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ABSTRACT Oxides are instrumental to applications such as catalysis, sensing, and wetting, where 

the reactivity with water can greatly influence their functionalities. We find that the coverage of 

hydroxyls (*OH) measured at fixed relative humidity trends with the electron-donor (basic) 

character of wetted perovskite oxide surfaces. Using ambient pressure X-ray photoelectron 

spectroscopy, we report that the affinity toward hydroxylation, coincident with strong adsorption 
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energies calculated for dissociated water and hydroxyl groups, leads to strong H-bonding that is 

favorable for wetting while detrimental to catalysis of the oxygen reduction reaction (ORR). Our 

findings provide novel insights into the coupling between wetting and catalytic activity and suggest 

that catalyst hydrophobicity should be considered in aqueous oxygen electrocatalysis.  

 

INTRODUCTION 

The interaction of oxides with water plays a critical role in a large number of applications,1-5 

including water purification, gas sensing and separation, photoelectrochemistry, electrocatalysis, 

and wetting. The solid/liquid interface between water and oxides is one of the fundamental 

components in electrochemistry and electrocatalysis. The hydroxylation and binding of surface 

adsorbates6-7 on oxides can greatly influence the adsorptive and wetting properties4-5, 8-9 and 

catalytic activity.10-14 These observations have been rationalized by the change in polarity induced 

by surface hydroxyl species.8, 13 Here we evaluate intrinsic properties of oxide surfaces that can 

bridge wetting and activity for oxygen electrocatalysis.  

Directly measuring hydroxylation and surface adsorbates in liquid water and correlating these 

species to wetting and catalytic activity is challenging – particularly for oxide systems where both 

the adsorbate and catalyst contain oxygen. Conventional contact angle measurements do not 

provide information at the molecular level on water adsorption energetics, the degree of 

hydroxylation, or interfacial hydration structure.15 On the other hand, the molecular interaction of 

water with complex, catalytically active metal oxide surfaces has been studied using traditional 

surface science microscopy and spectroscopy techniques but only in ultra-high vacuum and often 

at cryogenic temperatures.16-18 Here we take advantage of recent advances in ambient pressure X-
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ray photoelectron spectroscopy (AP-XPS)19-21 to measure the extent of surface hydroxylation and 

adsorption of water on oxide surfaces.  

In this report, we utilize the flexibility of the perovskite surface chemistry (LaMO3, M = Cr to 

Ni) to show that increasing hydroxylation measured from AP-XPS scales with increasing 

hydrophilicity from contact angle measurements. Both hydroxylation and surface electron-

donating character exhibit a W-shape as a function of d electrons, which is in agreement with 

computed energetics of hydroxylation on MO2- and LaO-terminated surfaces from density 

functional theory (DFT). Moreover, decreasing surface hydrophilicity correlates with increasing 

catalytic oxygen reduction reaction (ORR) activities in basic solution. 

EXPERIMENTAL AND THEORETICAL METHODS 

Thin film growth and characterization. Films were fabricated by pulsed laser deposition 

(PLD) on single crystal (001)-oriented 0.5 wt% Nb-doped SrTiO3 substrates with a dimension of 

10×5×0.5 mm (Crystec, GmbH). The PLD targets of LaMnO3 and LaFeO3 were purchased 

(Praxair, Inc.) for thin film deposition. The LaCoO3 PLD target was synthesized using a solid-state 

reaction from stoichiometric mixtures of La2O3 and Co3O4 (Alfa Aesar, USA) and sintered at 1450 

°C to 90% theoretical density. LaCrO3 and LaNiO3 PLD targets were synthesized by glycine-

nitrate combustion reaction. Stoichiometric quantities of nitrate precursors – La(NO3)36H2O 

(99.999% metal basis, Alfa Aesar), Ni(NO3)36H2O (99.999% metal basis, Sigma Aldrich) or 

Cr(NO3)39H2O (99.99% metal basis, Sigma Aldrich) – were dissolved in Milli-Q water (18 

MΩ•cm), to which glycine was added. The mixture was heated and allowed to slowly evaporate, 

then heated at 400°C under air atmosphere for 4 hours. The resulting powder was ground, pressed, 

and sintered at 800°C under air atmosphere for 12 hours. The resulting pellet was then re-ground, 

pressed, and sintered a second time at the same condition.  
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PLD was performed using a KrF excimer laser (λ = 248 nm) at a pulse frequency of 10 Hz and 

laser fluence of ~ 1.50 J cm-2. ~20 nm films were deposited of LaCrO3, LaMnO3, LaFeO3, LaCoO3, 

and LaNiO3 under the conditions shown in Table S1. Thin film X-ray diffraction (XRD) was 

performed using a four-circle diffractometer (Bruker D8, Germany) in normal and off-normal 

configurations (Figure 1 a, b), with relaxed lattice parameters and associated strain in Table S2. 

The film thickness was estimated using the thickness fringes in the high-resolution θ-2θ scans of 

the (002) diffraction peaks (“Epitaxy” software, Panalytical). Film surface morphologies were 

examined by atomic force microscopy (AFM, see Figure 1 c-g and Table S3) (Veeco), with root-

mean-square (RMS) roughness values ≤ 0.5 nm, except for LaNiO3 (1.6 nm). Some particles were 

observed on the LaNiO3 surface, the coverage of which was estimated from 100× optical 

microscopy images to be <3.3%. These particles are expected to be stoichiometric LaNiO3 

fragmented from the target during deposition,22 and the difference in surface area compared to a 

flat one is <1.9%. 

 

Figure 1. Characterization of LaMO3 films, where M = Cr (purple), Mn (orange), Fe (red), Co 

(green23), and Ni (blue). High resolution X-ray diffraction (XRD) in the a) normal configuration 

(002), with thickness fringes indicating high film quality, and b) off-normal configuration (202).  
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Atomic force microscopy (AFM) of film surfaces and RMS roughness: c) LaCrO3 0.4 nm, d) 

LaMnO3 0.2nm, e) LaFeO3 0.2 nm, f) LaCoO3 0.5 nm,23 g) LaNiO3 1.6 nm. The 200 nm scale bar 

is the same for all images, and the color scale is 0-5 nm.   

Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS). AP-XPS was collected at 

Beamline 11.0.223-24 at Lawrence Berkeley National Laboratory’s (LBNL) Advanced Light Source 

(ALS). Films were placed onto a ceramic heater,25 with a thermocouple mounted directly onto the 

sample surface for temperature measurements, and isolated from the sample holder clips with an 

Al2O3 spacer. A piece of Au foil, scraped clean with a razor, was placed on top of a corner of the 

sample for calibration of the incident photon energy, referenced to the Au 4f at 84.0 eV. The 

binding energy (BE) of the oxide O 1s bulk peak was calibrated by defining the C 1s of adventitious 

carbon present on the sample prior to cleaning at 284.8 eV. All subsequent spectra are aligned 

relative to this O 1s peak.  

Care was taken to reduce the beam flux so issues such as coking were not observed. This was 

achieved by limiting the dispersive and non-dispersive slits to 15 and 50 μm, respectively, and the 

X-ray beam shutter was kept closed between scans. The change in coverage of *OH for a given 

change of relative humidity (RH) was slightly less comparing amongst fresh regions of the sample 

versus comparing the change in coverage of *OH at the same location. However, coverage of *OH 

in both cases showed the same saturation behavior with RH,23 and we report coverage of *OH only 

at the most humid condition. We attribute the differences from beam irradiation to an increase in 

the dissociation constant of H2O,26 effectively reducing the barrier for hydroxylation. Because the 

irradiation was constant amongst materials and coverage of *OH shows a saturation-like behavior 

with RH, we do not expect adverse effects in comparison amongst materials. 
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The samples were cleaned by heating to 300 °C in p(O2) of 100 mTorr (measured by a calibrated 

capacitance gauge) until clean of carbon (Figure S1). A small amount of SOx species were 

observed in the O2 environment from displacement of residue species from the chamber walls (for 

an estimation of the contribution to the O 1s spectra, see our previous publication23), which reduced 

to a negligible quantity upon introduction of H2O. After characterization of the clean surface in 

O2, the chamber was evacuated to a pressure < 1.5 x 10-7 Torr, and p(H2O) of 100 mTorr was 

introduced into the chamber. The H2O was prepared from deionized water (Millipore, >18.2 MΩ 

cm) and degased by several freeze-pump-thaw cycles. Contaminants in gaseous species have been 

previously noted to affect wetting,27 and any possible influence from their presence has been 

carefully assessed. The sample was then cooled in increments of 25 °C down to a final temperature 

of 25 °C, keeping the chamber pressure constant at p(H2O) of 100 mTorr. At every temperature, 

the O 1s and C 1s core level spectra were collected, and at 100 °C increments as well as 25 °C, the 

La 4d and transition metal 3p core level spectra were also collected. All spectra were taken at an 

incident energy of 735 eV. The C/O relative sensitivity factor (RSF) was experimentally obtained 

by measuring the respective 1s core levels of 250 mTorr CO2 gas. This provided a value of 0.86 ± 

0.03:1 (O 1s:C 1s) for an incident photon energy of 735 eV. This value depends on the 

experimental geometry, and potentially the chamber pressure and should be measured for each 

experimental run.  

Coverages of surface oxygenated species (Table S4, S5) were estimated from the O 1s spectra 

using a multilayer electron attenuation model,28-29 as discussed in reference 23. This model takes 

as an input the oxygen atomic density, N, the inelastic mean free path (IMFP, λ), and the 

photoelectron emission angle. While the coverages of *OH and *H2O discussed in the text give a 

more physical comparison amongst materials, the relative differences amongst LaMO3 materials 
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can also be seen in the percent contribution of these species to the total O 1s counts in Table S6. 

A small amount of adventitious carbon was also observed at lower temperatures (Supporting 

Information, Table S6), and is assumed to sit atop the surface uniformly and not influence the 

results. 

Contact Angle Measurements. Contact angles for the three probe liquids of diiodomethane 

(DIM, Alfa Aesar), ethylene glycol (EG, Alfa Aesar), and deionized water (18 MΩ-cm, Millipore) 

were measured using a Ramé-Hart M500-advanced goniometer. The advancing and receding 

contact angles were measured by adding/removing water from a 5 μl droplet on the surface at the 

rate of 0.2 μl/sec. This ensures that the capillary number is always low enough for accurate 

measurements. A smaller droplet volume was used with other probe liquids due to the lower 

contact angle and small sample size. Measurements on a second LaMnO3 film yielded a water 

advancing angle within 2° and a receding angle within 5° of that measured on the first film. Repeat 

measurements on the first film after drying yielded values within the same range. 

Electrochemical Measurements. Electrical contacts were applied to the back of the conductive 

Nb-doped SrTiO3 substrate, as reported previously.30 Gallium–indium eutectic (Sigma-Aldrich, 

99.99%) was scratched into the Nb-doped SrTiO3, and a Ti wire (Sigma-Aldrich, 99.99%) was 

affixed with silver paint (Ted Pella, Leitsilber 200). The back and sides of the electrode, as well as 

the wire, were covered with a non-conductive, chemically resistant epoxy (Omegabond 101), so 

only the catalyst surface was exposed to the electrolyte. 

Electrochemical measurements were conducted with a Biologic SP-300 potentiostat in an ~120 

mL solution of 0.1 M KOH, prepared from deionized water (Millipore, >18.2 MΩ cm) and KOH 

pellets (Sigma-Aldrich, 99.99%). Potentials were referenced to a saturated Ag/AgCl electrode 

(Pine), calibrated to the reversible hydrogen electrode (RHE) scale in 0.1 M KOH. Oxygen 
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reduction reaction (ORR) measurements were carried out in an electrolyte pre-saturated by 

bubbling O2 for at least 45 minutes and under continuous O2 bubbling (Airgas, ultrahigh-grade 

purity). ORR cyclic voltammetry (CV) at a scan rate of 10 mV s−1 is plotted corrected for 

capacitance by averaging the forward and backward sweeps. Electrical impedance spectroscopy 

(EIS) was performed at the open circuit voltage with an amplitude of 10 mV. Potentials were 

corrected for the electrolyte/cell resistance from the high frequency intercept of the real impedance 

(45 Ω). 

Density Functional Theory Calculations. Density functional theory calculations with Hubbard 

U correction (DFT+U)31-32 were carried out with a periodic approach and plane wave basis set, as 

implemented in the VASP code.33-34 Core electrons were described with the Projector Augmented 

Wave (PAW) method,35 and the plane wave cutoff was set to 450 eV. We used the gradient-

corrected Perdew-Wang 91 (PW91) functional36 and the optimal effective U values on the 

transition metal d electrons determined by fitting the formation enthalpies of oxides.37-38  

Full optimizations of bulk perovskite structures for each LaMO3 (M = Cr, Mn, Fe, Co, Ni) were 

performed using the experimental symmetry at low temperature39-42 based on the ferromagnetic 

ordering in order to use a consistent and tractable set of magnetic structures, except for LaFeO3, 

where we considered a G-type anti-ferromagnetic ordering to account for the higher Néel 

temperature.39, 43 Internally relaxed pseudocubic 2×2×2 perovskite supercells were then 

constructed with effective perovskite lattice constants obtained taking the cube root of the 

normalized volume (per formula unit) of the fully relaxed perovskites. The fully relaxed perovskite 

bulk coordinates were used as initial atomic positions and for these calculations the reciprocal 

space unit cell was sampled by a (2×2×2) k-point mesh. The (001) orientation of LaMO3 

pseudocubic perovskites is polar, and symmetric seven-layer slab models were employed in order 
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to cancel the related dipole moment perpendicular to the surface. The (2×2) (001) LaO and MO2-

terminated slab models have been constructed using the 2×2×4 pseudocubic perovskite supercells 

with 10 Å vacuum space inserted between the two terminations of a (001) slab and removal of an 

MO2 layer for the seven-layer (001) LaO slab (and removal of a LaO layer for the seven-layer 

(001) MO2 slab). Internal relaxations of the (001) slab coordinates were performed without 

adsorbates. Previous work has shown that this approach gives a satisfactory description of the 

surface properties of these systems.38, 44 The adsorbates (dissociatively adsorbed H2O, *OH, and 

*H) were then adsorbed on one side of the slab, and the adsorbate coverage varied from ¼ to 1 

monolayer (ML), where 1 ML corresponds to one adsorbate per surface metal atom. The bottom 

two layers of the slab models were kept fixed, while the adsorbate and remaining slab coordinates 

were internally relaxed. A (2×2×1) k-point sampling was used for such slab models.  

Stability of the (dissociatively adsorbed) H2O, *H, and *OH at the experimental condition was 

estimated using the chemical potentials of H2O, H2 and O2 as detailed in the Supporting 

Information. By setting the chemical potential of oxygen to be at the condition of T=25 °C and 

1.5 x 10-7 Torr partial pressure of oxygen (the lowest detectable limit in the AP-XPS chamber), 

and the p(H2O) to be 0.1 Torr, we estimate the corresponding effective applied potential at the 

experimental condition to be 1.20 V relative to the standard hydrogen electrode (SHE, 𝑎H+ = 1). 

This is comparable to the equilibrium potential of O2/H2O in O2-saturated liquid water for ORR 

measurements, 1.23 V relative to the reversible hydrogen electrode. The adsorption free energies, 

Gad, were then computed with respect to the H2O, H2, and O2 chemical potential references at the 

effective applied potential of 1.2 V vs. SHE as detailed in the Supporting Information. 

RESULTS AND DISCUSSION 

Determining Coverage of OH at Fixed Relative Humidity 
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We examined the reactivity of water vapor on (001)-oriented LaMO3 film surfaces using AP-

XPS by performing water isobar experiments to deconvolute the spectra. Quantifying by a 

multilayer electron attenuation model (Figure 2 a), we compare the component species at fixed 

relative humidity (RH, Figure 2 b). The surfaces were cleaned in situ by heating in O2 (Figure 

S1) before exposure to water vapor. Water isobar measurements (pH2O = 100 mTorr) were 

performed by cooling, reaching a final RH of ~0.3% at 25 °C. The O 1s and C 1s spectra of all 

LaMO3 showed similar features (Figure S2-5, reference 23), and the intensities varied with RH. 

Pronounced changes in the isobar O 1s spectra are noted with increasing RH. This evolution has 

been discussed in great detail for the case of LaCoO3 in reference 23, and we here only summarize 

the main trends.  
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Figure 2. Quantification of adsorbates by AP-XPS. a) Schematic of the multilayer electron 

attenuation model used to determine coverages. For further information about the error and 

deconvolution into bulk “Ox,” surface “Surf,” carbonates “CO3*” and gas phase water, see the 

Supporting Information and reference 23. b) Fitted O 1s spectra at 25 °C in 0.1 Torr H2O. Raw 

data in counts per second are shown as circles, and the envelope resulting from the fitted 

components in bold color; curves are offset for clarity. The *OH intensity is shaded; its relative 

intensity varies notably with transition metal. c) Corresponding C 1s spectra, with axis scale taken 

from b), adjusted to size, and divided by the experimental O 1s:C 1s relative sensitivity factor 

(RSF). Shown are the CO3* component and adventitious carbon (AC). d) The intensity of the *H2O 
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peak, outlined in corresponding color in c), scales with that of *OH. Error bars are defined as the 

95% confidence intervals estimated from Monte Carlo simulations.  

After a surface was cleaned in O2 at 300 °C, it remained free of carbon as shown by the C 1s 

region. The lowest binding energy (BE) is characteristic of oxygen in bulk coordination, while that 

at ~2.8 eV higher BE was shown by depth profiling (Figure S3-4,23) to be located at the surface. 

At intermediate BE ~1.3 eV higher than the bulk, is a feature attributable to *OH species.9, 45-46 A 

carbonate feature became present at higher RH, also at ~2.8 eV above the bulk oxide.47 The O 1s 

carbonate contribution was determined from the C 1s integrated area for carbonate, employing an 

experimentally measured relative sensitivity factor and assuming a 3:1 O:C carbonate 

stoichiometry (Figure 2 c). The intensity of *OH increased as the sample was cooled to access 

higher RH, further supporting the peak assignment. At high RH, water adsorbed on the surface, 

*H2O, with a BE at ~533.3 eV.9, 45 In addition, the gas phase H2O peak is observed at a water 

partial pressure of 0.1 Torr. Thus by analyzing the evolution of the O 1s and C 1s spectra with RH, 

the spectra were deconvoluted into different oxygen groups on the surface (Table S4).23  

The perovskite surfaces react with water to form hydroxyl groups, which is evidenced by notable 

*OH contribution in the O 1s spectra with increasing RH. The degree of hydroxylation on the 

perovskite surface is dependent on the transition metal ion: lower intensities of *OH species on 

LaMnO3 and LaCoO3 than on the other three films are clearly visible in the O 1s spectra, as shown 

in Figure 2 b (Table S5). The coverage of *OH and adsorbed *H2O under the highest RH of the 

isobar was extracted using a multilayer model proposed recently23, 48 (Figure 2 a, Table S4, S5). 

The *OH coverage increases in the order of Co < Mn < Ni < Fe < Cr, where a difference up to half 

a monolayer (ML) reflects significantly different affinities of LaMO3 toward hydroxylation and 

binding strengths of *OH. The coverage of *OH was also found to scale with adsorbed *H2O, as 
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shown in Figure 2 d, which suggests that water can interact strongly with hydroxyl groups on the 

surface. Below we discuss how the interactions between water and LaMO3 – specifically the 

coverage of *OH and *H2O – may influence macroscopic wetting,  and ORR activity in basic 

solution. 

Influence of *OH on Macroscopic Wetting 

We first show that the receding contact angle of water in macroscopic wetting trends with the 

surface coverage of *OH groups on LaMO3 measured by AP-XPS. The macroscopic interaction 

of LaMO3 film surfaces with water was measured by the advancing and receding contact angle. 

Wetting hysteresis can provide insights into the chemical nature of the water/oxide interface as the 

contact line experiences different interactions during advancing and receding motion.49  

All surfaces were moderately hydrophobic in contact with water with advancing angles of ~90°, 

with the exception of LaCrO3 ~70° (Figure 3 a). We attribute the difference in wettability to the 

presence of Cr6+ when exposed to O2 gas and its readiness to reduce to Cr3+ upon wetting (Figure 

S6-S7). This is in contrast to other transition metals in the form of LaMO3, which remain nominally 

in the 3+ valence state upon exposure to O2 gas, and are more resistant to oxidation (Figure S7). 

The higher oxidation state of Cr leads to a more electronegative transition metal center (higher 

reduction potential), promoting electron transfer upon interaction with H2O and expected to wet 

more readily than other LaMO3 surfaces, where M retains the 3+ valence state on the surface. The 

oxidized LaCrO3 surface can also be considered more acidic,50 which promotes wetting.51 

In contrast to the advancing angles, the receding contact angles of all LaMO3 were notably lower 

and strongly dependent on the transition metal. Although the difference in the advancing and 

receding angle is not fully understood at the molecular scale, it is postulated that receding water 

must break the H-bonds49 that have formed between surface polar groups and water, thus leading 
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to stronger interaction with water and a lower receding angle52 than advancing. To assess this 

hypothesis, we consider the polar contributions of the oxide surface to dewetting. 

 

Figure 3. Advancing (solid) and receding (open) contact angles on LaMO3 surfaces, with M of 

different d-electron number. The probe liquid was a) dipolar water, dark blue, b) monopolar 

ethylene glycol, medium blue, or c) apolar diiodomethane, orange. d) The free energy of hysteresis, 

ΔG, obtained from the advancing and receding angle of each liquid in corresponding color, is large 

in magnitude (≥ 1 kJ/mol) for polar solvents, indicative of reorientation of polar surface groups. 

For interactions between a solid and a liquid, the change in free energy can be considered as the 

sum of that arising from apolar Lifshitz-van der Waals (γLW) interactions and from polar acid-base 

interactions. The polar interactions depend on the electron-accepting (γ+) and electron-donating 

(γ−) contributions from both surface and probe liquid.53-55 Thus by measuring the contact angle 

with three probe liquids of known apolar and polar components and surface tension (Table S7), 

all components of surface energy can be quantified using the van Oss-Chaudhury-Good 
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approach.55-56 The resultant contact angles for each liquid are shown in Figure 3. The advancing 

angle was highest for polar liquids and depended weakly on the transition metal of LaMO3 

surfaces. In contrast, the receding contact angle varied notably with M for a polar probe, but 

remained approximately constant for all surfaces probed with apolar DIM. Notable hysteresis was 

seen in the contact angle of polar H2O and EG, in contrast to that of DIM.  

The associated free energy of hysteresis in wetting enables a direct experimental comparison of 

the strength of interaction between the surface and probe liquids of different polar character. The 

free energy of hysteresis for apolar DIM is ~1 kJ/mol and varies little with d-electron number, 

while for polar EG and H2O spans from ~1 to 4 kJ/mol (Figure 3 d). This range is comparable to 

that attributed to conformational changes in polar groups57 and/or strong interactions such as 

hydrogen bonding.58 Thus, the large free energy of hysteresis can be attributed to oxygen-

containing groups59 and hydroxyl species.60 We propose that the large hysteresis observed upon 

wetting with a polar solvent arises from polar groups at the LaMO3 surface. The LaMO3 (001) 

surface itself is polar, with alternating planes of LaO (+1 charge) and MO2 (-1 charge). In contact 

with the atmosphere, it may compensate for the net surface dipole through numerous mechanisms 

– including the adsorption of surface species, surface reconstruction, and charge redistribution.61-

62 Upon changing the environment from ambient air (or DIM) to that of a polar medium, the surface 

compensation will change dramatically due to interaction with this dielectric, giving rise to a large 

free energy of hysteresis. We hypothesize a change in the polarity of the oxide surface upon 

wetting can be achieved by orientation of polar *OH groups such that electron-rich oxygen 

interacts with the positive dipole of the water molecule, yielding low receding contact angle.  

The γLW and γ+ components were roughly constant for all LaMO3 surfaces for both advancing 

(Figure 4 a) and receding (Figure 4 b) contact angles. In contrast, the γ− component, roughly zero 
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for the advancing angle, was found to be much larger and strongly dependent on the transition 

metal for the receding contact angle, and linearly increases with *OH coverage (Figure 4 c). These 

observations indicate that strong H-bonding interactions at the oxide/water interface leads to lower 

receding contact angles (Figure 4 d). Although lanthanide-containing perovskites are known to 

have high affinities for carbonate formation,63 the correlation of receding angle with *OH coverage 

and measurement of surface energy using carbon-containing probe liquids suggests the receding 

contact angle reflects strong interactions with polar hydroxyl groups on the surface. Both hydroxyl 

and water coverage (Figure S8) and electron-donating polarity (Figure 4 b) exhibit a W-shape 

trend with transition metal d-electron number. Inverse W-like trends have been reported among 

catalytic studies of perovskites such as O2 adsorption and hydrocarbon oxidation,64 as well as 

ORR.11 Here we propose that the polarity of the water/oxide interface can be influenced by the 

coverage of polar species on the surface and/or the charge distribution of the surface hydroxyl 

groups. This hypothesis is supported by the fact that decreasing receding angle correlates with 

increasing both the electron-donating polar contribution to the oxide surface free energy in 

dewetting and coverage of *OH on LaMO3 measured from AP-XPS (Figure 4 c).  
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Figure 4. Molecular insight into dewetting and contact angle hysteresis. a) The apolar (γLW), 

electron-accepting (γ+), and electron-donating component (γ−) to the advancing contact angle and 

b) the receding angle. γLW and γ+ do not trend with transition metal or exhibit hysteresis, however 

the electron-donating component (γ−) forms a W-shape with d-electron number for the receding 

angle. c) The receding contact angle is lowest for the surface with the highest coverage of *OH 

(measured in the most humid condition ~0.3% RH by AP-XPS, error as in Figure 2), and reflects 

H-bonding by electron-donating surface groups, γ−. Error bars were determined from the spread in 

calculated γ− resulting from duplicate measurements on the same film. All dotted lines are to guide 

the eye. d) Schematic for the receding contact angle, where surface *OH groups can reorient in the 

polar liquid medium and interact strongly with water. The need to break H-bonds is indicated with 

an “x”.  

Assessing *OH Affinity Theoretically 

To further test this hypothesis, we calculated the free energy of adsorption of *OH and *H 

(dissociated water) on LaO and MO2 terminations by DFT+U calculations (additional details of 
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the thermodynamic approaches are provided in Supporting Information), corresponding to the 

reduction of surface energy upon hydroxylation. The stability of the different species on the two 

surface terminations, assuming the system is in thermodynamic equilibrium, should correspond to 

their relative abundance. Since the surface stability also depends on the chemical potential of 

metals in the bulk, such a calculation requires definition of the La and M chemical potentials. 

These metal chemical potentials are not independent variables and their sum is fixed by the 

condition that the system is in equilibrium with bulk LaMO3. We have compared the (001) LaO 

and MO2 surface energy values65-66 obtained in both the La-rich (system in equilibrium with La2O3) 

and the M-rich conditions (system in equilibrium with the MOx binary oxide compounds) (Figure 

S9). These two conditions can be considered as the two metal potential limits where the perovskites 

are stable with respect to the binary oxide compounds. The relative stability of the various 

hydroxylated surfaces was assessed by comparing the adsorption energy on the MO2 surface to 

that on the LaO surface adjusted for the difference in surface energy between the facets, both are 

referenced to the ideal (001) MO2-surface at the 1.20 V vs. SHE (Figure S10-S11).   

When comparing the adsorption free energy on the two surface terminations, we observe that 

the LaO surface has a higher affinity for water and hydroxyls groups.  To gain insight into more 

humid environments, we then compute the free energies of the hydroxylated surface: a full 

monolayer of *OH and *OH + *H (dissociated water) on the LaO and MO2 surfaces respectively 

(Figure 5 a), both relative to the bare MO2 surfaces. These hydroxylated surfaces are expected to 

better reflect the interactions between adsorbates present on a wetted surface. Both adsorption 

energies exhibit an inverse W-shape with the number of d electrons, accounting for the differences 

in surface energy compared to the bare MO2 surface. This trend in the reduction of surface energy 

upon hydroxylation is reflected in the ease of removing a macroscopic droplet of water. 
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Figure 5. Density Functional Theory (DFT) calculations of hydroxylation energetics accounting 

for the difference in surface energies compared to the bare MO2 surface at the condition of LaMO3 

in equilibrium with La2O3 (Supporting Information). a) The DFT-calculated free energies for 

full coverage of water dissociative adsorption on MO2 surfaces (filled) and hydroxylation of LaO 

surfaces (open) show a similar inverse W-shape to the receding contact angle. b) The DFT-

calculated free energies for the hydroxylation of LaO surfaces correlates with the coverage 

measured experimentally by AP-XPS. 

The computed surface free energies of the stable hydroxylated LaO termination with 1 

monolayer *OH relative to the bare MO2 surface trends with the experimental coverage measured 

at 0.3% RH by AP-XPS (Figure 5 b). The correlation suggests the coverage from AP-XPS 

experimentally assesses the relative affinity of a surface toward hydroxylation. The physical origin 

to different receding angles therefore resides in the transition-metal-dependent affinities toward 

hydroxyl formation and electron-donating polarity (γ−) on LaMO3 surfaces. 

Implications of *OH on the Oxygen Reduction Reaction 
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Looking forward to the potential implications of the interaction between *OH and H2O in 

designing functional chemistry, we examine these LaMO3 films for aqueous oxygen 

electrocatalysis and we report that ORR activity trends inversely with *OH coverage measured 

under humid conditions. The interaction between *OH and water on the LaMO3 surface can bridge 

the wetting behavior with their ORR catalytic activity. In basic solution, ORR proceeds on 

hydroxylated oxide surfaces with a proposed mechanism shown in Figure 6 a.11, 67 O2 displaces 

*OH (step 1), and subsequent reduction leads to a final step, where water re-protonates the surface 

(step 4), thus the binding and coverage of *OH can play an important role in the ORR activity.14  

We measured the intrinsic activity of the (001)-oriented perovskite films toward the ORR 

(Figure 6 b, Figure S12) using methods established recently,30 where carbon and binder additives 

used for oxide powder measurements were not needed. The overpotential, η, (kinetic loss) to 

provide intrinsic ORR current of 40 μA cm-2
ox was found to increase from M = Co, Mn to Ni. For 

the inactive M = Fe and Cr, meaningful current densities could not be obtained without potential 

reduction of the oxide due to the lack of carbon ORR current. Interestingly, the ORR activity trends 

inversely with the coverage of *OH measured by AP-XPS, where the most active catalyst LaCoO3 

has the smallest amount of *OH (Figure 6 c). Although the absolute coverage of *OH depends on 

pH,1, 68 this trend of *OH on LaMO3 measured in water vapor gauges the relative affinity of these 

surfaces toward hydroxylation. Greater *OH coverage, indicative of an increased binding strength 

of *OH, can hinder the displacement of *OH by molecular oxygen (step 1 in Figure 6 a), which 

is considered to be rate-limiting for ORR,11 and lower ORR activity. 
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Figure 6. Affinity toward hydroxylation describes ORR and wetting. a) Schematic of the 

mechanism for the oxygen reduction reaction (ORR) proposed by Suntivich et al.11 and 

Goodenough et al.,67 noting the *OH species between step 4 and 1. b) Capacitance-corrected cyclic 

voltammetry at 10 mV/s in O2-saturated 0.1 M KOH. c) The overpotential (η) required to achieve 

a given ORR current, extracted from CVs, correlates with the coverage of *OH (left axis), where 

an inactive surface is more hydroxylated, with a higher electron-donating component (γ−) to 

dewetting (right axis, error as in Figure 4). ORR activity of LaCrO3 and LaFeO3 is too low to 

obtain meaningful current without potential reduction of the oxide due to the lack of carbon ORR 

current. 

CONCLUSIONS 

In summary, we establish the molecular descriptor of *OH coverage for both the receding 

contact angle and ORR activity. Increasing *OH coverage on perovskites correlates with lower 

receding contact angle, greater electron-donor character of the surface and lower ORR activity. 

We show for the first time that the tendency of a polar LaMO3 surface toward hydroxylation can 

influence macroscopic wetting properties and oxygen electrocatalysis. We note that extension of 

these trends to broader classes of surfaces and ranges of hydroxyl affinity requires further 

investigation, however current understanding suggests that the design of highly active ORR 

catalysts should consider the intrinsic hydrophobicity of oxide chemistries and their tendency to 
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hydroxylate. Thus, this study opens a new door to study and exploit hydrogen-bonding on polar 

surfaces to design functionality at the solid/water interface. 
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