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ABSTRACT

The aero-elastic forces generated by labyrinth seals and
their impact on rotor dynamic stability are discussed. A
review of the pertinent literature is given. A lumped
parameter model of the flow in a single gland seal based on
the theory of Kostyuk is presented. The resulting equations
are simplified by changing to a rotating coordinate system.
A system of linear algebraic equations is obtained by
employing small amplitude perturbation methods and assuming
harmonic solutions. This system is non-dimensionalized and
solved for the pressure perturbation inside the seal.
Results of a design study are presented and specification on
a facility to measure these self-exciting forces are given.
The final mechanical design along with instrumentation
requirements are presented.
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CHAPTER 1

INTRODUCTION

1.1 LABYRINTH SEALS

Modern turbomachines, which include turbines, compressors,

fans and pumps, must operate efficiently and be durable in

order to be cost competitive. One major source of losses in

turbomachines can be attributed to leakage flows that occur

between stationary and rotating parts. Pressure differences

between adjacent regions drive flows that inevitably degrade

performance. Figure 1 shows a typical rotating half stage

and where these leakage losses occur.

At low speeds it is possible to employ contact seals, which

would virtually eliminate leakage. But at the large

relative velocities, which are typical of current designs,

the wear of the contacting materials would be prohibitive.

In high speed machines non-contact seals are used with very

small clearances in order to minimize the associated losses.

In choosing the clearances, the designer must account for

engine vibration and relative expansion between the parts

due to thermal and rotationally induced stresses. All of

the analyses must be done for both steady state and tran-

sient operation. A typical seal clearance may range from

0.007 cm to 0.05 cm (3-20 mils). A seal with relatively

straight surfaces is referred to as an annular seal. One

way to reduce the flow rate for a given pressure difference,

seal length and minimum allowable gap is to have several
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successive sharp sealing knives separated by large kinetic

energy dissipating chambers. This is called a labyrinth

seal. A leakage reduction of 50 percent or more may be

realized by using multi-chamber labyrinth seals. There are

several types of labyrinths varying mainly in complexity,

but all are based on the same principle. Figure 2 shows an

annular seal along with three common kinds of labyrinth

seals. The first complete leakage analysis was done by

Martin (1). Most current analyses (2,3,4), which tend to be

semi-empirical, are generalizations of Martin's work. For

many years these seals were designed only for their ability

to minimize leakage flows. However, over the past forty

years another design objective has received increasing

consideration. The leakage flows over the knives and around

the annular regions of the seal chambers create pressure

oscillations that generate self-exciting forces. These

displacement and velocity dependent self-exciting forces

contribute to rotordynamic instability, which can have a

very negative impact on machine durability.

1.2 ROTORDYNAMIC INSTABILITY

High speed turbomachine rotors undergo lateral vibrations

which may limit their range of operation and usable life.

These vibrations are broadly categorized as either forced or

self-excited. Ehrich (5) and Ehrich and Childs (6) give

relatively comprehensive treatments of these two distinct

phenomena. Briefly, a forced or resonant vibration occurs
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at the rotational speed of the shaft or some rational

multiple of it. The amplitude of these vibrations will

increase and decrease as the rotor speed is raised, being

largest at the rotor critical frequencies. The forcing here

is external to the system, in that the forcing function does

not depend on the motion of the shaft. There are many

sources of forced vibration, but the most common is residual

unbalance. The amplitude of these vibrations can usually be

limited by careful balancing and not operating too near

critical frequencies.

Self-excited vibrations are a class of instability phenom-

ena in which the motion of the rotor causes energy to be

extracted from some external source. This added energy

causes rotordynamic instability which is analogous to

aeroelastic flutter of an airplane wing (7). Just like

flutter, these instabilities do not happen at low speeds,

but suddenly occur at some onset speed and progressively

worsen at higher speeds. The frequency of vibration is

nearly constant and corresponds to one of the shaft's

natural frequencies. In practice, these instabilities are

usually first seen when the rotor rpm is above the first

critical and the whirl occurs at the first critical. This

is referred to as sub-synchronous whirl and its presence can

be very harmful since it introduces alternating flexural

stresses in the shaft. An infamous example of this was the

Space Shuttle Main Engine Turbopumps as reported by Childs

(8) and Ek (9). A rotor may whirl in either angular
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direction. It is conventional to refer to a whirl in the

same direction as the shaft's spin as forward whirl. When

the whirling precession is in the opposite sense as the

spin: it is called a backward whirl. Figure 3 shows some of

the more important characteristics of both forced and

self-excited free vibration for comparison.

In order to predict the range of stable operation of a

rotor-bearing system a structural model must be used which

accounts for all of the important forces. A simple planar,

two-degree-of-freedom model will be used to illustrate how

known self-exciting forces are incorporated into a struc-

tural model and how they influence stability. In this

model, due to Jeffcoat (10), all of the mass is concentrated

in a single thin disk and the elasticity due to the bending

rigidity is supplied by a massless shaft of spring constant

K S Figure 4 shows such an idealized rotor with other

forces acting on the disk. Let x1 and x2 be the displace-

ment coordinates in the plane of the disk and ?s = ?s(xl'E )

be the force on the mass due to its position. The other

force acting on the rotor ?D ?D (' 2) can be recognized

as a damping force since it is a function of the disk's

velocity xI and x2. If is a linear function of the

displacements x1 and x2 it can be represented in the

following form,
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fsl K11 K12 X 1
? M W - f(1.1)

s f s2 , 21 K2 2 J ,x2

The K's are the linear elastic coefficients which relate the

forces and displacements through constants of proportion-

ality. K and K22 (the diagonal entries) are called direct

stiffnesses since they relate forces and displacements in

the same direction. On the other hand, K12 and K21 relate

the forces in one direction which result from a displacement

in the other. These are referred to as cross-coupling

stiffness coefficients. In a similar manner the damping

forces can be related to the velocities by,

D 11 12 1 (1.2)
D2 . 21 C 22. 2  (

Now the equations of motion can be written for the mass in

Figure 4 by applying Newton's second law,

M 0 x C 1 1 C2 1
0 M x 2 , 1 C21 2 2

(1.3)

K s + K1 1  K1 2  ]
K 21 K s + K 22 . 2

These are the equations for a coupled, damped, harmonic

oscillator, which can be neatly expressed in matrix from as,
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[MI{x} + [c]{x) + (K]{x} = 0 (1.4)

Equations of this form are solved by substituting {x}={aje t

where X is complex. The frequency and growth or decay rate

of lateral vibration are determined by the roots, X - a+it,

of the resulting characteristic equation for the homogeneous

system. The real part of X, a, will determine whether small

perturbations will grow or decay. A negative a will indi-

cate stability while, positive a implies that oscillations

will grow and instability will occur. The frequency of

vibration is determined by the imaginary part of X. In

order to perform these calculations, the entries for the

mass, damping, and stiffness matrices must be known. This

is just as true for more complicated multi-degree-of-freedom

rotor models such as those described by Nordman (11) and

Dugundji (12). There are many physical phenomena which lead

to damping and elastic forces on a rotor (5). Contributing

to these may be bearings, seals, turbines and compressors.

Since this system is linear, the contributions from each

source may be summed using superposition to obtain the net

(c] and (K]. This thesis will deal with the damping and

elastic forces generated by the labyrinth seals only.

The forces from labyrinth seals are due to non-uniformity in

the pressure within the seal glands. To find these forces,

a known pressure distribution must be projected in ortho-

gonal directions and integrated around the circumference of

the seal. The net forces acting on a seal of radius Rs and
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length 1 due to a pressure distribution P(e,x 3 't) are,

2rr 1

FX R s 3,t cos9 dx3 d (1.5)

2n .1

FX = - R s { P(e)x 3 ,t) sine dx 3 dG (1.6)
2 0 0

If the pressure does not vary in the axial direction, these

expressions simplify to,

2n

F = - Is P(E,t) cose de (1.7)

1 R5  k

2n

F = - Rs1 P(e,t sine de (1.8)
x2 R '1

Many researchers, past and present, have focused their

attention on trying to understand and predict these pressure

distributions P(9,t).

1.3 LITERATURE REVIEW

It has been known since the 1940's that the circumferential

variations in pressure which exist in the glands of

labyrinth seals may lead to unstable rotor whirl as reported

by Den Hartog (13). However, to the knowledge of the

author, there was no analysis explaining the nature of these

non-uniformities and how they cause whirl until the works of

Thomas (14) in 1958 and Alford (15) in 1965. The analysis
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proposed by Thomas tends to be lengthy and depend on a great

deal of empirical correlations of losses vs. clearance.

Alford assumed that the nominal sealing gap varies from

chamber to chamber and that there is limited redistribution

of the flow in the circumferential direction. Under these

conditions, he showed that a converging seal promotes

forward whirl, whereas a diverging one will tend to be

stabilizing to forward whirl. Ehrich (16) performed an

analysis where the seals were permitted to pivot relative to

the outer casing. Vance and Murphy (17) did a similar

analysis to both Alford and Ehrich which accounted for sonic

choking in the last seal. While these four theories predict

destabilizing forces under certain conditions, a problem

exists with all of them, in that they predict no self-

exciting forces in cases where they are known to exist.

In 1972 Kostyuk (18) introduced a more fundamental fluid

mechanical approach to explain the aerodynamic forces in

labyrinth seals. In his analysis, the equations relating

the flow rate over the knives were coupled to the governing

continuity and momentum equations in the circumferential

direction. Iwatsubo (19,20) used a similar model but

included area change terms due to the motion of the whirling

shaft. He showed that these terms are important when

predicting damping. Iwatsubo solved these equations by a

linear perturbation analysis and assumed harmonic solutions

to the resulting equations and compared these solutions to a

finite difference solution.
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Recently many Kostyuk-Iwatsubo type analyses for multi-

chamber seals have appeared (21,22,23,24,25,26,27,28).

These theories lead to 2N linear complex algebraic equations

in the same number of variables for a N chamber seal. While

some trends were established by doing parametric studies, no

closed form solutions have been obtained that describe the

influences of the various geometric and flow parameters.

Computer solutions of these systems have shown some

interesting trends. First, is that one of the parameters

important in the generation of aerodynamic forces is the

change in swirl from chamber to chamber. Second, smaller

clearances, which are beneficial with regard to machine

performance, have been predicted to lead to greater

destabilizing forces. Some of the trends predicted by

analysis have been confirmed by experimental data. Measure-

ments of the elastic forces taken by Benckert and Wachter

(29,30) show good agreement with most theories. In these

experiments, the forces on the eccentric rotor were measured

and then checked by integrating measured pressure distribu-

tions inside the labyrinth glands. Other researchers

(31,32,33,34,35) have performed similar experiments for

various geometries and flow conditions yielding an extensive

data base for stiffness coefficients. There are much less

data available for the damping effects of labyrinth seals

since these experiments require time resolved measurements

on whirling rotors. But as pointed out by Martinez (28) the

damping forces can be of the same order of magnitude as the
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elastic ones and can be just as important.

Childs (36) obtained data for a whirling seal with no

rotation. Wright (37,38) performed experiments with both

rotation and whirl but no attempt was made to control or

measure the swirl entering the seal. Data was taken on

straight through, convergent and divergent configurations.

The trends obtained run contrary to those predicted by

Alford and no direct comparison can be made to a Kostyuk-

Iwatsubo type model, in which pre-swirl is of great

importance. Clearly, more data on the damping character-

istics are needed.

1.4 OBJECTIVES

A simplified set of equations, based on the Kostyuk-Iwatsubo

model that approximate the air flow through a two constric-

tion labyrinth seal, is derived. These equations are

linearized and harmonic solutions are assumed. These

equations are non-dimensionalized and the importance of

individual terms is discussed. From the solution of these

resulting equations, the effects of various geometric and

flow parameters are presented. Based on these analytical

predictions, design objectives for an experimental rig to

measure aerodynamic forces, especially damping, on arbi-

trarily spinning and whirling labyrinth seals are set. The

final mechanical design of this rig is presented along with

the facility and instrumentation requirements.
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A. Annular Seal

B. Simple Or Straight- Through Labyrinth

C. Stepped Labyrinth

D. Interlocking Or Full Labyrinth

Figure 2 - Four commonly used seal configurations used in
rotating machinery.
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Figure 3 - Characteristics of forced and self-excited
vibrations. Top: vibration amplitude vs. shaft
speed. Bottom: vibration cascade showing shaft
speed vs. vibration frequency.
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FS= FS (x1 X,2 2

FD= FDI i>2)

Figure 4 - Jeftcoat model of plane rotor. FS and FD are
the forces which act due to the disks position
and velocity respectively. i
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CHAPTER 2

MODEL FORMULATION

2.1 COMPLETE EQUATIONS OF MOTION

The air flow through a rotating, whirling labyrinth seal is

three-dimensional, unsteady, compressible and turbulent with

large scale separations. The equations that govern this

phenomena are the Navier-Stokes equations along with the

appropriate boundary conditions. These equations of

continuity, momentum, energy and state in vector form are,

+ 7. pi = 0 (2.1)at

D V P + p7 V + E (-7)(2)
Dt 3

pCv = 2 T + + (2.3)

0 = dissipation function

P = pR aT (2.4)

No analytical methods are available for the solution of such

a general system. Direct numerical simulation of this 3-D

problem at the high Reynolds numbers which occur in real

machines would require an enormous number of grid points to

account for all the scales of motion (39). It would be

prohibitively expensive to do parametric studies for this

problem. Clearly a simplified model which yields a more

tractable set of equations is highly desirable.
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2.2 KOSTYUK-IWATSUBO MODEL

Kostyuk (11) introduced a lumped parameter model of the flow

in labyrinth seals which considerably simplified the

governing equations. In this model, it is assumed that the

flow in the axial direction over the seal knives can be

coupled to essentially one dimensional continuity and

momentum equations in the circumferential direction.

The state variables in the seal glands are considered to be

functions of angle and time only. That is, variations in

pressure P, density p, velocity V, etc. in the radial and

axial direction inside a given chamber are neglected. This

type of assumption is known to be reasonably accurate when

the gap between the seal knives and lands, 8, is much

smaller than the characteristic dimension of the seal

chamber (6 << 1, 6 << h) where 1 is the distance between the

knives and h is the height of the glands as shown in Figure

6.

Iwatsubo (19) generalized Kostyuk's model slightly by

allowing for area variations in the chamber due to the shaft

whirling. The equations that will be derived are the same

as presented by Iwatsubo but for a simple two constriction,

single gland seal.
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2.3 DERIVATION OF GOVERNING EQUATIONS

Along with the basic assumptions described previously,

leading to the lumped parameter model the following

simplifications will be made.

1. The inlet and exit conditions are constant and known and
carry subscripts i and o respectively.

2. The working fluid, air, is ideal and colorically
perfect.

P = pRa T

3. All processes are adiabatic. This assumption replaces
the energy equation (2.3).

4. As a consequence of 2 and 3 the mean air temperature in
the gland is the same as before and after the seal.

5. Small flow changes in the circumferential direction are
permitted and are assumed to be isentropic.

6. The amplitude of the whirling motion of the shaft is
small compared with the nominal seal clearance.

7. The shear stresses exerted on the fluid inside the gland
follow a Darcy Friction law. This is expressed as

T = 1p ,8 rel

where T is the shear stress, X the Darcy friction
factor, p the fluid density, and V rel is the relative
velocity between the average fluid core flow and the
nearest solid surface.

Figure 5 shows a cutaway of the seal along with the

cylindrical coordinate system and associated velocity

components. Figure 6 is a cross section out of Figure 5

giving the geometry and pertinent flow parameters. The

labyrinth gland has dimensions 1 x h and is at radius R s
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The sealing clearance into and out of the gland are 6 and

62 respectively. Of course these gaps vary with angle and

time due to the rotor whirl. The initial pressure and

circumferential velocity before the seal are Pi and Vi

respectively. The temperature T and exit Pressure P0 are

both constant and given.

The last of the parameters to be specified describe the

motion of the seal relative to the outer casing. Figure 7,

which shows an axial and side view, gives the necessary

kinematic information. The rotor spins at w and the whirl

is of amplitude r and at angular velocity 9. The problem is

to find the unknown pressure P, velocity V and density p

inside the seal gland. The first equations to be derived

relate the flow rates in and out of the gland to the

geometry, air properties and pressure differences across

the sealing strips.

The total mass influx to the seal chamber m1 is,

S= p A 1w (2.5)

where p, and w, are the density and axial velocity

respectively at the minimal area. A1 is the effective area

which is the actual area multiplied by a contraction

coefficient. The mass inflow per unit circumferential

length of seal q1 is,

q, = p1 81 Uw1
(2.6)
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where p is the empirically obtained contraction coefficient

for the flow. Exact expressions for p1 and w1 are given in

Appendix A but an approximation for q, based on the mean

density between the chambers will be derived and used. The

error incurred in the prediction of mass flow rate is less

than five percent for axial Mach numbers less than 0.6.

Using Bernoulli's equation and assuming that the axial

velocity is negligible far upstream, a relation is obtained

for the axial velocity w, at the seal gap.

W2 '
P (P.-P)

1

(2.7)

where Pi and P are the pressures before and after the

constriction. The density at the throat p1 is assumed to be

the average of the density before and in the gland. This

density can be expressed in terms of pressure using the

ideal gas law as

1 1
"1 = (Pi+P) = 2RT (P +P)

a
(2.8)

Substituting (2.7) and (2.8) into (2.6) yields the first

governing equation

q = P P6_ 21/2

RaT

(2.9)

Similarly, the mass efflux from the gland per unit seal
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length q2 is

q 21 2_ 2)1/2 (.0
2 0 (2.10)

Throughout, p will be assumed to have the constant value of

0.65 and no carry-over effect will be accounted for. For a

brief discussion of these assumptions see Appendix A.

The next relationship to be presented is the continuity

equation governing the flow in the circumferential direction

inside the seal gland. Figure 8 shows a control volume with

the various mass fluxes crossing the associated control

surfaces and the mass accumulation within the control

volume. Equating the change in mass to the net inflow and

rearranging yields the following continuity equation

3(pf) 1 a
at R (Pfv)+q2 q1 o (2.11)

s

where f is the gland's cross-sectional area normal to the

velocity V.

The final relation will be the momentum equation in the

e-direction. Figure 9 shows a control volume with the

momentum fluxes, shear stresses and the 9-pressure gradient.

Using Newton's second law that the time rate of change of

the momentum is equal to the applied forces yields
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(PfV) (PfV 2 ) + q2V - 1 v. +-rsl
s

f aP
- (1+2h) + T 3 0 (2.12)

s

The shear stress exerted on the fluid by the stator, Ts can

be approximated by a Darcy friction law. Using the

following formula, the shear stress is given by

T PX s I = s1 2 sgn(V) (2.13)

where Xs is the friction factor for the stator. Note that

the absolute value or sgn is used to insure that the shear

stress always retards relative motion. The force exerted by

the rotor wall is expressed in a similar manner. But the

rotor wall has an absolute velocity of wRs, so that the

relative velocity is V-wRs. Hence, the stress exerted on

the fluid by the rotor is

1 1 2
TR 8 XR(V-wRs )s.V-R 1 1 PXR(V-wR s) sgn(wRsV)

(2.14)

where X is the friction factor for the rotor. The friction

factors Xs and XR depend on many factors (see Appendix A for

details) but here they will be assumed to be functions of

* * * *
the steady state Reynolds numbers Res and Re * Re and Re

are defined by using the hydraulic diameter DH, Mean

relative velocity V and kinematic viscosity v as
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Re * = VDH (2.15)
sv

and

Re =(wRV)DH (2.16)R V

The friction factors are now computed from these, and are,

X = 0.3164 Re*-0. 2 5  (2.17)
s S

X = 0.3164 Re 0 2 5  (2.18)

An iteration scheme must be used to calculate these since

the velocity and friction factors are coupled in a non-

elementary manner. If Xs and XR are given the appropriate

sign, depending on the relative velocities, the absolute

values or sgn may be dropped from equations (2.13) and

(2.14). Combining all of this, the original momentum

equation (2.12) becomes

a (PfV) + 1 a (pfV2) + q2  - q1Vi + _ P~slV2
s

- IPX (1+2h)(V-Rs) 2+ = 0 (2.19)8 >R S R5 ae

The sealing clearances Si, and 62, which vary due to the

rotor center executing a circular orbit of amplitude r

and angular velocity Q can be written (Referring to Figure

7) in terms of the nominal clearances 81, and 62, r, e and
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2 for 61, 62 R (25) as

*
- - rcos(9-Qt) (2.20)

62= 82 - rcos(E-Qt) (2.21)

The gland cross-sectional area f can be expressed in terms

of 81 as

f = l(h+6 1 ) (2.22)

The equations presented above are consistent with those of

Iwatsubo. However, it will be found to be beneficial to

recast these equations in terms of rotating coordinates.

2.4 TRANSFORMATION TO ROTATING COORDINATES

One of the difficulties that would be encountered in dealing

with the equations as they stand is that all state variables

are functions of time and space and both temporal and

spatial partial derivatives appear in the continuity and

momentum equations. This state of affairs can be removed by

changing to a more convenient frame of reference. Since the

sealing clearance distribution travels around at an angular

frequency of 2 it would be natural to chose a reference

frame which rotates at 9, yielding a problem which does not

contain time explicitly. This is true provided the whirling

motion is uniform and circular, and also that the seal has

cylindrical symmetry. Referring to Figure 7, let * be



39

defined as the counter clockwise angle from the minimum

gap. By using this and noting that no time scaling is

necessary the new rotating coordinates (W,E) may be written

in terms of the old ones (e,t) as

* = e - Qt (2.23)

(2.24)E = t

By using this independent variable transformation andae y
can be replaced by

9 a* a + aE a a

at ae ap at aE aa a
at at a*p at aE a* a'E

(2.25)

(2.26)

Also introducing velocity i? relative to this new coordinate

system as

V=V - QR
S

(2.27)

By noting

functions

that all of the state variables have become

of * only

P(et) + P(IP)

p(E,t) + p( *)

there is no longer any explicit dependence on E so that

(2.28a)

(2.28b)
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- 0 and the partial derivatives with respect to q,
9t d
may be replaced by ordinary derivatives -. Using this

information the original governing equations (2.11) and

(2.19) can be rewritten as,

d [f;]+Rs 2 -q1J=o (2.30)

d[Pfv(v+QRsJ]+ p Xs1(V+2Rs 2_XR(l+2h)(wRs(;7+SR) 2 )

+ Rq2 (+2R)-Rsq 1 (V+2R )+ f - 0 (2.31)

The leakage equations for q, and q2 are invariant but 1 and

62 simplify to

6 =1 - r cosw (2.32)

82 = 82 - r cos* (2.33)

and by defining eccentricity ratios e r the non-dimen-
S.

sional gap distributions may be given as

- 1 - e cos* (2.34)

62 C= 1 - e2cos* (2.35)
82

The continuity (2.30) and momentum (2.31) equations along

with the auxiliary leakage and gap distribution relations
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form a system of two coupled nonlinear ordinary differential

equations and will be used in the following chapters for the

theoretical prediction of the labyrinth seal forces.
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Figure 5 - Cutaway section of a single gland labyrinth seal.
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Figure 6 - Cross section of seal out of Figure 5. The
geometry and flow variables are given.
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CHAPTER 3

LINEARIZATION OF GOVERNING EQUATIONS

3.1 INTRODUCTION

Even though the equations derived in the last chapter are

much simpler than the full Navier Stokes equations they

still contain nonlinearities and hence are difficult to

integrate in closed form. Many mathematical methods for

approximating the solution are available. The system could

be numerically integrated by any one of several methods.

This would appear to be a straightforward approach. But the

periodicity boundary conditions on both pressure and

velocity tend to be difficult to impose for either a time

marching shooting scheme or a finite difference method.

Also, some valuable physical insight is lost by numerical

simulation. Instead of numerically solving the equations a

linear perturbation technique will be used. To do this,

first the equations are solved with the shaft in the

centered position to obtain a zeroth order solution. Next,

small amplitude perturbation expressions are substituted

into the governing equations which are then linearized.

Harmonic solutions for the perturbation are assumed and the

resulting system of linear algebraic equations is presented.

3.2 ZEROTH ORDER SOLUTION

The first step will be to obtain a zeroth order solution.

To do this, the rotor is assumed to be centered with respect
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to the outer casing. In this non-whirling condition all

variables are independent of angle and time (e.g. a = =

a * * * -*

= 0). Let any starred variable (p , V , P , V , etc.)

represent these uniform zeroth order solutions. Under these

assumptions the original equations greatly simplify to

**

q2 q = 0

* (*2
P xs 1

*22) * * *
- R (1+2h )(V -taRs)J)+ q2 V- 1

The value of P can be found from (3.1) by using

rate equations (2.9) and (2.16) as follows

2/ (*2 2) 1/2

R a g

Solving for P *gives

61, ( *2 )1/2

- P -P = 0

(3.2)

the flow

(3.3)

*2 2 + 6*2 2"1/2
* 1 2 o

P = *2 *2
1 : &2 ,

(3.4)

The steady state flow rate per unit circumferential length
* * *

is q1 = q2 =q and is given by

*P P2 *2_ 2) 1/2
q = P P

aT

p is found from P = P RaT. Finally V must be determined.

(3.5)

( 3.1)

Vi = 0
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The initial guess for V* is Vi then Xs and XR are obtained

from (2.17) and (2.18) respectively. Then the quadratic

equation for V* from (3.2) is solved for an updated V*.

1* *2 * 1 **
P 1s - R(1+2h)I V + [q + .- P (1+2h)cR 5]V

- [qv + 1p *X(1+2h)2 R 2] = 0 (3.6)

With this value of V new estimates for Xs and XR can be

obtained. This iteration process is continued until a

convergent solution for V is obtained.

3.3 PERTURBATION EXPANSIONS

Once the zeroth order solution for the equilibrium, non-

whirling rotor has been obtained the state variables inside

the labyrinth gland for the case of the small amplitude

whirling rotor can be expressed in terms of the following

perturbation expressions.

P = P() = P (1+((*)) = P + EP (3.7)

*
V = V (1+n) (3.8)

*
q, = q (l+Cl) (3.9)

*
q2 = q (1+ 2) (3.10)

The flow rate perturbation (1 can be eliminated in favor of

the pressure perturbation E using (2.9), (3.7) and 1&1<<l as

follows
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q U 1 2 2)1/ 2

, i 2 *2 21/2

q Ra i - P - 2P

9 41 (2_ *2 1/2 1 1

R -T1

00 2 P*2  l/2 1 r
- - 2 *2 * 2 _ *2 (3.11)

J 6 P -

This can be rewritten as

* '(2

q, q 1 1 - 2 *2J (3.12)
Pi

Similarly C2 can be eliminated in the expression for q2'

here q2 is expressed in terms of & as

* '*21'

q q * 1 + * 2 (3.13)

62 0.,

Several relationships will prove useful in manipulating the

equations. From the assumption that all the flow processes

in the circumferential direction are isentropic, the

pressure and density variations can be related by

1 a _ a (3.14)
yRTa* YP 3*

or in terms of the perturbation variables
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*

p. 1 *a _ l (3.15)
yR Ta

which implies

P = p* (i + Y(3.16)

Also from (3.7) and (3.8)

dP *d&
U- dP (3.17)

dV V (3.18)

The perturbation expressions (3.7) and (3.18) are inserted

into the continuity equation (2.30). Note that q, and q2

are replaced by (3.12) and (3.13) respectively. By doing

this, one obtains terms of zeroth, first and second order.

Each order is considered separately. The zeroth order

relation, q2 - q = 0, of course, contains no new infor-

mation. The second order terms are neglected since they

are much smaller than first order ones when r << Si, S2.

The first order terms yield the following linearized

perturbation equation

*-* )h d+ *-V* df P V hl d& * r r
s d ;TP -* 8*02 01

+ &q {* 2
2 + P2 *2 s = 0 (3.19)

P 1P P.-P0 i
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Analogously, the linearized, perturbation momentum equation

that results from (2.31) is

* -** d * *2 dn *-* **df p hlV V d&
phlV V + P hlV + *

*[REP *2 X~ h'21* dE
+ 8 S 1VXR (1+2h)(WR S-V ) &+P *hl d

* {~ * * 2 + V .p* 2 ]

+R q 2 + 2 *2

+(RSp 4V] V *+ XR (l+2h)(WR S-V ) +(RSq V n

- -* - , r cos*} 0 (3.20)

,2 61,

3.4 HARMONIC SOLUTIONS

It has already been assumed that the clearances and area are

periodic functions of the whirling angle *. Now the pertur-

bations in pressure and velocity are also assumed to consist

of a first harmonic in *. That is, the fluid properties can

be represented mathematically by simple sinusoidal functions

with unknown amplitudes and phases. Physically, this is a

very special case. More generally one would expect that the

form of the solution could consist of the sum of any number

of harmonic functions with period 2nn (n = integer). Solu-
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tions of this type could be allowed because they maintain

constructive interference. Since the problem is now linear

there are no interactions among the various harmonic

components. Therefore each can be treated separately. The

reason that one would like to consider the first harmonic

only can clearly be seen by examining equations (1.7) and

(1.8). The contribution to the aeroelastic forces F and

F X from any component other than the first harmonic

vanishes due to orthogonality. These other harmonics will

not be treated here explicitly, but it should be noted that

in the closely related problem of high cycle fatigue (HCF)

of the sealing knives they can be important. Discussions of

this problem along with the common aerodynamic approaches

used are given in the papers by Abbot (40), Srinivasan and

Dennis (41) and Lewis and Platt (42). The basic model to be

used for the prediction of stiffness and damping coeffi-

cients appears to be equally applicable to the problem of

HCF. Returning to the problem at hand, it will prove

convenient, for manipulation purposes, to express these

assumed harmonic solutions in complex exponential notation.

The pressure and velocity perturbations & and n are

represented as,

E = R] (3.21)

R e] = real part of

o=R e-"] (3.22)
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Here 5 and n are complex constants which contain both

amplitude and phase information because they can be

represented in the complex plane as shown in Figure 10 as

&RE + i IM (3.23)

)IRE + 1 IM (3.24)

Again referring to Figure 10 the amplitudes and phases are

given by

+ &M)1/2 (3.25)

| | = 2E + 1/2 3.26)

=tan 1 &IM (3.27)

&RE

= tan (3.28)

)IRE

Where and are the angles ahead of the minimum gap

where the maximum perturbation in pressure and velocity

respectively occur. Care must be taken in assigning the

appropriate *'s. Usually the principle value is taken,

-n/2 < * < n/2 but in this case * should be defined on

[-n,n. On this interval tan-I is multivalued therefore the

*'s should be chosen such that EIM, YIIM> 0 => * > 0 and
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&IM, nIM < 0 => * < 0. The derivatives of & and n are

d= d =-i*d - ie (3.29)

d~p 3-, &~ ~

d, _ - ille ~ (3.30)

The variation of the area can be represented in this

notation as

df= R - irle~l*] (3.31)

Substituting these into equation (3.19) rearranging, noting

that V = V - 2Rs, and eliminating the phasor e~ l yields

the following linearized perturbation equation of continuity

p * hl J-*. q*R P + P *2
Y ~ ~ (s *2_ 2 + 2_ P*

0 1

+ p V hliln = {p*V*li - qRsl* '*)] r (3.32)

02 8

and assuming harmonic solutions yields the following

linearized momentum equation when applied to equation

(3.20),

* * *2 * *2
P V V hli R q V P R q V P R P *2

*2 *2 82 s
0 i

- XR (l+2h)(wRs-V) 2] + hlPi} & + {p*V*(7*+V*hli
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- Rs * s qs + XR(1+2h)-(Rs-V

=p V V li - Rq r (3.33)

I 2 1,

These two linear algebraic equations contain the complex

perturbation variables E and r) as unknowns on the left hand

side with known parameters (zeroth order quantities and

whirling amplitude) on the right hand side. These equations

may be written, employing matrix notation, as

A 1 A 21 R1
A 21 A 22 R 21r (3.34)

The next chapter will deal with the solution of this system

for the various cases. The equations will be non-dimension-

alized and some physical interpretation will be attached to

the various terms in the equations.
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CHAPTER 4

NON-DIMENSIONALIZATION AND SOLUTION

OF GOVERNING EQUATIONS

4.1 NON-DIMENSIONALIZATION OF GOVERNING EQUATIONS

As presented in the previous chapter, the equations

governing the pressure and velocity perturbations for the

case of a small amplitude whirling rotor are,

[Al1 A 12 } {Rj r (4.1)
A21 A22 r) 2

It will prove advantageous to recast this system in an

equivalent non-dimensional form. When the equations are

non-dimensionalized the following geometric, kinematic and

flow parameters naturally emerge,

Geometric

*

r -r 62 1
C 2 -X

6 62 61 2

(4.2)

h 1 D 1
R R

Kinematic

R R

W = V
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Flow

** * *q P 6 V V.i
a~~ = re = 1--
U6 p Ra V

The physical interpretation of some of the parameters,

especially the geometric ones, is straightforward while that

of others is not. A brief discussion of some of these

is in order in light of the central role they will play in
*

62
subsequent treatments. The ratio of ;= indicates the

degree to which the seal converges or diverges. a = 1 means

straight through, a < 1 indicates convergence and a > 1

implies divergence. The two kinematic parameters, S and W,

relate the velocity of the seal surface and gap variation

phase speed respectively, to the average circumferential

flow velocity inside the gland. It will be found that S is

only important in the determination of f. a is the non-

dimensional flow rate, which characterizes the axial

pressure difference from inlet to exit. This can be seen if

A is written as

* (P . 2 1/2
A =)2- (4.3)

pS p TRT' P

a is proportional to the swirl inside the gland and is a

measure of the angle at which the air leaves through the

second knife edge.
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Finally, r is a parameter which measures the axial gradient

in swirl. It conveys the degree to which viscous shear

forces change the swirl in the seal chamber. If r=0, the

inviscid case, the air enters and leaves the gland with the

same circumferential velocity. To a first approximation,

from Eq. (3.2),

*

V *V V 2 X R(1+2h)(V wR )] (4.4)
8q

or in nondimensional terms,

X Lar H2S= DH sgn(V)-sgn(Rs-V )(1+2 )(-S) (4.5)8 DH L

The continuity Equation (3.32) has dimensions of (MT 1] and

will be divided by Rsq to yield the following non-

dimensional continuity equation.

S** *2 2 2 *2,
p V 6 1  1 1 h S2Rs ] 1 p a 2 ^

* Y R s V q * 2  *

P V S 1  h . ^ L 1  1 sR .2
+ q -=- -

q s h q s s R s

(4.6)

In terms of the non-dimensional parameters of (4.2) this

equation can be simply written as
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(1-W)i - 1 +2 I

{ -L(1-W)i+(1 -l)} i (4.7)

The momentum equation could be dealt with directly. How-

ever, a simpler form will result by subtracting from it the

continuity equation times V . This conservation form of the

momentum equation can now be non-dimensionalized by dividing

by Rsq V*. In terms of primitive variables this equation

can be written as,

f V * pV [R 21
S(1 7- 2 *yq* s XR(1+ 2 h) -

V ,2_ * 2 8yq 6s R

1i RT1
' P 2 P 2 '

+ * 2 j

_% 

q 
( R s 

^

+ fPV,6 hl -1i - 1 - V 8 X 1 + X (1+2 h)

*s 1 10 5

o V.(4.8)

Again this equation can be written more compactly in terms

of the non-dimensional parameters as,
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fr - L~Sl 2 ] + L 4
8yDH s R(1 + (S-1) 2

(4.9)

+ {h(-W)i -1 -- a +X 1 + 2H 1) - e4HD Ls+XR t L )JJ) 1

A matrix equation for (4.5) and (4.7) analogous to (4.1) can

be written with non-dimensional coefficients as,

B 121() 
(4.10)

B21 B22 )1 2

This system will now be solved.

4.2 SOLUTION OF EQUATIONS

Two distinct possibilities arise when considering the solu-

tion of (4.8). First, for r=O the determinant of B must

vanish for non-trivial solutions to exist. This case would

correspond, within the approximation of this model to a

standing acoustic mode in the labyrinth gland. When one

attempts to solve the implicit relationship which results

from Det B .=0 for one of the parameters (e.g.

r=r(o,w,S,A...)) only complex roots can be found, which are

physically unreal. Even when friction terms are neglected,

E=Q, n-0 are the only solutions. This state of affairs

could be predicted directly from considering the 1-D

acoustic wave equation inside the annulus with the

appropriate monopole source distribution term (43). Any

standing mode started within the annulus would quickly die
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from the induced pressure perturbations generating extra

flow losses over the seal knives. This has been shown

indirectly by Ingard (44) while considering the acoustic-

elastic instability problem experienced by labyrinth seals.

The other case of r O, det B O is the physically important

one. By eliminating n the pressure perturbation 5, is given

by

= aL(1-W)i+(l - -[ (1-W)i - ]

- aXs+XR + (S-1) + r J/

(4.11)

aL(1-W)i 1+ 2 (1-W)i - 1
yD ~ 2 JLD

- L X +X 1 + (S-1) -

8YHxsxR ( + 2Hf(s-1) 2] + 2 L i
.0~ a p D

For some configurations and flow conditions certain terms

can be neglected from this expression. However, for a wide

range of parameters, typical of modern designs, only the

shear stress perturbations can always be eliminated with the

knowledge that they are at least an order of magnitude

smaller than the other remaining terms. Dropping the shear

stress terms yields the following simplified expression for
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(r - irL .1 raaL(1-W)i + 1 (-W)1 + i- /

{ (1-W)i - 1+ 2-

- + 122] (4.12)
D 2 apD

From E, the amplitude and phase information can be extracted

as shown in (3.20) through (3.27). One can not say directly

if a given magnitude and phase will destabilize a rotor

system because as pointed out in Chapter 1, the knowledge of

many different forces is needed to determine the system

dynamics. For the kind of calculations presented in Chapter

1 the coefficients C and K are needed. Representative

calculations of these will be presented later. However, for

the facility design and later comparisons with experimental-

ly obtained data the amplitude and phase representation will

prove more useful. From the phase alone one can infer if

the net pressure force acting on the rotor has a tendency to

add or subtract energy from the through flowing fluid for a

given whirl direction. If there was a small amplitude

forward whirl (9 > 0) and a phase lag of the peak pressure

with respect to the narrowest gap (& < 0), then a component

of the force on the rotor would be in the same direction as

the velocity since F ~ - *&. This means that energy is

being added to the rotor and this is potentially

destabilizing. The same type of argument may be used for

forward (9 > 0) or backward (9 < 0) whirl with the phase
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either leading (*, > 0) or lagging (* & < 0)the eccentric

motion. If the product of *i&Q < 0 then a small whirl will

tend to grow. However, when 4' 2 > 0 no instability will

occur. Figure 11 shows the regions of stability/instability

for the four separate combinations of 2 and * . The

situation is slightly more complicated in terms of the non-

dimensional whirl, since W > 0 can imply either, 2 > 0 or

2 < 0, depending on the sign of V . For these variables the

stability criterion is

4iV W < 0 => instability (4.13)

P& V W > 0 => stability (4.14)

Unfortunately, this general case is still too complicated to

permit straightforward physical interpretation. Hence a few

simpler cases will be considered first in order to

illuminate the influences of the various terms separately

before returning to a more general case.

4.3 THREE SPECIAL CASES

By examining the numerator of (4.12) it can be seen that

several terms act as sources driving the perturbations.

These terms are a, (1-W), (1 - 1/a) and r. Setting one or

more of these to zero it is possible to investigate the

effects of the remaining terms. The first special case to

be considered treats the dependence of the aerodynamic

forces on x, the seal convergence/divergence. This is the
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so-called "Alford Seal Effect". To do this, a is set to

*
zero. This implies V is zero since the remaining terms

contained in a are positive definite. Also 22 is set to
p D

5 for concreteness. This is approximately the seal geometry

of the turbine tip shroud for the space shuttle main engine

hydrogen turbopumps. Using these simplifications and

rearranging, the normalized pressure perturbation can be

written as a function of a as,

2 2 (4.15)

Two items deserve comment. First this is a real function

which implies that the force generated is in phase with the

displacement. This is contrary to what was predicted by

Alford (15). This discrepancy arises because Alford did not

allow for circumferential flow whereas this theory does.

The acoustic waves that redistribute the flow may not be

ignored. Second the force is not whirl dependent. This

specific phenomenon contributes to the direct elastic

coefficients only. Figure 12 shows a graph of 2VS .

From this, it is seen that a convergent seal, a < 1,

produces a negative direct force, since F is proportional

to -E. This would usually be beneficial since it tends to

stiffen the rotor/bearing system, hence driving up the

critical frequencies. This behavior is similar to the

Lomakin (45) effect found in annular seals. However, the
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magnitude of the forces is usually smaller and the physical

mechanism does not appear to be the same. A divergent seal,

a > 1 produces a force that resists the shafts propensity to

return to a centered position after some small deflection.

This force reaches a maximum when a = 2.16. In the more

general case to be described later c will contribute to the

cross force on the rotor and hence o will influence motor

stability. The force generated for either convergent or

divergent configuration is proportional to 6 Even though

this will not be exactly true in the general case, it will

serve as a semi-quantitative guide.

The second case of interest is of a straight through seal

(cx=1) configuration when the steady state swirl velocity is

close to the gap variation phase speed (e.g. V* = QRs =>

W-l). Letting L=D, dropping the appropriate terms and

rationalizing gives the following expression for the

pressure perturbation per unit eccentricity.

2

(2 + 2 2 r 2  [-r + (2 + i (4.16)
S 2 + - ) +a 2 _ p r+lu2

For most reasonable choices of parameters tart << 12 + 2 1

therefore (4.16) may be simplified to

2 rai (4.17)
2 2 + -2
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Since the right hand side is purely imaginary the pressure

maximum is 900 out of phase depending on the sign of ra.

This would imply that a very destabilizing condition may

exist if r and a have opposite signs for 2 > 0 or the same

signs with 2 < 0. This can be put in more physical terms by

combining (4.14) and (4.17). From this, instability occurs

if

*
(V - V ) 2 < 0 (4.18)

Recall that V = 2Rs for this case. Therefore the condition

becomes

22R < V.2 (4.19)

If the shaft spin w is assumed positive then two cases need

to be considered. 2 > 0, forward whirl, and 9 < 0, backward

whirl. Dividing (4.19) by 2 and replacing 2RS by V yields

the condition for forward whirl namely,

V.i > V (4.20)

This condition states that if the preswirl of the air

entering the seal is in the same direction as the seal

rotation and is admitted at a higher absolute value, the

aerodynamic forces will tend to promote a forward whirl

instability. For backward whirl, 9 < 0, (4.19) becomes,

*
V > V. (4.21)

This is the opposite condition as prescribed in (4.20).
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However, any V* > 0 must be excluded since W = 1 implies

that V* and 2 must have the same sign. This means that if

the preswirl V., is in the opposite direction as the shaft

spin backward whirl is driven. The physical mechanism

feeding the instability for these two cases is easily

identified. The reason V is different from Vi is due to

the presence of friction forces. But by Newton's Third Law

the change in swirl must be accompanied by a reaction torque -

on the rotor surfaces. It is this reaction which drives the

whirl when V ~Rs. This phenomena will be present in the

general case but other- factors will also contribute. The

magnitude of this transverse force scales like A 2raP * which

in terms of primitive variables gives,

2F 2 * 2\2'*
~__ 2 *aP . - V. (4.22)C 1  2( 1,

A larger pressure difference and/or level generates greater

forces.. However one cannot eliminate this term without

doing away with the need for the seal. Figure 13 shows the

amplitude and phase of as a function of r, treating a as

a parameter.

In the last of the special cases the simplest type of whirl

dependent behavior will be investigated. To do this some

terms are eliminated by setting a=l, r=o, and L=D. The

condition of r=o implies that friction is totally neglected
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even in the zeroth order approximation. This is a reason-

able assumption when either the nominal seal clearances are

quite large or when V is nearly equal to the asymptotic

value of swirl that would be obtained after many such

identical chambers. The resulting expression for 2
a 2

after rationalizing is quite complicated, but for the case

of |a(1-W)| << 1 it simplifies to

2_ -aL(1-W)i (4.23)
1, (2 + -2

'U

Again the net force is 1900 out of phase with the displace-

ment but in this case the magnitude is proportional to

a(l-W). Figure 14 shows the amplitude and phase of 2 as

a function of W using a as a parameter. It should be noted

that at W=1 the forces become small and there is a phase

reversal. Substituting (4.23) into the stability relation

(4.13) and canceling all unnecessary terms yields

(1-W) W > 0 => instability (4.24)

This condition is satisfied when W < 1, which in terms of

primitive variables implies IV I > I2Rs . This suggests a

useful design criterion to avoid labyrinth seal induced

rotor whirl. Make sure the critical bending frequency of
*

the shaft, W n, is above V /Rs for all seal chambers. These

three cases have shown certain types of limiting behavior

for special conditions. Now the more general case when all
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terms contribute and interact will be treated.

4.3 THE GENERAL CASE: DESIGN STUDY

In the general case none of the terms in equation (4.10)

will be neglected. Certain terms will be set and the

amplitude and phase behavior of as a function of the

non-dimensional whirl frequency W, varying one other

parameter at a time will be investigated. This type of

parametric study was undertaken about several baseline

points which were physically realistic. The ultimate goal

of this study was to determine what values and ranges of

values for the various parameters are needed in order to

corroborate this theory, especially with respect to the

damping forces. After many iterations a final baseline

design was obtained that was consistent with the primary

goal and with certain auxiliary conditions such as available

facilities, cost, mechanical stress limitations, etc. These

will be discussed in more detail in the next chapter. A

reasonable and consistent set of geometric and flow related

parameters was found to be

a = 1.0 H = 0.05 L = 0.15 D = 0.05

(4.25)

L = 0.8 a = 0.3 r = 0.05 -1 < W < 3

[A set of primitive variables which correspond to these will

be presented in the next chapter.]
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The expression for -L presented in (4.12) becomes somewhat
C1

lengthy when rationalized but it can be readily simplified

for la(1-W)I<<l as was done for the case r=o, a=1, and L=D.

The resulting expression is

2 2
- - L (1w)2]+ "-[r+(l-W)(-D+l- 1)]i

1 + a2 + L2 2

(4.26)

This expression will be used later to obtain approximate

closed form expressions for the rotordynamic coefficients

C iand K . When a=1, as in the baseline, this simplifies

to

2 D 2 (4.27)

. D 2 p

When W=O, the imaginary component hence the out of phase

force can be written as

L - i (4.28)

From this, it can be seen that when r=D the imaginary part

vanishes, hence a phase crossover occurs. Recall in the

baseline case r=D=0.05.
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Figure 15 shows the amplitude and phase of vs W for the
1

baseline case. The amplitude is a minimum (-1.0 x 10- p*)

around W=0.4 and increases on both sides, reaching a maximum

(-6.0 x 10-3 P *) at W=3.0. The phase is positive when W > 0

and negative when W < 0. If a < 0 just the sign of is

reversed. Since V* is changed this seal also always

*
provides stabilizing forces because * W is always

positive.

The first two parametric variations from the baseline will

involve the effects of convergence and divergence of the

seal. Figure 16 shows the amplitude and phase of vs W

for the baseline (a=1.0) along with three other cases of

diverging seals (a=1.025, 1.05, 1.1). The amplitude of the

perturbations tend to be larger for diverging seals. As the

seal divergence becomes greater the phase charges sign at

lower nondimensional whirl frequencies.

This is true regardless of the sign of a. This implies.that

diverging seals tend to destabilize rotors in the direction

opposite that of the inlet swirl. Alternatively if a rotor

has a tendency to whirl in the direction of inlet swirl, as

was the case with r = 0, then a slightly diverging seal may

enhance rotor stability.

Figure 17 shows the amplitude and phase of - vs W for 3

converging seals along with the baseline (a = 1.0, 0.975,

0.95, 0.9). The amplitude behavior shows similar trends to
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those of the diverging ones, increasing away from cx-1.

However, the phase shows the opposite trend moving the phase

crossover to higher whirl frequencies as x increases.

converging seals promote whirl in the same direction as

inlet swirl. These seals appear to be very stabilizing to

whirl in the other direction, since the amplitude is greater

and the phase is around - n/2.

The next parameter to be presented which influences the

forces is A. As mentioned earlier A is a measure of the

through flow pressure gradient. Figure 18 shows the

amplitude and phase of vs W for 6=0.3, 0.5, 0.7 and 0.9.

The shapes of the amplitude curves do not change much. They

appear to be a self similar family of curves which scale as

a2 just as in all three special cases plus the small a(l-w)

approximations given in (4.26) and (4.27). This suggest

that the experimental data should be reduced by presenting

2 vs W. As a consequence of this the phase is invariant

to A. This situation changes somewhat when a(l-W) > 1.

The influence of r on the pressure perturbations can be

observed by referring to Figure 19. Here and ip are

plotted vs W for four different values of r (0.05, 0.01,

-0.01, -0.05). The behavior for Irl << 1 approaches very

well the case of r=o in that the minimum pressure occurs

along with a phase reversal at W=l. As r becomes more

positive the minimum amplitude moves to lower whirl

frequencies along with the phase cross over. Conversely, as
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r becomes more negative the minimum amplitude and phase

cross over proceed to higher frequencies. The phase

behavior shows the combination of the two phenomena

presented in special case 2 and 3. The reaction torque may

either increase or decrease the range of stable operation

depending on the direction in which it acts. As was shown

by using (4.28), when r=D these two types of forces cancel.

r can be changed by altering the relative size of rotor and

stator surfaces and/or treating these surfaces in an attempt

to control the friction factors X and X R D is probably

easier to specify.

The last parameter to be investigated is a. Figure 20 shows

the amplitude and phase of vs W for a = 0.1, 0.3, 0.5,

+0.7. The amplitude is a very strong function of a(l-W).

This cannot be seen from (4.26) since higher order terms in

a(1-w) were neglected in that approximation. The sign of a

does not influence that magnitude of however the phase

is reflected about the i = 0 axis. This does not alter the

regions of stability since both a and W change signs with

V . This suggest that the usual definitions of forward and

backward whirl, being referenced to the shaft spin, are not

very meaningful with reference to labyrinth seal induced

rotor whirl. Here it is more illuminating to refer to the

physical whirl direction a being with in the same or

opposite sense as the mean swirl in the seal.
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4.5 ROTORDYNAMIC COEFFICIENTS

As mentioned the rotordynamic coefficient C and K are

needed as inputs to a general purpose rotordynamic

stability/response program and can be obtained from the

amplitude and phase information. The first step is to

integrate the pressure distribution and obtain the net force

components in the direction of the minimum gap and 90* ahead

of it. From (1.7) and (1.8) these forces may be written as

2n 2n

Fx = -R S1 fo P(ip)cos*dp -R= 1 f 0 EJPcos(p-* &)dp

= -TERslIEtP cos* (4.29)

and

FX =-nR SljlP sin* (4.30)
2

By the definition of C and K, FX and F can be decomposed

into components in phase with the motion (real) and n/2

ahead (imaginary) in the whirl direction. When the real and

imaginary parts are equated the forces per unit eccentricity

can be expressed as

-- K + QC (4.31)
r xx xy

2 -K - PC (4.32)r xy xx



77

The data can be more conveniently presented by using the

following non-dimensional rotordynamic coefficients defined

by

*

KK6
3 nR 1P

s

* *
__ C .V6

c = 2
nR lP

s

QR
with these definitions, recalling that W = -s and using

V
(4.31) and (4.32) it is possible to relate these as,

Re os= *

Imt. =] C lsin =
E: 1 xy

-W C
xy

W C
xx

(4.34)

(4.35)

where K , C xy etc. are themselves functions of W in

general.

The C's and i's are calculated by inserting neighboring valu

of W into these and solving the resulting simultaneous equa-

tions. This is called the local secant method and can be

done for all W in the range of interest AW=O.1 is used for

the calculations. Note from the symmetry of the physical

system

K K
xx yy

K =-K
xy yx

C =C
xx yy

C Cxy yx

(4.33)

(4.36)
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Approximate closed form expressions for the coefficients may

be obtained by decomposing (4.26) into real and imaginary

components and substituting these into (4.34) and (4.35).

By inserting W=0 and W=1 the following expressions for K ,

K xy C and C are extracted by this global secant method.

2 ( 1 

__ (12 2 2 K = a 2 L 2
x + c + (D)

2L r D + 1
K = a L (4.38)xy D 1+ 2 L 2

+

D -(1 -1)
- ____ ___ cc_ (4.39)Cxx D 1 2 L )2

1 + a +()

- -2A2 a 2 L 2  1 - W)
xy D 1 + 2 L + ( ).0

,uD

Stability criteria similar to those given for the phase can

be presented for these coefficients. The non-dimensional

force F acting out of phase with the rotor displacement

is

6 F 2 F
1 2 X2 w- = = - K - W C (4.41)

rnR lP 1 xy xx

Only the cross stiffness and direct damping influence
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stability. If c ~= 0 then K ~ > 0 promotes whirl in the
xx xy

negative direction whereas K~~ < 0 creates whirl in the

positive sense. For C ~ > 0 the damping forces must

remove more energy than the elastic ones add to maintain

stable operation.

|Wc~~| > IK | => stability (4.42)
xx xy

However from (4.39) it can be seen that C x need not bexx

positive. In fact when a is greater than D ' C~ becomes

negative which is potentially very destabilizing. One very

important consequence of the closed form relations (4.38)

and (4.39) is that by properly choosing r, a and D the

magnitude and signs of C and K can be prescribed to
xx xy

enhance stable operation.

Figure 21 shows these coefficients vs W for the baseline

case. They follow the closed form expressions well

especially for 0 < W < 2. This is to be expected since they

were derived for |a(1-W)I << 1. The high level of stabili-

zation this seal provides is reflected by K ~ 0 and

~~ > 0.
xx

Figure 22 shows the coefficients vs W for a = 1.1. These

are changed significantly from the baseline and the

reduction of stability is reflected by the negative C xx

Figure 23 presents K.. and C.. vs W for r = -0.05. The

decreased range of stable operation as was shown in Figure
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19 is predicted by the down and shift of K .

Finally Figure 24 shows these rotordynamic coefficients vs W

for a = 0.6. The magnitudes are much greater as expected.

They also differ more from the closed form expressions for a

given W since la(I-W) is larger.

4.6 SUMMARY

The equations derived in Chapter 3 were nondimensionalized

and solved for the pressure perturbation 5. Three special

cases were investigated showing limiting behavior. A design

study was undertaken to determine what range of parameters

would be needed in order to experimentally verify this type

of theory. The amplitude and phase behavior of E vs W was

investigated using x, r, 6 and a as parameters. Closed form

expressions for the rotordynamic coefficients, when

Ia(l-W)|<<1, were derived. From the phase or K and C it
xy xx

was seen that r, D and a change a seals stability character-

istics. It appears that by designing "custom tailored"

seals rotor whirl may be eliminated. For a straight seal,

a=1, r=D was optimum. However, when V. > wR , and r < 0

this cannot be accomplished. Therefore a must be tailored.

From a practical point of view a must be precisely

controlled and it could be very expensive to hold such tight

machine tolerances. In theory this could be extended to

multichamber seals but the simple closed form solutions

would have to be abandoned. Iterative methods would be
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needed since a enters into the equations nonlinearly and a N

chamber seal yields 2N complex algebraic equations similar

to (4.1).
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Figure 11 - Stability/instability regions in terms of the
gap relative phase * and the rotor whirling
frequency 2.
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Figure 12 - Normalized amplitude of the pressure pertur-

bation 2 vs. the seal divergence ratio
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Figure 14 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirl frequency
for different values of a.
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Figure 15 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirl W for the
baseline configuration.
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Figure 16 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirling
frequency W. Three different diverging seals
are compared to the baseline case.
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Figure 17 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirling
frequency W. Three different converging seals
are shown along with the baseline.
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Figure 18 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirling
frequency W, using A=0.3, 0.5, 0.7, and 0.9.
All other parameters are the same as baseline.
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Figure 19 - Amplitude and phase of normalized pressure
perturbations vs. non-dimensional whirling
frequency W, using F=O.05, 0.01, -0.01, and
-0.05. All other parameters are the same as
baseline.
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Figure 20 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirling
frequency W, using a=0.01, 0.1, 0.2, and 0.4.
All other parameters are the same as baseline.
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CHAPTER 5

FACILITY DESIGN

5.1 DESIGN REQUIREMENTS

Many interacting constraints were considered when setting

the design requirements for the Labyrinth Seal Testing

Facility (LSTF). First and foremost it was necessary to

determine what range of values for the various non-

dimensional parameters discussed in the previous chapter

must be obtained in order to corroborate the Kostyuk-

Iwatsubo theory especially with regard to the damping

forces. Even with these parameters set many families of

designs were possible by scaling the geometric as well as

flow related quantities. Certain constraints were imposed

in order to minimize facility cost while still maintaining a

high level of flexibility in operating conditions. The

following is a list of design goals along with a brief

discussion of each.

1. Flexibility

It is desirable to have a facility that can operate under as

many conditions as possible. The theory provides guidelines

as to what to expect but until after the experiments are

conducted it is impossible to determine if the theory is

very accurate.
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2. Minimize Facility Size

The major purpose of this is to reduce facility cost since

the cost goes up very rapidly with the linear dimensions.

For geometrically similar designs this means the seal radius

R should be kept as small as possible. This has many

additional benefits such as reducing the flow rate of air

and limiting stresses on rotating parts. However, the

facility should not be made to small as to render the

measurements difficult.

3. Limit Air Flow to 0.3 Kg/sec @ 600 Kpa

Many different sources of pressurized air were considered.

Both steady state and transients mode operation were

investigated as to their feasibility. A decision was made

to use the MIT-GTL oil free compressor as the air source.

This facility can deliver 0.3 Kg/sec of air at a pressure up

to 600 Kpa. If necessary this compressor can be employed in

conjunction with supply tanks with a total capacity of 500

ft 3 (14 m3 ). In this configuration a mass flow rate of 1

Kg/sec can be obtained for 1 min under blow down conditions.

4. Maintain the Reynolds Numbers Above Certain Critical
Values

There are two different Reynolds Numbers of importance in

this problem. The gap Reynolds Number (defined as Re =
* 9

) and the circumferential flow Reynolds number used in
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*
Chapter 2 to obtain the friction factors (defined as Re=

V -* D /v). It is not possible to maintain similarity
rel H

between the experiment and real machines for either without

employing extraordinary measures (e.g. large scale, high

pressures, exotic fluid, etc.). However, it probably is not

necessary to obtain an exact match as long as there are

maintained above certain threshold values. For-the gap it

is known that the flow over the knives is fairly Reynolds

number independent above a critical value of 104 (46). For

*6
typical machines Re may exceed 106, whereas it would be

very difficult to increase it much above 105 for this

experiment. It should be noted that this is well into the

turbulent regime. Hence the behavior should be similar.

Within the limits of this theory, the only difference should

be that with a moderate Reynolds number the seal surfaces

would be hydrodynamically smooth. For the much higher

Reynolds number the friction factors would be substantially

increased since the surfaces would be hydrodynamically

rough. These arguments would apply to normally machined

surfaces (rms e ~ 150mm). If "casing treatments" were used,

as done by some manufactures, the situation would be

substantially altered.

Under these guidelines and considering instrumentation

limitations a preliminary design was obtained. The initial

seal geometry was fixed as in the last chapter with the

following values of the non-dimensional geometric
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parameters.

H = 0.05 L = 0.15 D = 0.05

This represents a family of designs scaling linearly in real

dimensions with the seal radius Rs. All other seal dimen-

sions, except Rs, can be discretely altered by replacing the

test seal. Allowing for variable R was though to be un-

necessary as well as prohibitively expensive. The facility

was scaled with a compromise seal radius of Rs = 0.15M.

With this, the geometry of the seal for the baseline case,

referring to Figure 6, is

R= 0.15m

h = 0.0075m

= 0.0006m

6= 0.0006m

1 = 0.0225m

For this fixed geometry, the range of the kinematic and flow

parameters was found in the design study to be

- 2 < W < 3

0.2 < A < 0.9

- 0.1 < r < 0.1

0.7 < a < -0.7

- 3.0 < S < 3.0

(5.3)

it is possible to calculate the ranges for each

O = 1.0 (5.1)

(5.2)

From these
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of the physical controllable variables using the zeroth

order calculation of Chapter 3. For simplicity, the air

temperature and exit pressure, T and P0 respectively, will

be set to the ambient conditions. With this, the remaining

variables must be able to vary within the following limits.

Inlet Pressure 120 Kpa < P. < 350 Kpa

Pre-Swirl -35 m/s < V. < 35 m/s

Spin Angular Velocity -600 rads/sec < w < 600 rads/sec

Whirl Angular Velocity -300 rads/sec < 2 < 300 rads/sec

Whirl Eccentricity 0 < r < 0.6mm

These requirements are of two separate kinds. The first two

prescribe the inlet conditions of the air entering the

labyrinth. The second three impose restrictions on the

kinematics of the seal. It is useful to think of the

problem in these terms since the actual mechanical design

will be divided into the rotating machinery which controls

the spinning-whirling motion of the seal and the air supply

which admits the air into the seal at the proper pressure

and relative angle.

5.2 ROTATING MACHINERY

The rotating machinery must have the capability to spin the

test seal at speeds up to 6000 rpm while independently

forcing it to execute an exact whirling motion up to 3000
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rpm either in the same (simulating forward whirl) or

opposite (simulating backward whirl) direction as the spin.

The simplest type of machine able to accomplish such a

complicated motion is one with an inner shaft mounted

eccentrically, in bearings inside a rotating intermediate

housing. This rotating housing is in turn placed in bearing

supported by a fixed outer housing. Figure 25 shows a

schematic of this type of mechanism. Since the shaft is not

centered in the intermediate housing, a rotation of this

case causes the shaft's center to proceed about the centroid

of the outer housing producing the desired whirl. The inner

bearings allow relative rotation of the shaft inside the

rotating housing permitting any spin to proceed indepen-

dently of the whirling motion. It should be noted that a

given asymmetry in the rotating housing produces a charac-

teristic whirling amplitude. Therefore, several-variations

on this basic design were investigated to allow for variable

whirling eccentricity. One straightforward method is to

machine separate rotating housings. This option was

discarded due to the great expense. Another alternative is

to have small replaceable bearing sets with a different set

for each desirable eccentricity. The third option, which

was the path taken, is to have an eccentric rotating housing

containing a "counter-eccentric" bearing seat insert which

can be rotated and fixed to obtain any desired whirl eccen-

tricity within a given range. Figure 26 shows a cross

section of the rotating housing, along with the eccentric



102

insert. With the parts located in the relative positions

shown, the inner and outer surfaces are concentric, yielding

a whirl amplitude of zero. However, when the insert is

rotated relative to the housing the surfaces become

eccentric. By adjusting these parts by the proper amount

the whirling amplitude may be precisely controlled.

To obtain a detailed mechanical design for the rotating

machinery, based on this concept, several auxiliary factors

should be considered.

1. Design such that all critical frequencies fall outside
the range of normal operation.

2. Choose the bearing types and sizes consistent with loads
and speeds to obtain a maximum machine life.

3. Minimize the mechanical and thermal stresses. A factor
of safety of 3 was used for all parts.

4. The machine should be easy to assemble and disassemble.

5. Each part should be easy to machine.

6. Use materials consistent with part and overall facility
requirements.

7. Maximum durability at a minimum cost.

After a preliminary design was proposed, subsequent working

designs were altered to be consistent with the above

criteria. After many iterations a final mechanical design

was obtained that met all requirements. Appendix C contains

explanations and representative calculations on how the

first three requirements were met.

Figure 27 shows an assembly cross section of the rotating
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rig final design. The test seal, which can be easily

replaced, is attached by 8 #8-36 UNC tap screws to the disk

(part #9). This disk is in turn secured onto the inner

shaft (part #1) by a N-07 lock nut. This shaft is driven by

an inline flexible coupling and is supported eccentrically

by two precision radial ball bearings (BC-207 Class 7)

inside the rotating housing assembly (parts 2,3,4,5). The

eccentricity can be adjusted by removing the shaft and

bearing and repositioning the eccentric inserts (parts #3).

These outer bearing seats are then secured by tightening the

set of radially inward screws. This entire whirl control-

ling assembly is driven by a NX3-V3 V-Belt and is contained

inside the outer housing by two radial ball bearings (BC-224

Class 5). These bearings are separated by part 5 and are

kept in place by a N-24 lock nut and a bearing plate (part

#8). The outer housing contains two drilled/tapped holes

over each bearing and 900 apart for 4 accelerometers to be

mounted. These are mainly for the purpose of machine health

monitoring. The entire rig is supported by a welded steel

stand (part #11).

If the region behind the disk were maintained at atmospheric

pressure the resulting net axial force, which would be taken

by the bearings, could reach several tons at the higher flow

rates at which this machine will operate. No bearings of

this size can operate at high speeds under such bearing

loads. To remedy this situation, the volume between the

disk and the pressure cap (part #7) will be pressurized to
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minimize the thrust loads. To supply the air for this

purpose a line is run through the housing and into the cap.

Auxiliary facing Labyrinth Knives form of seal against the

back of the disk hence minimizing leakage and increasing the

counter thrust on the disk.

Detailed mechanical drawings of all the parts contained in

the rotating rig are presented in Figures 28-38. Dimen-

sions, materials and handling are all specified along with

other necessary information.

The materials that were specified were used in order to

increase facility functionality at a minimum cost. The

inner rotating parts (1,2,3,4) of the machine, which must be

taken apart and reassembled every time the eccentricity is

to be changed had to be made of a very hard material for

durability considerations. For these parts case hardenable

8620 steel was chosen and hardened to Rockwell 56 to a depth

of 50-60 mils. This allows sufficient hardness for the

bearings to be press fit many times while keeping the core

material quite ductile, hence preventing cycle fatigue. The

remaining parts except for the disks were made of various

types of 10XX free machining mild steels. These steels were

chosen for low cost. The disks are made of 6061-T6 aluminum

alloy. This material was chosen for many reasons. First,

it is one of the lightest metals available. This reduces

the radial bearing loads during whirling and raises the

critical frequencies both in bending and in pitching.
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Heavier steel disks would not be as good in these regards.

Also the yield stress/density ratio, which is an important

figure of merit for materials used in rotating disks, is

quite high. Only very expensive materials, such as those

used in jet engines, are much better in this respect.

However, the threads into the disks would get fouled quickly

if made of aluminum. Therefore, 8-36 free running inserts

were used for test seal attachments.

This machine will require dynamic balancing of both the

shaft and the rotating housing. First the shaft should be

balanced. The simplest way to accomplish this is to remove

it and place it on a portable balancing machine. It may not

require any added mass since the machining tolerances were

quite small and it is nominally symmetric about the axis of

rotation. With this done, the shaft is placed back in the

housing, and balancing of the entire disk-shaft-housing

assembly may proceed. Due to the eccentricity of the shaft

and inner bearings, the combined centroid of this assembly

is not concentric with the outer bearings. It may be as

much as 1350 g-cm off at maximum eccentricity. If this were

not compensated an intolerable vibration level would result.

First, a rough balancing operation is undertaken by placing

large counter weights on the ends of the rotating housing.

The mass required at the given radius is a function of the

eccentricity and is easily calculated. With these counter

masses placed on both ends of the housing a finer balancing

may be obtained by iteratively using very small masses and
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checking the vibration level with the accelerometers.

5.3 AIR SUPPLY

The other major component of the Labyrinth seal testing

facility is the air supply. The purpose of the air supply

is to admit the air to the test seal at the proper pressure

and angle. It also will serve as the mounting place for

most of the instrumentation. As in the case of the rotating

machinery, certain auxiliary objectives should be considered

when designing this component. These are:

1. Easy adjustment of the inlet air angle.

2. This component should be easily separated from the
rotating rig.

3. No natural frequencies should lie in the range of
operation.

4. Limit stresses on all parts. Again a factor of safety
of 3 was used.

5. Maximum durability at a minimum cost.

The pressure entering the seal can be controlled in many

ways. First the pump pressure ratio can be controlled

directly and there are throttles in various places along the

piping. Finally the flow.rate can be controlled at the

entrance to the plenum.

Several methods were investigated to produce and control the

swirl, maintaining circumferential uniformity, entering the

test seal. It would have been preferable to have a

mechanism that could be adjusted to obtain the different
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swirl velocities. Designs of this kind were considered and

discarded. Variable vanes of the size required would be

extremely difficult to manufacture and no other design of

this type could guarantee controllability and uniformity of

the plenum swirl. In the design chosen the air is

accelerated and turned to add the proper amount of swirl by

a set of fixed vanes. Different vane assemblies, with

different blade angles, need to be inserted to obtain

different amounts of swirl.

Figure 39 shows an assembly cross section of the air supply/

test section. The air enters part 1 through a two inch pipe

and is directed radially outward into the annular prevane

plenum. The air is next accelerated and turned through a

ring of fixed flat vanes (part #2).- Parts 1 and 4 can be

easily detached and different vane assembly can be inserted.

The air is then dumped into the test plenum (between parts

#3 and 4) with the proper amount of tangential momentum.

Only minor losses in the circumferential component of

velocity are experienced due to friction, but major pressure

losses do occur because of the rapid expansion. Part 4 of

the air supply serves as the seal land and test section and

is rigidly attached to the rotating rig. Most of the

facility instrumentation will be contained in this part as

will be described in the next chapter. After the air flows

through the test section it is discharged through openings

in the pressure cap. This is an open loop facility.
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5.4 FACILITY LAYOUT AND AUXILIARY EQUIPMENT

Figure 40 shows a side view schematic of the facility

layout. The combined rotating rig-air supply/test section

is held in place by the rig support. This support is in

turn bolted into a welded steel stand. This stand is set on

four high damping vibration isolators. The mass of the

stand and spring constant/damping characteristics of the

isolations were chosen to minimize the vibration. A three

degree of freedom model containing one bouncing and two

pitching modes was employed. See Appendix B for details.

The V-belt, which drives the whirl producing rotating

housing, is connected to a variable speed d.c. motor through

a 6" diameter pulley. The shaft is connected to an inline

d.c. motor by a flexible coupling. As mentioned previously,

the air is supplied by the MIT Gas turbine Lab oil free air

compressor.
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Figure 39 - Assembly cross section of air supply.



fg.sr

V - PjC &'

5PIOVROTA 
TI r G

MAcojof-6RY

5'TAND

VZBRATM IsoNA-ro lA

j~4~
Figure 40 - Side view of labyrinth seal test facility.

At.



125

CHAPTER 6

INSTRUMENTATION

6.1 INSTRUMENTATION REQUIREMENTS

The measurement of many physical quantities must be made in

order to calculate, correlate and compare the spring and

damping characteristics for this single gland seal to the

predictions of the Kostyuk-Iwatsubo theory. In Chapter 4

the results of the theory were presented in terms of

amplitude and gap relative phase of the pressure pertur-

bations. This form was chosen, since these will be the type

of measurements made. The quantities to be measured are the

following:

1. The static pressure inside the gland as a function of
angle and time.

2. The motion of the seal. This includes the whirl
amplitude and angular velocity as well as the spinning
angular velocity. Note that the relative phase between
the mini.mum gap and the pressures must be known.

3. The -inlet conditions, P., V., T.
* *

4. The average swirl velocity, V , and pressure P , inside
the gland.

5. The flow rate through the test seal, Q.

6. The rig vibration level.

The facility requirements, as given in the last chapter, are

intimately connected with the capabilities of commercially

available transducers. The major constraint in this regard

was imposed by the sensitivity and accuracy on the time

resolved pressure measurements.
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6.2 PRESSURE MEASUREMENTS

Recall that for the baseline case presented in Chapter 4

the amplitude of the minimum pressure perturbation jEj P

was 5 x 10~4 P . With the facility scaling this turns out

to be approximately 100 pa (0.015 psi). To obtain

sufficient resolution it is necessary to measure within 10

pa (0.0015 psi) at most. Since the average pressure P is

223 kpa (34.90 psi), it is implied that relative variations

of 0.0086% would have to be measured. Transduces-amplifies

systems able to measure such high pressures with the

required sensitivity are not readily available. Due to this

state of affairs a scheme employing relative pressure

measurements was derived. This technique to be described

was found to be more satisfactory than simply using absolute

or atmospheric transducers.

The reference pressure is obtained by running tubes from

pressure taps in the seal gland into a reference pressure

manifold, supplying the reference pressure P . Then tubes

are run to each of the differential transducers. There-

fore the net reading from the transducers would just be

the unsteady perturbation component |E. P cos( +Qt). The

average value should be zero. A porous material is placed

in the manifold to dampen any unwanted fluid resonances.

Theoretically one transducer at any angular location within

the gland would suffice. However, for purposes of redun-

dancy and to measure the spatial non-uniformity within the
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gland, four equally spaced transducers will be used. At

maximum whirling speed the theory suggest that the first

harmonic would be at 50 hz. However, transducers with a

greater frequency response are desirable to detect the

higher harmonics associated with geometric imperfections

traveling at shaft spinning speed (100 hz x n). Due to this

an upward limit of 1 khz was set. To accurately measure

such high frequencies, flush mounted membrane transducers

are required. The kind chosen was Kulite XCS-190 5 psid

flush mounted pressure transducers with a sensitivity of 45

mv/psi. These are active strain gauge/membrane devices.

The power for the bridges and the signal amplification is

supplied by four Pacific Instruments 8650 signal condi-

tioning amplifiers. High frequency components (over 1 kz),

due mainly to turbulent fluctuations, can be filtered by

these amplifiers or this can be accomplished later in

digital mode by the data acquisition software. The other

pressure measurements, which are steady state, are made by a

single 100 psi transducer along with an automatic switching,

multi-port scanivalve.

6.3 SEAL KINEMATIC MEASUREMENTS

In theory, the motion of the seal is precisely controlled by

the rotating machinery. However, in practice one would

expect some deviations due to machining tolerances, normal

operating vibrations, etc. Therefore direct measurements of

the seal motion is necessary. To make these measurements,
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two Bently-Nevada CSN-5 proximeter systems are placed on

orthogonal axes in the plane of rotation of the test disk.

This system is capable of measuring the whirl path to less

than 0.0025mm (0.0001 in). The relative phase is found by

using a time synchronization technique.

The speeds of the shaft and the rotating housing are

measured by frequency counters pricking up a once per rev

impulse from small magnets implanted in each. This

information may be used in a closed loop control system to

more precisely control the speed of the two motors.

6.4 VELOCITY MEASUREMENTS

Two of the most important non-dimensional parameters found

in the theory involved the average tangential velocity in

the seal, a, and the change in this velocity component, r.

Therefore, it is necessary to measure this component in the

test plenum as well as in the gland. To obtain these

measurements a two probe hot wire anemometer will be placed

at each of the two stations. The 10 mil wires are oriented

normal to the plane of maximum velocity and have a 45* angle

between them. Again, the excitation and amplification/

conditioning is handled by Pacific Inst. 8650 amps.

6.5 VIBRATION MEASUREMENTS

The vibration measurements, primarily intended for machine

health monitoring, are made by attaching 4 Endevco 7702-50

accelerometers to the outer casing of the machine. Two



129

transducers each are placed in two parallel planes 90*

apart. If possible the vibration signals will be used to

back out the aerodynamic forces on the seal. If the

vibration spectra is measurably different at different flow

rates then the rotor dynamic coefficients K.j and C.. can be

calculated.

6.6 FLOW MEASUREMENTS

The flow rate through the seal could be calculated with

direct measurements of P and P . However, the accuracy may

not exceed 10%. Therefore an independent measurement will

prove useful. Two flow meters will be used. One low loss

turbine flow meter will be used to yield the flow entering

through the 2 inch supply line. The other meter, a

calibrated ASME orifice/pressure loss device, will be used

to measure the flow that bypasses the test seal and escapes

through the two rig seals. By subtracting the leakage from

the total the air flow rate through the test seal is

obtained.

6.7 DATA ACQUISITION SYSTEM

The output from the amplifiers is digitized by a 12 bit 32

channel Lecroy Analog to Digital converter (ADC). The

sampling rate for the unsteady measurements will be 10 Khz.

These digital data will be dumped into a Lecroy 880DA buffer

system. Then the data will be fed into the 30 meg disk of an

IBM-PC-AT. A statistical analysis suggest that measurements
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should be taken for about 60 whirl orbits and a phase lock

averaging technique should be employed in reducing the

pressure perturbation data. Therefore, measurements should

be made for approximately 20 ms. Not all of the data

acquisition software for performing these tasks has been

procured.
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CHAPTER 7

CONCLUSIONS

7.1 SUMMARY

The importance of the aeroelastic forces generated by

whirling labyrinth seals on the stability of rotor/bearing

systems was described. All of the pertinent literature

concerning this problem and the closely related problem of

acoustic-elastic instability producing high cycle fatigue of

the sealing knives was presented.

A lumped parameter model based on those of Kostyuk and

Iwatsubo was presented. A simplified set of coupled

non-linear ordinary differential equations was obtained by

transforming to rotating coordinates. The equations were

linearized and a set of linear algebraic equation obtained

by assuming single period harmonic behavior. These

continuity and momentum equations were non-dimensionalized

and a solution for the pressure perturbation E was pre-

sented. Three limiting cases were given first by setting

certain of the driving terms to zero. Then the results of a

design study, whose purpose was to obtain the range of the

various variables necessary to corroborate the theory

experimentally, was presented. The results were given both

in terms of amplitude and phase of the pressure perturbation

and the non-dimensional rotordynamic coefficients. Closed

form approximations were obtained for these under the

assumption that ja(1-W)<<1. Based on this study, facility
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requirements were set and a detailed mechanical design was

given. Finally, the necessary instrumentation to measure

the various physical quantities was presented.

7.2 RECOMMENDATIONS FOR FURTHER WORK

The major goal of this work was to obtain a facility capable

of measuring the aeroelastic forces generated by spinning

whirling labyrinth seals. Tests should be conducted on

straight-through convergent and divergent seals under a

sufficient range of inlet conditions necessary to check the

quantitative accuracy of this type of lumped parameter

model. The hypothesis put forward in Chapter 4 that "custom

tailored" seals can lead to universally stable seals should

be verified experimentally.

Further analytical and computational efforts should

concentrate on the nonlinear behavior of such seals.

Preliminary theoretical results, based on solving (2.30) and

(2.31) more exactly, suggest nonlinearities could play a

significant role when the shaft's rotational speed is nearly

twice the first lateral critical speed. Computational

methods for solving this system are dependent on devising an

appropriate scheme for imposing the proper periodic boundary

condition on P and V. One method which appears to hold

promise in this respect is any one of the many discrete

fourier transform methods. In these periodicity is imposed

automatically. Even though recent developments in the

direct numerical simulation of high Reynolds number, cavity
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flows (47) show promise, such methods are not sufficiently

economical to allow them to be used as a design tool at the

present time.

Recently, some turbomachines have shown "unbalanced

response" at high flow rates. One possible explanation of

this is that a noncircular spinning seal is somewhat

equivalent to a whirling seal except that the pressure

perturbations within the glands are locked to rotor speed

instead of the rotors natural frequency. This would appear

to be a forced vibration in this context. This should be

checked thoroughly.
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APPENDIX A

EXTENSION OF MODEL

Several simplifications were made in Chapter 2 while

deriving the governing equations. These were made in order

to obtain a set of equations which contained the pertinent

flow physics while eliminating any unnecessary algebraic

complexity. Now certain extensions of the sub models will

be presented, which could be incorporated into the

continuity and momentum relations hence yielding a more

exact set of equations.

Flow Over the Seal Knives

As stated in Chapter 2, the flow rate per unit seal

circumference q, (1-D approx.) is

q, = pls1 pW1  (A.1)

where pi is the density, S1 the gap, W 1 the axial velocity

and p is the flow coefficient. An approximation for q, was

presented in Chapter 2. The density was set to the average

density before and after the gap and W 1 was calculated by

using the incompressible Bernoulli equation. With these, q

was found to be

q, = 8 P 2- P 2 )/ 2  (A.2)
IR aTt

In the analysis pwas take to be 0.65 (constant). In
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reality u is not exactly constant. u can be expressed as

the product of the contraction coefficient Cc times the

"carry-over factor" 0

P = C o (A.3)

Cc is in turn a function of the geometry near the knife tip

and the axial Reynolds Number. Figure 41 shows Cc as a

function of the gap aspect ratio for different Reynolds

numbers.
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found by using empirical correlation such as those of

Komotori (56) and Meyer (57). In essence, this number is a

measure of the amount of kinematic energy not dissipated

from the last constriction. For stepped or interlocking

seals 0-1 but for straight through types 0 > 1.

Equation (A.2) is very accurate when the axial Mach Number

is sufficiently low. But when the pressure difference is

high enough the last two seals Mach number may be too high

for (A.2) to be used. In fact the flow in the last gap may

be chocked. If the first analysis suggest M > 0.6 the

following expressions for p1 and W, should be used for those

gaps.

2y 0 P y
W, = 0 1 - (A.4)

S y-1 P01

1

Pi = Po 1 + " M2 Y-1 (A.5)

Friction Factors

The change in swirl, induced by viscous shear stresses, was

shown to be very important in the generation of aeroelastic

forces. The stresses were expressed in terms of a Darcy

friction factor using

X = 0.3164 Re-0. 2 5  (A.6)

Another formula for smooth-straight ducts (Schlichting (50))
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which is more accurate when Re > 106 is

= 0.87 - log -s + (A.7)
Lh Rem

Secondary flows generated in curved piping will increase the

average friction factor. A formula which accounts for this

is

X1/4 h /
= 1 + 0.075 Re fRh)l/2  (A.8)

where X is the "straight" value and Rh and R are the

hydraulic radius and curve radius respectively. If the

Reynolds Number is very high or "casing treatments" are

employed. Augmented friction factors should be used to

account for roughness.
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APPENDIX B

COMPUTER PROGRAMS

SINGSEAL.FOR

Given the inlet and exit conditions and geometry of the

seal. SINGSEAL.FOR calculates the zeroth order solution in

the seal gland and the non-dimensional parameters a,e,a ,

and r.

C FILE NAME:SINGSEAL.FOR
C DATE:1-5-87
C BY:KNOX MILLSAPS
C PURPOSE:THIS FILE CONTAINS A PROGRAM WHICH DOES A KOSTUAK-IWATSUBO
C TYPY SOLUTION FOR A SINGLE LABYRINTH SEAL. THE PROGRAM IS FOR AIR.
C ALL ROTORDYNAMIC COEFFICENTS ARE CALCULATED.
C
C INPUT FILE 3 IS USED ONLY FOR GOEMETRIC DATA(ALL MKS UNITS)
C RS-SEAL RADIUS. RL-AXIAL SPACE BETWEEN KNIVES, H-SEAL HIEGHT
C DELST1-NOM. CLEAR. OF 1ST KNIFE. DELST2-NOM. CLEAR. OF 2ND KNIFE
C R-RADIUS OF WHIRLOMGS-SPIN ANGULAR VELOSITY, OMGW-WHIRL ANGULAR VEL.
C
C INPUT FILE 4 IS USED ONLY FOR FLOW DATA (ALL MKS UNITS) PI-PRESSURE
C BEFORE SEAL, PO-PRESSURE AFTER SEAL, TEMP-TEMPERATURE, VI-SWIRL VEL.
C BEFORE SEAL(MEASURED CCW FROM X-AXIS)
C

COMPLEX B(2,2). EHAT, ETAHAT, Z(2).IMG.DET
OPEN (UNIT-3,FILE-'GOEM.DAT',STATUS-'OLD')
OPEN UNIT-4.FILE-'FLOW.DAT'.STATUS-'OLD')
READ 3.*) RS,RL,H,DELST1.DELST2,R.OMGS.OMGW
READ 4,*) PI.PO,TEMPVI

C
C SET ALL CONSTANTS.
C

RAIR-287.1
GAMMA-1 .4

C CONTRACTION COEFFICIENT
RMU-0.65

C HYDRALIC DIAMETER-OH
DH-4.0*H*RL/(2.0*H+2.0*RL)

C VISCOSITY OF AIR- RNU
RNU-0 .0000145
WRITE(5.* 'RS-',RS. 'RL-' ,RL, 'H- ,H, 'DELST1-'.DELSTI
WRITE(5,) 'DELST2=',DELST2,'R-',R.'OMGS-',OMGS.'OMGW-',OMGW
WRITE 5,.) 'PI',PI, 'PO-'.PO,'VI-',VI

C SOLVE FOR THE EQUILIBRIUM PRESSURE AND FLOW IN THE SEAL.
D1-DELST1**2
D2-DELST2**2
D3-PI**2
D4=PO**2
PST-SORT((Dl*D3+D2*D4)/(DI+D2))
ROST-PST/(TEMP*RAIR)
WRITE(5,*) ' ROST-', ROST,'PST-',PST
Q1ST-RMU*DELST1*SQRT ((D3-PST**2)/ (RAIR*TEMP))
Q2ST-RMU*DELST2*SQRT((PST**2-04)/(RAIR*TEMP))
QST-Q2ST

C GUESS THE EQUILBRIUM SWIRL TO BE THE INLET SWIRL AND ITERATE.
VST-VI

1 CONTINUE
CALL FRICSTAT(VST.DH.RNU.RLAM)
CALL FRICROT(VST,DHOMGSRSRNU,RLAM2)
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SU313flV8Vd IVNOISN3M1Ia-NON TWV .3S 3
3

10 00
Z 01 00 (10eee 1*oN3)Jl

(I ISA-ISA)SSV"-0683
ISA (*.9)3 I1iM

SH*~Sono (H*e Z+-N) .ZV(~I * /IS0O+ So- L~e
ISAmI ISA

'IY3S 3WI. NI 18IMS prnIN9Ifl 31vinoivoY 3D
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SUBROUTINE FRICROT(VSTDH.OMGS.RSRNU.RLAM2)

C THIS SUBROUTINE CALCULATES THE FRICTION FACTOR OF THE ROTOR.
VREL-0MGS*RS-VST
SGN2-SIGN(I.e.VREL)
RE-ABS(OMGS*RS-VST)*DH/RNU
RLAM2-SGN2*0.3164*RE**(-0.25)
RETURN
END

SUBROUTINE COMPLX2(B.Z,EHATETAHAT,DET)
C THIS SUBROUTINE SOLVES A 2*2 COMPLEX LIN ALG SYSTEM
C B-COEFF. MATRIX,Z-RHS , EHAT AND ETAHAT ARE THE SOLUTION

COMPLEX B(2.2). Z(2). EHAT. ETAHAT
EHAT-(Z( 1)*B(2,2)/B(1.2)-Z(2))/(8(1.1)*8(2.2)/(1.2)-(2.1))
ETAHAT-(Z( 1)-B(1,1)*EHAT)/B(1,2)
DET-B(1,1)*B(2.2)-B(1.2)*B(2.1)
RETURN
END
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SSNDPP.FOR

Given the non-dimensional parameters of Chapter 4 as inputs

SSNDPP calculates and plots the amplitude and phase of the

pressure perturbations E. It can also calculate and plot

the non-dimensional rotordynamic coefficients K and C .

C FILENAME: SSNDPP.FOR
C WRITTEN:KTMJ
C DATE:1-20-87
C PURPOSE: SINGLE SEAL NONDIMENSIONAL PRESSURE PERTURBATION.
C THIS PROGRAM CALCULATES AND STORES THE NON DIM PRESSURE
C PERT. USING ALL NON-DIM PARAMETERS EMPLOYING A SIMPLE KOS-
C IWAT ANALYSIS. IT PLOTS 4 CURVES FOR 4 DIDFFERENT VALUES
C OF THE CHOSEN PARAMETER EITHER ALPHADEL,GA4IMA OR SIGMA IT
C ALSO PLOTS THE NON DIM K'S AND C'S.
C

DIMENSION W(41), AMP(41), PHS(41),XW(164) ,YP(164) ,NP(4),IOPT(4)
DIMENSION YA(164), RKIIB(41), RKIJB(41), CIIB(41), CIJB(41)
DIMENSION WR 82). NR(2). IOPT2(2)
CHARACTER*20 PLTITL, TITLE1.TITLE2,TITLE3,TITLE4.TITLE5,TITLE6
CHARACTER*20 TITLE7, TITLES, TITLE9, TITLE10
CHARACTER*9 DATE,TIME

C READ IN WHICH IS USED AS PARAMETER.
C RETURN FROM BELOW
2000 CONTINUE

WRITE(5,.*) 'READ IVARY AL-1. DEL-2, GAM-3, SIG-4, ROTOR-5'
READ(6,*) IVARY

C
C SET NOMINAL VALUES
C

AL-1.0
H-0.05
RL-0.15
D=0.05
DEL-0.80
GAM-.05
SIG-0.2

C WRITE(5,*) ' AL- ,Hw ,RL- ,D-
C READ(6,*) AL,H,RL,D
C WRITE(5,*) 'DEL- , SIG-. GAMw'
C READ(6,*) DEL,SIG,GAM

NLINE-4
DO 1 1-1,4
IOPT(I)-2
NP(I)-41
INDGR-55

1 CONTINUE
IF( IVARY.EQ.1 GO TO 100
IF IVARY.EQ.2 GO TO 200
IF IVARY.EQ.3 GO TO 300
IF IVARY.EQ.4 GO TO 400
IF IVARY.EQ.5) GO TO 500
GO TO 3000

C* *.**************** .*******
C SET WHIRL ARRAY.

100 CONTINUE
C THIS BLOCK VARIES ALPHA
C INPUT 4 VALUES OF ALPHA

C*********.** ***.s..**..******....*
WRITE(5.*) ' INPUT FOUR VALUES OF ALPHA.'
READ(6,*) AL1,AL2,AL3,AL4
AL-AL1
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DO 101 1-1,41
w(1)-(I-l1.0)*O.1-1.S
ww-w(I)
CALL SOLVE(WW,AL,H,RL,D.DEL.GAM.SIG.AM,PH)
AMP(1-AM
PHS( I-PH
XW (I)
YA I1)AMP(I)
YP I-PHS(I)

101 CONTINUE
AL-AL2
DO 102 1-1,41

WW-W( I)
CALL SOLVE(WW,AL,HRL,DDEL,GAM,SIG,AMPH)
AMP(I)-AM
PHS (I)-PH
XW 41+1 -W(I)
YA 41+1 -AMP(1)
YP 41+1 -PHS (I)

102 CONTINUE
AL-AL3
DO 103 1-1,41

WW-W(I)
CALL SOLVE(WW.AL,H,RLD,DELGAM,SIG,AM,PH)
AMP (I)-AM
PHS (1)-PH
XW 82+I -W(I)
YA 82+1)-AMP(I)
YP 82+I )-PHS(I)

103 CONTINUE
AL-AL4
DO 104 1-1,41
w(I)-(I-1 .0)*0.1-1.e
WW-W(I)
CALL SOLVE(WW,ALH,RL,DDEL.GAMSIGAMPH)

PHS(I =PM
XW 123+1 -W(I)
YA 123+1 -AMP(I)
YP(123+I -PHS (I)

104 CONTINUE
C
C PLOT NDPP VS. W USING ALPHA AS PARAMETER.
C

PLTITL 1:8)='
PLTITL 9:16)-'
PLTITL 17:20)-'
TITLE1W'AMP VS. W/ALPHA '
TITLE2='PHS VS. W/ALPHA '
DATE-'
TIME-'
CALL GRINIT(5,6,TITLE1)
CALL GR.SET-TIME(DATETIME)
CALL GRLINE(IOPT,NLINEPLTITL.INDGR,XW,YA,NP)
CALL GRINIT (5,6,TITLE2).
CALL GR.SETLTIME(DATE,TIME)
CALL GRLINE(IOPT,NLINEPLTITL,INDGR,XW,YP,NP)
GO TO 1000
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0..........** ***************************

200 CONTINUE
C THIS BLOCK VARIES DEL
C INPUT 4 VALUES OF DEL

WRITE(5.*) ' INPUT FOUR VALUES OF DEL.'
READ(6,.*) DEL1,DEL2,DEL3,DEL4
DEL-DEL1
DO 201 1-1,41
W(I)-(I-1.0)*0.1-1.e
WW-W(I)
CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG.AM,PH)
AMP(I)-AM
PHS(I)-PH
XW-W(I)
YA I)-AMP(I)
YP I -PHS (I)

201 CONTINUE
DEL-DEL2
00 202 1-1,41
W(I)-(I-1.0)*o.1-1.0
WW-W(I)
CALL SOLVE(WW,ALHRL.D.DELGAM,SIG.AMPH)
AMP(I)-AM
PHS(I)-PH
XW 41+1 -W(I)
YA 41+1 -AMP(I)
YP 41+1 -PHS (I)

202 CONTINUE
DEL-DEL3
DO 203 1-1,41
W(0)-(-1.0)*0.1-1.0
WW-W(I)
CALL SOLVE(WW,AL,H,RL,D,DELGAM.SIGAM,PH)
AMP(I)-AM
PHS (I)-PH
XW 82+I -W(I)
YA 82+I -AMP(I)
YP 82+1 -PHS (I)

203 CONTINUE
DEL-DEL4
DO 204 1-1,41

WW.W(I)
CALL SOLVE(WW,AL.H,RL,DDEL,GAM.SIG,AMPH)
AMP(I)-AM
PHS( )-PH
XW 123+1 -W(I)
YA 123+1 -AMP (I)
YP 123+1 -PHS(I)

204 CONTINUE
C
C PLOT NDPP VS. W USING DEL AS PARAMETER.
C

PLTITL 1:8)-'
PLTITL 9:16)-'
PLTITL 17:20)-'
TITLE3-'AMP VS. W/DEL
TITLE4-PHS VS. W/DEL
DATE-'
TIME-
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CALL GRINIT(5,6.TITLE3)
CALL GR.SET.TIME(DATE.TIME)
CALL GRLINE(IOPTNLINEPLTITL,INDGR.XW.YANP)
CALL GRINIT(5.6,TITLE4)
CALL GRSETTIME(DATE,TIME)
CALL GRLINE(IOPT.NLINE.PLTITL. INDGR.XWYP,NP)
GO TO 1000

300 CONTINUE
C THIS BLOCK VARIES GAMMA
C INPUT 4 VALUES OF GAMMA

WRITE(5.*) ' INPUT FOUR VALUES OF GAMMA.'
READ(6,*) GAM1,GAM2.GAM3,GAM4
GAM-GAMI
DO 301 1-1,41
w(I)-(I-1 .e)se.1-1.0
WW-w(I)
CALL SOLVE(WW,AL.H.RL,D.DELGAM,SIGAM.PH)
AMP I) -AM
PHS I) -PH
xw I-W(I)
YA I -AMP(I)
YP I -PHS(I)

301 CONTINUE
GAM*GAM2
DO 302 1-1,41
w(I)-(I-1 .e)se.1-i.e
WW-W(I)
CALL SOLVE(WW.AL.H.RL.D.DEL.GAM.SIG.AM,PH)
AMP (I)-AM
PHS (I)-PH
XW 41+1 -W(I)
YA 41+1 -AMP(I)
YP 41+1 -PHS(I)

302 CONTINUE
GA?.GAM3
DO 303 I-1,41

WW-W(I)
CALL SOLVE(WW,ALH.RLD.DEL.GAM.SIG.AMPH)
AMP (I) -AM
PHS(I)-PH
XW 82+1) -W(I)
YA 82+1) -AMP(I)
YP 82+I) -PHS(I)

303 CONTINUE
GAM-GAM4
DO 304 1-1,41

WW-W(I)
CALL SOLVE(WW.AL.HRL.DDELGAM.SIG.AM.PH)
AMP (I)-AM
PHS (I) -PH
XW 123+1 -W(I)
YA 123+1 =AMP(I)
YP 123+1 -PHS (I)

304 CONTINUE
C
C PLOT NDPP VS. W USING GAA4A AS PARAMETER.
C

PLTITL 1:8)-'
PLTITL 9:16)-'
PLTITL 17:20)-'
TITLE5-'AMP VS. W/GAmMA
TITLE6W'PHS VS. W/GAMMA'
DATE-'
TIME-'
CALL GRINIT(5.6,TITLE5)
CALL GRSETTIME(DATETIME)
CALL GRLINE(IOPT.NLINEPLTITL,INDGR.XWYA,NP)
CALL GRINIT(5,6,TITLE6)
CALL GRSET.TIME(DATE.TIME)
CALL GRLINE(IOPT.NLINEPLTITL.INDGR,XWYP.NP)
GO TO 1000
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500 CONTINUE

DO 501 1-1.41
W(0)-(-1.0)*9.1-1.6
WR(I)=W(l)
WR(I+41)-wWR(I)
WW-W(I)
CALL SOLVE(WW.ALH.RL.D.DELGAM.SIG.AM.PH)
AMP(lj-AM
PHS(I)=PH

501 CONTINUE
DO 502 I= .40
AFIWI-AMP( I)*COS(PHS(I))
AFIW2=AMP 1+1)*COS(PHS( I+1))
AF2W-AP I).SIN(PHS(I))
AF2W2=AMW I+1)*SIN(PHS(I+1))
CIJB( )(AF1W1-AF1W2)/ (I+1)-W(I))
RKIIB =~AF1W1+W(I) CIJCIIB(I)-(AF2WI-AF2W2)/(W I -W(I+I))
RKIJB(I)mAF2WI-W(I)*CIIB I

502 CONTINUE
CIJB(41)mCIJB(40)
CIIB(41 )-CIIB(40)
RKIJB 41)-RKIJB(40)
RKIIB 41 )-RKIIB(40)
DO 503 1-1,41
YA I)-RKIIB(I)
YA 41+1)-RKIJB(I)
YA 82+1)-CIIB(I)
YA 123+I)-CIJB(I)
XW I)-W(I)
XW 41+1)WI
XW 82+1 I)
XW 123+1I )

503 CONTINUE
C

C PLOT KXX, KXY, CXX, CXY
C

PLTITL 1:8)m' 0
PLTITL 9:16)='
PLTITL 17:20)W
TITLE9-'ROTORDYNM COEFF.
DATE-'
TIME-"
CALL GRINIT(5,6.TITLES)
CALL GR.SET_.TIME(DATE. TIME)
CALL GRLINE(IOPT.NLINE.PLTITL.INDGR.XW,YA.NP)

1000 CONTINUE
GO TO 2000

3000 CONTINUE
STOP
END

SUBROUTINE SOLVE(WW.AL.H.RL.D.DEL.GAM.SIG,AMPH)
COMPLEX RMG, EHAT, RNUM, DENM
RMG-CMPLX(0.0, 1.0)
RNULM(SIG*RL*(1.0-WW)*RMG+(1.0-(1.0/AL)))*(SIG*RL*(1.0-WW)*RMG/

& D-1.0) + GAM.SIG*RL*RMG/D
DENM(SIG*RL*(1.0-WW)*RMG/(1 .4*D)-(1.0+AL**2)/DEL**2)

& *(SIG*RL*(1.0-WW)*RMG/D-1.0)-(SIG*RL*RMG/D)*(GAM/DEL**2 +
& RL.*RMG/(DEL*0.65)**2/(SIG*D))

EHAT-RNUM/DENM
RE-REAL(EHAT)
R IGmAIMAG(EHAT)
AN*SQRT(RE*.2 + RIG.*2)
PH-ATAN(RIG/RE)
RETURN
END
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APPENDIX C

MECHANICAL DESIGN CALCULATIONS

Critical Frequencies for Rotating Rig

There are many possible modes of vibration for the rotating

rig. But the only ones which could correspond the

rotational frequencies (0-50 hertz whirling and 0-100 hertz

spinning) are the bending and bouncing modes of the

shaft/disks assembly. Figure 42 shows the model used for

calculating the shaft/disk lateral vibration frequency.

Y

EIM

W(x)

Figure 42 - Model of Shaft/Disk Assembly bending for
calculation of bending frequency.

The frequency was found approximately by using Rayleigh's

method which states,
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[Potential Energy 1/2
n ~.Kinetic Energy assumed mode

For the model this can be expressed as

f l mId 2 2 d x 
1 / 2

0 dx
on = 1 ~ -2+ l ~ 2 (C.2)

-2 ~2[~ d(A d(A(A dx+M ( + M +I

Assuming the shaft mode is w = sin and calculating the
L1

necessary properties from Part #1 the critical lateral

frequency is found to be wn - 318.5 Hz. The symmetric and

unsymmetric bouncing modes were at a higher frequencies.

These were found by treating the shaft as a rigid body and

modeling the bearings as linear springs (KBearing ~ 3 x 106

lbf/in).

Stand Vibration

The stand to which the rotating rig/air supply is mounted is

in turn supported by 4 (spring/damping) vibration isolators.

The 3 degree of freedom model used for the calculation of

vibration frequency is shown in Figure 43.
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x3
12 2

K

C

c X,

C K

Figure 43 - Three degree of freedom model used for
calculation of stand vibration modes.

This model was chosen in order to eliminate static and

dynamic coordinate coupling in the equations of motion. It

is fairly close to the actual case.

I. M* + 4C 3 + 4KX 3 0

II. I21 + 2CL1 b1 + 4KL1 E1 = 0 (C.3)

III. I e + 2CL 2 + 4KL 92 01 2 2 2 2 2

Given the values of M,I1,I 21 L, and L2 vibration isolator

were chosen to given 99.6% isolation.

I

C K

rr




