) while choosing andt exactly as we did in Sectidg 4.

With this, we conclude from Corollary 1.6 of [ADDW13b] th&br such an integed, the groups
PGSp,,(F,) or PSp,,(IF,4) are realised as Galois groups o@efor a positive density set of primés
Since this can be done for ady Theoreni 111 follows.
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