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ABSTRACT

The aero-elastic forces generated by labyrinth seals and
their impact on rotor dynamic stability are discussed. A
review of the pertinent literature is given. A lumped
parameter model of the flow in a single gland seal based on
the theory of Kostyuk is presented. The resulting equations
are simplified by changing to a rotating coordinate systen.
A system of linear algebraic equations is obtained by
employing small amplitude perturbation methods and assuming
harmonic solutions. This system is non-dimensionalized and
solved for the pressure perturbation inside the seal.
Results of a design study are presented and specification on
a facility to measure these self-exciting forces are given.
The final mechanical design along with instrumentation
requirements are presented.
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NOMENCLATURE

Description

Actual area between seal knife and
seal land.

Coefficient of Contraction.

Specific heat at constant pressure.

Specific heat at constant volume.

Thickness of seal in knife.

Nondimensional sealing gap.
Hydraulic diameter
Base of natural logarithm,

rms roughness of surface.

Cross sectional area of seal gland.

Component of damping force in Xy
direction acting on rotor.

Component of damping force in X,
direction acting on rotor.

Component of elastic force in Xy
direction acting on rotor.

Component of elastic force in X,
direction acting on rotor.

Component of elastic force in X4
direction acting on rotor.

Component of elastic force in X,
direction acting on rotor.

Nondimensional out of phase
force.

Nondimensional height of sealing
knives.

Height of sealing knives.

m2

(1]

Units/MKS

-1_-1

JKg

JKg~

(1]

1

K

K

-1
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Description

Sectional moment of inertia of shaft.

Disks moment of inertia through
neutral axis.

Imaginary base {-1.

Spring constant of shaft due to
bending rigidity. :

Nondimensional distance between
sealing knives.

Distance between sealing knives.

MACH number.

Mass of disk.

Total mass flow rate over seal knife.
Number of seal chambers.

Static pressure inside seal gland.
Static pressure upstream of the seal.
Downstream static pressure.

Static pressure inside non-whirling
seal.

Axial flow rate through non-whirling
seal per unit circumferential length.

Flow rate per unit length of seal
over first knife.

Flow rate per unit length of seal
over second knife.

Radius of seal whirling orbit.
Gas constant for air.
Reynolds number.

Seal radius.

Nondimension spinning frequency of
shaft.

Units/MKS

m4
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Description

Air temperature.

Time.

Time in rotating coordinate system.
Circumferential velocity in seal gland.

Circumferential velocity upstream of
the seal.

Circumferential velocity for non-
whirling seal.

Velocity in rotating frame.
Nondimensional whirling frequency.

Assumed mode shape of shaft.

Axial velocity through sealing knives.
Cartesian coordinates.

Cylindrical coordinates.

Velocity component associated with
r,6,z.

Orthogonal coordinates.

Units/MKS
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vectors and Matrices

Symbol Description
[A) Dimensional coefficients of linearized
continuity and momentum equations.
[B] Dimensionless coefficients of linear-
ized continuity and momentum equations.
[C] Damping matrix.
Ci' Coefficient relating force in i direc-
J tion due to velocity in j direction.
* ok
Ci.V 1
Ci 5 ——17——; Nondimensional damping
J RRS1P coefficients.
K4 Rotordynamic spring coefficient rela-
J ting for in i direction to a displace-
ment in the j direction.
*
- Ki3dy
L ——l——* Nondimensional spring coefficients.
3 mr_1p
s
?S Force on rotor due to its position.
D Force on rotor due to its velocity.

Nonhomogeneous terms in perturbation
equations.

Flow velocity.

(1]

(1]

ms
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Greek Symbols

Units
(1]

(1]

(1]
(1]

(1]

m

m

(1]

(1]

Nm

gm?s~ 1kt
(1]
NmZs ™1
(1]

(1]

Symbol Description
*
82 _
o« = —F Seal divergence ratio.
31
B Carry over factor.
CP
Yy = =— Ratio of specific heats.
C
\Y
Vi
r =1- — Swirl gradient parameter.
v
*
4 = " g Pressure difference parameter.
m51p 'RaT
61,62 Sealing gaps between the first and
second knives and seal lands respectively.
Y *
81,62 Nominal sealing gaps.
€1/85 = —é —% Nondimensional whirling eccen-
81 82 tricities.
X,XS,AR Darcy friction factors.
T, TgrTg Viscous shear stresses.
K Thermal conductivity.
u Flow coefficient.
u Absolute viscosity.
g Pressure perturbation.
3 Complex amplitude of assumed harmonic
pressure perturbation.
n Velocity perturbation.
n Complex amplitude of assumed
harmonic velocity perturbation.
¢y Flow perturbation through first
constriction.
Gy Flow perturbation through second

constriction.
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Description

Kinematic viscosity.
Density inside gland.
Density inside non-whirling seal.

Angular coordinate in absolute
frame.

Dissipation function.

Angular coordinate in rotating
frame.

Phase angle of maximum velocity
perturbation referenced to minimum gap.

Phase angle of maximum pressure
referenced to minimum gap.

Swirl angle parameter.
Shafts natural frequency.
Shaft rotational frequency.

Shaft whirling frequency.

radians

Nms—z

radians

radians

radians

[1]
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(1,
[
[

(lze

[l

[1g
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subscripts and Superscripts

Condition at lst seal constriction.
Condition at 2nd seal constriction.
Condition upstream of seal.

Condition downstream of seal.

Real component of complex quantity.
Imaginary component of complex quantity.

Condition inside non-whirling seal
(zeroth order solution).

Relating to stator surface.

Relating to rotor surface.
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CHAPTER 1

INTRODUCTION

1.1 LABYRINTH SEALS

Modern turbomachines, which include turbines, compressors,
fans and pumps, must operate efficiently and be durable in
order to be cost competitive. One major source of losses in
turbomachines can be attributed to leakage flows that occur
between stationary and rotating parts. Pressure differences
between adjacent reqgions drive flows that inevitably degrade
performance. Figure 1 shows a typical rotating half stage

and where these leakage losses occur.

At low speeds it is possible to employ contact seals, which
would virtually eiiminate leakage. But at the large
relative velocities, which are typical of current designs,
the wear of the contacting materials would be prohibitive.
In high speed machines non-contact seals are used with very
small clearances in order to minimize the associated losses.
In choosing the clearances, the designer must account for
engine vibration and relative expansion between the parts
due to thermal and rotationally induced stresses. All of
the analyses must be done for both steady state and tran-
sient operation. A typical seal clearance may range from
0.007 ecm to 0.05 cm (3-20 mils). A seal with relatively
straight surfaces is referred to as an annular seal. One
way to reduce the flow rate for a given pressure difference,

seal length and minimum allowable gap is to have several



17

successive sharp sealing knives separated by large kinetic
energy dissipating chambers. This is called a labyrinth
seal. A leakage reduction of 50 percent or more may be
realized by using multi-chamber labyrinth seals. There are
several types of labyrinths varying mainly in complexity,
but all are based on the same principle. Figure 2 shows an
annular seal along with three common kinds of labyrinth
seals. The first complete leakage analysis was done by
Martin (1). Most current analyses (2,3,4), which tend to be
semi-empirical, are generalizations of Martin’s work. For
many years these seals were designed only for their ability
to minimize leakage flows. However, over the past forty
years another design objective has received increasing
consideration. The leakage flows over the knives and around
the annular regions of the seal chambers create pressure
oscillations that generate self-exciting forces. These
displacement and velocity dependent self-exciting forces
contribute'to rotordynamic instability, which can have a

very negative impact on machine durability.

1.2 ROTORDYNAMIC INSTABILITY

High speed turbomachine rotors undergo lateral vibrations
which may limit their range of operation and usable life.
These vibrations are broadly categorized as either forced or
self-excited. Ehrich (5) and Ehrich and Childs (6) give
relatively comprehensive treatments of these two distinct

phenomena. Briefly, a forced or resonant vibration occurs
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at the rotational speed of the shaft or some rational
multiple of it. The amplitude of these vibrations will
increase and decrease as the rotor speed is raised, being
largest at the rotor critical frequencies. The forcing here
is external to the system, in that the forcing function doces
not depend on the motion of the shaft. There are many
sources of forced vibration, but the most common is residual
unbalance. The amplitude of these vibrations can usually be’
limited by careful balancing and not operating too near

critical frequencies.

Self-excited vibrations are a class of instability phenom-
ena in which the motion of the rotor causes energy to be
extracted from some external source. This added energy
causes rotordynamic instability which is analogous to
aeroelastic flutter of an airplane wing (7). Just like
flutter, these instabilities do not happen at low speeds,
but suddenly occur at some onset speed and progressively
worsen at higher speeds. The frequency of vibration is
nearly constant and corresponds to one of the shaft’s
natural frequencies. Id practice, these instabilities are
usually first seen when the rotor rpm is above the first
critical and the whirl occurs at the first critical. This
is referred to as sub-synchronous whirl and its presence can
be very harmful since it introduces alternating flexural
stresses in the shaft. An infamous example of this was the
Space Shuttle Main Engine Turbopumps as reported by Childs

(8) and Ek (9). A rotor may whirl in either angqular
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direction. It is conventional to refer to a whirl in the

same direction as the shaft’s spin as forward whirl. When
the whirling precession is in the opposite sense as the
spin: it is called a backward whirl. Figure 3 shows some of
the more important characteristics of both forced and

self-excited free vibration for comparison.

In order to predict the range of stable operation of a
rotor-bearing system a structural model must be used which
accounts for all of the important forces. A simple planar,
two-degree-of-freedom model will be used to illustrate how
known self-exciting forces are incorporated into a struc-
tural model and how they influence stability. In this
model, due to Jeffcoat (10), all of the mass is concentrated
in a single thin disk and the elasticity due to the bending
rigidity is supplied by a massless shaft of spring constant
Ks' Figure 4 shows such an idealized rotor with other
forces acting on the disk. Let X4 and X5 be the displace-
ment coordinates in the plane of the disk and ?S = ?S(xl,xz)
be the force on the mass due to its position. The other
force acting on the rotor FD = ?D(il,iz) can be recognized
as a damping force since it is a function of the disk’s
velocity il and iz. I1f ?s is a linear function of the

displacements X4 and Xy it can be represented in the

following form,
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£, K11 Ko X

2 . - - (1.1)

S
£, K1 Koo X,

The K's are the linear elastic coefficients which relate the
forces and displacements through constants of proportion-
ality. Kig and Kyp (the diagonal entries) are called direct
stiffnesses since they relate forces and displacements in
the same direction. On the other hand, K12 and KZl relate
the forces in one direction which result from a displacement
in the other. These are referred to as cross-coupling
stiffness coefficients. 1In a similar manner the damping

forces can be related to the velocities by,

X
A B R L ‘1 (1.2)
fp2 €1 €22 Xy

Now the equations of motion can be written for the mass in

Figure 4 by applying Newton's second law,

M (0] xl . C11 C12 xl
0 M x2 C21 sz x2
(1.3)
K + K K X
. s 11 K12 1,
Ko Ks *+ Kop X5

These are the equations for a coupled, damped, harmonic

oscillator, which can be neatly expressed in matrix from as,
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[M]1{x} + [cl{x} + [K}{x} =0 (1.4)

Equations of this form are solved by substituting {x}={a}e—z)‘t

where A is complex. The frequency and growth or decay rate
of lateral vibration are determined by the roots, A = o+irT,
of the resulting characteristic equation for the homogeneous
system. The real part of X, o, will determine whether small
perturbations will grow or decay. A negative ¢ will indi-
cate stability while, positive ¢ implies that oscillations
will grow and instability will occur. The frequency of
vibration is determined by the imaginary part of A. 1In
order to perform these calculations, the entries for the
mass, damping, and stiffness matrices must be known. This
is just as true for more complicated multi-degree-of-freedom
rotor models such as those described by Nordman (11) and
Dugundji (12). There are many physical phenomena which lead
to damping and elastic forces on a rotor (5). Contributing
to these may be bearings, seals, turbines and compressors.
Since this system is linear, the contributions from each
source may be summed using superposition to obtain the net
{c] and [K]. This thesis will deal with the damping and

elastic forces generated by the labyrinth seals only.

The forces from labyrinth seals are due to non-uniformity in
the pressure within the seal glands. To find these forces,
a known pressure distribution must be projected in ortho-
gonal directions and integrated around the circumference of

the seal. The net forces acting on a seal of radius R and



22

length 1 due to a pressure distribution P(8,x3,t) are,

2n A1

FX1 = - Rs P(e,x3,tJ cos6 dx3 de {1.5)
Y0 Y0
2no.l

Fe = - R p(e,x3,t) sine dx, de (1.6)
2 J 0 v O

If the pressure does not vary in the axial direction, these

expressions simplify to,

2n

F, = ~ Rl J p[e,t) cos® de (1.7)

S
1

0
2n

Fx, = - R,1 J p(e,t) sin® de (1.8)
0

Many researchers, past and present, have focused their
attention on trying to understand and predict these pressure

distributions P(8,t).

1.3 LITERATURE REVIEW

It has been known since the 1940's that the circumferential
variations in pressure which exist in the glands of
labyrinth seals may lead to unstable rotor whirl as reported
by Den Hartog (13). However, to the knowledge of the
author, there was no analysis explaining the nature of these
non-uniformities and how they cause whirl until the works of

Thomas (14) in 1958 and Alford (15) in 1965. The analysis
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proposed by Thomas tends to be lengthy and depend on a great
deal of empirical correlations of losses vs. clearance.
Alford assumed that the nominal sealing gap varies from -
chamber to chamber and that there is limited redistribution
of the flow in the circumferential direction. Under these
conditions, he showed that a converging seal promotes
forward whirl, whereas a diverging one will tend to be
stabilizing to forward whirl. Ehrich (16) performed an
analysis where the seals were permitted to pivot relative to
the outer casing. Vance and Murphy (17) did a similar
analysis to both Alford and Ehrich which accounted for sonic
choking in the last seal. While these four theories predict
destabilizing forces under certain conditions, a problem
exists with all of them, in that they predict no self-

exciting forces in cases where they are known to exist.

In 1972 Kostyuk (18) introduced a more fundamental fluid
mechanical approach to explain the aerodynamic forces in
labyrinth seals. 1In his analysis, the equations relating
the flow rate over the knives were coupled to the governing
continuity and momentum equations in the circumferential
direction. Iwatsubo (19,20) used a similar model but
included area change terms due to the motion of the whirling
shaft. He showed that these terms are important when
predicting damping. Iwatsubo solved these equations by a
linear perturbation analysis and assumed harmonic solutions
to the resulting equations and compared these solutions to a

finite difference solution.
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Recently many Kostyuk-Iwatsubo type analyses for multi-
chamber seals have appeared (21,22,23,24,25,26,27,28).

These theories lead to 2N linear complex algebraic equations
in the same number of variables for a N chamber seal. While
some trends were established by doing parametric studies, no
closed form solutions have been obtained that describe the
influences of the various geometric and flow parameters.
Computer solutions of these systems have shown some
interesting trends. First, is that one of the parameters
important in the generation of aerodynamic forces is the
change in swirl from chamber to chamber. Second, smaller
clearances, which are beneficial with regard to machine
performance, have been predicted to lead to greater
destabilizing forces. Some of the trends predicted by
analysis have been confirmed by experimental data. Measure-
ments of the elastic forces taken by Benckert and Wachter
(29,30) show good agreement with most theories. 1In these
experiments, the forces on the eccentric rotor were measured
and then checked by integrating measured pressure distribu-
tions inside the labyrinth glands. Other researchers
(31,32,33,34,35) have performed similar experiments for
various geometries and flow conditions yielding an extensive
data base for stiffness coefficients. There are much less
data available for the damping effects of labyrinth seals
since these experiments require time resolved measurements
on whirling rotors. But as pointed out by Martinez (28) the

damping forces can be of the same order of magnitude as the
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elastic ones and can be just as important.

childs (36) obtained data for a whirling seal with no
rotation. Wright (37,38) performed experiments with both
rotation and whirl but no attempt was made to control or
measure the swirl entering the seal. Data was taken on
straight through, convergent and divergent configurations.
The trends obtained run contrary to those predicted by
Alford and no direct comparison can be made to a Kostyuk-
Iwatsubo type model, in which pre-swirl is of great
importance. Clearly, more data on the damping character-

istics are needed.

1.4 OBJECTIVES

A simplified set of equations, based on the Kostyuk-Iwatsubo
model that approximate the air flow through a two constric-
tion labyrinth seal, is derived. These equations are
linearized and harmonic solutions are assumed. These
equations are non-dimensionalized and the importance of
individual terms is discussed. From the solution of these
resulting equations, the effects of various geometric and
flow parameters are presented. Based on these analytical
predictions, design objectives for an experimental rig to
measure aerodynamic forces, especially damping, on arbi-
trarily spinning and whirling labyrinth seals are set. The
final mechanical design of this rig is presented along with

the facility and instrumentation requirements.
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CHAPTER 2

MODEL FORMULATION

2.1 COMPLETE EQUATIONS OF MOTION

The air flow through a rotating, whirling labyrinth seal is
three-dimensional, unsteady, compressible and turbulent with
large scale separations. The equations that govern this
phenomena are the Navier-Stokes equations along with the
appropriate boundary conditions. These equations of

continuity, momentum, energy and state in vector form are,

g—"+v-p\7=o (2.1)
o 2% = - VP+pv2\7+-‘3iV(v-x7> (2.2)
DT 2 DP )
pCVb_E= KVT+B—t'+ ¢ (2.3)

$ = dissipation function
P = pR.T (2.4)

No analytical methods are available for the solution of such
a general system. Direct numerical simulation of this 3-D
problem at the high Reynolds numbers which occur in real
machines would require an enormous number of grid points to
account for all the scales of motion (39). It would be
prohibitively expensive to do parametric studies for this
problem., Clearly a simplified model which yields a more

tractable set of equations is highly desirable.
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2.2 KOSTYUK-IWATSUBO MODEL

Kostyuk (11) introduced a lumped parameter model of the flow
in labyrinth seals which considerably simplified the
governing equations. In this model, it is assumed that the
flow in the axial direction over the seal knives can be
coupled to essentially one dimensional continuity and

momentum equations in the circumferential direction.

The state variables in the seal glands are considered to be
functions of angle and time only. That is, variations in
pressure P, density p, velocity V, etc. in the radial and
axial direction inside a given chamber are neglected. This
type of assumption is known to be reasonably accurate when
the gap between the seal knives and lands, §, is much
smaller than the characteristic dimension of the seal
chamber (8 << 1, & << h) where 1 is the distance between the
knives and h is the height of the glands as shown in Figure

6.

Iwatsubo (19) generalized Kostyuk’s model slightly by
allowing for area variations in the chamber due to the shaft
whirling. The equations that will be derived are the same
as presented by Iwatsubo but for a simple two constriction,

single gland seal.
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2.3 DERIVATION OF GOVERNING EQUATIONS

Along with the basic assumptions described previously,

leading to the lumped parameter model the following

simplifications will be made.

1. The inlet and exit conditions are constant and known and
carry subscripts i and o respectively.

2. The working fluid, air, is ideal and colorically
perfect.

3. All processes are adiabatic. This assumption replaces
the energy equation (2.3).

4. As a consequence of 2 and 3 the mean air temperature in
the gland is the same as before and after the seal.

5. Small flow changes in the circumferential direction are
permitted and are assumed to be isentropic.

6. The amplitude of the whirling motion of the shaft is
small compared with the nominal seal clearance.

7. The shear stresses exerted on the fluid inside the gland
follow a Darcy Friction law. This is expressed as

1 =2
T=3 varel

where T is the shear stress, A the Darcy friction
factor, p the fluid density, and Vv 1 is the relative
velocity between the average fluid ¢ore flow and the
nearest solid surface.
Figure 5 shows a cutaway of the seal along with the
cylindrical coordinate system and associated velocity
components. Figure 6 is a cross section out of Figure 5

giving the geometry and pertinent flow parameters. The

labyrinth gland has dimensions 1 x h and is at radius Rg.
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The sealing clearance into and out of the glénd are &, and
52 respectively. Of course these gaps vary with angle and
time due to the rotor whirl. The initial pressure and
circumferential velocity before the seal are P, and v,
respectively. The temperature T and exit Pressure PO are

both constant and given.

The last of the parameters to be specified describe the
motion of the seal relative to the outer casing. Figure 7,
which shows an axial and side view, gives the necessary
kinematic information. The rotor spins at w and the whirl
is of amplitude r and at angular velocity @. The problem is
to find the unknown pressure P, velocity V and density »
inside the seal gland. The first equations to be derived
relate the flow rates in and out of the gland to the
geometry, air properties and pressure differences across

the sealing strips.

The total mass influx to the seal chamber ﬁl is,

m, = plAlw1 (2.5)
where G and w, are the density and axial velocity
respectively at the minimal area. Al is the effective area
which is the actual area multiplied by a contraction
coefficient. The mass inflow per unit circumferential

length of seal q; is,

9 = P8y | 2.8
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where y is the empirically obtained contraction coefficient
for the flow. Exact expressions for Py and wy are given in
Appendix A but an approximation for q; based on the mean
density between the chambers will be derived and used. The
error incurred in the prediction of mass flow rate is less
than five percent for axial Mach numbers less than 0.6.
Using Bernoulli’s equation and assuming that thé axial
velocity is negligible far upstream, a relation is obtained

for the axial velocity w, at the seal gap.

W = J—Z—- (p.~P) (2.7)
Pq 1

where Pi and P are the pressures before and after the

constriction. The density at the throat Py is assumed to be

the average of the density before and in the gland. This

density can be expressed in terms of pressure using the

ideal gas law as

Substituting (2.7) and (2.8) into (2.6) yields the first

governing equation

q; = "1 [Piz—Pz)l/z (2.9)

Similarly, the mass efflux from the gland per unit seal
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length q, is

52 [pz—pg)l/z (2.10)

Throughout, v will be assumed to have the constant value of
0.65 and no carry-over effect will be accounted for. For a

brief discussion of these assumptions see Appendix A.

The next relationship to be presented is the continuity
equation governing the flow in the circumferential direction
inside the seal gland. Figure 8 shows a control volume with
the various mass fluxes crossing the associated control
surfaces and the mass accumulation within the control
volume. Equating the change in mass to the net inflow and
rearranging yields the following continuity equation

3

L
R, 30

(pfV) + g, - q; =0 (2.11)

where £ is the gland’s cross-sectional area normal to the

velocity V.

The final relation will be the momentum equation in the
O-direction. Figure 9 shows a control volume with the
momentum fluxes, shear stresses and the 6-pressure gradient.
Using Newton’s second law that the time rate of change of

the momentum is equal to the applied forces yields
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3 1 3 2 )
FEPEV) + gogs (PEV) T GV VTl
£ 3P _
- Ty (l+2n) + R, 36 " 0 (2.12)

The shear stress exerted on the fluid by the stator, T, can
be approximated by a Darcy friction law. Using the

following formula, the shear stress is given by

| =

1
T =§p>\SV'IV|=

s pxs V™ -+ sgn(v) (2.13)

where Xs is the friction factor for the stator. Note that
the absolute value or sgn is used to insure that the shear
stress always retards relative motion. The force exerted by
the rotor wall is expressed in a similar manner. But the
rotor wall has an absolute velocity of wR ., SO that the
relative velocity is V-sz. Hence, the stress exerted on
the fluid by the rotor is

2
(V—wRS) -sgn(sz—V)

1
Ag(V-wR ) |V-0R_| = 3 pX,

R

~
[]
| =

(2.14)

where XR is the friction factor for the rotor. The friction
factors Xs and XR depend on many factors (see Appendix A for

details) but here they will be assumed to be functions of

b

* * *
the steady state Reynolds numbers Re_ and Rep. Resand Rep

are defined by using the hydraulic diameter D Mean

HI

relative velocity V and kinematic viscosity v as
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v-.D

* H
Res = 5 (2.15)
and
(wR _~-V)+D
* s H
ReR = 3 (2.16)

The friction factors are now computed from these, and are,

0.3164 Re;“o'zs (2.17)

>
[

0.3164 Re;“o'zs (2.18)

>
0

An iteration scheme must be used to calculate these since
the velocity and friction factors are coupled in a non-
elementary manner. 1If As and AR are given the appropriate
sign, depending on the relative velocities, the absolute
values or sgn may be dropped from equations (2.13) and
(2.14). Combining all of this, the original momentum

equation (2.12) becomes

] 1 2 2 1 2
Ez(pr) + E; 38 (pEVT) + qZV - qlvi + 5 pXSlV
1 2 £ 3P
-3 ka(l+2h)(V-sz) + R 36 0 (2.19)

The sealing clearances 81, and 62, which vary due to the
rotor center executing a circular orbit of amplitude r

and angular velocity Q can be written (Referring to Figure

* *

7) in terms of the nominal clearances 81, and 62, r, © and
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* *
Q for 81, 82 << RS(ZS) as
5, = 51‘ - rcos(6-%t) (2.20)
5, = s; - rcos(6-9t) (2.21)

The gland cross-sectional area f can be expressed in terms

of 61 as

f = 1(h+$ (2.22)

1)

The equations presented above are consistent with those of
Iwatsubo. However, it will be found to be beneficial to

recast these equations in terms of rotating coordinates.

2.4 TRANSFORMATION TO ROTATING COORDINATES

One of the difficulties that would be encountered in dealing
with the equations as they stand is that all state variables
are functions of time and space and both temporal and
spatial partial derivatives appear in the continuity and
momentum equations. This state of affairs can be removed by
changing to a more convenient frame of reference. Since the
sealing clearance distribution travels around at an angular
frequency of @ it would be natural to chose a reference
frame which rotates at @, yielding a problem which does not
contain time explicitly. This is true provided the whirling
motion is uniform and circular, and also that the seal has

cylindrical symmetry. Referring to Figure 7, let y be
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defined as the counter clockwise angle from the minimum
gap. By using this and noting that no time scaling is
necessary the new rotating coordinates (¢,t) may be written

in terms of the old ones (9,t) as

8 - Qt (2.23)

€
I

cr|
0
s

(2.24)

By using this independent variable transformation %5 and %E

can be replaced by

A _3wa3 _3ta _ a3 (2.25)
Y-} 38 Ay 3o at 3y

3 .33 3t é: - -9 &, é: (2.26)
It at dy at ot 3y 3t

Also introducing velocity V relative to this new coordinate

system as

V=vV - QR (2.27)

By noting that all of the state variables have become

functions of v only
P(6,t) » P(y) (2.28a)

p(0,t) = olv) (2.28b)

there is no longer any explicit dependence on t so that
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3a() . ¢ and the partial derivatives with respect to v, %E

at
may be replaced by ordinary derivatives %$.
information the original governing equations (2.11) and

Using this

(2.19) can be rewritten as,

d —
aG[pfv]+ns(q2-ql)=o (2.30)
9—[ fv(§+ga ]]+ s [x 1(V+9R_)%=A_(1+2h) (wR _~(V+9R )2)]
dylf s 8 Pl s R s s
- - dp
+ quz(V+QRS)—RSql[Vi+QRS]+ £ dv = 0 (2.31)

The leakage equations for a4 and q, are invariant but 81 and

82 simplify to

5, = 5; - r cosy (2.32)

- r cosy (2.33)

and by defining eccentricity ratios €, = L_ the non-dimen-

*
.
sional gap distributions may be given as .
81
— =1- g cosy ‘ (2.34)
81
>
— =1~ ezcosw (2.35)
82

The continuity (2.30) and momentum (2.31) equations along

with the auxiliary leakage and gap distribution relations
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form a system of two coupled nonlinear ordinary differential
equations and will be used in the following chapters for the

theoretical prediction of the labyrinth seal forces.
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Figure 5 - Cutaway section of a single gland labyrinth seal.
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CHAPTER 3

LINEARIZATION OF GOVERNING EQUATIONS

3.1 INTRODUCTION

Even though the equations derived in the last chapter are
much simpler than the full Navier Stokes equations they
still contain nonlinearities and hence are difficult to
integrate in closed form. Many mathematical mefhods for
approximating the solution are available. The system could
be numerically integrated by any one of several methods.
This would appear to be a straightforward approach. But the
periodicity boundary conditions on both pfessure and
velocity tend to be difficult to impose for either a time
marching shooting scheme or a finite difference method.
Also, some valuable physical insight is lost by numerical
simulation. Instead of numerically solving the equations a
linear perturbation technique will be used. To do this,
first the equations are solved with the shaft in the
centered position to obtain a zeroth order solution. Next,
small amplitude perturbation expressions are substituted
into the governing equations which are then linearized.
Harmonic solutions for the perturbation are assumed and the

resulting system of linear algebraic equations is presented.

3.2 ZEROTH ORDER SOLUTION

The first step will be to obtain a zeroth order solution.

To do this, the rotor is assumed to be centered with respect
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to the outer casing. In this non-whirling condition all
] ]

36 v
-k

. * * *
= 0). Let any starred variable (p , V , P, V , etc.)

variables are independent of angle and time (e.gq.
3
at
represent these uniform zeroth order solutions. Under these

assumptions the original equations greatly simplify to

*

*
qz"q]_:O (3.1)

% p*[x wee -

* 2 * % *
. Ag(1+2h) (V' ~uR ) ]+ q, V- q] v, =0

b

(3.2)

The value of P* can be found from (3.1) by using the flow

rate equations (2.9) and (2.16) as follows

* *
S u 1/2 S, u 1/2

2 (P*Z—Pg) . (pf-P*zj = 0 (3.3)

IRaT IRaT

Solving for p" gives

(81207 4 51292\

P* _ 1 i 2 "o (3.4)
o s¥ o, 2 '

The steady state flow rate per unit circumferential length

. * * * . .
is q = g9, = g and is given by

g = i (p*z-pg) (3.5)

* * * *
p is found from P = o R,T. Finally V must be determined.
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*
The initial guess for V 1s V. then Xs and A, are obtained
from (2.17) and (2.18) respectively. Then the quadratic

equation for v* from (3.2) is solved for an updated v,

* *2 %* 1 * *
e [Asl—AR(l+2h)]V s [q + 30 xR(1+2h)sz]v

" 2.2
o Ag(142h)w Rs] =0 (3.6)

|

*
- [q v, o+

*
With this value of V new estimates for AS and XR can be
obtained. This iteration process is continued until a

) *
convergent solution for V is obtained.

3.3 PERTURBATION EXPANSIONS

Once the zeroth order solution for the equilibrium, non-
whirling rotor has been obtained the state variables inside
the labyrinth gland for the case of the small amplitude
whirling rotor can be expressed in terms of the following

perturbation expressions.

P = P(y) = P (l+E(y)) = B" + EP" (3.7)
*

V =V (1l+n) (3.8)
*

q; = q (1+%;) (3.9)
*

a9, = q (1+g,) (3.10)

The flow rate perturbation ¢, can be eliminated in favor of
the pressure perturbation & using (2.9), (3.7) and |&|<<1 as

follows
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* *
q R_T 1 5, Pf - p*% _ pp*)l/2
> = * ) 2 *2
9 “dy (p2-2%2)1/2 3 Py = P
220"?)
[R T
a
5, 2002 M2 s, £p*2
R Sl - 5 (3.11)
8, p; - P 81 Py - P
This can be rewritten as
q*51 E.P*Z
q, = 1 - ——— (3.12)
L] p’ - p*?
1

Similarly CZ can be eliminated in the expression for dp

here q, is expressed in terms of ¥ as

* *2
q é, EP

(3.13)

Several relationships will prove useful in manipulating the
equations. From the assumption that all the flow processes
in the circumferential direction are isentropic, the

pressure and density variations can be related by

*
G 1 8 _ _p_ 3P (3.14)

or in terms of the perturbation variables
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51

3p 1 p* 38 _p 3%
——— g — 8
v YR_T ay Y v
a
which implies
* £
=0 (14 3)
Also from (3.7) and (3.8)
de _ o+ dE
dy dy
av _ av _ * dn
dy ~ dv dy

The perturbation expressions

(3.7)

into the continuity equation (2.30).

(3.15)

(3.16)

(3.17)

(3.18)

and (3.18) are inserted

Note that qq and d;

are replaced by (3.12) and (3.13) respectively. By doing

this, one obtains terms of zeroth, first and second order.

Each order is considered separately. The zeroth order

* *
relation, 9, - 4y = 0, of course, contains no new infor-

mation. The second order terms are neglected since they

L g

are much smaller than first order ones when r << SI, 82.

The first order terms yield the following linearized

perturbation equation

* —%
* (=% dn *—k df p V hl di * r r
{p (V +QRS)hl dv +p V v + — EE}—q Rs{g; - g;}cosw
2 1
* 2 P*Z
+ &g { + } R =20 (3.19)
P*Z_PZ PZ_P*Z S
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Analogously, the linearized, perturbation momentum equation

that results from (2.31) is

* ok k
* =% % dn * *2 dn k% * df e hlv v dg
{p hlv v dv + o hlv Jv + p VV dv + —~——7—~— EW}

*

R.p
+[ S ][xslv*z-xR(1+2h>(wR —v*)2]£+p*h1 %é,

8y S

*
v

<

— - —=| r cosy} = 0 (3.20)
2 4

3.4 HARMONIC SOLUTIONS

It has already been assumed that the clearances and area are
periodic functions of the whirling angle y. Now the pertur-
bations in pressure and velocity are also assumed to consist
of a first harmonic in y. That is, the fluid properties can
be represented mathematically by simple sinusoidal functions
with unknown amplitudes and phases. Physically, this is a

very special case. More generally one would expect that the
form of the solution could consist of the sum of any number

of harmonic functions with period 2nn (n = integer). Solu-
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tions of this type could be allowed because they maintain
constructive interference. Since the problem is now linear
there are no interactions among the various harmonic
components. Therefore each can be treated separately. The
reason that one would like to consider the first harmonic
only can clearly be seen by examining equations (1.7) and
{1.8). The contribution to the aeroelastic ﬁorces Fxl and
sz from any component other than the first harmonic
vanishes due to orthogonality. These other harmonics will
not be treated here explicitly, but it should be noted that
in the closely related problem of high cycle fatique (HCF)
of the sealing knives they can be important. Discussions of
this problem along with the common aerocdynamic approaches
used are given in the papers by Abbot (40), Srinivasan and
Dennis (41) and Lewis and Platt (42). The basic model to be
used for the prediction of stiffness and damping coeffi-
cients appears to be equally applicable to the problem of
HCF. Returning to the problem at hand, it will prove
convenient, for manipulation purposes, to express these
assumed harmonic solutions in complex exponential notation.

The pressure and velocity perturbations & and n are

represented as,

£ =R [i e‘iw] (3.21)

Re[] = real part of

n = Re[n e‘iw] (3.22)
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Here % and ﬂ are complex constants which contain both
amplitude and phase information because they can be

represented in the complex plane as shown in Figure 10 as

-~

£ = Epp + il (3.23)

=

= Ngg *+ ith (3.24)

Again referring to Fiqure 10 the amplitudes and phases are

given by
- (1 - 2
~ A2 ~

In] = (nRE + h?M)l/z (3.26)

ve = tan”t 28 (3.27)
*RE

v, = tan"t < (3.28)
"RE

Where wE and ¢y _ are the angles ahead of the minimum gap

n
where the maximum perturbation in pressure and velocity
respectively occur. Care must be taken in assigning the
appropriate y’s. Usually the principle value is taken,
-n/2 < ¥ < n/2 but in this case ¢ should be defined on

[-n,n)}. On this interval tan-1 is multivalued therefore the

¢v's should be chosen such that EIM' nIM> 0 => v > 0 and



55

>
>

Eryr Mgy < 0 => v < 0. The derivatives of & and n are
%% - gE {ge‘iw} = - ige VY (3.29)
%% = - ine iV (3.30)

The variation of the area can be represented in this

notation as
df _ g [- irle~lw] (3.31)

Substituting these into equation (3.19) rearranging, noting

~—k s -1
that v = v - QR . and eliminating the phasor e 1y yields

the following linearized perturbation equation of continuity

* *2 *2 "
0 hl] o " [ P ) }}
Vi-gR + 13
{[ ¥ s P*Z—Pg P?—P*z

* % N Lt * 1 1
+ ¢<p V hlitn = ¢p V 1i - g Rs = - % r (3.32)

and assuming harmonic solutions yields the following

linearized momentum equation when applied to equation

(3.20),
—k _k ) * k%D * * 2 *
p V V hli RgqVP R.q V.P R_p *
S s i S 2
S 7 e R R [*slv
Y P —Po Pi—P 8y

_ xR<1+zh)<wRS-v*>2] + hlp*i} £+ {p*v*(v*+v*)h11
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*
N LA (G1v" + Ag(1+2n) - (R =V ]} n
- sq 4 S R S
V* v
= o TV - R |5 - 3|} x (3.33)
82 4%

These two linear algebraic equations contain the complex
perturbation variables E and % as unknowns on the left hand
side with known parameters (zeroth order gquantities and
whirling amplitude) on the right hand side. These equations

may be written, employing matrix notation, as

A A

1 R

A11 A21 % - 1 o (3.34)
21 22

The next chapter will deal with the solution of this system
for the various cases. The equations will be non-dimension-

alized and some physical interpretation will be attached to

the various terms in the equations.
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CHAPTER 4
NON-DIMENSIONALIZATION AND SOLUTION

OF GOVERNING EQUATIONS

4.1 NON-DIMENSIONALIZATION OF GOVERNING EQUATIONS

As presented in the previous chapter, the equations
governing the pressure and velocity perturbations for the

case of a small amplitude whirling rotor are,

Arr A12] (¢ Ry
A A ~t = r r (4.1)
21 221 \n 2
It will prove advantageous to recast this system in an
equivalent non-dimensional form. When the equations are

non-dimensionalized the following geometric, kinematic and

flow parameters naturally emerge,

Geometric
6*
1 ¥ 2 * *
8 &) 8, &
(4.2)
8*
h 1 1
RS RS h
Kinematic
QR wR
W o= f S = f
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Flow
*srv” v
% o} .
-9 - 1 -1 - &
A = — a - T 1 V*
uSlp RaT g9

The physical interpretation of some of the parameters,
especially the geometric ones, is straightforward while that
of others is not. A brief discussion of some of these

is in order in light of the central role they will play in
*

subsequent treatments. The ratio of i% = a indicates the

31
degree to which the seal converges or diverges. o = 1 means
straight through, « < 1 indicates convergence and o« > 1
implies divergence. The two kinematic parameters, S and W,
relate the velocity of the seal surface and gap variation
phase speed respectively, to the average circumferential
flow velocity inside the gland. It will be found that S is
only important in the determination of I'. 4 is the non-
dimensional flow rate, which characterizes the axial

pressure difference from inlet to exit. This can be seen if

A is written as

* P.)2 1/2
L ([—é) - 1] (4.3)
u&lp JRT P

o is proportional to the swirl inside the gland and is a
measure of the angle at which the air leaves through the

second knife edge.
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Finally, I is a parameter which measures the axial gradient
in swirl, It conveys the degree to which viscous shear
forces change the swirl in the seal chamber. 1If I'=0, the
inviscid case, the air enters and leaves the gland with the
same circumferential velocity. To a first approximation,

from Eg. (3.2),

*

v v, - P [x 1 v2 - A_(1+2h)(V.-wR )2] (4.4)
i Bq* s i R i s ‘
or in nondimensional terms,
. - A Lo _ Hy 1_5)2
r=-3 DH[sgn(Vi) sgn(wR_-V,)(1+2 2)(1-5) ] (4.5)

The continuity Equation (3.32) has dimensions of [MT'l} and
will be divided by qu* to yield the following non-

dimensional continuity equation.

* *5* 2 *2 2 *2
p V 1 1 1 h S'ZRS . &, p RaT,u 82 ~
L I i - 1+ 1
x Y R * 2 2
s 8 v * *
q 1 q 8
* *8 *
PV S h i LIS R €, ¢
+ ¥ "R w ign=g——— - g |t - ==l - - Y=
€
q 5 61 q s v -1 1)
(4.6)

In terms of the non-dimensional parameters of (4.2) this

equation can be simply written as

- %
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2 -~ : ~
oL . l + « oLi
{;B (- - AZ } S { D } "

= {oL(1-W)i+(1 - %)} € (4.7)

The momentum equation could be dealt with directly. How-
ever, a simpler form will result by subtracting from it the
continuity equation times V*. This conservation form of the
momentum equation can now be non-dimensionalizea by dividing
by qu*v*. In terms of primitive variables this equation

can be written as,

v *2 *V*S* wR 2
. P
(1 - —%) E ] - {Asl - AR(1+2h){ s _ 1] }
v o2 p? 8vq" 8] v
w2 25*2
L2 % BT 1) [ an g ;
*2 2 R 5* V* *5*
q H s°1 LS|
*v*s QR V'
o) p
+ 1, _hi | [1 - *5]1 -1 - —1 [xsl + Ag(l+2h)
q R 8] v 19" 8]

Again this equation can be written more compactly in terms

of the non-dimensional parameters as,
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{fi B §$%§[XS-XR(1 + %g)(S—l)z] . 275;73 i} :

(4.9)

- {§E<1-w>i -1 - S aag (1 %‘i)(s—l)]} n = - Te,

A matrix equation for (4.5) and (4.7) analogous to (4.1) can

be written with non-dimensional coefficients as,

Bi1 Bi2]f*® 2y
B B A0 =4y € (4.10)
21 221 n 2
This system will now be solved.

4.2 SOLUTION OF EQUATIONS

Two distinct possibilities arise when considering the solu-
tion of (4.8). First, for r=0 the determinant of B must
vanish for non-trivial solutions to exist. This case would
correspond, within the approximation of this model to a
standing aéoustic mode in the labyrinth gland. When one
attempts to solve the implicit relationship which results
from Det Bij=0 for one of the parameters (e.qg.
[=F'(o,W,S,A...)) only complex roots can be found, which are
physically unreal. Even when friction terms are neglected,
2=0, %=O are the only solutions. This state of affairs
could be predicted directly from considering the 1-D
acoustic wave equation inside the annulus with the
appropriate monopole source distribution term (43). Any

standing mode started within the annulus would quickly die
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from the induced pressure perturbations generating extra
flow losses over the seal knives. This has been shown
indirectly by Ingard (44) while considering the acoustic-
elastic instability problem experienced by labyrinth seals.
The other case of r#0, det B#0 is the physically important

one. By eliminating n the pressure perturbation &, is given

by

£ - {[cL(l—W)i+[1 - %)]-[%E(I-W)i - 1]

oL 2H oLi
- ZHB[AS+AR(1 + E—)(S-l)] + T & } e/

2
al, . l+a oL .
{[75(1—W)1 - 3 ][B—(I—W)l -1

(4.11)

b

- sbaonls + 2] [p]

{fi - 8703[* g1+ %E](s-l)z] + 172575 i]}

For some configurations and flow conditions certain terms
can be neglected from this expression. However, for a wide
range of parameters, typical of modern designs, only the
shear stress perturbations can always be eliminated with the
knowledge that they are at least an order of magnitude
smaller than the other remaining terms. Dropping the shear
stress terms yields the following simplified expression for

~

g.
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oLil|T Li
- LI L (4.12)
[ D ][Az AZGHZD]}

From E, the amplitude and phase information can be extracted
as shown in (3.20) through (3.27). One can not say directly
if a given magnitude and phase will destabilize a rotor
system because as pointed out in Chapter 1, the knowledge of
many different forces is needed to determine the system
dynamics. For the kind of calculations presented in Chapter
1 the coefficients Cij and Kij are needed. Representative
calculations of these will be presented later. However, for
the facility design and later comparisons with experimental-
ly obtained data the amplitude and phase representation will
prove more useful. From the phase alone one can infer if
the net pressure force acting on the rotor has a tendency to
add or subtract energy from the through flowing fluid for a
given whirl direction., 1If there was a small amplitude
forward whirl (@ > 0) and a phase lag of the peak pressure
with respect to the narrowest gap (\vE < 0), then a component

of the force on the rotor would be in the same direction as

X
2
being added to the rotor and this is potentially

the velocity since F - wa. This means that energy is

destabilizing. The same type of argument may be used for

forward (® > 0) or backward (R < 0) whirl with the phase
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either leading (vwg > 0) or lagging (vg < 0)the eccentric
motion. If the product of wEQ < 0 then a small whirl will
tend to grow. However, when WEQ > 0 no instability will
occur. Figure 11 shows the regions of stability/instability
for the four separate combinations of @ and wE' The
situation is slightly more complicated in terms of the non-
dimensional whirl, since W > 0 can imply either, @ > 0 or

Q < 0, depending on the sign of V*. For thesé variables the

stability criterion is
*
wEV W < 0 => instability (4.13)
“’EV*W > 0 => stability (4.14)
Unfortunately, this general case is still too complicated to
permit straightforward physical interpretation. Hence a few
simpler cases will be considered first in order to

illuminate the influences of the various terms separately

before returning to a more general case.

4.3 THREE SPECIAL CASES

By examining the numerator of (4.12) it can be seen that
several terms act as sources driving the perturbations.
These terms are o, (1-W), (1 - 1/a) and I'. Setting one or
more of these to zero it is possible to investigate the
effects of the remaining terms. The first special case to
be considered treats the dependence of the aerodynamic

forces on «, the seal convergence/divergence. This is the
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so-called "Alford Seal Effect". To do this, ¢ is set to
zero. This implies v* is zero since the remaining terms
contained in ¢ are positive definite. Also —%37 is set to

5 for concreteness. This is approximately ﬁng seal geometry
of the turbine tip shroud for the space shuttle main engine
hydrogen turbopumps. Using these simplifications and

rearranging, the normalized pressure perturbation can be

written as a function of o as,

(4.15)

Two items deserve comment. First this is a real function
which implies that the force generated is in phase with the
displacement. This is contrary to what was predicted by
Alford (15). This discrepancy arises because Alford did not
allow for circumferential flow whereas this theory does.

The acoustic waves that redistribute the flow may not be
ignored. Second the fo;ce is not whirl dependent. This
specific phenomenon contributes to the direct eléstic

coefficients only. Figure 12 shows a graph of 2 3 VS a.

elA

From this, it is seen that a convergent seal, o < 1,

produces a negative direct force, since FXl is proportional
to —i. This would usually be beneficial since it tends to
stiffen the rotor/bearing system, hence driving up the
critical frequencies. This behavior is similar to the

Lomakin (45) effect found in annular seals. However, the
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magnitude of the forées is usually smaller and the physical
mechanism does not appear to be the same. A divergent seal,
« > 1 produces a force that resists the shafts propensity to
return to a centered position after some small deflection.
This force reaches a maximum when « = 2.16. In the more
general case to be described later « will contribute to the
cross force on the rotor and hence « will influence motor
stability. The force generated for either convergent or
divergent configuration is proportional to Az. Even though

this will not be exactly true in the general case, it will

serve as a semi-quantitative guide.

The second case of interest is of a straight through seal
(a=1) configuration when the steady state swirl velocity is
close to the gap variation phase speed (e.g. v' o= QRS =>
W~1l). Letting L=D, dropping the appropriate terms and
rationalizing gives the following expression for the

pressure perturbation per unit eccentricity.

£ 2
:f ) [2 N i_z_ig”zrz [“’r * [2 * ;lz—Z)l] (4.16)
7]

For most reasonable choices of parameters |ol'| << |2 + lj'

therefore (4.16) may be simplified to

(3 - Toi (4.17)
A
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Since the right hand side is purely imaginary the pressure
maximum is + 90° out of phase depending on the sign of To.
This would imply that a very destabilizing condition may
exist if T and ¢ have opposite signs for @ > 0 or the same
signs with @ < 0. This can be put in more physical terms by
combining (4.14) and (4.17). From this, instability occurs

if
*
(v -~ Vi) Q<0 (4.18)

*
Recall that v = QRS for this case. Therefore the condition

becomes
QR _ < ViQ (4.19)

If the shaft spin w is assumed positive then two cases need
to be considered. @ > 0, forward whirl, and @ ¢ 0, backward
whirl. Dividing (4.19) by @ and replacing 9R_ by V' yields

the condition for forward whirl namely,

*

v, >V (4.20)

This condition states that if the preswirl of the air
entering the seal is in the same direction as the seal
rotation and is admitted at a higher absolute value, the
aerodynamic forces will tend to promote a forward whirl

instability. For backward whirl, @ < 0, (4.19) becomes,

v’ o> v, (4.21)

This is the opposite condition as prescribed in (4.20).
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However, any V* > 0 must be excluded since W = 1 implies
that V* and 9 must have the same sign. This means that if
the preswirl V.o is in the opposite direction as the shaft
spin backward whirl is driven. The physical mechanism
feeding the instability for these two cases is easily
identified. The reason V' is different from Vv, is due to
the presence of friction forces. But by Newton’s Third Law
the change in swirl must be accompanied by a reaction torque -
on the rotor surfaces. It is this reaction which drives the
whirl when V* = QRS. This phenomena will be present in the
general case but other factors will also contribute. The
magnitude of this transverse force scales like AZFUP* which

in terms of primitive variables gives,
—2 ~ a’ree” - (2} - R2)2(v" - v,) (4.22)
i o i

A larger pressure difference and/or level generates greater
forces.  However one cannot eliminate this term without
doing away with the need for the seal. Figure 13 shows the

3

amplitude and phase of T as a function of I', treating ¢ as
1

a parameter. ‘

In the last of the special cases the simplest type of whirl

dependent behavior will be investigated. To do this some

terms are eliminated by setting a«=1, I'=0, and L=D. The

condition of I'=0 implies that friction is totally neglected
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even in the zeroth order approximation. This is a reason-
able assumption when either the nominal seal clearances are
quite large or when V, is nearly equal to the asymptotic
value of swirl that would be obtained after many sugh

identical chambers. The resulting expression for ;

A7 e

1
after rationalizing is quite complicated, but for the case

of |o(1-W)| << 1 it simplifies to

= (4.23)

Again the net force is ¥90° out of phase with the displace-

ment but in this case the magnitude is proportional to

~

o(l-W). Figure 14 shows the amplitude and phase of ZE as

47
_ 1
a function of W using o as a parameter. It should be noted

that at W=1 the forces become small and there is a phase
reversal. Substituting (4.23) into the stability relation

(4.13) and canceling all unnecessary terms yields
(1-W) W > 0 => instability (4.24)

This condition is satisfied when W < 1, which in terms of
primitive variables implies IV*I > IQRSI. This suggests a
useful design criterion to avoid labyrinth seal induced
rotor whirl. Make sure the critical bending frequency of
the shaft, W is above V*/Rs for all seal chambers. These
three cases have shown certain types of limiting behavior

for special conditions. Now the more general case when all
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terms contribute and interact will be treated.

4.3 THE GENERAL CASE: DESIGN STUDY

In the general case none of the terms in equation (4.10)
will be neglected. Certain term§ will be set and the
amplitude and phase behavior of %I as a function of the
non-dimensional whirl frequency W, varying one other
parameter at a time will be investigated. This'type of
parametric study was undertaken about several baseline
points which were physically realistic. The ultimate goal
of this study was to determine what values and ranges of
values for the various parameters are needed in order to
corroborate this theory, especially with respect to the
damping forces. After many iterations a final baseline
design was obtained that was consistent with the primary
goal and with certain auxiliary conditions such as available
facilities, cost, mechanical stress limitations, etc. These
will be discussed in more detail in the next chapter. A

reasonable and consistent set of geometric and flow related

parameters was found to be

(4.25)

il
o
w
1

]
o
o
U

|
o
IA
=
IA
I

4 = 0.8 o

[A set of primitive variables which correspond to these will

be presented in the next chapter.]
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The expression for %— presented in (4.12) becomes somewhat
1

lengthy when rationalized but it can be readily simplified

for |o(1-W)|<<l as was done for the case I's0, «=1, and L=D.

The resulting expression is

i L0 aw?) flrumeon b)s
elAz 1 + az + 32
D u

(4.26)

This expression will be used later to obtain approximate

closed form expressions for the rotordynamic coefficients

Cij and Kij' When «=1, as in the baseline, this simplifies
to
2.2
; "SR -w®e a[f - (1w i
] D
= (4.27)
2 2
€, 4 L
1 2 + 3 2]
D wu

When W=0, the imaginary component hence the out of phase

force can be written as
aL[g - 1]1 (4.28)

From this, it can be seen that when I'=sD the imaginary part
vanishes, hence a phase crossover occurs. Recall in the

baseline case TI'=D=0.05.
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S

Figure 15 shows the amplitude and phase of EI vs W for the
baseline case. The amplitude is a minimum (~1.0 x 1073 p”)
around W=0.4 and increases on both sides, reaching a maximum
(~6.0 x 1073 P*) at W=3.0. The phase is positive when W > 0
and negative when W ¢ 0. If ¢ < 0 just the sign of WE is
reversed. Since v” is changed this seal also always

provides stabilizing forces because wEV*W is always

positive.

The first two parametric variations from the baseline will
involve the effects of convergence and divergence 9f the
seal. Figure 16 shows the amplitude and phase of %I vs W
for the baseline (a=1.0) along with three other cases of
diverging seals («=1.025, 1.05, 1.1). The amplitude of the
perturbations tend to be larger for diverging seals. As the

seal divergence becomes greater the phase charges sign at

lower nondimensional whirl frequencies.

This is true regardless of the sign of ¢. This implies .that
diverging seals tend to destabilize rotors in the direction
opposite that of the inlet swirl. Alternatively if a rotor
has a tendency to whirl in the direction of inlet swirl, as
was the case with I' = 0, then a slightly diverging seal may
enhance rotor stability.

Figure 17 shows the amplitude and phase of %1 vs W for 3

converging seals along with the baseline (a«a = 1.0, 0.975,

0.95, 0.9). The amplitude behavior shows similar trends to
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those of the diverging ones, increasing away from a=1.
However, the phase shows the opposite trend moving the phase
crossover to higher whirl frequencies as o« increases.
converging seals promote whirl in the same direction as
inlet swirl. These seals appear to be very stabilizing to
whirl in the other direction, since the amplitude is greater

and the phase is around - n/2.

The next parameter to be presented which influences the
forces is 4. As mentioned earlier A is a measure of the
through flow pressure gradient. Figure 18 shows the

amplitude and phase of %— vs W for 4=0.3, 0.5, 0.7 and 0.9.
1
The shapes of the amplitude curves do not change much. They

appear to be a self similar family of curves which scale as

A2 just as in all three special cases plus the small o(1l-w)

approximations given in (4.26) and (4.27). This suggest

that the experimental data should be reduced by presenting

3

elA

to A. This situation changes somewhat when o(l1-W) > 1.

5 VS W. As a consequence of this the phase is invariant

The influence of T on the pressure perturbations can be
observed by referring to Figure 19. Here Lél and WE are
plotted vs W for four different values of T %0.05, 0.01,
-0.01, -0.05). The behavior for |I'| << 1 approaches very
well the case of I'=s0 in that the minimum pressure occurs
along with a phase reversal at W=1l. As I becomes more

positive the minimum amplitude moves to lower whirl

frequencies along with the phase cross over. Conversely, as
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I becomes more negative the minimum amplitude and phase
cross over proceed to higher frequencies. The phase
behavior shows the combination of the two phenomena
presented in special case 2 and 3. The reaction torque may
either increase or decrease the range of stable operation
depending on the direction in which it acts. As was shown
by using (4.28), when I'=D these two types of forces cancel.
I' can be changed by altering the relative size of rotor and
stator surfaces and/or treating these surfaces in an attempt
to control the friction factors XS and AR. D is probably

easier to specify.

The last parameter to be inyestigated is o. Figure 20 shows
the amplitude and phase of %I vs W for ¢ = +0.1, +0.3, +0.5,
+0.7. The amplitude is a very strong function of o(l-W).

This cannot be seen from (4.26) since higher order terms in
o(l-w) were neglected in that approxiTation. The sign of ¢

g

does not influence that magnitude of EI however the phase
is reflected about the E = 0 axis. This does not alter the
regions of stability since both ¢ and W change signs with
v, This suggest that the usual definitions of forward and
backward whirl, being referenced to the shaft spin, are not
very meaningful with reference to labyrinth seal induced
rotor whirl. Here it is more illuminating to refer to the

physical whirl direction a being with in the same or

opposite sense as the mean swirl in the seal.
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4.5 ROTORDYNAMIC COEFFICIENTS

As mentioned the rotordynamic coefficient Cij and Kij are
needed as inputs to a general purpose rotordynamic
stability/response program and can be obtained from the
amplitude and phase information. The first step is to
integrate the pressure distribution and obtain the net force

components in the direction of the minimum gap and 90° ahead

of it. From (1.7) and (1.8) these forces may be written as

2n 2n
~ %
Fxl = -R_1 J P(w)coswdy = -R_1 J RN cos(y-v,)dy
] Q
= -nr_1}E|P" 4.29
= -nR_1|E|P coswg (4.29)
and
~ e
sz = -nRsllﬁlP siny, (4.30)

By the definition of C and K, FX and FX can be decomposed
1 2

into components in phase with the motion (real) and n/2

ahead (imaginary) in the whirl direction. When the real and

imaginary parts are equated the forces per unit eccentricity

can be expressed as

1. -K + QC (4.31)

—2 = -K__ - QC (4.32)



77

The data can be more conveniently presented by using the

following non-dimensional rotordynamic coefficients defined

by
* *
Ki'sl Ci'v 61
Ki_ =——J—-—; Cl =-—-—J———-—* (4.33)
3 pr_ 1P ] TRZ1P
s s
SZRS
with these definitions, recalling that W = —— and using
v

(4.31) and (4.32) it is possible to relate these as,

% [ E] cosvg

Relom| = —g—— = K - W T (4.34)
1 1
: | £] sinvg

Im EI = ——EI———_— = ny - W Cxx {(4.35)

where Kxx’ C..., etc. are themselves functions of W in

Xy

general.

The C’s and K’s are calculated by inserting neighboring valu
of W into these and solving the resulting simultaneous egqua-
tions. This is called the local secant method and can be
done for all W in the range of interest 4W=0.1 is used for

the calculations. Note from the symmetry of the physical

system
K__ = K__ C.. =C__
XX Yy XX vy
(4.36)
Key = 7 Byx xy -~ Cyx
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Approximate closed form expressions for the coefficients may
be obtained by decomposing (4.26) into real and imaginary
components and substituting these into (4.34) and (4.35).

By inserting wW=0 and W=1 the following expressions for K__,

XX
K., C and C are extracted by this global secant method.
Xy Xy XX
2.2
., ~u-hoshaw?
K. =4 - (4.37)
xx 1+ o+ ()2
ubD
1
2 r -pb +1 - =
- _ 48 oL o
ny = 5 - az . (E_)Z (4.38)
uD
1
o L (4.39)
XX D 1 4 oL2 + (E_)Z '
uD
— _ =202 (1 -w (4.40)
Xy D 2 L 2 :

)

1+C¥.+(;B
Stability criteria similar to those given for the phase can

be presented for these coefficients. The non-dimensional

force Fx acting out of phase with the rotor displacement

2
is
* —
51Fx2 sz
Ft 3 = - Kx - W cxx (4.41)
rnR 1P 1 b4

Only the cross stiffness and direct damping influence
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stability. If Cox = 0 then ny > 0 promotes whirl in the

negative direction whereas ny < 0 creates whirl in the
positive sense. For C _ > 0 the damping forces must
remove more energy than the elastic ones add to maintain

stable operation.

> | => stability : (4.42)

|wce K. |
Xy

xx |
However from (4.39) it can be seen that Cxx need not be

A C becomes

positive. 1In fact when « is greater than 1D’ C“xx

negative which is potentially very destabilizing. One very
important consequence of the closed form relations (4.38)
and (4.39) is that by properly choosing I', o« and D the
magnitude and signs of E;; and K;; can be prescribed to

enhance stable operation.

Figure 21 shows these coefficients vs W for the baseline
case. They follow the closed form expressions well
especially for 0 { W < 2. This is to be expected since they
were derived for |o(1-W)| << 1. The high level of stabili-

zation this seal provides is reflected by ny “ 0 and

Cxx > 0.

Figure 22 shows the coefficients vs W for « = 1.1. These
are changed significantly from the baseline and the

reduction of stability is reflected by the negative Cox

Figure 23 presents Kij and Cij vs W for I' = -0.05. The
decreased range of stable operation as was shown in Figure
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19 is predicted by the down and shift of ny.

Finally Figure 24 shows these rotordynamic coefficients vs W
for ¢ = 0.6. The magnitudes are much greater as expected.
They also differ more from the closed form expressions for a

given W since |o(1-W)| is larger.

4.6 SUMMARY

The equations derived in Chapter 3 were nondimensionalized
and solved for the pressure perturbation E. Three special
cases were investigated showing limiting behavior. A design
study was undertaken to determine what range of parameters
would be needed in order to experimentally verify this type
of theory. The amplitude and phase behavior of % vs W was
investigated using «, I', 4 and ¢ as parameters. Closed form
expressions for the rotordynamic coefficients, when

|o(1-W) |<<l, were derived. From the phase or E;; and E;; it
was seen that I', D and « change a seals stability character-
istics. It appears that by designing "custom tailored"
seals rotor whirl may be eliminated. For a straight seal,
a=1, I'=D was optimum. However, when V. > wRg, and T < 0
this cannot be accomplished. Therefore « must be tailored.
From a practical point of view « must be precisely
controlled and it could be very expensive to hold such tight
machine tolerances. 1In theory this could be extended to
multichamber seals but the simple closed form solutions

would have to be abandoned. Iterative methods would be
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needed since « enters into the equations nonlinearly and a N
chamber seal yields 2N complex algebraic equations similar

to (4.1).
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Figure 13 - Amplitude and phase of normalized pressure
perturbation vs. the swirl gradient parameter T
for different values of o.
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baseline configuration.
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Figure 16 - Amplitude and phase of normalized pressure
4 perturbation vs. non-dimensional whirling

frequency W. Three different diverging seals
are compared to the baseline case.
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Figure 17 - Amplitude and phase of normalized pressure
perturbation vs. non-dimensional whirling

frequency W. Three different converging seals
are shown along with the baseline.
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Figure 18 - Amplitude and phase of normalized pressure

perturbation vs. non-dimensional whirling
frequency W, using 4=0.3, 0.5, 0.7, and 0.9.
All other parameters are the same as baseline.
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Figure 19 - Amplitude and phase of normalized pressure
perturbations vs. non-dimensional whirling
frequency W, using I=0.05, 0.01, -0.01, and
~0.05. All other parameters are the same as
baseline.
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CHAPTER 5

FACILITY DESIGN

5.1 DESIGN REQUIREMENTS

Many interacting constraints were considered when setting
the design requirements for the Labyrinth Seal Testing
Facility (LSTF). First and foremost it was necessary to
determine what range of values for the various non-
dimensional éarameters discussed in the previous chapter
must be obtained in order to corroborate the Kostyuk-
Iwatsubo theory especially with regard to the damping
forces. Even with these parameters set many families of
designs were possible by scaling the geometric as well as
flow related quantities. Certain constraints were imposed
in order to minimize facility cost while still maintaining a
high level of flexibility in operating conditions. The
following is a list of design goals along with a brief

discussion of each.

1. Flexibility

It is desirable to have a facility that can operate under as
many conditions as possiblé. The theory provides guidelines
as to what to expect but until after the experiments are
conducted it is impossible to determine if the theory is

very accurate.
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2. Minimige Facility Size

The major purpose of this is to reduce facility cost since
the cost goes up very rapidly with the linear dimensions.
For geometrically similar designs this means the seal radius
R should be kept as small as possible. This has many
additional benefits such as reducing the flow rate of air
and limiting stresses on rotating parts. However, the

facility should not be made to small as to render the

measurements difficult.

3. Limit Air Flow to 0.3 Kg/sec @ 600 Kpa

Many different sources of pressurized air were considered.
Both steady state and transients mode operation were
investigated as to their feasibility. A decision was made
to use the MIT-GTL oil free compressor as the air source.
This facility can deliver 0.3 Kg/sec of air at a pressure up
to 600 Kpa. If necessary this compressor can be employed in
conjunction with supply tanks with a total capacity of 500

3

£t (14 m3). In this configuration a mass flow rate of 1

Kg/sec can be obtained for 1 min under blow down conditions.

4. Maintain the Reynolds Numbers Above Certain Critical
Values

There are two different Reynolds Numbers of importance in

this problem. The gap Reynolds Number (defined as Reg =
*
)

1 w

) and the circumferential flow Reynolds number used in
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Chapter 2 to obtain the friction factors (defined as Re=

V*
rel

between the experiment and real machines for either without

Dy/v). It is not possible to maintain similarity

employing extraordinary measures (e.g. large scale, high
pressures, exotic fluid, etc.). However, it probably is not
necessary to obtain an exact match as long as there are
maintained above certain threshold values. For.the gap it
is known that the flow over the knives is fairly Reynolds
number independent above a critical value of 104 (46). For
typical machines R; nay exceed 106, whereas it would be

very difficult to increase it much above 105 for this
experiment. It should be noted that this is well into the
turbulent regime. Hence the behavior should be similar.
Within the limits of this theory, the only difference should
be that with a moderate Reynolds number the seal surfaces
would be hydrodynamically smooth. For the much higher
Reynolds number the friction factors would be substantially
increased since the surfaces would be hydrodynamically
rough. These arguments would apply to normally machined
surfaces (rms e " 150mm). If "casing treatments"” were used,

as done by some manufactures, the situation would be

substantially altered.

Under these guidelines and considering instrumentation
limitations a preliminary design was obtained. The initial
seal geometry was fixed as in the last chapter with the

following values of the non-dimensional geometric
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parameters.
a=1.0 H=0.05 L = 0.15 D = 0.05 (5.1)

This represents a family of designs scaling linearly in real
dimensions with the seal radius R . All other seal dimen-
sions, except Ry, can be discretely altered by replacing the
test seal. Allowing for variable R, was though to be un-
necessary as well as prohibitively expensive. The facility -
was scaled with a compromise seal radius of R, = 0.15M.

With this, the geometry of the seal for the baseline case,

referring to Figure 6, is

0.15m § 0.0006m

o
]

i

o
1]
N % %

0.0075m 8 0.0006m (5.2)

1 = 0.0225m

For this fixed geometry, the range of the kinematic and flow

parameters was found in the design study to be

|
o
In

W< 3
0.2 < b <0.9
- 0.1 <Tr<o0.1 (5.3)
0.7 < o < 0.7

l
w
.
o

IA
wn
[PaN
(VN
o

From these it is possible to calculate the ranges for each
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of the physical controllable variables using the zeroth
order calculation of Chapter 3. For simplicity, the air
temperature and exit pressure, T and P respectively, will
be set to the ambient conditions. Wwith this, the remaining

variables must be able to vary within the following limits.

Inlet Pressure 120 Kpa < P, & 350 Kpa

Pre-Swirl -35 m/s ¢ vy g 35 m/s

Spin Angular Velocity -600 rads/sec < w £ 600 rads/sec
whirl Angular Velocity -300 rads/sec < @ < 300 rads/sec
Whirl Eccentricity 0 < r £ 0.6mm

These requirements are of two separate kinds. The first two
prescribe the inlet conditions of the air entering the
labyrinth. The second three impose restrictions on the
kinematics of the seal. It is useful to think of the
problem in these terms since the actual mechanical design
will be divided into the rotating machinery which controls
the spinning-whirling motion of the seal and the air supply
which admits the air into the seal at the proper pressure

and relative angle.

5.2 ROTATING MACHINERY

The rotating machinery must have the capability to spin the
test seal at speeds up to 6000 rpm while independently

forcing it to execute an exact whirling motion up to 3000
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rpm either in the same (simulating forward whirl) or
opposite (simulating backward whirl) direction as the spin.
The simplest type of machine able to accomplish such a
complicated motion is one with an inner shaft mounted
eccentrically, in bearings inside a rotating intermediate
housing. This rotating housing is in turn placed in bearing
supported by a fixed outer housing. Figure 25 shows a
schematic of this type of mechanism. Since the shaft is not
centered in the intermediate housing, a rotation of this
case causes the shaft’s center to proceed about the centroid
of the outer housing producing the desired whirl. The inner
bearings allow relative rotation of the shaft inside the
rotating housing permitting any spin to proceed indepen-
dently of the whirling motion. It should be noted that a
given asymmetry in the rotating housing produces a charac-
teristic whirling amplitude. Therefore, several variations
on this basic deéign were investigated to allow for variable
whirling eccentricity. One straightforward'method is to
machine Separate rotating housings. This option was
discarded due to the great expense. Another alternative is
to have small replaceable bearing sets with a different set
for each desirable eccentficity. The third option, which
was the path taken, is to have an eccentric rotating housing
containing a "counter-eccentric" bearing seat insert which
can be rotated and fixed to obtain any desired whirl eccen-
tricity within a given range. Figure 26 shows a cross

section of the rotating housing, along with the eccentric
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ingert, wWith the parts located in the relative positions
shown, the inner and outer surfaces are concentric, yielding
a whirl amplitude of zero. However, when the insert is
rotated relative to the housing the surfaces become
eccentric. By adjusting these parts by the proper amount

the whirling amplitude may be precisely controlled.

To obtain a detailed mechanical design for the rotating

machinery, based on this concept, several auxiliary factors

should be considered.

1. Design such that all critical frequencies fall outside
the range of normal operation.

2. Choose the bearing types and sizes consistent with loads
and speeds to obtain a maximum machine life.

3. Minimize the mechanical and thermal stresses. A factor
of safety of 3 was used for all parts.

4. The machine should be easy to assemble and disassemble.
5. Each part should be easy to machine.

6. Use materials consistent with part and overall facility
requirements. ‘

7. Maximum durability at a minimum cost.

After a preliminary design was proposed, subsequent working
designs were altered to be consistent with the above
criteria. After many iterations a final mechanical design
was obtained that met all requirements. Appendix C contains
explanations and representative calculations on how the

first three requirements were met.

Figure 27 shows an assembly cross section of the rotating
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rig final design. The test seal, which can be easily
replaced, is attached by 8 #8-36 UNC tap screws to the disk
(part #9). This disk is in turn secured onto the inner
shaft (part #1) by a N-07 lock nut. This shaft is driven by
an inline flexible coupling and is supported eccentrically
by two precision radial ball bearings (BC-207 Class 7)
inside the rotating housing assembly (parts 2,3,4,5). The
eccentricity can be adjusted by removing the shéft and
bearing and repositioning the eccentric inserts {parts #3).
These outer bearing seats are then secured by tightening the
set of radially inward screws. This entire whirl control-
ling assembly is driven by a NX3-v3 vV-Belt and is contained
inside the outer housing by two radial ball bearings (BC-224
Class 5). These bearings are separated by part 5 and are
kept in place by a N-24 lock nut and a bearing plate (part
#8). The outer housing contains two drilled/tapped holes
over each bearing and 90° apart for 4 accelerometers to be
mounted. These are mainly for the purpose of machine health
monitoring. The entire rig is supported by a welded steel

stand (part #11).

If the region behind the disk were maintained at atmospheric
pressure the resulting net axial force, which would be taken
by the bearings, could reach several tons at the higher flow
rates at which this machine will operate. No bearings of
this size can operate at high speeds under such bearing
loads. To remedy this situation, the volume between the

disk and the pressure cap (part #7) will be pressurized to
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minimize the thrust loads. To supply the air for this
purpose a line is run through the housing and into the cap.
Auxiliary facing Labyrinth Knives form of seal against the
back of the disk hence minimizing leakage and increasing the

counter thrust on the disk.

Detailed mechanical drawings of all the parts contained in
the rotating rig are presented in Figures 28-38. Dimen-
sions, materials and handling are all specified along with

other necessary information.

The materials that were specified were used in order to
increase facility functionality at a minimum cost. The
inner rotating parts (1,2,3,4) of the machine, which must be
taken apart and reassembled every time the eccentricity is
to be changed had to be made of a very hard material for
durability considerations. For these parts case hardenable
8620 steel was chosen and hardened to Rockwell 56 to a dépth
of 50-60 mils. This allows sufficient hardness for the
bearings to be press fit many times while keeping the core
material quite ductile, hence preventing cycle fatigque. The
remaining parts except for the disks were made of various
types of 10XX free machining mild steels. These steels were
chosen for low cost. The disks are made of 6061-T6 aluminum
alloy. This material was chosen for many reasons. First,
it is one of the lightest metals available. This reduces
the radial bearing loads during whirling and raises the

critical frequencies both in bending and in pitching.
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Heavier steel disks would not be as good in these regards.
Also the yield stress/density ratio, which is an important
figure of merit for materials used in rotating disks, is
quite high. Only very expensive materials, such as those
used in jet engines, are much better in this respect.
However, the threads into the disks would get fouled quickly
if made of aluminum. Therefore, 8-36 free running inserts

were used for test seal attachments.

This machine will require dynamic balancing of both the
shaft and the rotating housing. First the shaft should be
balanced. The simplest way to accomplish this is to remove
it and place it on a portable balancing machine. It may not
require_any added mass since the machining tolerances were
quite small and it is nominally symmetric about the axis of
rotation. With this done, the shaft is placed back in the
housing, and balancing of the entire disk-shaft-housing
assembly may proceed. Due to the eccentricity of the shaft
and inner bearings, the combined centroid of this assembly
is not concentric with the outer bearings. It may be as
much as 1350 g-cm off at maximum eccentricity. If this were
not compensated an intolerable vibration level would result.
First, a rough balancing operation is undertaken by placing
large counter weights on the ends of the rotating housing.
The mass required at the given radius is a function of the
eccentricity and is easily calculated. WwWith these counter
masses placed on both ends of the housing a finer balancing

may be obtained by iteratively using very small masses and
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checking the vibration level with the accelerometers.

5.3 AIR SUPPLY

The other major component of the Labyrinth seal testing
facility is the air supply. The purpose of the air supply
is to admit the air to the test seal at the proper pressure
and angle. It also will serve as the mounting place for
most of the instrumentation. As in the case of the rotating
machinery, certain auxiliary objectives should be considered

when designing this component. These are:

1. Easy adjustment of the inlet air angle.

2. This component should be easily separated from the
rotating rig.

3. No natural frequencies should lie in the range of
operation,

4. Limit stresses on all parts. Again a factor of safety
of 3 was used.

5. Maximum durability at a minimum cost.

The pressure entering the seal can be controlled in many
ways. First the pump pressure ratio can be controlled
directly and there are throttles in various places along the
piping. Finally the flow.rate can be controlled at the

entrance to the plenum.

Several methods were investigated to produce and control the
swirl, maintaining circumferential uniformity, entering the
test seal. It would have been preferable to have a

mechanism that could be adjusted to obtain the different
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swirl velocities. Designs of this kind were considered and
discarded. Variable vanes of the size required would be
extremely difficult to manufacture and no other design of
this type could guarantee controllabilityland uniformity of
the plenum swirl. 1In the design chosen the air is
accelerated and turned to add the proper amount of swirl by
a set of fixed vanes. Different vane assemblies, with
different blade angles, need tc be inserted to obtain

different amounts of swirl.

Figure 39 shows an assembly cross section of the air supply/
test section. The air enters part 1 through a two inch pipe
and is directed radially outward into the annular prevane
plenum. The air is next accelerated and turned through a
ring of fixed flat vanes (part #2)..- Parts 1 and 4 can be
easily detached and different vane assembly can be inserted.
The air is then dumped into the test plenum (between parts
#3 and 4) with the proper amount of tangential momentum.
Only minor losses in the circumferential component of
velocity are experienced due to friction, but major pressure
losses do occur because of the rapid expansion. Part 4 of
the air supply serves as the seal land and test section and
is rigidly attached to the rotating rig. Most of the
facility instrumentation will be contained in this part as
will be described in the next chapter. After the air flows
through the test section it is discharged through openings

in the pressure cap. This is an open loop facility.
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S.4 FACILITY LAYOUT AND AUXILIARY EQUIPMENT

Figure 40 shows a side view schematic of the facility
layout. The combined rotating rig-air supply/test section
is held in place by the rig support. This support is in
turn bolted into a welded steel stand. This stand is set on
four high damping vibration isolators. The mass of the
stand and spring constant/damping characteristics of the
isolations were chosen to minimize the vibratioﬁ. A three
degree of freedom model containing one bouncing and two
pitching modes was employed. See Appendix B for details.
The V-belt, which drives the whirl producing rotating
housing, is connected to a variable speed d.c. motor through
a 6" diameter pulley. The shaft is connected to an inline
d.c. motor by a flexible coupling. As mentioned previously,

the air is supplied by the MIT Gas turbine Lab o0il free air

compressor.



Figure 25 - Mechanism for producing spinning/whirling shaft.



Figure 26 - Mechanism for producing variable whirl
eccentricity.
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CHAPTER 6

INSTRUMENTATION

6.1 INSTRUMENTATION REQUIREMENTS

The measurement of many physical quantities must be made in
order to calculate, correlate and compare the spring and
damping characteristics for this single gland seal to the
predictions of the Kostyuk-Iwatsubo theory. In Chapter 4
the results of the theory were presented in terms of
amplitude and gap relative phase of the pressure pertur-
bations. This form was chosen, since these will be the type
of measurements made. The quantities to be measured are the
following:

1. The static pressure inside the gland as a function of
angle and time.

2. The motion of the seal. This includes the whirl
amplitude and angular velocity as well as the spinning
angular velocity. Note that the relative phase between
the minimum gap and the pressures must be known.

3. The inlet conditions, Pi' Vi' T.

4. The average swirl velocity, V*, and pressure P*, inside
the gland.

5. The flow rate through the test seal, Q.

6. The rig vibration level.

The facility requirements, as given in the last chapter, are
intimately connected with the capabilities of commercially
available transducers. The major constraint in this regard
was imposed by the sensitivity and accuracy on the time

resolved pressure measurements.
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6.2 PRESSURE MEASUREMENTS

Recall that for the baseline case presented in Chapter 4

~ *
the amplitude of the minimum pressure perturbation |§| P

was 5 x 107% P*. wWith the facility scaling this turns out
to be approximately 100 pa (0.015 psi). To obtain
sufficient resolution it is necessary to measure within 10
pa (0.0015 psi) at most. Since the average pressure P is
223 kpa (34.90 psi), it is implied that relative variations
of 0.0086% would have to be measured. Transduces-amplifies
systems able to measure such high pressures with the
required sensitivity are not readily available. Due to this
state of affairs a scheme employing relative pressure
measurements was derived. This technique to be described

was found to be more satisfactory than simply using absolute

or atmospheric transducers.

The reference pressure is obtained by running tubes from
pressure taps in the seal gland into a reference pressure
manifold, supplying the reference pressure P*. Then tubes
are run to each of the differential transducers. There-
fore the net reading from the transducers would just be

the unsteady perturbation component [EI P cos(¢+Qt). The
average value should be zero. A porous material is placed
in the manifold to dampen any unwanted fluid resonances.
Theoretically one transducer at any angular location within
the gland would suffice. However, for purposes of redun-

dancy and to measure the spatial non-uniformity within the
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gland, four equally spaced transducers will be used. At
maximum whirling speed the theory suggest that the first
harmonic would be at 50 hz. However, transducers with a
greater frequency response are desirable to detect the
higher harmonics associated with geometric imperfections
traveling at shaft spinning speed (100 hz x n). Due to this
an upward limit of 1 khz was set. To accurately measure
such high frequencies, flush mounted membrane transducers
are required. The kind chosen was Kulite XCS-190 5 psid
flush mounted pressure transducers with a sensitivity of 45
mv/psi. These are active strain gauge/membrane devices.

The power for the bridges and the signal amplification is
supplied by four Pacific Instruments 8650 signal condi-
tioning amplifiers. High frequency components (over 1 kz),
due mainly to turbulent fluctuations, can be filtered by
these amplifiers or this can be accomplished later in
digital mode by the data acquisition software. The other
pressure m;asurements, which are steady state, are made by a
single 100 psi transducer along with an automatic switching,

multi-port scanivalve.

6.3 SEAL KINEMATIC MEASUREMENTS

In theory, the motion of the seal is precisely controlled by
the rotating machinery. However, in practice one would
expect some deviations due to machining tolerances, normal
operating vibrations, etc. Therefore direct measurements of

the seal motion is necessary. To make these measurements,
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two Bently-Nevada CSN-5 proximeter systems'are placed on

orthogonal axes in the plane of rotation of the test disk.
This system is capable of measuring the whirl path to less
than 0.0025mm (0.0001 in). The relative phase is found by

using a time synchronization technique.

The speeds of the shaft and the rotating housing are
measured by frequency counters pricking up a once per rev
impulse from small magnets implanted in each. This
information may be used in a closed loop control system to

more precisely control the speed of the two motors.

6.4 VELOCITY MEASUREMENTS

Two of the most important non-dimensional parameters found
in the theory involved the average tangential velocity in
the seal, o, and the change in this velocity component, T.
Therefore, it is necessary to measure this component in the
test plenum as well as in the gland. To obtain these
measurements a two probe hot wire anemometer will be placed
at each of the two stations. The 10 mil wires are oriented
normal to the plane of maximum velocity and have a 45° angle
between them. Again, the excitation and amplification/

conditioning is handled by Pacific Inst. 8650 amps.

6.5 VIBRATION MEASUREMENTS

The vibration measurements, primarily intended for machine
health monitoring, are made by attaching 4 Endevco 7702-50

accelerometers to the outer casing of the machine. Two
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transducers each are placed in two parallel planes 90°
apart. If possible the vibration signals will be used to
back out the aerodynamic forces on the seal. If the
vibration spectra is measurably different at different flow

rates then the rotor dynamic coefficients Kij and Cij can be

calculated.

6.6 FLOW MEASUREMENTS

The flow rate through the seal could be calculated with
direct measurements of Py and P . However, the accuracy may
not exceed 10%. Therefore an independent measurement will
prove useful. Two flow meters will be used. One low loss
turbine flow meter will be used to yield the flow entering
through the 2 inch supply line. The other meter, a
calibrated ASME orifice/pressure loss device, will be used
to measure the flow that bypasses the test seal and escapes
through the two rig seals. By subtracting the leakage from
the total the air flow rate through the test seal is

obtained.

6.7 DATA ACQUISITION SYSTEM

The output from the amplifiers is digitized by a 12 bit 32
channel Lecroy Analog to Digital converter (ADC). The
sampling rate for the unsteady measurements will be 10 Khz.
These digital data will be dumped into a Lecroy 880DA buffer
system. Then the data will be fed into the 30 meg disk of an

IBM-PC-AT. A statistical analysis suggest that measurements
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should be taken for about 60 whirl orbits and a phase lock
averaging technique should be employed in reducing the
pressure perturbation data. Therefore, measurements should
be made for approximately 20 ms. Not all of the data
acquisition software for performing these tasks has been

procured.
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CHAPTER 7

CONCLUSIONS

7.1 SUMMARY

The importance of the aeroelastic forces generated by
whirling labyrinth seals on the stability of rotor/bearing
systems was described. All of the pertinent literature
concerning this problem and the closely related problem of
acoustic-elastic instability producing high cycle fatigque of

the sealing knives was presented.

A lumped parameter model based on those of Kostyuk and
Iwatsubo was presented. A simplified set of coupled
non-linear ordinary differential equations was obtained by
transforming to rotating coordinates. The equations were
linearized and a set of linear algebraic equation obtained
by assuming single period harmonic behavior. These
continuity and momentum equations were non-dimensionalized
and a solution for the pressure perturbation i was pre-
sented. Three limiting cases were given first by setting
certain of the driving terms to zero. Then the results of a
design study, whose purpose was to obtain the range of the
various variables necessary to corroborate the theory
experimentally, was presented. The results were given both
in terms of amplitude and phase of the pressure perturbation
and the non-dimensional rotordynamic coefficients. Closed
form approximations were obtained for these under the

assumption that |o(1-W)|<<1l. Based on this study, facility
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requirements were set and a detailed mechanical design was
given. Finally, the necessary instrumentation to measure

the various physical quantities was presented.

7.2 RECOMMENDATIONS FOR FURTHER WORK

The major goal of this work was to obtain a facility capable
of measuring the aeroelastic forces generated by spinning
whirling labyrinth seals. Tests should be conducted on
straight-through convergent and divergent seals under a
sufficient range of inlet conditions necessary to check the
quantitative accuracy of this type of lumped parameter
model. The hypothesis put forward in Chapter 4 that "custom
tailored" seals can lead to universally stable seals should

be verified experimentally.

Further analytical and computational efforts should
concentrate on the nonlinear behavior of such seals.
Preliminary theoretical results, based on solving (2.30) and
(2.31) more exactly, suggest nonlinearities could play a
significant role when the shaft’s rotational speed is nearly
twice the first lateral critical speed. Computational
methods for solving this system are dependent on devising an
appropriate scheme for imposing the proper periodic boundary
condition on P and V. One method which appears to hold
promise in this respect is any one of the many discrete
fourier transform methods. 1In these periodicity is imposed
automatically. Even though recent developments in the

direct numerical simulation of high Reynolds number, cavity
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flows (47) show promise, such methods are not sufficiently

economical to allow them to be used as a design tool at the

present time.

Recently, some turbomachines have shown "unbalanced
response”" at high flow rates. One possible explanation of
this is that a noncircular spinning seal is somewhat
equivalent to a whirling seal except that the pressure
perturbations within the glands are locked to rotor speed
instead of the rotors natural frequency. This would appear
to be a forced vibration in this context. This should be

checked thoroughly.



10.

11.

12.

13,

134

REFERENCES

Martin, H.M., "Labyrinth Packing”, Engineer, January
10, 1908, pp. 35-38.

Stodola, A., Steam and Gas Turbines, 6th edition,
McGraw-Hill, Vvol. 1, 1927, pp. 189-194.

Sneck, H.J., "Labyrinth Seal Literature Survey",
Journal of Engineering for Power, October 1974,
pp. 579-581.

General Electric Flow Data Book, Vol. 1, Section 405.2,
May 1982, pp. 3-21.

Ehrich, F.F., "Identification and Avoidance of
Instabilities and Self-Excited Vvibrations in Rotating
Machinery", ASME Paper 72-DE-21, October 1979.

Ehrich, F.F., and Childs, D., "Self-Excited Vvibration
in High Performance Turbomachinery", Mechanical

Engineer, May 1984, pp. 66-79.

Bisplinghoff, R.L., and Ashley, H., Aeroelasticity,
Addison-Welsey, 1956, pp. 381-384.

Childs, D.W., "The Space Shuttle Main Engine High
Pressure Fuel Turbopump Rotordynamic Instability",
Journal of Engineering for Power, January 1978,
pp. 48-57.

Ek, M.C., "Solution of the Subsynchronous Whirl Problem
in the High-Pressure Hydrogen Turbomachines of the
SSME", AIAA/SAE 14th Joint Propulsion Conference,

Las Vegas, NV, July 25-27, 1979.

Jeffcoat, H.H., "The Lateral Vvibration of Loaded Shafts
in the Neighborhood of a Whirling Speed", Phil. Mag.,
No. 6, 1919, pp. 304-314.

Nordman, "Modal Analysis in Rotordynamics", Chapter 1,
Dynamics of Rotors, Stability & System Identification,
Springer-vVerlag, New York, 1984.

bugundji, J., Duong, C.N. and Chang, Y.P., "Formulation
of Labyrinth Seal Effects in Rotor Dynamic Analysis",
Presented at 1lth ASME Design Eng. Conference on
Vibration and Noise, September 27-30, 1987, Boston, MA.

Den Hartog, J.P., Mechanical Vibrations, 4th edition,
McGraw-Hill, 1956, pp. 295-297.




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

135

Thomas, H.J., "Instabile Eigenschwingungen von
Turbinenlaeufern Angefacht durch die Spaltstroemung in
Stopfubuchsen und Bechauchflung (Unstable Natural
Vibrations of Turbine Rotors Induced by the Clearance
Flows in Glands and Blading;", Bull. de L’A.I.M. 71
No. 11/12, pp. 1039-1063.

Alford, J.5., "Protecting Turbomachinery From Self-
Excited Rotor Whirl", Journal of Engineering for Power,
October 1965, pp. 333-344.

Ehrich, F.F., "Aercelastic Instability in Labyrinth
Seals", Journal of Engineering for Power, October 1968,
pp. 369-374. '

vVance, J.M., and Murphy, B.T., "Labyrinth Seal Effects
on Rotor Whirl Instability"”, Institute of Mechanical
Engineers, 1980.

Kostyuk, A.G., "A Theoretical Analysis of the Aero-
dynamic Forces in the Labyrinth Glands of Turbo-
machines", Teploenergetica, 1972, vol. 19, No. 11,
pp. 29-33.

Iwatsubo, T., "Evaluation of Instability Forces of
Labyrinth Seals in Turbines or Compressors", NASA C.P.
2133, 1980, pp. 139-169.

Iwatsubo, T., "Flow Induced Force of Labyrinth Seal",
NASA C.P. 2250, 1982, pp. 205-222.

Gans, B.E., Prediction of the Aero-Elastic in a
Labyrinth Type Seal and its Impact on Turbomachinery
Stability, Eng. Thesis, Department of Mechanical
Engineering, M.I.T., 1983.

Kufohashi, Y., and Inoue, T., "Spring and Damping
Coefficients of Labyrinth Seals", Proceedings,
Institution of Mechanical Engineers, 1980.

Celorio-villasenor, A., Analysis of Disturbing
Aerodynamic Forces in Labyrinth Seals, S.M. Thesis,
Department of Aeronautics and Astronautics, M.I.T.,
1984.

Kameoka, T., and Abe, T., "A Theoretical Approach to
Labyrinth Seal Forces", Work Shop on Rotor Dynamic
Stability, Texas A&M Univ., May 1984, pp. 28-30.

Lee, O.W.K., Prediction of Aerodynamic Force
Coefficients in Labyrinth Seals, S.M. Thesis, Depart-
ment of Aeronautics and Astronautics, M.I.T., February
1984.




26.

27.

28.

29,

30.

31.

32.

33.

34.

35.

36.

37.

136

Cchilds, D.W., and Scharrer, J.K., "An Iwatsubo Based
Solution for Labyrinth Seals: Comparison to Experi-
mental Results", Journal of Gas Turbines and Power,
April 1986, vol. 108, pp. 325-331.

Sisto, F., and Rajakumar, C., "A Parametric Study of
Turborotor Excitation Forces Generated by Labyrinth
Seals", ......

Martinez-Sanchez, M., Lee, O.W.K., and Czajkowski, E.,
"Prediction of Force Coefficients for Labyrinth Seals.
Work Shop on Rotordynamic Stability," Texas A&M
University, May 1984, pp.

Benckert, H., and Wachter, J., "Investigation of the
Mass Flow and the Flow Induced Forces in Contactless
Seals of Turbomachines", Proceedings of the 6th
Conference on Fluid Machinery, Budapest 1979,

pp. 57-66.

Benckert, H., and Wachter, J., "Flow Induced Coeffi-
cients of Labyrinth Seals", NASA C.P. 2133, May 1980.

Spurk, J.H., and Keiper, R., "Selbssterregte
Schwingungen bei Turbomachinen Infolge der
Labyrinth-Stromung"”, Ingenur- Archjiv, 1974.

Leong, Y.M.M.S., and Brown, R.D., "Circumferential
Pressure Distributions in a Model Labyrinth Seal”, NASA
C.P. 2133, 1980, pp. 222-232.

Hauck, L., "Measurement and Evaluation of Swirl-Type
Flow in Labyrinth Seal of Conventional Turbine Stages",
NASA C.P. 2250, 1982, pp. 242-259.

Urlicks, K., Clearance Flow Generated Transverse Forces
at the Rotors of Thermal Turbomachines, NASA
translation tech mem. TM-77292, October 1983, Ph.D.
Dissertation, Munich Technical University, 1975.

Wohlrab, R., Experimental Determination of Gap Flow
Conditioned Forces at Turbine Stages and their Effects
on the Running Stability of Simple Rotors, NASA

~translation tech mem. TM-77293, October 1983, Ph.D.

Dissertation, Munich Technical University, 1975.

Childs, D.W., "Testing Seals for Rotordynamic
Coefficients"”, NASA Publication CP-2250, 1982.

Wright, D.V., "Labyrinth Seal Forces on a Whirling
Rotor", Proceedings of the Applied Mechanics,
Bioengineering and Fluids Engineering Conference,
Houston, TX, June 20-22, 1983, pp. 19-31.



38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.
50.

51.

137

Wright, D.V., "Air Model Tests of Labyrinth Seal Forces
on a whirling Rotor", ASME Paper 82GT-3458.

Patera, T., Computational Fluid Dynamics, Chapter 6
Viscous Computations, to be published, M.I.T. Press
1987, Class Notes.

Abbot, D.R., "Advances in Labyrinth Seal Aerocelastic
Instability Prediction and Prevention", ASME Journal of
Engineering for Power, Vol. 103, April 1981,

pp. 308-312.

Srinivasan, A.V., Arnold, R.A. and Dennis, A.J.,
"Aeroelastic Instabilities in Labyrinth Air Seal
Systems", ASME Paper 84-GT-169, June 1984.

Lewis, D.A., Platt, C.E. and Smith, E.B., "Aeroelastic
Instability in F100 Labyrinth Air Seals”, AIAA/ASME/SAE
14th Joint Propulsion Conference Paper 78-1087, Las
Vagas, NV, July 25-27, 1978.

Morse, P.M., Ingard, K.U., Theoretical Acoustics,
McGraw-Hill, 1968, pp. 309-312.

Ingard, K.U., Personal Communication.

Lomakin, A.A., "Die Berechung der Krdtischen Drehzahl
und der Bedingungingen fuer Sicherung der dynamischen
Stabilitatet des Laeufers von hydrauischen Hochruck-
Maschinenunter Beruecksichtigung der Kraefte, die in
der Dichtunger entstenen. (Calculation of Critical
Speeds and the condition to insure the dynamic
stability of hydrolic high-pressure machine rotors,
taking into consideration the forces generated in the
seals.)", Energomasinostroenie 4, No. 4, 1-5, 1958.

Kiesewetter, H.S., "Beruehrungsfreie Dichtungen,"
(Non-contact seals), VDJ Publishers, Duesseldorf 1973,

Gustafson, K., and Halasi, K., "Cavity Flow Dynamics at
Higher Reynolds Number and Higher Aspect Ratio," J.
Comp. Physics, vol. 70, No. 2, June 1986, pp. 271-283.

Shapiro, A.H., The Dynamics and Thermodynamics of
Compressible Fluid Flow, Volume I & II, Ronald Press,
New York, 1953.

Liepman, H.W., and Roshko, A., Elements of Gas
Dynamics, John Wiley & Sons, New York, 1957.

Schlichting, H., Boundary Layer Theory, McGraw-Hill,
New York, 1955.

White, F.M., Viscous Fluid Flow, McGraw-Hill, 1974.




52.

53.

54.

55.

56.

57.

138

Rosenow, W., and Chow, H.T., Heat Mass and Momentum
Transfer.

AFBA Standard #$12-A73 Specifications, Gill Press, 1974,
pp. 143.

Nissan, A.H., and Bresan, V.P., "Swirling Flow in
Cylinderrs," A.I.Ch.E. Journal, Vol. 7, No. 4, Dec.
1961, pp. 543-547.

Ward-Smith, A.J., Pressure Losses in Ducted Flows,
Butterworths, London, 1971.

Komotori, K., "A Consideration on the Labyrinth Packing
of Straight Through Type," Nihom Kikai Gakkai
Transactions JSME, Vol. 23, No. 133, 1978, pp.
617-623.

Meyer, C.A., "The Leakage Through Labyrinth and
Honecomb Seals," ASME paper 74-WA PTC-2, Nov. 1974.



139

APPENDIX A

EXTENSION OF MODEL

Several simplifications were made in Chapter 2 while
deriving the governing equations. These were made in order
to obtain a set of equations which contained the pertinent
flow physics while eliminating any unnecessary algebraic
complexity. Now certain extensions of the sub models will
be presented, which could be incorporated into the
continuity and momentum relations hence yielding a more

exact set of equations.

Flow Over the Seal Knives

As stated in Chapter 2, the flow rate per unit seal

circumference q4 (1-D approx.) is
ql = plBlqu (A.1)

where Py is the density, 81 the gap, Wl the axial velocity
and u4 is the flow coefficient. An approximation for q, was
presented in Chapter 2. The density was set to the average
density before and after the gap and W, was calculated by

using the incompressible Bernoulli equation. With these, q;

was found to be

q1=

In the analysis y was take to be 0.65 (constant). In
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reality u is not exactly constant. u can be expressed as
the product of the contraction coefficient Co times the

"carry-over factor" B8

C B (A.3)

i~
It

Co is in turn a function of the geometry near the knife tip

and the axial Reynolds Number. Figure 41 shows Cc as a

function of the gap aspect ratio for different Reynolds

numbers,
Ce
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Figure 41 - Contraction Coefficient C_ vs. aspect
*
)
ratio —5 with Re used as parameters.

i

The carry-over factor B is very complicated and is generally
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found by using empirical correlation such as those of
Komotori (56) and Meyer (57). 1In essence, this number is a
measure of the amount of kinematic energy not dissipated
from the last constriction. For stepped or interlocking

seals B=1 but for straight through types B > 1.

Equation (A.2) is very accurate when the axial Mach Number
is sufficiently low. ‘But when the pressure difference is
high enocugh the last two seals Mach number may be too high
for (A.2) to be used. 1In fact the flow in the last gap may
be chocked. 1If the first analysis suggest M > 0.6 the

following expressions for Py and W, should be used for those

gaps.
v=-1
2v (P, PY v
ws =R ) o
1
_ y-1 2Yvy-1
o, = po[l + 2w ) (A.5)

Friction Factors

The change in swirl, induced by viscous shear stresses, was
shown to be very important in the generation of aercelastic
forces. The stresses were expressed in terms of a Darcy

friction factor using
A = 0.3164 Re -2 (A.6)

Another formula for smooth-straight ducts (Schlichting (50))
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6 .
which is more accurate when Re > 10" is

1
kN

K 37.4
] (A.7)

S
= 0.87 - log {—— +
Bh RedX
Secondary flows generated in curved piping will increase the
average friction factor. A formula which accounts for this

is

>wy

Rh 1/2
R

=1+ 0.075 Rel”? [—~

where Ao is the "straight" value and Ry and R are the

hydraulic radius and curve radius respectively. If the
Reynolds Number is very high or "casing treatments" are
employed. Augmented friction factors should be used to

account for roughness.
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APPENDIX B

COMPUTER PROGRAMS

SINGSEAL.FOR

Given the inlet and exit conditions and geometry of the

seal.

SINGSEAL.FOR calculates the zeroth order solution in

the seal gland and the non-dimensional parameters a,el,a,A

and T.

QOO0

OO0

FILE NAME:SINGSEAL.FOR

DATE:1-5-87

BY :KNOX MILLSAPS

PURPOSE:THIS FILE CONTAINS A PROGRAM WHICH DOES A KOSTUAK-IWATSUBO
TYPY SOLUTION FOR A SINGLE LABYRINTH SEAL. THE PROGRAM IS FOR AIR.
ALL ROTORODYNAMIC COEFFICENTS ARE CALCULATED.

INPUT FILE 3 IS USED ONLY FOR GOEMETRIC DATA(ALL MKS UNITS)

RS=SEAL RADIUS, RL=AXIAL SPACE BETWEEN KNIVES, H=SEAL HIEGHT
DELSTI1=NOM. CLEAR. OF 1ST KNIFE, DELST2=NOM. CLEAR. OF 2ND KNIFE
R=RADIUS OF WHIRL,OMGS=SPIN ANGULAR VELOSITY, OMGW=WHIRL ANGULAR VEL.

INPUT FILE 4 IS USED ONLY FOR FLOW DATA (ALL MKS UNITS) PI=PRESSURE
BEFORE SEAL, PO=PRESSURE AFTER SEAL, TEMP=TEMPERATURE, VI=SWIRL VEL.
BEFORE SEAL(MEASURED CCW FROM X-AXIS)

COMPLEX B(2,2), EHAT, ETAHAT, Z(2),IMG,DET
OPEN UNIT-J,FILE-'GOEM.DAT'.STATUS—’OLD';
OPEN(UNIT=4 ,FILE='FLOW.DAT’ ,STATUS='0OLD"
READ 3.‘3 RS,RL,H,DELST1,DELST2,R,0OMGS, OMGW
READ(4,+) PI,PO,TEMP,VI

SET ALL CONSTANTS.

RAIR=287.1

GAMMA=1 . 4
CONTRACTION COEFFICIENT

RMU=9@ .65
HYDRALIC DIAMETER=DH

DHw4 ,9eHeRL/(2.0+H+2.9+RL)
VISCOSITY OF AIR= RNU

RNU=0 .0000145

WRITE(5,s) 'RS=’,RS,’RL=’',RL,’'H=w’' H,’'DELST1=' DELSTH
WRITE(S,s) 'DELST2=’ ,DELST2,’'R=’ R, 'OMGSm’' ,OMGS, *OMGWe ' , OMGW
WRITE(S, 'Pl=’ PI,'PO=’ PO, 'VI=' VI

SOLVE FOR THE EQUILIBRIUM PRESSURE AND FLOW IN THE SEAL.
D1=DELST1422
D2=DELST2++2
D3=Plss2
D4mPQOs 2
PST:SQRT(ED1-03+02‘D4)/(D1+02))
ROST=PST/( TEMP#RAIR)

WRITE(5,*) ' ROST=', ROST,'PSTa’,PST
Q1ST-RMU~DELST1#SQRTE203-PST~~2)/€RAIR‘TEMP)§

Q2ST=RMU*DELST2+SQRT( (PST»#2-D4)/(RAIR«TEMP)
QST=Q2ST
GUESS THE EQUILBRIUM SWIRL TO BE THE INLET SWIRL AND ITERATE.
VSTaV]
CONTINUE

CALL FRICSTAT(VST,DH,RNU,RLAMY)
CALL FRICROT(VST,DH,OMGS,RS,RNU,RLAM2)
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¢
C CALCULATE EQUILBRIUM SWIRL IN THE SEAL.

VSTI=VST
A=(ROST/8. ) « (RLAM1 sRL—RLAM2¢ (RL+2.8+H) )

B1-QST+(ROST/4.Q)0RLAM2t(RL+2.0¢H)-OMGStRS

C-—QST-VI-(ROST/B.O)ORLAM20(RL+2.QOH;O(OMGSORS)U-2
VSTm(~B14+SQRT(B1ee2-4.0AsC))/(2.Q5A

WRITE(S,») VST

ERROR=ABS{VST-VSTI)

WRITE(S,«) 'ERROR’,ERROR

IF(ERROR.LT.0.001) GO TO 2

GO TO 1

CONTINUE

SET ALL NON-DIMENSIONAL PARAMETERS

warrefs.-; *LAMI=’ ,RLAM1, " LAM2=' ,RLAM2
WRITE(S,) * °
EPS1=R/DELST1

ALPHA=DELST2/DELST1

CAPH=H/RS

CAPL=RL/RS

CAPD=DELST1/H

CAPWmOMGWRS /VST

CAPS=OMGS #RS/VST
DELQwQST/(RMU+DELST1+ROST+SQRT (RAIRs TEMP) )
SIGwROST+DELST1sVST/QST

CGAM=1.0~(VI/VST)

IMG=]

IMG=CMPLX(0.0,1.0)

WRITE(S,s) 'PSTm’ PST, 'ROST=’, ROST, 'QST=’,QST, 'VSTa', VST
WRITE(S,=) * °*

WRI;E g.t "CAPH=’ ,CAPH, 'CAPL=’ ,CAPL, *CAPO="’ ,CAPD, *EPS1=’  EPS1
wRI ’. . .

WRITE(S,s) "ALPHA=' ALPHA,’DELQ=',DELQ, "GAMm’ ,CGAM,'SIG=’,SIG
WRITE(S,») * °*

WRITE(S,) ’'CAPW=' CAPW, CAPS=’ CAPS

INPUT MATRIX COEFFICIENTS FOR SOLUTION

B(1,1)= SIGSCAPL#(1.0~CAPW) e IMG/(GAMMA+CAPD)
& —(1.04+ALPHA»+2)/DELQe»2
B 1.2;-S[G‘CAPL'IMG/CAPD
B(2,1)=(CGAM/(DELQ*#2)) — (SIG=CAPL/(8.0+GAMMASCAPDsCAPH) )=
& RLAMI-RLAM2s(1.042.2¢CAPH/CAPL) # (CAPS—1.0)+2)+
& CAPL+IMG/(DELQ+*»2+RMU*+24SIGsCAPD)
B(2,2)=SIGsCAPL*(1.0-CAPW) » IMG/CAPO—1.0—(S1G+CAPL/ (4 .@+CAPH
& ‘CAPD))O(RLAM1+RLAM2‘(1.0+2.QOCAPH/CAPL;‘(CAPS—1.B))
Z£1§-(SIG‘CAPLUIMGO(1.O—CAPW)+(1.Q—ALPHA )sEPSS
Z(2)==CCAMsEPS1
CALL COMPLX2(B,Z,EHAT,ETAHAT,DET)
STOP
END

Crosssesssssstsstssttats sttt sttt estssststosissststeessessssstnn

SUBROUTINE FRICSTAT(VST,DH,RNU,RLAM1)

C THIS SUBROUTINE CALCULATES THE FRICTION FACTOR OF THE STATOR.

SGN1=SIGN(1.9,VST
RE=ABS (VST +DH/RNU
RLAM1=SGN140.3164sRE+»(—9.25)
RETURN

END
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SUBROUTINE FRICROT(VST,DH,OMGS,RS,RNU,RLAM2)

C THIS SUBROUTINE CALCULATES THE FRICTION FACTOR OF THE ROTOR.
VREL=OMGS sRS~VST
SGN2=SIGN(1.0, VREL;
RE=ABS (OMGS #RS—~VST ) sDH/RNU
RLAM2=SGN2+40.3164¢REe e (-0.25)
RETURN
END
Ct““tt‘t‘t.‘tt“‘t‘t“t.ttt‘O‘.‘.‘0‘t"tt"tt“"““ll‘tt..‘t.“t
SUBROUTINE COMPLX2(B,Z,EHAT, ETAHAT,DET)
C THIS SUBROUTINE SOLVES A 2+2 COMPLEX LIN ALG SYSTEM
C  B=COEFF. MATRIX,Z=RHS , EHAT AND ETAHAT ARE THE SOLUTION
COMPLEX B(2, 2) Z(2), EHAT, ETAHAT
EHAT-(Z§1)¢B(2 2)/3(1 2)—2(2))/(8(1 1)+8(2,2)/8(1,2)-B(2,1))
ETAHAT=(Z(1)-8(1, 1)~EHAT)/B( 2)
DET=B(1,1)B(2, 2)—8(1 2)sB(2, 1)
RETURN
END

Coescssssesssassessssassssssesssnses sttt s st sttt sssasssssssasassnss
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SSNDPP.FOR

Given the non-dimensional parameters of Chapter 4 as inputs
SSNDPP calculates and plots the amplitude and phase of the

pressure perturbations &. It can also calculate and plot

the non-dimensional rotordynamic coefficients Kij and Cij'

FILENAME: SSNDPP.FOR

WRITTEN:KTMJ

DATE:1-20-87 )

PURPOSE: SINGLE SEAL NONDIMENSIONAL PRESSURE PERTURBATION.
THIS PROGRAM CALCULATES AND STORES THE NON DIM PRESSURE
PERT. USING ALL NON-DIM PARAMETERS EMPLOYING A SIMPLE KOS~
IWAT ANALYSIS. IT PLOTS 4 CURVES FOR 4 DIDFFERENT VALUES
OF THE CHOSEN PARAMETER EITHER ALPHA,DEL,GAMMA OR SIGMA 1T
ALSO PLOTS THE NON DIM K'S AND C'S.

DIMENSION W(41), AMP(41), PHS(41).xw(164).YP(164;.NP(4).IOPT(4)
DIMENSION YAé164), RKIIB(41), RKIJB(41), CIIB(41), CIJB(41)
DIMENSION WR(82), NR(2), IOPT2(2)
CHARACTER#29 PLTITL, TITLE?1,TITLE2,TITLE3,TITLE4,TITLES,TITLES
CHARACTER#20 TITLE?7, TITLES, TITLE9, TITLEl®
CHARACTER+9 DATE,TIME
C READ IN WHICH IS USED AS PARAMETER.
c RETURN FROM BELOW
2000 CONTINUE
WRITE(5,+) 'READ IVARY Al=1, DElL=2, GAM=3, SIG=4, ROTOR=S’
READ(6,+) IVARY

SET NOMINAL VALUES

DOOOOOO0OO0

OO0

Al=1.0
H=d .05
RL=0.15
D=@.05
DEL=0.80
GAMm. @5
SIG=0.2
WRITE(S,¢) ' Al= ,Hm ,Rl= ,Dm °*
READ(E,s) AL,H,RL,D
WRITE(S,+) 'DELw= , SIGm, GAMm’
READ(6,+) DEL,SIG,GAM
NLINEm4
DO 1 I=1,4
10PT(1)=2
NP(1)m41
INOGRaS5
1 CONTINUE
IF(IVARY.EQ.1) GO TO 100
IF(IVARY.EQ.2) GO TO 200
IF{ IVARY.EQ.3) GO TO 300
IF(IVARY.EQ.4) GO TO 400
IF{IVARY.EQ.5) GO TO 500
GO TO 3000
C“"““.““t.‘..‘“.."‘..““‘..“‘..“.
C SET WHIRL ARRAY.
CHestssssttss e st tss st s essssdssssessissdens
120 CONTINUE
¢ THIS BLOCK VARIES ALPHA
¢ INPUT 4 VALUES OF ALPHA
C“‘t“‘.l..‘.“‘0O“.““““O““““..“
WRITE(S,s) * INPUT FOUR VALUES OF ALPHA.’
READ(6,s) AL1,AL2,AL3,AL4
AL=AL1

OOOO0
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DO 101 Imt, 41

W(D)=(1-1.0)¢0.1-1.9

W (1)

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP%I;-AM
PHS(1)=PH
xw(1)=w(1)
YA(l -AMPélg
YP(1)mPHS(I
CONTINUE
AL=AL2

DO 102 I=1,41

W(I)=(I~1.0)+0.1-1.0

W=W( 1)

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP( 1 )mAM

PHS(1)=PH

XW(414+1)=W(I)
YA(4141 -AMP€I)
YP{4141)=PHS(1)

CONTINUE

AL=AL3

DO 103 Im1,41

W(I)=(I-1.2)%0.1-1.0

Whm=W{])

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP?I;-AM
PHS( 1 )=PH
XW(82+1)=W(1)
YA(82+1 -AMPEI;

YP(82+1 )=PHS(I

CONTINUE

AL=AL4

DO 104 I=1,41

W(I)m(I~1.0)*2.1-1.9

WeW( 1)

CALL SOLVE(WW,AL,H,RL,0,DEL,GAM,SIG,AM,PH)
Aupgx =AM
PHS(1)=PH
XW{123+1)=W(I)
YA( 12341 -Ampgxg
YP(123+1 I
CONTINUE

=PHS

c
C PLOT NDPP VS. W USING ALPHA AS PARAMETER.

c

PLTITL(1:8)m" ’
PLTITL(9:16)=" ’
PLTITL(17:20)=" *

TITLE1='AMP VS. W/ALPHA '
TITLE2='PHS VS. W/ALPHA °*
DATE=* !

TIME=' )

CALL GRINIT(5,6,TITLE1)
CALL GR_SET_TIME(DATE, TIME)
CALL GRLINE§IOPT,NLINE,PLTITL,INDGR.XW.YA,NP)
CALL GRINIT(S5,8,TITLE2).

CALL GR_SET_TIME(DATE, TIME)

CALL GRLUINE(IOPT ,NLINE,PLTITL,INDGR,XW,YP NP)

GO TO 1000
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200  CONTINUE
c THIS BLOCK VARIES DEL
c INPUT 4 VALUES OF DEL

WRITE(S5.s) ' INPUT FOUR VALUES OF DEL.’

READ(6,s) DEL1,DEL2,DEL3,DEL4

DEL=DEL1

00 201 I=1,41

W(I)=(I-1.0)0.1-1.9

WhW (1)

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP&I;-AM
PHS(1)=PH
Xwgl =W(Il)

YA( I )mAMP( 1
YP(1 -PHsgxg
201 CONTINUE

DEL=DEL2

DO 202 I=1,41

W(I)=(I-1.0)+0.1-1.0

W=W(1)

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)

AMP (1) =AM

PHS(I)=PH
XW(4141)=W(1)
YA(41+1 -AMPEI;

I

YP(41+1)=PHS
202 CONTINUE )
DEL=DEL3
DO 283 I=1,41
W(I)=(I-1.0)e0.1-1.0
wmW(I)
CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP (] )=AM
PHS (1 )=PH
XW(82+1)=W(I)
YA(82+] 'AMPEI;
YP(82+1)=PHS(I
283 CONTINUE
DEL=DEL4
DO 204 I=1,41
W(I)=(I-1.0)+0.1-1.0
Wh=W (1)
CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP%Ig-AM
PHS(I )=PH
XW(123+1)=w(I)
YA(123+1 -AMP$I§
YP(123+41 )=PHS(I
é@4 CONTINUE
C PLOT NDPP VS. W USING DEL AS PARAMETER.

c
PLTITL(1:8)=" .
PLTITL(9:16)=" .
PLTITL(17:20)=" *
TITLE3='AMP VS. W/DEL °
TITLE4='PHS VS. W/DEL °
DATE=’ .

TIME=* .
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CALL GRINIT(S,68,TITLE3)
CALL GR_SET_TIME(DATE,TIME)
CALL GRLINEéIOPT.NLINE.PLTITL.INDGR.XW.YA.NP)
CALL GRINIT(5,6,TITLE4)

CALL GR_SET_TIME(DATE, TIME)

CALL GRLINE(IOPT ,NLINE,PLTITL,INDGR,XW,YP,NP)

GO TO 1000

CONTINUE

THIS BLOCK VARIES GAMMA

INPUT 4 VALUES OF GAMMA

WRITE(S,%) * INPUT FOUR VALUES OF GAMMA.’
READ(6,*) GAM1,GAM2,GAM3 ,GAM4

GAM=GAM1

DO 301 Im1,41

W(I)=(1-1.0)+08,.1-1.0

Ww=W( I

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP (1) mAM

Pnsgx =PH

xw;xE-W(l)
YA(1)=AMP (1
YP(1 -PHsgxg
CONTINUE
GAM=GAM2

00 Jé2 I=1,41
W(l)=(I~-1.@8)s0.1-1.0
W (1)

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP (1 )mAM

PHS (1 )=PH

XW(41+1)=mW(1)
YA(41+1)=AMP( 1
YP(41+1)=PHS(1
CONTINUE
GAM=GAM3

DO 303 I=1,41
W(l)=(1-1.0)+0.1-1.0
W ( I

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
Aupgx =AM

PHS{I)=PH

XW(82+1)=W(1)
YA(82+1 -Aupsxg
YP(82+1 JmPHS (1
CONTINUE
GAMmGAMA

DO 304 I=1,41
W(I)=(I-1.0)+0.1-1.0
Wmw( I

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMPéI mAM

PHS( 1 )=PH

XW(123+]1 )=W(1)
YA(123+]1 )=AMP( 1
YP(123+41 1
CONTINUE

=PHS

g PLOT NDPP VS. W USING GAMMA AS PARAMETER.

PLTITL(9:16)=" .
PLTITL(17:20)=" °*
TITLES='AMP VS. W/GAMMA *
TITLEG="PHS VS. W/GAMMA®
DATE=' g

TIME=’ '

CALL GRINIT(S,6,TITLES)
CALL GR_SET_TIME(DATE, TIME)
CALL GRUINETIOPT,NLINE,PLTITL, INDGR,XW,YA NP)
CALL GRINIT(5,6,TITLES)
CALL GR_SET_TIME(DATE, TIME)
CALL GRLINE(IOPT,NLINE,PLTITL, INOGR,XW,YP,NP)
GO TO 1eee

PLTITLgI:B)-’ *
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400  CONTINUE
S e
‘ »
Iwntrz(s..) * INPUT FOUR VALUES OF SIGMA.
READ(S,+) SIG1,5162,51G3,51G4
SIG=SIGY
DO 401 Ism1,41
W(I)=(1-1.0)40.1-1.0
1

Wikl
CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP&IE-AM
PHS(1)=PH
xwglé-w(l)
YA(I -AMPix;
YP(1)=PHS(1
401  CONTINUE
S1G=S162
DO 402 I=t1,41
W(I)=(I~1.0)+0.1~1.8
Wi ( 1

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMP (1) =AM
PHS({1)=PH
XW(413+1)=W(1)
YA(41+] -Aup§xg
YP(41+1)mPHS(]
482 CONTINUE
SIG=SIGC3
DO 403 Im1,41
W(1)m(1-1.0)%2.1-1.0
Wi ( I

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
MEI =AM
PHS(1)=PH
XW§82+!§HW(I)
YA(82+1 -AMPgI;
YP(82+1 )mPHS (1
403  CONTINUE
SIG=SIG4
DO 404 Im1, 41
W(I)=(1=1.0)+0.1~1.0
Wi I

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,S1G,AM,PH)
AM’$I =AM
PHS(1)=PH

XW(123+1)=W(1)
YA(123+1 -AMPEI
YP(123+1)=PHS(1
424  CONTINUE

[} .
g PLOT NDPP VS. W USING SIGMA AS PARAMETER.

PLTITL(1:8)m’ '

PLTITL{9:16)m" .

PLTITL(17:20)=" *

TITLE7='AMP VS. W/SIGMA *

TITLESB='PHS VS. W/SIGMA *

TIME’ '

DATE=® '

CALL GRINIT(S.8,TITLE?)

CALL GR_SET_TIME(DATE, TIME)

CALL GRLINEEXOPT.NLINE.PLTITL.lNDGR.XN.YA.NP)
CALL GRINIT(S,8,TITLES)

CALL GR_SET_TIME(DATE, TIME)

CALL GRLINE(IOPT,NLINE,PLTITL, INDGR,XW,YP,NP)
GO TO 1000

THIS SECTION CALCULATES THE ROTORDYNAMIC COEFFICIENTS FOR THE
BASELINE CASE.

CHEISRESNOLPSNBESENIERRRNE N RNRRECAS LIS IR ESEAN USRS RARNARNNEERERENEEES
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CONTINVE

00 S@1 I=1,41
%1};&2}50):0. 1-1.0
wagxm Y=WR(1)

W= (1)

CALL SOLVE(WW,AL,H,RL,D,DEL,GAM,SIG,AM,PH)
AMPé!g-AM
PHS( I )=PH

CONTINVE

DO 502 I=1,40
AFIW1=AMP(1)COS(PHS(I))

AF1W2=AMP( I+1)»COS(PHS(I+1))
AF2w1maAMP (1) sSIN(PHS(I))

AF2W2mAMP I+1)-SIN(PHS$I+1))
CIJB(I)=(AFIWI-AF1W2) /(W(I+1)-W(1))
RKIIB(I)=AF1W1+W(I)+CIJB(I
CIIB(I)m(AF2W1-AF2W2)/(W(I)-W(I+1))
RKIJB(I)mAF2W1-W(1)sCIIB(I

CONTINUE

cxue§41;-c1Ja§4o;
CIIB(41)=CIIB(40
RKIJBE41§-RKIJBE46;
RKIIB(41)=RKIIB(40
DO 503 I=1,41
YA(I)=RKI1B(I)
YA 41+I§-RKIJB(I
YA(82+])=CI1B(I)
YA(123+]1 )=CLJB(1
XW(1)=W(I)
XW(41+])mW(1

XW az+1;-wél
XW(123+1)=w(1)
CONTINUE

)
)

c PLOT KXX, KXY, CXX, CXY
(o

1009
Joeeo

PLTITL(1:8)m* *
PLTITL(9:16)=" *
PLTITL(17:20)=" °*
TITLESw’ROTORDYNM COEFF. °*
DATE=" *

TIMEw® *

CALL GRINIT(S.S,TITLE9)

CALL GR_SET_TIME(DATE, TIME)

CALL GRLINE(IOPT ,NLINE,PLTITL,INDGR,XW,YA,NP)
CONTINVE

GO TO 2000

CONTINUE

STOP

END

Ces022028000828008808888880800RRSRSCERERRRNSRRsRRRtEtetssNaiesseitssnttstssss

fror

SUBROUTINE SOLVE(WW,AL,.H,RL,D,DEL,GAM,SIG,AM,PH)

COMPLEX RMG, EHAT, RNUM, DENM

RMG=CMPLX(0.0,1.0)

RNUMm(SIGeRLe(1.0-WW)sRMG+(1.0—(1.0/AL)))*(SIG+RLe(1.0-WW)*RMG/
D-1.9) + GAMeSIG+RLsRMG/D

DENM=(SIGsRL* (1.0-WW)+RMG/(1.4sD)—=(1.0+AL**2)/DELe»2)
*(SIG*RL#(1 .O—WgtRW/D—1 .0;-(SIG'RL‘RW/D)'(GAM/DEL"Z +
RL*RMG/(DEL*0.65)+22/(S1G+D))

EHAT=RNUM/DENM

RE=REAL (EHAT)

RIG=AIMAG(EHAT)

AM-SQRT%RE"Z 4+ RIGes2)

PH=ATAN(RIG/RE)

RETURN

END

Cosstassnssstnetestsesstessstesessssetstsstssstsstetestsssstsssasssesuussss
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APPENDIX C

MECHANICAL DESIGN CALCULATIONS

Critical Frequencies for Rotating Rig

There are many possible modes of vibration for the rotating
rig. But the only ones which could correspond the
rotational frequencies (0-50 hertz whirling and 0-100 hertz
spinning) are the bending and bouncing modes of the
shaft/disks assembly. Figure 42 shows the model used for

calculating the shaft/disk lateral vibration frequency,

Figure 42 - Model of Shaft/Disk Assembly bending for
calculation of bending frequency.

The frequency was found approximately by using Rayleigh’s

method which states,
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~ [Potential Energy]l/z (c.1)
®n Kinetic Energy l,.ci.med mode .

For the model this can be expressed as

1 27Y2 1/2
I EI [Q—%] dx
o] dx
o 1 1 1(dx 1(dx
Assuming the shaft mode is w = sin %5 and calculating the
1

necessary properties from Part #1 the critical lateral
frequency is found to be w, = 318.5 Hz. The symmetric and
unsymmetric bouncing modes were at a higher frequencies.
These were found by treating the shaft as a rigid body and

6

modeling the bearings as linear springs (KBearing 3 x 10

lbf/in).

Stand Vvibration

The stand to which the rotating rig/air supply is mounted is
in turn supported by 4 (spring/damping) vibration isolators.
The 3 degree of freedom model used for the calculation of

vibration frequency is shown in Figure 43.
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Figure 43 - Three degree of freedom model used for
calculation of stand vibration modes.
This model was chosen in order to eliminate static and
dynamic coordinate coupling in the equations of motion. It

is fairly close to the actual case.

I. Mx3 + 4CX3 + 4Kx3 = 0
II. 1291 + 2CL191 + 4KL191 = ( (C.3)
III. 1192 + .?.CL292 + 4KL262 = 0

Given the values of M’Il’IZ’Ll' and L2 vibration isolator

were chosen to given 99.6% isolation.





