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the degree of Doctor of Science.

ABSTRACT

Second-order analytic expressions are derived for the satellite
orbit perturbations caused by the second zonal harmonic of the gravi-
tational field of the earth. These expressions are incorporated into
an existing digital computer program which is capable of predicting
orbit behavior over many orbital periods. Detailed studies were
carried out, with the aid of this program, for the orbits of 1960 Iota 2
(the Echo I rocket case) and 1961 Delta 1 (a 12 ft. diameter, rigid
balloon). The computed orbital elements are shown to compare within
the order of the theory to the precisely-reduced photographic data
prepared by the Smithsonian Astrophysical Observatory for 1960 Iota 2
and 1961 Delta 1. For example, the maximum error in the computed
eccentricity for the orbit of 1960 Iota 2 during a 200 day interval is
2 x 10-5 compared to 8 x 10-4 if the second-order theory is neglected.
The program was further applied to the improvement of empirical at-
mospheric density models using the 1961 Delta 1 data. The demise of
1961 Delta 1 is predicted to occur on or about March 28, 1964. The
second-order theory is also used to explain an oscillation of amplitude
100 seconds and period 300 days in the time of nodal crossing of a
heavy satellite observed by radar.

The distributions of orbiting particles are treated both analytically
and by Monte Carlo techniques with specific application to the West Ford
dipole ensemble. Comparisons are made to radar and optical observations
of the belt.

Thesis Supervisor: Marten T. Landahl

Title: Professor of Aeronautics and
Astronautics
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INTRODUCTION

Applications of orbit perturbation computations include the

prediction of satellite orbits and the analysis of orbital data. The

prediction problem can be further divided into predicting where to find

a satellite at some time in the future and predicting when events such

as final orbital decay will occur. The comparison of orbit perturba-

tions, computed from, theory, with observed changes in orbital elements

tests the adequacy of the theory and provides a means with which to

study the physical effects which cause perturbing accelerations.

Consider, for example, the problem of acquiring (finding) an

orbiting satellite with a radar. The position of the satellite must be

predicted as a function of time with sufficient accuracy that the "volume"

of uncertainty can be searched by the radar while the satellite is above

the horizon. If the allowable Doppler uncertainty is also limited, this

volume is four dimensional (typically, azimuth, elevation, range and

Doppler). Ideally the satellite should fall within the radar beam without

elaborate searching. As the antenna size and operating frequencies of

high precision radars increase, the beamwidths of these rada3s decrease.

Hence, the volume that such instruments can search for a target decreases.

This problem of finding a satellite is already difficult for existing 1/10

degree beamwidth radars, such as the Project West Ford radars, if the

satellite is sensitive to erratic atmospheric density fluctuations as is

the 12 ft. balloon, 1961 Delta 1. With the advent of milliradian beam,

radars such as the Haystack facility and eventually laser "radars", the

problem will become acute.

The following chapters treat (without specific reference to the

acquisition problem) aspects of the problem of orbit-perturbation

computation accuracy which are important to large classes of satellites.

Second-order analytic expressions are derived in Chapter I for

the orbit perturbations caused by the second zonal harmonic of the

gravitational field of the earth. Comparisons are made in Chapter II

between observed orbital parameters and parameters computed with a



digital computer program that incorporates this second order theory.

This computer program is further extended to the study of semi-

empirical atmospheric density models in Chapter III.

The distributions of orbiting particles in the West Ford dipole

ensemble are treated in Chapter IV both analytically and by Monte Carlo

techniques. Comparisons are made to distributions which were

determined from, radar and optical observations of the experimental

dipole belt.
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CHAPTER I

Second-Order Orbit Perturbations Caused by the Second Zonal

Harmonic of the Gravitational Field of the Earth

1. 1 Introduction

Each force that perturbs a satellite of the earth from a Keplerian

elliptical orbit is usually small compared with the central gravitational

field. Any attempt to classify these perturbing forces in order of their

importance is complicated, however, by the dissimilarity of the effects

on the orbit, by the dependence of these effects on the particular satellite

orbit, by the physical properties of the satellite, etc. and by a variety

of other special conditions. The primary importance of the second

zonal spherical harmonic of the gravitational field of the earth can

be demonstrated despite this difficulty of classification by comparing

the magnitudes of each perturbing force.

The ratio of the force exerted by the second zonal spherical

harmonic (commonly called" the equatorial bulge") to the central field

is of order J, where J ~ 10 -3 is the empirically determined coefficient

of this harmonic. 1 The order of magnitude of the ratios of other

perturbing forces to the central force such as the higher gravitational

harmonics, drag, solar radiation pressure and the gravitational attraction

of the sun and moon are, in general, of order J2 and higher for a large

class of earth satellites. For example, the following table compares a

set of computed * perturbations of the argument of perigee (W) (see

Fig. 1. 1) for one orbital period of 1961 Delta 1 (a 12 ft diameter balloon

satellite).

Refers to references at end of chapter.

See Chapters II and III for the details of these computations.
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Perturbing force

Solar radiation pressure

Atmospheric drag

Zonal Harmonics

First order, second harmonic

Second order, second harmonic

Third harmonic

Fourth harmonic

Fifth harmonic

Lunar gravitation

Solar gravitation

w perturbation

1.89 x 10 3

-7. 210 x 10 -5

3. 890 x 101

2. 360 x 10 3

1. 470 x 10 -3

1. 680 x 10 4

-2. 930 x 10 -5

2. 620 x 10- 5

3. 350 x 106

A perturbation theory which accounts for perturbations such as drag,

etc. to first order should therefore account for perturbations from the

second harmonic to second order in J. This theory need not account

for the cross terms between the second harmonic and the other perturbing

forces because these terms will be of order J3 and higher.

Here we develop analytically, to order J , the orbit perturbations

caused by the second harmonic between two successive ascending crossings

of the equator by the satellite (a nodal period). These solutions are

included in a high-speed digital computer program. (see Appendix II) which

computes the net effects of other perturbing forces averaged over a nodal

period. By iteration, the orbital elements after each of a large number

of successive nodal cycles are computed.

The perturbation equations could of course be integrated numerically

by the computer directly but this procedure consumes too much computer

operating time and makes it more difficult to obtain a qualitative description

of the perturbations which follows directly from, analytic solutions.

1. 2 General Method of Solution

With a known force law, only six independent constants are

necessary to completely describe the position and velocity vectors of a

satellite as functions of time. If the satellite were moving in a simple

central gravitational field, a convenient set of constants would be a set
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of six independent elements of a Keplerian ellipse. If the force law

is complicated by small "perturbing" forces such a set of six indepen-

dent elements will be slowly varying with time (slow in comparison to

the rapid variation of the position and velocity vectors). A convenient

set of elements, termed osculating elements, is a set which completely

describesthe ellipse that can be constructed at each instant of time given

the instantaneous position and velocity vectors and neglecting all forces

except the primary central force. This set will then change with time

because of the action of the perturbing forces.

The exact perturbation equations of a set of six independent

osculating elements of a satellite orbit are first-order, but non-linear.

Exact closed form solutions to this set of equations, in terms of well-known

functions, cannot in general be obtained.

The procedure used in this chapter to derive approximate analytic

solutions to the set of perturbation equations is characterized by the

following generalized example:

Let fN, N = 1, 2,..., 6, represent six independent osculating orbital elements

and let

dfN

du NN=,2,...,6 (1. 1)

represent the corresponding perturbation equations for the second harmonic

of the earth where u is an independent variable.

A first approximation to the solution of this set of equations is:

u

6 fN(J, u) = f FN (fl u=O ' f 2 1 u=''f 61 u=0 , J, u)du N = 1, 2,..., 6

0 (1.2)

This process gives the perturbations of the elements (including the short

period perturbations which have zero averages over one nodal period)

that are accurate only to order J.

112
To order J , each perturbing acceleration can be treated independently

from the other perturbing accelerations if the others are of order J2 .
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Perturbations over one orbit cycle, accurate to J , are derived

as follows:

27T

Af N = F N (f1 u=0 + 6f (J, u)),..., (f61 u= + 6f 6(J, u)), Juj du

N = 1, 2,..., 6 (1.3)

The gravitational field of the earth as represented by the zonal

spherical harmonics is conservative and rotationally symmetric about the

polar axis. Therefore, the labor of performing two of the above integra-

tions can be reduced by using explicitly the conservation of energy and

the conservation of angular momentum about the axis of symmetry.

1. 3 Orbital Elements

The particular set of osculating orbital elements used in this

analysis are: the semi-latus rectum (p) (and alternatively the semi-major

axis (a)), the eccentricity (e), the argument of perigee (w), the right

ascension of the ascending node (0), the inclination (i), and the time of

nodal crossing (T) [see Figs. 1. 1 and 1. 2]. The osculating elements at

nodal crossing are designated by a zero subscript (for example, p0 ).

The argument of latitude (u) [see Fig. 1. 2] is used as an independent

variable in place of time. The angle (v) (defined as v = u - w0) is

sometimes used as an independent variable when the transformation

serves to simplify the integration of the perturbation equations.

In addition, the instantaneous radius (r), the true anomaly (v)

[see Fig. 1.1] and the eccentric anomaly (E = 2 tan- ( +e tan )) are

used as intermediate variables.
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1. 4 Perturbation Equations

Five of the perturbation equations with time as the independent

variable are as follows: 1.3

deir "-I[T_+r )cs r
M sin v- R + [(+ )cos v + e S

dw ~P~ c0S v ~1 + r siny p ~
e R +M + - S ) coti- sin u- W

dQ - r  sinu ~
- VGM 'p sin1 W

di pr ~
Mpcosu- W

p (1. 4)

where R, W, and S are the components of the perturbing accelerations along

the instantaneous radius vector (R), perpendicular to the orbit plane in the
-1 -A _&

direction of the orbital angular momentum vector (W) and in the W x R

direction (S) respectively. For the second zonal harmonic, R, W, and S

are proportional to J. In addition, GM is the gravitational constant of

the earth.

The sixth element is treated in a slightly different manner. Since

the five elements given above are sufficient to completely describe the

orbit, the sixth element need only relate the position of the satellite in

the orbit to time. The tim.e of nodal crossing (T) is used here as the

sixth element.

The change in tim.e of nodal crossing can be found by integrating
dtr over the orbital cycle (nodal crossing to nodal crossing). Applying

the normal first-order method (Eq. (1. 2)) gives a zeroth order (in J) change

in T; namely, T is incremented by a Keplerian period. Likewise, applying

the second-order m.ethod (Eq. (1. 3)) will yield only a zeroth-order and a

first-order term.

However, to simplify the terminology, mention of "second-order effects"
will be taken to mean effects on T to only first order in J, unless other-
wise noted.
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The rate can be obtained in a simple manner from the

following diagram. 4 which represents the radial projection of arcs

onto a unit sphere.

z

u + du

0 d + di
1y

cos i dQ
x

(T)

Figure 1. 3

Angular Rate

In the limit of differential increments,

du = do - cos i dQ (1. 5)

where d is the instantaneous angular rate of the satellite position unit
dt 1. 5vector. This rate determines the osculating semi-latus rectum, (p).

do N2r=G (1. 6)
r

Substituting this and d from. the perturbation equations into (1. 5) yields:

2
dt r

dt r 2 (1.7)Cu 3
G~ ,1 cot i. sin u W)
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dt
In a first-order theory, -t is approximated by:

2
dt~ r

N G 2 (1. 8)
T NGMp

In a second-order theory, terms must be kept which are of the same

order as the short-period perturbations of the elements. Expanding the

denominator in a power series of W and retaining terms to first order (J)

yields:

2 5
dt r 2r . .9~

dt r + 3/2 cot i- sinuW (1. 9)
*4GM p (GMp) 3 1

dt
In addition to yielding the change of T, the rate is also used

to change the independent variable of the perturbation equations from

t to u. The perturbation equations in terms of u, and consistent to

second order, are

3 6
dp Zr ~ 2r .

=U GM S + 2 ot i. sin u- SW
p(GM)

2 2
de r . ~ r r r~din R+ Gr [(+ r) cos v + e]ST GM si ' 7_ p p

5 5
r ~i~ r+ r cotri(+ r)coser

+ cot i- sin u- sin v. RW+ cti[(+-cs v+ e -] sin u-
p (GM) 2  p(GM) 2 p p

2 2 .3dw- r 2 Cos v ~ r z(+r) sin v ~ r ~ r

- G cs R +i) S G coti sinuWd-uG M e GM p e p

5r Cosv + r) sin v- r
+ coti- sinu.W[ -s R+ (1+)- S (-=) coti sinuW]
p (GM) 2  e p e p

3 6
d _ r sinu ~ r coti .2 ~ 2

- GMp sin+i + s sin u W
s(GM) p ptinu

(continued)
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3 6
di r ~ r 621

d= Gp Cos uW + 2 2 coti- sin u- cos u. W
(GM) p

2 5
dt r + r cot i. sin u

du ( 
G p GMp)3

(1.10)

1. 5 Orbital Energy and Angular Momentum, Relations

The total orbital energy per unit mass of a satellite is:

V 2+U (1. 11)

where Ut is the local potential energy and V is the instantaneous orbital

velocity. The velocity V can be expressed at each instant in terms of the

osculating semi-major axis (a) and the true radius (r):1. 5

1 2 1 1
fV 2= GM( r- Z) (1. 12)

The instantaneous orbital angular momentum per unit mass is a

function only of the osculating semi-latus rectum. (p):1.5

1 = N[GMp

The component of this angular momentum, along the polar axis of the earth,

which is conserved, is:

i cos i

Therefore,

2
p c os i = constant (13(1. 13)
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1. 6 Perturbing Accelerations

Traditionally, the potential function of the gravitational field of

the earth (defined by astronomers as the negative of the potential energy)

has been expanded in terms of spherical harmonics. This expansion

up to and including the fourth zonal harmonic is: 1. 1

GM J l . 2 K 5 .3 3U = r { l +- ( - sin 6) + - (7 sin6 -f sin6)
r r

+ D K + 1sin6 - T sm226). (1. l4)*75 4
r

where 6 is the latitude (sin 6 = sin u. sin i) and r is the orbit radius in

units of equatorial earth radii"" and GM ~ 1. 54 x 10 -6 (earth radii)3 /sec

The potential function for the second zonal harmonic only is simply:

GMJ 1 . 2. . 2U 2  3 -sin - sin u) (1.15)
r

The perturbing accelerations R, S, and W are obtained from this

function by taking partial derivatives in the R, S, and W directions

respectively.

Other common notations for these coefficients with r in earth radii
units are:

Jeffreys 1 Kozai1. 6 IAU1. 7

A 3 J2 2 2

K = A 3  3
35D = A - J4 8 4

For the remainder of this paper, unless otherwise noted, r, p, and
a are measured in units of equatorial earth radii.
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~ a_ 3GMJ 1 . 2. 2
R ar 4 ( - - sin i- sin u)

r

au
r -S r ou

-2GMJ .2..
- (sin i. sin u. cos u)4

r

aU1 2 2GMJ
rsinu =i = - sin 1. cos i- sin u

r
(1.16)

1. 7 The Effect of the Second Harmonic of the Earth

The components of acceleration R, S, and W can now be introduced

into Eq. (1. 10) to yield the second-order equations for the second harmonic

of the earth. The result of this substitution is:

2dp 4J . 2. 8J 2. . 2.
- - sin i cos u sin u + cos 1 sin 1

du r 2 0p r

. 3
sin u cos u

0

de j sinv . 2 3 sin v 3 sin v cos Zu cos v sin Zu
J[ 2 +sin i(-~ 6  +- 2 2 +

r r r r

cos v sin Zu e sin Zu
rp rp

2 2.2J cos i
+

p0

. . 2
sin v sin u

3
r

. . 4 . 3
. 2 sin v sin u . 2. cos v sin ucos u- 3sin i +Z2sin i

o 3 o 3
r r

.2. . 3
2 sin i cosv sin u cosu

0

2
p0r

+
2e sin 2 sin u cosu

4 4 2p0 r

2cosv sin i 3
S ~ e 'Z

er

+ sin v sin2u)] -cosi
pr

cos v
2

r

3 cos v cos Zu
2 +

r

2 cos i sini
o du PO0

sin v sin 2u
2

r

.2sin u .
r

(continued)

+

dw

du

I
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z. 4
2 . 2 3 sin i sin u cos v2J 2. sin u cosv si O

-- cosi1 [ 3 -e p 0 3 3
00o r r

2.sinZ sin3 u cos u sin v - c 
sin2 sin u Cos u sin v 2 3 - 2

r p r
0

2 4J 2 Cos i 4
d cosi sin u o sin u

d= 2J pr + 2 r 2
pa r

di . . . . 4J cos i sin sin3
di_ J co -s i -sini cos u sinu I o 1 oi sin 3u Cos u

= pr ] + 2 0
po r

2.
2 2J cos i

dt r 2o r sin u (1.17)
du NTGMp N[GMp Po

The substitution of Eq. (1. 12) and the negative of the potential

function (U' = - U), Eq. (1. 15), into the energy equation, (1. 11), gives:

1 J 1 2. 2
=GM [ -+ - ( - sin 1 sin u)I = constant (1.18)

r

At nodal crossing:

- + 23 = constant (1. 19)
3r

1. 8 First-Order Perturbations

The perturbations of p, e, and w to first order are found by

integrating their respective perturbation equations from, 0 to u and

discarding terms of second order (J ) and higher. Alternatively, 6e

could be derived from 6p and 6a where 6a is derived from, the conservation

of energy, but this offers no significant saving in labor at this stage over

the straightforward integration. The short period perturbation of i is

derived most simply from the conservation of the component of angular

momentum along the polar axis.

The perturbation equations for the second harmonic are independent

of 0 and T. The first order perturbations of these elements are
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therefore not required and have been omitted here (they are given in

Appendix I for reference).

The. determination of 6 p is given here as an example of the method

used. A transformation to the independent variable

simplify later integrals. To first order:

dp ZJ
du r

and

du = di

Therefore,

. 2.
sin i

0

v is made to

sin 2u

2
6p -2J sin i

p0

V

f [cos 2W
-W

0

sin v + sin Zw
0

1+ . e cos Zw sin v +'e cos Zw
0 0 0

sin 3P

+ e 0sin Z0 cos P + e sin 0 cos 3 ]dv

Integration yields:

2 J 2
6p =-- sin i [P + P sin P + P sin 2P +

o 1 2 3 P 4
sin 3v

+ P 5 cosV+ P 6 cos2V+ P 7 cos 3v]

where

3P = -+ Ze cosw

3
P = -e sinZo2 2 o o

3.P = -sin2w
3 2 0 (continued)

cos 2V
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P = e sin 2w

3
P5 =- eo cos 2W0

3
P 6 ~Cos 2 

P 7 -- e cos 2W (1. 20)

A similar but longer process yields the first-order perturbations

of e and w. The details of this procedure can be found in Appendix I.

The first-order perturbation of e is

6e = -z- [E, + E2sin v + E3sin 2Z- +
+EPi5+OcovEcs~E o~+ o~

E sin3v + E5 sin 4v

+ E6 sin 5v + E 7cos + E8 cos Z 9 + E9 cos 3v + E10 cos 4P

+ E cos 5v]

2 . 2.
E= cosw sin i

o
1cosw + e (-cos 

0 0 0 2
.. 5 3

+ sin 2i ( -
0 o 4 8

2 1 3 . 2. 2
+ e (cos 1 + sin i ( cosw ))

S3 o 0 3 0

1.2. 5 2 . 2.
E2= sin 1 sin 2 + - e sin 1 sin 2wE2 Tn 0 n 8 o 0 0

5.2
E = e sin i sin 2w3 o o o

7 .2. . 17 2 . 2.
E4 - sin sin Zw + -8 eo sin 10 sin 2W

3 . 2.
E 5 "e sin i sin 2w

1 2 i 2
E6 sin i sin Zw

6 17 o 0 0
(continued)

where

cos 2W ))
0
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2 3 1 2 1 3 2
EI = -1+ sin i 2  Cos 2o)+e (- + 7 sin i (1-2 cos2W 0)

1 2 3 5
8 2 +- Tcos ZW)

2 1cos 2w +e ( -- 1 +
0 0 12

2 1 17
sin i (T - COS ZO))

3 .2
o sin i cos 2w0

1 2 . 2.
--- T-eo sin i1eI il

cos 2w
0

The first-order perturbation of w is

6W = - 2 [W 1 + W~v
eJp0

+ W3 sin v + W 4 sin 2 + W5 sin3p+ W 6 sin 4P

+ W7 sin 5v + W8 cos v + W cos 2v + W10 cos 3v + W

+ W12 cos 5P]

where

2 2.
W= -sinw + - sin 1 sinw + e ( -2

0 3 0 0 0

5 3
-( W 0 + - sin 2w ))

So 8 0

. 2. 8 .
+ sin i (- sinw ))o3 

5 2
W2 = e (- 2 + f sin i)N

1.
-- sin 2w

o 2 0
+ sin2 i

0

2 1 2+ e (-2 sinw -- cos sinw
0 0 3 o

.2. 3 1
W -1+ sin i (-+

3 0 2 4
2 7cos 2w ) + e (--

0 0 4
1+- cos ZW
2 0

.2. 17
+ sin i( -i - - cos 2w))

0 8 0

(continued)

Coefficient of the first-order secular perturbation.

E 9
7 . 2.

sin 1o

E10

Eg 1

(1. 
21)

cos 4v
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1 1.2. 3 5W e (- + cos 2W + sin i Cos 2)

7 . 2. 2 1 1 z.2. 1 19
W5 - sin io cos Zw + e (1 +6 COS 2w9 + sin io( )Scs 2W5 1 10 0 0 2 osw 0 -co w) 0

3 2
W e sin i cos 2w6 0 o2

1 2 2.
W7 eo sin 1o cos 2W

1 .2. .2 1 7 2.W 8= T sin 1 sin 2w + e 0(- sin 2wo sin 1i sin 2W 0)

1 5 2.
W = e (- sin - - sin i sin 2w )9 o2 0 4 o o

7 2. 2 1 .ln9 0
W10 -~. sin i0 sin Zw 2 + e1 . sin 2w)

3 . 2.
W = -- eo sin i sin 2w

1 2 2.
W12 eo sin 10 sin 2w0 (1. 22)

The conservation of the component of angular momentum along

the polar axis provides an exact relation between p and i at each instant

of time. Differentiating Eq. (1. 13) leads to:

di = cot i dp (1. 23)2p

The first-order perturbation of i is therefore simply

6i = - cot i 6p (1. 24)2p 0 o
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1. 9 Second Order Perturbations

The first-order perturbations can now be added to the nodal

osculating elements in the perturbation equations and the final integra-

tion over a nodal cycle completed. As in the first-order integration,

an abbreviated derivation of Ap is presented as an example (the details

of these integrations are presented in Appendix I). Since:

p = po + 6p

e = e + 6e
0

o

i = i 0+ 6i (1. 25)

substitution into Eq. (1. 17) and expansion in the variable v yields:

dp _2J .2.
du 2J[ sin i (cos Zw sin 2P cos P + sin 2w cos 2P cos v)6e
du0 0 0

0

2
+ sin i (e cos 2w sin 2P sin P + e sin 2w cos 2v sin v) 6w

+ cos Zi (cos 2w sin 2P + sin Zw cos Z + e cos 2w sin 2v cos P

+ e sin Zw cos 2P cos v)
0 0 po

+ Higher Order Terms + Terms that will vanish upon integration]

2 2. 2.
8J cos iosin i0 2 . .4 2

+ [2e cosw sinw sin u cos u
30 0 0

P0

+ Terms that will vanish upon integration] (1. 26)
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Hence, to second order, the change in p over one cycle is

0

Ap = J,
-W

0

dp dv

2
27rJ 2
= 3 sin

2

PO
.[ Icos 2W(E + E4 ) + sin2w (E' + E9 )

14+ s 8 - W)+ 1 sin Zw (W - W3) + 3 sin w(W
+-cosZwo (W - 0 z 5 3 3 0

11
+ -cos 2io(cos 2w oP3 + sin 1o P6 + 2 eo Cos 2w0(P2 + P4)

+ - eo sin 2wo (P2o o 5
P)+2 2.

+ P ))+ e cos i coso
7 0 0

which reduces to the final form:

2

AP = 3T 2
-3-
P0

. 2. 16 20 .2.
sin 2 [e sinw(- - + - sin i )o o o 37 3 0

2 7 5. 2
+ e sin ZW0( 3 sin i )]

The integrations of do dT
, , and

are tedious.

results of these integrations are given here, since the details of the

analysis are presented in Appendix I. Thus

27rJ cosi
A =~ 2 +

+ecosw( 16
+ o 3

7rJ2 .

Pcos
p0

40 .i2 .
3 sin

20 . 2.
0 [3 sin 10

2 1 7
(-- c - Cos 2w

2 5 5+ sin i (- + Cos )
0 12 2 0sw)

sinw ]5m (1.27)

(1. 28)

Only the

(1.29)

- A



21

7TJ 2
A=- j(3 cos i -1) - cos i AQ

p0 0

2
'TJ 1 23 2.+ T[ ecosw 0(-4+ -sin lo
Po 0

10 . 4.
3 sin io)

.2. 49 23 4 95 5+ (1-4cos2w + sin i (-4 - + -3 cos 2w) + sin i (- -8 + -5 cos 2w)

+ e cosw (- 4 cos w + 5 Cos 2 ) -2 sin 4i )

2 5 .2 5 35 4 25 25+ e0 ( + sin i0(- -- cos 2w0) + sin i (- - + s

(1. 30)

3

AT= 27 0
GM(I - e 3

0

+ 22rJ
N4GMp

0

r (~e3 5 2 "
(1+e cosw ) (-2+5 sin i

(1-e 2 l52 G+e cos)
0 0 0

(1.31)

The change after a nodal period in eccentricity, accurate to second

order, is derived most easily from, the law of conservation of energy. The

relation p = a(l - e 2) is exact at each instant for the osculating ellipse.

Taking differentials of this expression gives:

e
2

e 2pe [(l-e) a - Ap ] + Higher Order Terms
2p 0 o

(1.32)

where Aa is derived directly from, the expression for orbital energy at

nodal crossing (Eq. (1. 19)), and Ap is given by Equation (1. 28). From,

Eq. (1. 19) it follows that

2
Ja e 2

Aa =-2 g-- (I+ e cosw ) sin zo

Po
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and

222
22TJ 1 .2

Aa = - 3 21 2 e sino (1 + e cos w) (4 - 5 sin 1)

0 0

+ Higher order terms (1.33)

Substituting Eqs. (1. 33) and (1. 28) into Eq. (1. 32) gives:

7rJ2  23 . 2. 10 4
A e = 4[ sinw 0(- 4 + sin o -3 sin io)

P0

23 .2. 5 .4.
+ e0 sin 2w0(- 4 + sin 1+- sin 1)

2 2 2 7 2 10 4
+ e sin w (- 4 cos w + sin i (- - 5 sin W ) + - sin io)

3 7 2 5 4
+ e 0 sin 2w(T sin 1 - sin i 0 )] (1.34)

The net change in inclination over a nodal cycle follows directly

from the exact relation between p and i (Eq. (1. 13)). Taking finite

differences and neglecting terms of order J3 and higher gives:

Ai = - coti Ap (1. 35)
Zp0 0

1. 10 Validation of the Equations

These integrated forms were checked for accuracy both by a

duplicate, but independent, integration of the equations and by a sensitive

num e rical comparison against a Runge-Kutta integration of the original

simultaneous differential equations.

Theoretically (and without considering the convergence question),

the solution of the original differential equations can be represented

as a set of six infinite series each of the form:
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2 3 4

0f=a + aIJ + a 2  + a3 J+ a J +- (1. 36)

whereas the second-order solution found above yields equations of the

f orm.:

A f =a +a J + a J (1. 37)second order 0 1 2

3 3 4
Since J is 10 times larger than J , the difference between these two

forms is:

s0 3

Thus if Af and Af are computed for several different, non-physical
so

values of J, the ratio of these differences is approximately equal to

the ratio of the J' s cubed.

Af (J ) f -(i a3 1 3 1 31 so 1  3 ( 1 (1.39)
AL~J -Lf(J 2 ) 3  J

(J 2) so 2 a 3 12 2

If the value of a 2 in the second-order form, is incorrect, then this ratio

is:

2 3
a' J + a J J 3

2 1 3 1 (1. 40)
at ~2 + aJ1

2 2 3 2 2

where a' 2 is the error in a2.
The Af' s were evaluated numerically on an IBM 70 94 computer

that used a Runge-Kutta integration of the six exact simultaneous equations.

These computations were made in double precision (16 significant figures)
5

giving an accuracy comparable to keeping terms of order J in Eq. (1. 36).

The Af 's are simply Ap, Ae, etc. with the appropriate first and

zeroth order terms included. These ratios were evaluated and order of

L
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magnitude checks were made for over forty sets of initial conditions.

Care was taken that errors were not masked by degenerate combinations

of coefficients equalling zero because of a poor choice of initial

conditions. In addition, several ratios were evaluated for actual nodal

crossing elements for 1960 Iota 2, the rocket casing of Echo I.

Each of the six second-order changes have passed these tests.

A typical set of numerical checks is presented in Table I for one set of

initial conditions. Column 1, 2, and 4 in Table I give perturbations

computed with J, J/2, and J/4, respectively. The ratio of the differences

between the Runge-Kutta integration and the analytic solutions, after

Eq. (1. 39), are listed in Columns 3 and 5. This ratio should be 8 in

Column 3 and 64 in Column 5 (except for AT where the ratios should be

4 and 16, respectively). The large values of these ratios (8. 5 and 70)

for the perturbation of w indicate that the third order effect for this

set of initial conditions is small (note the large number of significant

figures in the direct comparison of A computed by Runge-Kutta integration

and from Eq. (1. 30)).

Detailed comparison of this theory with experiment is given in

Chapter II.

While the derivation of the second-order theory in this chapter has

been carried out independently, it should be pointed out that a number

of second-order theories and approximate second-order theories have

appeared in the literature. Of particular note are Merson,1.9 Blitzer, 1.10

and Kozai. Merson's work is correct except for a typographical error

in his Eq. 56. Blitzer's work is correct but does not include the time

of nodal crossing equation. Kozai includes secular terms to order J .

His equations are in a form which is very difficult to compare with

E qs. (1. 28) - (1. 35).



TABLE

A Typical Numerical Check of Second 0

Initial Conditions:
p = 1. 67 earth radii

e =0.5
0

0

0

Ap (in earth radii)

Runge Kutta
2nd Order

Difference

Ae (dimensionless)

Runge Kutta
2nd Order

Difference

Aw minus first order effect

Runge Kutta (radians)
2nd Order

Difference

LQ minus first order effect

Runge Kutta (radians)
2nd Order

Difference

Ai (radians)

Runge Kutta
2nd Order

Difference

Column 1

J = 1. 623 27 x 10 - 3

(see Ref. 1. 8 for
example)

-1. 7221186 - 7*
1. 7091771 - 7

. 0129415 - 7

- 1. 2457768 - 6
-1. 239300 4 -6

. 00 64764 - 6

1. 3 904468 - 6
1.3903309 - 6

. 00011 59 - 6

- 2. 3272977 - 6
-2. 328900 9 - 6

. 001603 2 - 6

- 2. 9601042 - 6
- 2.9378591- 6

Column 2

J = 8. 1163 5 x 10~0

- 4. 2891012 - 8
- 4. 2729427- 8

- . 016158 5 -8

-3. 1063427 - 7
- 3. 0982510 - 7

S. 0080917 - 7

3.4759631- 7
3.4758272 - 7

.0001359 - 7

- 5. 820 2487 - 7
- 5. 8222523 - 7

.0020036 - 7

- 7. 3724236 - 7
- 7. 3446476 - 7

Column 3

. Column 1
Ratio Column 2

4. 0 1 5
4.000

8. 009

4. 010
4. 000

8. 004

4. 000
4.000

8. 528

3. 999
4. 000

8. 001

4. 015
4. 000

C olumn 4

J = 4. 058175 x 10

- 1. 0 70 2560 - 8
-1. 0 682357 - 8

- . 00 20 203 - 8

- 7. 7557401 - 8
-7. 7456275- 8

- . 0 101126 - 8

8. 6897333 - 8
8. 6895683 - 8

.00016 51 - 8

- 1. 4553129- 7
- 1. 4555631 - 7

.0002502 -7

- 1. 8396365-7
- 1. 836 16 19-7

Column 5

4 .iColumn 1
Ratio Column 4

16. 091
16. 000

64.057

16. 063
16. 000

64. 043

16. 001
16.000

70. 200

15. 992
16. 000

64. 076

16. 091
16. 000

.0222451- 6 .0277760 - 7 8.009

N
(y1

I

rder Second Harmonic Perturbations

. 0034746 - 7 64. 022



Table I continued

AT minus zero order period

Runge Kutta

2nd Order

Difference

(Universal
days) - 4. 9768438 - 4

- 4. 990 9386 - 4

.0140948 -4

- 2. 4917468 - 4
- 2. 4954693 - 4

.0035225-4

1. 997
2. 000

4.001

- 1. 2468543 - 4
- 1. 2477347 - 4

.0008804 -4

N

This notation signified. -1. 7221186 x 107.

3. 991
4. 000

16.009

I
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CHAPTER II

Second-Order Orbit Perturbation Computations and

Comparisons with Observed Satellite Orbital Data

2. 1 Introduction

The true test of the second-order perturbation theory derived

in Chapter I is of course a comparison with observed orbital perturbations.

To make this comparison and to provide for future usage of this theory

in orbit perturbation investigations, the second-order perturbations

derived in Chapter I have been included in the high-speed digital computer

program described in Appendix II.

This General Perturbation Program is provided with observed

nodal crossing osculating elements at a single nodal crossing epoch as

initial conditions. The program then generates osculating elements at each

succeeding nodal crossing from perturbation theory alone without further

recourse to observed orbital data. The accuracy of the computation and

of the theoretical model is then determined by comparing these computed

orbital elements with observed orbital elements for succeeding epochs.

The orbital data of 1960 IOTA 2 ' and 1961 Delta 1 2.2 , used here

for comparisons and for orbital studies, were prepared by the Smithsonian

Astrophysical Observatory (SAO) from, precisely reduced* photographic

observations. 2. 3 This type of photo-reduced orbital data is perhaps the

most accurate obtainable at the present time. Each observation is accurate

to 20 sec of arc and 20 msec in time or better2.4 and up to 40 obser-

vations per day per satellite are made. 2. 2

The orbital elements derived by SAO are not osculating elements

at nodal crossing but mean elements. 2.1 These are mean in two senses;

first, the first-order short-period effects of the second harmonic of the

Not to be confused with field-reduced photographic data which are of much
lower accuracy. 2. 5
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gravitational field are removed from the data, and second, the data are

smoothed over time intervals of several days. 2. 6 A more precise

definition of SAO mean elements and the procedure for conversion to
nodal osculating elements are given in detail in Appendix III. The

computed nodal crossing osculating elements at each epoch of interest

are converted independently to SAO mean elements to facilitate comparison.

In addition to the perturbations caused by the second zonal

harmonic of the earth, our computations include the effects of solar

radiation pressure, atmospheric drag, the third through fifth zonal

harmonics, lunar gravity and solar gravity (see Appendix II).

2. 2 1961 IO TA 2

A good set of satellites to test the second-order theory and, in

general, to improve geodetic constants would be one which contained

satellites whose orbits are completely insensitive to nongravitational

perturbations and whose experimentally determined orbital elements are

as accurate as or possible more accurate than the SAO photo-reduced

data. Such satellites do not yet exist.

The rocket casing of ECHO I (1961 IOTA 2) was chosen here (on

the recommendation of L. Jacchia of SAO) in lieu of an "ideal" satellite

because of the extensive orbital data compiled for it and because the

perigee height is large enough (- 1500 km) so that atmospheric drag is

relatively unim.portant.

The use of this satellite has two major drawbacks. First, the

eccentricity is very low (~ 0. 01). This causes the line of apsides to be

ill defined and therefore, the argument of perigee (w) is both difficult

to measure and to compute. This difficulty, in turn, is carried over

into the mean motion (n)and mean anomaly (M) (see Appendix III).

Second, the satellite is a cylinder either spinning about its long axis

or tumbling if spin-axis conversion has taken place. The angular motion

about the center of mass is a function of tim.e and must be considered

an unknown because of gravitational torque, etc. This angular m.otion

An example of such a satellite, consisting of a solid lead sphere sur-
faced with optical corner reflectors to provide a laser "radar" target has
been proposed by H. M. Jones, I. I. Shapiro, and the author.

The mean motion is simply the reciprocal of the orbit period for unper-

turbed satellite motion (see Appendix III for details).



30

can cause solar radiation pressure perturbations to be larger than with

an equivalent spherical area-to-mass ratio (A/M) and to be unpredictable. 2. 7

To demonstrate the importance of the radiation pressure per-

turbations and to point out the danger in employing this type of data for

improving geodetic constants, the results of three mathematical models

for this perturbation (see Appendix II) are presented here. The first

model (represented by a plus sign (+) in Figs. 2. 1 through 2. 6") is an

absorbing satellite with a constant area presented to the sun. (This

model also represents the perturbations on the orbit of a specularly

reflecting sphere.) The second model (represented by a A in Figs. 2. 1

through 2. 6) is a 100 percent specularly reflecting cylinder tumbling about

an axis which both lies in the plane of the equator and is roughtly parallel

to the initial spin axis at injection. The third model is the same as

model two but with a tumbling axis rotated 900 in the equatorial plane

from that tumbling axis. (This case is represented by a IV in Figs. 2. 1

through 2. 6) The importance of the radiation pressure perturbations

and of the uncertainty of this effect for this satellite is demonstrated by

the spread between these three cases.

Despite the uncertainty in the radiation pressure perturbations,

the second-order perturbations caused by the second harmonic of the

gravitational field are dramatically emphasized by comparing the

computed orbit parameters with and without the second-order theory

included, to the experimental data. The theoretical second-order per-

turbation of the inclination contains only a linear and quadratic dependence

on eccentricity (see Eq. 1. 35) and is therefore small and somewhat masked

by the approximations used in computing the lunar perturbations.

Time is reckoned in Modified Julian Days (MJD) for these data, (see
Appendix IV.).

The actual situation is probably more nearly represented by a
diffusely reflecting cylinder, spinning or tumbling about a slowly pro-
cessing axis.

The present computation of lunar perturbations in the General Perturba-
tion Program is in closed form. This computation uses overly simplified
equations for the position of the moon and makes the approximation that

rr I<<1.
r moon

-_ - - I
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The computed values of eccentricity (see Fig. 2. 1) for the three

radiation pressure models bracket the observed data. The maximum

discrepancy for the absorbing, constant area-to-mass ratio model is
-5

2 x 10 and occurs approximately 60 days after the initial epoch. If the

buildup of this discrepancy were linear to this point, the error would be

approximately 3 x 10-8 per revolution compared with approximately 10-6

per revolution if the second-order second harmonic effects are neglected.

The quoted one standard deviation (one sigma) error in the eccentricity
daa2.1 -6

data . averages approximately 5 x 10 or one-half of the smallest division

of the figure.

The SAO mean motion for 1960 IOTA 2 (Fig. 2. 2) contains a

pseudo-sinusoidal oscillation of period w and amplitude of approximately

5 x 10~4 revolutions per day. This oscillation is caused by the technique

used at SAO to reduce the data (see Appendix III). An approximation

to this oscillation was introduced into our numerical computations to

facilitate comparisons of our results with the data. The secular drift

of the computed - away from. the observed - mean motion (10- 7 (rev/day)

per nodal period) may be fictitious and may be caused by the approximation

(see Appendix III), or it may be the uncertainty of the radiation pressure

model even though all three models presented here show some of this

secular drift. The errors in the mean m.otion data (noise) are apparent

from the amplitude (~1 x 10~4 rev/day) of the frequent short-lived (two-day)

slope reversals, the quoted one-sigma error, 2. I however, averages

only 2 x 10-5 rev/day or twice the smallest division of the figure.

The mean anomaly (Fig. 2. 3) is the time integral of the mean motion.

In the 208 days of data presented, the satellite (and therefore, the mean

anomaly) makes 2, 537 revolutions. The data is therefore plotted as a

residual from a linear equation. Neglect of the second-order second

harmonic effects causes the mean anomaly residual to drift off scale in

only four days. The total error for the absorbing, constant A/M case

is 0. 01 revolution or 1. 18 minutes of time in 208 days or 0. 00C4 percent
2.1

of the total change. The average quoted one-si gma error in mean anomaly

is approximately 7. 5 x 10-5 revolutions. The round-off error in the

L
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output of time from the GPP is h 4 sec corresponding to 5 x 10-4 rev.

in mean anomaly. This round-off error is not cumulative during the

computation because time is kept internally in double precision.

The argument of perigee (w), (see Fig. 2. 4)*, is the most

difficult parameter to compute for 1961 IOTA 2 because of the low eccen-

tricity of this satellite. Eccentricity appears in the denominator of

expressions for the perturbations of this parameter which are caused

by solar radiation pressure and the odd (i. e., 3rd and 5th) harmonics of

the gravitational field of the earth 2.8 and in Eq. (1. 30). This results in

a perturbation of w by the third harmonic that is one-tenth of the

perturbation caused by the second harmonic. Therefore, terms of

order J*K, which have been neglected, can be one-tenth of the second-

order second-harmonic term. The discrepancy in the comparison for W

(see Fig. 2. 4) is of this order. The uncertainty of the radiation pressure

effect is also of this order (see Fig. 2. 4). The total error accumulated

in w (0. 40) is 0. 07 percent of the total change in w during the 208 days.

The average quoted one-sigma error in the observational data is

approximately 0. 030 2.1 or one-third the smallest division of the figure.

The comparison of computed inclination with observed inclination

presented in Fig. 2. 6 shows a general trend of correlation, but the

details of this fit and the contributions of the second-order theory are

completely masked by the errors in the lunar perturbation computation

described earlier. The average quoted one-sigma error in the Smithsonian
inlnto s2.1 -4

data for inclination is approximately 5 x 10 degrees, or five of the

smallest divisions of Fig. 2. 6.

The right ascension of the ascending node (Q) is presented as

the residual from a linear function in Fig. 2. 5. The discrepancy between

the computed and observed Q can be explained in part by the average

errors in mean motion and inclination. The approximate effect of these

Note that this data is plotted as a residual from a linear function.

The importance of these terms has been borne out by Runge-Kutta
integration tests similar to those described in Chapter I.
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errors can be obtained by taking differentials of the first-order (in J)

change in 0 given in Eq. (1. 29) of Chapter I:

27rJ S( ) - [2 cosi + sini -6iJ (2.1)
p 6

p p

For small eccentricity:

2
p = a(l - e2) a

2 a
6p 6a- - n (2.2)

therefore:

27rJ 4 6n
)2 cosi + sini 6i] (2.3)

p

For the orbit parameters of 1961 IOTA 2:

-2 -3
6(AQ) -2. 8 x 10 6n + 4. 8 x 10 6i deg/rev

where 6n is in rev/day and 6i expressed in degrees. The average error

in the rate of change of 0 is approximately 1. 2 x 10-5 deg/rev. Three

sets of 6i and 6n which would explain this discrepancy are:
6i 6n

(deg) (rev/day)
SET 1 +- 0. 0025 0.

SET 2 +-0. 0031 + 0.0001

SET 3 0. -0.0004

The uncertainty in the radiation pressure perturbation is a third

of the discrepancy so that the above values may be one third too large.

The total error in 0 during the 208-day period (0. 030) is 0. 005 percent
2. 1

of the total change in Q. The average quoted one-sigma error is

approximately 7. 00 x 10~4, or 7/10 of the smallest division of the figure.

Note that if the second-order effect is neglected, the residual in Q drifts

off scale in six days.

The comparisons of computed orbit parameters with the observed

orbit of 1960 IOTA 2 have not "proved" the second-order theory, but the
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theory is demonstrated to at least one significant figure of the J2 term

and is not disproved in any way. The study of the uncertainty caused

by solar radiation pressure on this cylindrical satellite clearly indicates

that care must be exercised when the orbital data of tumbling cylindrical

satellites are employed for precise geodetic work.

2. 3 1961 DELTA 1

The satellite 1961 Delta 1 (Explorer IX) is a twelve-foot-diameter,

rigid balloon and was launched into orbit as an atmospheric density

probe. This satellite is very sensitive to atmospheric drag and dis-

cussions of this effect and the perturbations of the mean motion which

are a measure of this effect are given in Chapter III.

The solar radiation pressure perturbations of the orbit of

1961 Delta 1 are predictable because of the nearly spherical shape of the

satellite. The eccentricity of its orbit is on the order of 0. 1, 2. a factor

of ten greater than that of 1960 IOTA 2. Associated with this increase in

eccentricity is a factor of ten increase in the accuracy of both the

observed2.2 and the computed argument of perigee (see Fig. 2. 9). Other-

wise, the accuracy of the observed and computed parameters is the same

as for 1960 IOTA 2 (except for the mean motion, see Chapter III).

The geometry of the orbit of this satellite is such that solar radiation

pressure produces a large secular decrease in eccentricity (see Fig. 2. 7).

This effect is known as "resonance". 2.10

The mean anomaly residuals (Fig. 2. 8) have the characteristic

parabolic shape associated with a drag-sensitive satellite. The mean

motion is rapidly changing in a more or less linear fashion; therefore,

the mean anomaly, which is the integral of the mean motion, is a

parabolic function of time.

The comparison of computed inclination with observation (Fig. 2. 11)

reflects once again the approximate lunar perturbations described

earlier. Part of the secular portion of the discrepancy (approximately

1 x 10 3 deg in 208 days) is probably attributable to atmospheric rotation. 2. 11

A similar set of 1961 Delta 1 observed orbital elements was later
published in Ref. 2. 1.
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Predictions of the lifetime of 1961 Delta 1 were made with the

GPP (Appendix II). These indicate that the demise of Explorer IX

will occur on March 28, 1964 10 days. The uncertainty is introduced

by the correlation of atmospheric density with the unpredictable 10. 7-cm

solar radio flux and with the geomagnetic planetary indices (see Chapter

III). A similar technique was used to predict the lifetime of the Echo
2.12 dipo3esnd 2.14

Balloon and of the West Ford dipoles; and however, drag

is unimportant in the lifetime computations for the latter.

2. 4 A Heavy Satellite

A direct comparison of the theoretical time of nodal crossing

perturbations given in Chapter I with measurement is shown in Fig. Z. 12.

The data are actually radar measurements of the time a heavy satellite
Z. 15

(i. e. , low A/M) crossed the 380 north latitude line. The conversion

to time of nodal crossing involves only a constant plus an oscillation of

approximately E 10 sec amplitude and with the period of w (which was

neglected). The time of nodal crossing residual in Fig. 2. 12 is a

straight, mean line plus a sinusoid of period w (- 300 days) and amplitude

100 seconds. This sinusoid cannot be explained on the basis of first

order theory alone.

The GPP (Appendix II) will accept an equivalent two-body

anomalistic period as input but not the nodal crossing period directly

(see Table 4). This equivalent period converted from the Space Track

data is:

P = 0.1061366 days

The resulting mean line" (see Fig. 2.12) is represented by A's. An

improved value of the initial orbit period was computed to account for

the discrepancy; the result is:

P = 0.1063133 days

Based on SAO data for July 30, 1963.

The oscillation in time of nodal crossing is of period w and is sinusoidal.
The mean line is defined by connecting points for which w =n- ?r (n =1, 2... ).
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The result of this improvement is plotted as plus signs in Fig. 2. 12.

Theoretically, the initial eccentricity could be improved by

comparing the amplitude of the computed and observed sinusoidal

oscillation. Any error in the eccentricity is smaller, however, than

this method can detect in the time of nodal crossing data.

TABLE 1

Physical Constants

Equatorial Radius of Earth (E. R.)

Gravitational Constant

Coefficient of the Second Har-

monic

"t 11 It Third "

i " Fourth "

i " Fifth "

Radiation Pressure Constant

Ratio of Sun Mass/Earth Mass

Ratio of Moon Mass/Earth Mass

RE = 6378. 388 km

GM = 1. 53609904 x 10 6

E. R. 3/sec

J = 1. 62327 x 10 3 E. R.

K =

D =

I/c =

2. 27 x 10 E. R. 3

9. 2 x 10 6 E. R. 4

2. 6 x 10~ E. R. 5

4. 65 x 10-5 gm/cm.2

333432.

0. 01226

TABLE 2

Physical Parameters of 1961 IOTA 2

Average A/M = 0. 252 cm 2gm

Maximum A/M = 0. 310 cm 2/gm

C D = 2.2

TABLE 3

Physical Parameters of 1961 DELTA 1

A/M

C D

15. 84 c m2 /gm,

2. 2

(2.
2 (2.

(2.

(2.

2.

(2.

(2.

(2.

Ref.

(2.18)

16)

18)

18)

18)

18)

18)

18)

18)

(2.17)

(2.17)

(2. 17)



e = 0. 03

W = 15*

0 = 125. 600

i = 86. 50

Nodal Period = 0. 10631422 days

Date =April 11, 1962

The original source is USAF Space Track data.
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TABLE 4

Orbital Elements of a Heavy Satellite 2. 19
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CHAPTER III

Atmospheric Density Models

3.1 Introduction

The factors which presently limit the accuracy which can be

achieved in the computation of orbit perturbations caused by neutral'

drag are inadequacies in current atmospheric density models, uncer-

tainties about the interaction between the satellite and the impinging

air molecules (i. e., uncertainty in the drag coefficient CD) and possible

uncertainty about the effective area-to-mass ratio because of unknown

orientation. We apply accurate orbit perturbation computations to the

study of semi-empirical atmospheric density models, with emphasis on

systematic, long-period variations in density with time. The use of

orbital data for 1961 Delta 1 minimizes the uncertainty in C and A/M
D

since this satellite is nearly spherical.

Atmospheric density models have been improved as both the

quality and quantity of satellite orbital data have increased. As early as

February, 1958, variations were noted in the accelerations of the time

of perigee passage of several satellites.(3. 2,3. 3) Jacchia3.4 later

demonstrated these variations to be variations in atmospheric density,

presumably caused by solar activity. Specifically, these variations in

density were correlated, in part, to the decimeter solar radio flux+ by

Priester3.4 and later by Jacchia3.4 and to the geocentric angular distance

from the sub-solar point (the diurnal bulge) by Jacchia. Jacchia also

discovered a correlation between transient variations in density and geo-

magnetic disturbances. 3. 6

In general, the care which must be exercised in drag perturbation compu-
tations depends, of course, on the accuracy required, the atmospheric
density at perigee altitude and the area-to-mass ratio of the satellite.

A&Coulomb interactions are excluded from the discussion of neutral drag. 3.1

3 14
The uncertainty in CD is on the order of + 5% for this satellite. 3

+The decimeter solar fluxes (10. 7 and 20 cm) are not the cause of the
variations in density but merely an index to the solar effects which do cause
the variations (probably atmospheric heating by solar radiation flux in
the extreme-ultraviolet portion of the spectrum3 . 5).
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In the late 50's, several nalve density models were compared

with the available satellite data but did not account for the observed

variations in density (for examples, see Refs. 3. 3, 3. 7, and 3. 8). An

empirical atmospheric density model* which attempted to account for

the diurnal effect and for the correlation with the 20 cm solar flux was

first presented by Jacchia in 1960. 3. 9 The notable results were a

pronounced lag, of between 250 and 30', of the maximum point of the

diurnal bulge from the sub-solar point, an almost linear dependence of

the density on the 20 cm. solar flux, and a cos (0/2) law for the shape

of the bulge where 0 is the geocentric angular distance from the maximum

point of the bulge.

Jacchia's 1960 model was improved by making use of a theoretical

density model published by Nicolet 3.10 in 1961. Nicolet's model is

based of diffusion equilibrium with assumed boundary conditions at

120 km altitude. Temperature is the most important parameter in

Nicolet's model. The temperature asymptotically approaches a constant

(the "top" temperature) at high altitudes (the thermopause), above

which the atmosphere is essentially isothermal (this altitude is 300 km

for a top temperature of 903'K and 650 km for a top temperature of

2131'K). Nicolet found that the vertical distribution of density depends

on the top temperature of a vertical column and that the variations in

density caused by the diurnal and solar effects can be represented by

changes in the top temperature.

Using Nicolet's model, Jacchia demonstrated the correlation

of the 10. 7 cm. solar flux with the top temperature and showed the

maximum top temperature at the center of the bulge to be approximately

a constant multiple (- 1. 35) of the night-time top temperature. 3.11

Explorer IX (1961 Delta 1) provides an extremely sensitive

instrum.ent for the study of atmospheric density. Jacchia and Slowey

used orbital data for this satellite to correlate a portion of the observed

temperature variations with the daily geomagnetic planetary index (A ). 3.12

This density model is contained in the General Perturbation Program as
an optional one for com.puting neutral drag perturbations (see Appendix II).

The mechanism, of atmospheric heating which correlates to the geomagnetic
planetary index is not well understood, (see Ref. 3. 5).

MEW
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Later, by including additional orbital data for seven other satellites,

Jacchia and Slowey 3.13 were able to confirm Paetzold's semiannual

effect and to separate the solar flux effect into an "erratic" (or "27-day")

effect which follows the daily 10. 7 cm, solar flux variations and a

systematic effect which is correlated to the monthly average of the

10. 7 cm flux and which closely parallels the trend of the decimetric solar

flux over the 11-year solar cycle.

A complete density model that includes the above mentioned effects

was published by Jacchia in 1962. 3.14 This model consists of empirical

equations relating top temperature to the various physical effects.

Density is then read from Nicolet's tables 3.10 using a computed top

temperature and altitude as independent variables. The improved accuracy

of photo-reduced data for 1961 Delta 1 (see Chapter II) allowed Jacchia

to correlate the geomagnetic effect to the three hour geomagnetic planetary
3.14 31

index (a ) instead of the daily average A 3. 12
p p
The observed variations in atmospheric density are presumably

caused 3. 5 by variations in atmospheric heating in the regions of 100 km

to 200 km altitude. This heating is thought 3. 5 to be caused by electro-

magnetic radiation (principally extreme-ultraviolet and soft x-ray) and

possibly corpuscular streams from, the sun. The various effects which

are correlated to the variations in density are simply measures of

the true causes.

3. 2 Improvement of Density Models

The method used to compute orbit perturbations (in particular,

mean motion perturbations) and the accuracy that can be achieved

(see Chapter II) makes the General Perturbation Program, (GPP) a useful

instrument for the study of atmospheric densities. First, it can be

used to test density models over long periods of time; second, it can

be used to improve those constants in existing density models that cause

systematic long-period and secular perturbations of satellite orbits; and

third, it can be used to detect systematic, long period density variations.

Drag is, of course, a non-conservative perturbing force and its

principal effect on an orbit is to reduce the orbital energy. The orbital

The 20 cm solar flux data which originates in East Germany contained
a slow drift, probably of instrument origin, and which masked the semi-
annual effect. 3. 13 The use of 20 cm, solar flux data has been abandoned
for this reason.
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elements that depend on orbital energy include the semi-major axis (a),

the mean motion (n), the anomalistic period, etc. The Smithsonian

Astrophysical Observatory mean motion (see Appendix III) is used here

because of the availability of high precision data for this quantity. A

change in mean motion is a measure of drag and is therefore a measure

of atmospheric density. Jacchia deduces density and temperature by

determining the time rate of change of mean motion from satellite

data at each epoch of interest and subtracting from fi, the theoretical

contribution of radiation pressure, etc. 3.13 The resulting corrected

derivative of mean motion parallels the daily variations of density

(and therefore top temperature) at perigee. The fine structure of these

variations is therefore readily apparent.

The mean motion, derived from satellite observations, reflects

the integral of all the variations in density over the history of the satellite.

The small "spikes" in the time history of i are essentially smoothed

in the time history of n. The GPP computes the time history of the

mean motion (indirectly from, p, e, and i, see Appendix III) from, a

single set of initial orbital elements (see Chapter II). Thus, small

long-period and secular discrepancies of the density model from the

actual density will build up and be visible in this time history (see

Fig. 3.1).

The result of computing the mean motion of 1961 Delta P, using

Jacchia's 1960 density model (described above) is presented in Fig. 3. 1'"

(symbol A). The comparison of this result with the experimentally

determined 3.15 mean motion in Fig. 3. 1 shows that the drag perturbation

computed with this model is approximately four times too great.

Drag perturbations are computed in the GPP by numerical

quadratures. Density if computed with the model desired for each argument

1961 Delta 1 is a 12-ft-diameter, rigid, spherical balloon with an area-to-
mass ratio of 15. 84 cm2/gm 3 .13 which makes it particularly sensitive
to neutral drag. A drag coefficient of 2. 2 is assumed.

Time is reckoned in Modified Julian days (MJD) for these data
(see Appendix IV).
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of each quadrature. In Jacchia's density model, based on top tempera-

tures, 3. 14, 3. 16 the night-time temperature is used in the following

form:

T =a + a F 7 + a s t- ) - F.7 (3.1)*
1 -10. 7 + 3 os(- a4 1

where a m, m = 1,..., 6, are constants; F10. 7 is the monthly average of

the 10. 7 cm. solar flux** (see Figs. 3. 4 and 3. 5); and t is time.

The top temperature for a given point is:

T = TN[l + b1cosR (b/2)] + b2 a + b3 (F1 0 7 - F1 0 7 ) (3. 2)

where b , m, = 1, 2, 3 are constants; F 10. 7 is the daily average of the

10. 7 cm solar flux**(see Figs. 3. 4 and 3. 5); a is the three-hour

geomagnetic planetary index delayed, in time, up to six hours (see Figs.

3. 4 and 3. 5); f is a constant exponent; and 0 is the geocentric angular

distance from the given point to the maximum. point of the bulge. The bulge

maximum is assumed to be at the same latitude as the sun and lagging X

degrees behind. 3. 9 The altitude at a given point is computed above

the International Ellipsoid of Reference. 3.17 Density is then determined

from T and altitude by two-dimensional, linear interpolation from

Nicolet's tables. 3.10

Table 3.1 contains a list of Jacchia's constants for this density

model. The curve of mean motion vs. time presented in Fig. 3.1

(represented by the symbols a ) is the result of using these constants.

The table also contains a revised list of constants used to compute the

mean motion vs. time represented by the symbols 0 in Fig. 3.1 and

continued through Fig. 3. 3. This latter list is the result of an effort to

improve the agreement between the computed mean motion and the data

using various combinations of constants. The most significant new values

The third term. on the right represents the semi-annual effect.

F and F are measured in "flux units" where one flux unit equals
10. 7 l9. 7

10-22 watts/m, /cycle/sec bandwidth. 3. 11

These tables were extended to lower top temperatures with data
kindly furnished by Dr. Jacchia.
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are those for the lag angle (X), the amplitude of the bulge (b ), and

possibly the amplitude of the semi-annual effect (a3 ). The new value

of b3 (the amplitude of the "27-day" effect) is probably erroneous;

Jacchia's value is probably better because his method is more sensitive

for measuring short-term, variations in density. In addition, the values

of X and bI (the amplitude of the bulge) are difficult to separate using

just one satellite. 1961 Delta 1 is especially unsuitable in this respect

because of the slow change in the geocentric angle between the bulge

maximum and perigee (i. e. , the orbit is resonant, see Chapter II).

Figure 3.1 definitely demonstrates however that a significant improvement

can be made in the constants of atmospheric density models using this

method.

3. 3 An Auroral Bulge Model

Figures 3. 4 and 3. 5 present in residual form, the discrepancy

between the observed mean motion and the mean motion computed using

the improved constants described above (labeled: without auroral bulge).

Here, residual is defined to mean the computed mean motion minus

the observed mean motion. A positive slope of this residual curve

indicates the density computed by the program, is too high, etc.

A comparison of the residual curve with the approximate curves of

the latitude of the sun vs. time and the latitude of perigee* vs. time

shows that when the sun is in the northern hemisphere, the computed

density is too low if perigee is in the southern hemisphere and too high

when perigee is in the northern hemisphere. When the sun is in the

southern hemisphere, the opposite is true: computed density is too high

when perigee is in the southern hemisphere, etc. The oscillation in

the computed density error changes phase when the sun is over the

equator.

This discrepancy can be explained by assuming that the diurnal

bulge is extended in the north-south direction. To account for this

extension and also the possibility that it is caused by atmospheric

heating in the auroral zones, an ad hoc density model was programmed

Most of the drag perturbation of 1961 Delta 1 occurs within a few degrees
of perigee and for purposes of this discussion it is assumed to occur
entirely at perigee.

Jacchia and Slowey have independently postulated auroral heating3. 1 8

from, a study of the orbit of 1962 Beta Tau 2 (INJUN III) for which
e = 0. 16, i. = 70. 4', and perigee height ~ 250 km.
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that included two additional bulges located approximately in the regions
.. 3.19,3.20,3. 21 ..of diurnal auroral activity. This model is the same as

Jacchia's top temperature model described above except that the top

temperature for a given point is:

T = TN(1 + b, cos p/2) + b 2 a + b 3 (F10 . 7 F10. 7)

+ (c2+ C2- TN+ c3- ap+ c4- A ) (c5 cos $N/2+ c6 cos S O/2)

(3. 3)

where cm, m = 1,..., 6 are constants; A is the daily average geomagnetic

planetary index (see Figs. 3. 4 and 3. 5); kN and k are constant exponents;

and ON and OS are the geocentric angular distances from the given point

to the points at which the north and south bulges reach their respective

maxima. The points of bulge maxima are assumed to be at constant

latitudes ( 6 N and 6S) and to lag behind the sun at constant angles (XN and XS).
Table 3. 2 contains a list of constants used to obtain the curve of

mean motion vs. time presented in Fig. 3.1 (symbol +). The values of

the constants XN' XS' 6 N' 6 S' k N' s, c 5 and c 6 were assumed, and

the constants b1 , c 2 , and c 4 were determined from, a comparison of

computed mean motion of 1961 Delta 1 with observation over the period

from MJD 37362 to MJD 37526. The fit is approximate and only valid

for this particular satellite in a limited region (see Fig. 3. 2) but a

definite improvement can be noted in the residual curve in Fig. 3. 4.

The separation and measurement of the individual effects implicit

in the model are extremely difficult for the satellite considered (and the

orbital data available) and further refinement is not worthwhile at the

present time because two additional balloon satellites (ECHO II and another

12-ft balloon) will be launched in the near future into near-polar orbits 3. 16

and will provide much better data for this type of study (and for the

improvement of Jacchia's constants, described above).
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TABLE 3.1

Density Model Constants

Jacchia's Top Temperature Model

(Eqs. 3.land 3.2)

Jacchia's Values

647

0.01

0. 5

365. 25

April 7

0. 01318

300

Constant

a1

a2

a
3

a
4

a
5

a
6

b

b2

b 3

Improved Values

647,**

0. 01**

0. 37

365. 25* 

April 7**

0. 01318**

250

4

0. 4

1. 2

3. 2

Units

*K

"K/flux unit

oK/flux unit

days

*K/(flux unit) 2

deg

dimensionless

dimensionless

0K/a unit

*K/flux unit

'This quadratic was fit to data kindly supplied by Dr. Jacchia (also
see Fig. 5 of Ref. 3. 5).

No improvement attempted.

4

0.35

1. 2

2. 2

Ref.

(3.15

(3. 15

(3. 15

(3. 16

(3.15

(3.16

(3.15

(3.15

)

)

)

)

)
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TABLE 3. 2

Density Model Constants

Auroral Bulge Model

(Eq. (3. 3))

Value

0.18

1. 2

2. 2

0. 0

1. 5

0. 0

1.0

0.35

0.35

4

250

8. 0

600

Constant

b

b2

b3

c 1

c 2

c 3

c 4

c 5

C 6

SN

6N

AN

2

x

2s
6s

Units

dimensionless

0K/ap unit

OK/flux unit

OK

dimensionless

0K/ap unit

0K/Ap unit

dimensionle ss

dimensionle s s

dimensionless

deg.

dimensionless

deg.

deg.

dimensionless

deg.

deg.

600

8. 0

- 600

600
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CHAPTER IV

Distributions of Orbiting Particles

4. 1 Introduction

The project West Ford dipoles, placed in orbit in May, 1963, 4.1

provide a unique opportunity to study a large ensemble of particles in

nearly identical orbits. In particular, one can study the distribution

of particles caused by the dipole dispensing process.

The techniques developed here for this study can easily be applied

to other applications (e. g. , other dispensing techniques, explosions of

orbiting vehicles, etc.).

4. 2 The West Ford Dipole Dispenser

The West Ford dipoles were packaged in fiven cylindrical

dispensers. They were aligned with the common axis of these

cylinders and bound together with naphthalene. As these cylinders were

ejected from the parent vehicle, they were set spinning (at ~ 480 rpm.)

about their cylindrical axes. ** The spin axis was very nearly in the
4.2plane of the orbit. Dipoles were then gradually released from the

surfaces of these spinning cylinders as the naphthalene sublimed. According

to laboratory experiments, 4 about a day was required to dispense all of

the dipoles.

The distribution of velocity increments imparted to the dipoles by

the dispensers can be closely approximated by assuming that (1) the number

of dipoles released at any dispenser radius is proportional to the surface

area of the cylindrical shell at that radius; (2) each dipole is released

tangentially with the circumferential speed of its shell; and (3) the directions

of release in the plane perpendicular to the angular velocity vector of

the dispenser are uniformly distributed. The dispensers are further

approximated by neglecting the relatively small hollow core, i. e. , by

assuming the final dispensing radius to be zero.

One was only half size and was attached to a telemetry system (see Ref. 4. 2).

Because of the possibility of spin axis conversion, the individual dis-
pensers are separated 4 . 2 to prevent possible conversion to a tumbling
motion but their spin axes remain parallel.
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The probability density function (pV) of the dispensing speed

increment (i. e. , the speed of dipole release relative to the dispenser)

is proportional to the number of dipoles released with speed V. Let

m equal the number of dipoles in a cylindrical shell of radius rd and

let ws equal the angular velocity of the dispenser. Clearly,

m.O<V

Thus, since p Vocm;

pvc<V

Normalizing pV gives (see Fig. 4. 1):

0

PV ~2VZ
V 2

max

0

V<0

0 V Vmax

V < V
max

where V max is the maximum dispensing speed increment (the circum-

ferential speed of the outermost shell).

Let 0 be the angle between the orbit plane of the dispenser and the

direction of release. Theta has been approximated as a random variable

with a uniform probability density (see above). It is also assumed to

be statistically independent of V. A useful form of the density function

of theta (p 0 ) is (see Fig. 4.1):

0

1

0

pV
2 A

max

- 7r -: 0 7T

1

-7T

V<

pG

0

(4.2)

7T

Fig. 4. 1

Probability Density Functions of the Speed

and Direction of Dispensed Dipoles

(4.1)

0 V
max
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The distribution of the component of the velocity increment that

lies in the plane of the dispenser orbit and of the component that is

perpendicular to this plane can be derived from Eqs. (4. 1) and (4. 2).

The component of V which lies in the orbit plane () is:

= V. cos 0 (4.3)

Let:

a = cos 0 (4.4)

Then:

1
p 7i T

1

1 - a

for -l < a s 1 (4. 5)

And:

p =V-a

The probability density function of p(p ) is:

00

p f I

00 al~

This relation
probability

is simply derived from the principles of conditional

00 00

p = fp da = f
-00

where p 1

Thus:
00

p
-00

Pg/cC pCI da
-00

V, (L ,a) da

Since V and a are statistically independent:

00

p f
-00

PV ( )-pada

(4. 6)

P () p da
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From Eqs. (4. 1) , (4. 5), and (4. 6):

00

p = 2P

A ?TV2
max -oo

1 1. da

a -

for: o<L ----V
a max

and: - I - a - + I

Integrating:

0

z
y 7rV VV max

0

S<-Vmax

max A max

Vmax A

The probability density function of velocity increments perpen-

dicular to the orbit plane (p ) can be derived from, a similar analysis:

max
0

max max

0v

max max

max 77

4. 3 Spatial Distributions

The spatial distribution of dipoles in the West Ford cloud caused

by the dispensing process can be derived from the distribution of velocity

increments (Eqs. (4. 8) and (4. 9)). The release of a dipole has an effect

on its orbital motion like that of an impulsive perturbing acceleration.

Since the maximum dispensing velocity increment is small compared

with the orbital velocity (V ~ 9. 5 ft/sec), the resulting perturbations

will be small.

The analysis of the spatial distribution is simplified by making

the valid approximation that the duration of dispensing (tD) is long compared

(4. 7)

(4. 8)

(4. 9)
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with an orbital period P (actually tD 9 P). Further, we only consider

epochs considerably after the completion of dispensing but before the

cloud closes on itself to form a completed belt. * The duration of

dispensing and the restriction on the epoch of interest allows the dipoles

released during the second orbit period to be essentially indistinguishable

from those released in the first period, and so on, so that the dispensing

speed (V), which is dependent on the instantaneous radius of the dispenser,

is essentially statistically independent of the time of dipole release. The

time of dipole release can therefore be ignored. Two additional

approximations are made to further simplify the analysis. One, the

orbit of the dispenser is assumed to be circular (the actual eccentricity

was about 0. 004 4. ); two, during the time period of interest, the

changes in the spatial distribution caused by differential perturbations

other than those resulting from. dispensing, are neglected.

Figure 4. 2 depicts a coordinate system which is especially useful

for the analysis of the spatial distributions and which closely simulates

a "mode of operation" frequently used in radar observations of the

West Ford ensemble. In this mode of operation, the radar scans a fixed

plane perpendicular to the orbit as the cloud passes through this plane.

The plane labeled "Intersection Plane" (defined by the X, Z axes) depicts

this scanned plane. This plane is inclined by qp degrees to the dispenser

spin axis (which lies approximately in the plane of the dispenser orbit).

The distributions represented in this coordinate system are distributions

in the two dimensions of the intersection plane and a dimension along the

dispenser orbit which is a measure of the time that a given section of

the dipole ensemble passes through this plane.

4. 4 Distribution along the Orbit

The coordinate o- (see Fig. 4. 2) of a dipole is the distance along

the dispenser (or reference) orbit from the empty dispenser (or a dipole

released with zero velocity) to the dipole at the time the dipole crosses

the intersection plane. Since the dispenser orbit is assumed to be circular,

'Our results can be applied to later times by proper folding of the appropriate
distributions (i. e. , by merging the leading and trailing extremes of the
cloud).

Since the actual orbit is near polar (inclination ~ 87. 4' ), the radar

actually scans at a constant colatitude.
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the orbital velocity of the dispenser (V 0 ) will be constant. The coordinate

o- is therefore proportional to the time a dipole crosses the intersection

plane measured from the time the dispenser crosses this plane. The

spreading of dipoles along the orbit is mainly caused by the small

differences intheir orbital periods.

Since the orbit of each dipole will be nearly circular, the separation

between a dipole and the dispenser will be:

2 7r 27rr

-(t)~ ( 70 0 ) t (4.10)
0

where P and P are the orbital periods of the dipole and dispenser,

respectively, and r0 is the radius of the dispenser's orbit (see Fig. 4. 3).

Since:

P - 0 « 1
P P
0 0

the separation along the orbit is:

6P
V- - 0 - P- - t (4.11)

0

where V is the orbital velocity of the dispenser.

V = GM (4. 12)
0 

-a

0

Since:

p 27 a3/2
^JGM

then:

P 3 6a (4.13)
0 0

The equation for the perturbation of the semi-major axis (a) is 4.4

(see Chapter I):
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da _2a
2

[e sinv- R + (1+ e cos v)S] (4.14)

For nearly circular orbits:

da ,2a~
a Z- S (4.15)

0

We approximate the sudden release of a dipole from the dispenser by

V = S 6t

where V5 is the component of the dispensing velocity increment which

lies along the direction S (see Fig. 4. 3). Therefore:

2V
6a _ S
a (4.16)a V
0 0

and

o= 3 - V - t (4.17)

Since the spin axis of the dipole dispenser remains fixed in

direction as the dispenser moves along its orbit, the component of the

dispensing velocity along the reference orbit (S direction) is (see Fig. 4. 3):

V5 = p - cos 'y (4.18)

and

y = 0+ p (4.19)

The approximation that the velocity of release is statistically independent

of the position of the dispenser along the orbit (i. e. time) implies that

the angular position 2 (see Fig. 4. 3) is a uniformly distributed random

variable that is statistically independent of the velocity of release.
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In addition, the angle 0 is a constant for any particular location of the

intersection plane. Therefore, y is also a uniformly distributed random,

variable. Let:*

0

0

y< -7r

S< y 7T

7r <y (4. 20)

Letting:

= cos -y

we find:

p 2 for -15p-5l

and from Eqs. (4.17) and (4.18)

- V S- t =-3. yA- P- t

where 1A and P are statistically independent random variables.

The probability density function of o is:

00

p f( pP (I ) d-
3t 00 1A PyA

Substituting Eqs. (4. 8) and (4. 22) into Eq. (4. 24) gives:

(4.21)

(4. 22)

(4. 23)

(4. 24)

-



2
p = RV

'ir 3tYV

00

f-i-
max -00 [~

1 - (/V )max

1 - -o-3t 2
AL

for - 1 :5-o/3t 5 +

Let (7 = 3tV max, then for o- > 0:

2
p 0i=-F2

irci-
M.

V

f
CT

-V

7m ma

maxm

ax

and - V ma p + V

1

max

1
A

max dp

ci .max

( AL

mx

I V 2
Ii -- max

and by symmetry

p c(+ U) = p (-T)

Let:

A/Vmax

9-9m

and

k- CT
CTm,

Then:

(4. 25)

(4. 26)

(4. 27)

,
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1/k 2

p = l d (4.28)

.4. 5Integrating:

p [ K(41 - k )E(l -k2) (4. 29)

m

where K and E are complete elliptic integrals of the first and second

kinds, respectively.

Since the density of dipoles (n(o-)) along the orbit* is proportional

to p , we have: *

4N -E( (4.30)
?T 0 L m m i

where N is the total number of dipoles released.

The theoretical distribution of dipoles along the orbit is compared

in Fig. 4. 5 with experimental data *** from, a radar observation of the

West Ford dipole cloud. A comparison of the absolute values of the

ordinates of theory and experiment is not meaningful, but a comparison

of the shapes is. The experimental points are proportional to a five

second average of the radar cross section of dipoles that are in the

radar beam., 4.7 which happens to be smaller than the transverse dimensions

of the belt. The measurements were made on 20 May 1963 or about nine days

after release.

For a dispenser spin axis perpendicular to the orbit plane, the density
of dipoles along the orbit follows from Eqs. (4. 8) and (4.17) when one
considers 0 to be the angle between the dispensing velocity and the S
direction (see Fig. (4. 3)). The result is:

2Nn (o-) = - 1 -(
m m

This confirms the earlier work of Jones and Shapiro. 4. 6

These data were kindly supplied by F. Nagy of M. I. T. Lincoln Laboratory.
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The standard deviation depicted in Fig. 4. 5 for these measurements

are approximately 10% of the measured cross section. The base line

of these measurements contains an additional uncertainty.

4. 5 Distribution Out of Plane

The coordinate r in Figs. 4. 2 and 4. 4 is the perpendicular

distance from the orbit plane of the dispenser to a dipole lying in the

intersection plane. The angle 0 (see Fig. 4. 4) is the earth-centered

angle in the intersection plane between the dispenser orbit and a dipole

orbit. Since the perturbations caused by dispensing are small, b is

small and:

T = r sin $ ro - (4.31)

Using the spherical triangle formed by the radial projection onto

a unit sphere of the origin of the Intersection Plane, the dipole inter-

section point and the dipole release point (see Fig. 4. 2), we find that

0 ~ - i - sin 0 (4.32)

The inclination (i) of the dipole orbit to the dispenser orbit is simply:

i ~0 (4.33)
0

which is apparent from the vector diagram:

Dipole Velocity

V W

Release Point 0

But V = - (see Eq. (4. 9)) since the spin axis of the dispenser lies in

the orbit plane. Also, VW is independent of p. Therefore:

S= - r s sin 0 (4.34)
0

Let:

6 = sin 0 (4.35)

MOMMEW
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then:

r
T =- -i-q7

V
0

Since 02 is a uniformly distributed random, variable

p = for -1 6 1
6 , 7-

= 0 elsewhere (4. 36)

Whereas the density of dipoles as a function of r and - could be found,

it is of interest (for comparison with the data available) to find the

"total" out of plane distribution of dipoles as the complete cloud passes

through the intersection plane, i. e., the distribution of intersection

points of the orbits of the dipoles with the intersection plane.

The total probability density fun ction of r is:

V T /(-r /V)
pTr (-) d-p

00r/(r/V)

for -1 0 0 1

and - V max + V (4.37)

From the similarity between Eqs. (4. 37) and (4. 24), Eqs. (4. 9) and (4. 8),

and Eqs. (4. 36) and (4. 22), the number of dipoles (n(r)) per unit length

of r is directly:

n(T) =4N [K( 1 - (T/T )2 ) - E( l -(r/T) )1 (4.38)
2mm

where T is defined as
M V

max
m r0 V

0

P
0 V (4.39)

Z7I max
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The density of the intersection points of the orbits of the dipoles is

independent of time.

Figure 4. 6 presents a comparison of the theoretical out of plane

distribution with an experimental observation. The theoretical curves

are similar to those in Fig. 4. 5. The experimental data (taken from

Fig. 1 of Ref. 4. 8) is the result of a photometric density reduction of

a Baker-Nunn photograph. The abscissa scale of the experimental

data in Fig. 4. 6 assumes that the photograph was taken when the

West Ford cloud was at near minimum range (near zenith)*, and that the

angular units in Fig. 1 of Ref. 4. 8 are measured from, the camera

(i. e. , 1V of arc a 1. 0 km in the cloud and corresponds to r/TM = . 22).

The ordinate of the experimental data is some measure of relative photo-

graphic density AD (see Ref. 4. 8). The base line is the average local

night sky brightness. (The maximum m.easured optical brightness of the

West Ford cloud was less than 10% of the night sky. ) 4.8 As in Fig. 4. 5,

only the relative shapes of the experimental and theoretical curves can

be compared.

4. 6 Distribution in the Orbit Plane

The coordinate p in Fig. 4. 2 is the radial distance to a dipole

in the intersection plane relative to the reference orbit. Let r equal

the earth-centered radius of a dipole s orbit at the intersection plane,

then:

p r cos - r (4.40)

Since b is small:

p ~r - r (4.41)

From Fig. 4. 3, the radius r is:*

r (4.42)
+ e cos (w +W (

The photograph is actually a composite of several photographs and is
blurred by transverse m.otion of the cloud relative to the camera. 4. 6
In addition, the observations were made at approximately 350 from, the
zenith which means that the experimental distribution is not truly out-of-
plane. The shape of the distribution for this viewing angle will not differ
much from ihe true out-of-plane distribution however.

Q ne must consider w to be the argument of perigee measured from, therelease point.
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Let:

W = a + W

and let:

b = e cos W

Then:

r =1 +b

but:

b << 1

b =0

and

p = r0

Therefore:

r ~ (r0 + 6p)(1 + 6b)

p = 6p - r06b

Where 6p and 6b are the changes in the orbit parameters p and b

caused by dispensing. The perturbation equation of p gives (see Eq. (4.16))

Zr
6p = V

0

The perturbation equation of b gives:

(4. 46)

4. 9

2 1
6b =Vcos (W + v)VS + V sin (W + v)VR

0

(4.47)
0

The angle W + v is the location along the dispenser orbit (from the X axis)

where the dipole is released and V R is the radial component of the

dispensing velocity. Therefore (see Fig. 4. 2):

W+v =

(4.43)

and:

(4.44)

(4.45)

r--
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Equation (4. 47) becomes:

2 16b =- cos RV +-SS V0 0

where the velocity increments VS and VR are (see Eq. (4.18)):

V= cos (2 + b)

VR = I sin (Q + p) (4. 49)

Substituting Eqs. (4. 46), (4. 48), and (4. 49) into Eq. (4. 45) gives:

r 2
p- p ji[(1- cos ) cos 0+ (2 - cos 9) sin Qsin p]

0
(4. 50)

It is of particular interest here to find the distribution of dipoles

as a function of both p and position along the orbit o- (i. e. , the joint

probability density function p 9). From Eq. (4. 23):

cy= - " - L . VA . cos (Q +)
max

To nondimensionalize and simplify Eqs.

4r V
o max

V

(4. 50) and (4. 51), let:

(4. 52)

and let:

u = A
max

y = P
P

(4. 53)

(4. 54)
m

-
(4. 55)

m

Then:

x =-u cos(+) (4 56)

sin OVR (4.48)

(4. 51)

and

(4. 56)



83

and

y -* u (-cos ) cos 0 + (2 - cos Q) sin 2 sinp]

pupu =? -u2

p = 0

for -1- u s 1

elsewhere

The random variables u and Q are statistically independent, therefore:

Pu, Pu* Q

The general derivation of p or p involves a mapping from the

u, 0 space to the x, y space. The mathematical details are, however,

quite complicated. Two special cases (0 = 0' and 0 = 900) of this

mapping demonstrate the general nature of the West Ford cloud.

For = 0', let:

X = cos 2

Then:

y =- u(1-X)2

x = - ux (4. 59)

and

px
1 -

for -15 X!5 1

Inverting Eqs. (4. 59) gives

/ 2 2
u -(2y+x) (2y+x) - x

yx

-(Zy + X) -

(4. 60)

(4. 61)

where

(4. 57)

(4. 58)
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The upper sign holds for y < 0 and the lower for y > 0.

The region in the u, X space bounded by - l u : 1 and -l I X l

maps one-to-one onto the re gions in the x, y space shown in Fig. 4. 7.

These regions are bounded by:

y=-x

y=

y =- ( +x) 2

y = + *(l-x) 2

[X =-l]

[X=+1]

fu =+ 1]

[u =-1] (4.62)

The joint density function p X is simply:

(4. 63)y I u(u, A)
Px, y Pu, x _(x, y)A

where u and X are given as functions of x and y in Eq. (4. 61) and

where the Jacobian reduces to:

3(u, X) 1 au
a(x, y) i ay

(4. 64)

The Jacobian further reduces to

a(u,X) -
a(x,y)

2

22 +
(2y+x) -x

Substituting Eqs. (4. 58), (4. 60), (4. 61), and (4. 65) into Eq. (4. 63) gives

for the joint probability density function of x and y:
-1

y = 8 u (4. 66)
Ex, y 23/2

u

where, from, Eq. (4. 61):

u = - (2y + x) - 2 4y(y + x)

u = - (2y + x) + 2 Nfy7(y + x)

for y > 0 (4. 67)

for y < 0 (4.68)

(4. 65)
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The number density of dipoles is simply:

8N un(x, y) = 2 2)3/2 (4. 69)
7T (l -(I ) )'

This distribution is singular along the straight line boundaries of

the region and zero along the hyperbola boundaries (see Eq. (4. 62)). In

addition, the equidensity lines for p 1 and p = 2 are plotted in Fig. 4. 7 as

dashed lines.

For the special case of p = 900, Eqs. (4. 56) and (4. 57) become

x = u sin 2

y = --u [(2- cos 2) sin0] (4.70)

Inverting Eqs. (4. 70) gives:

x 2

U =
x2 - (2x + 4y)2

2 = sin 1  
(4. 71)u

where:

0 < 121 < 7r/2 for y| > 2!xj

and where:

r/2 < 1[< 7r for I y| < J x

The plus and minus signs result from a double mapping from the u,2

space onto the x, y space (i. e. , the regions (u > 0, 0 > 0) and (u < 0,2 < 0)

both map onto the region (x < 0, y < 0) etc.). However, if u is

restricted to positive values, the probability density function p, y is:

pxy = 2.pu, & (4. 72)

because of the symmetries involved.
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The populated region in the x, y space (see Fig. 4. 8) is bounded

by the curve (in parametric form):

y= - 1(2 - cos 0) sin Q

x = sin 0 (4. 73)

for

31

The maximum. value of Iy is 0. 55 and occurs at sinu = ()

(i. e., x = 0. 93).

The probability density function for the case # 900 reduces to:

2

p 8 u 1-u 2  (4.74)
x, y 2 3

2
x

u =
x2 - (2x +4y) 2

The number density of dipoles is simply

2
n(x, y) = 8N u 3 PY&7 (4.75)

Contours of equal probability density are plotted in Fig. 4. 8. The

density at the boundary (Eq. (4. 73)) is zero and the density at the origin is

singular. The equidensity contours fall into two classes. For p y - 0. 576

the sign of the curvature of the contour is constant and for p y > 0. 576

the contours have reversals in curvature (see Fig. 4. 8).

In general, as the dipole cloud moves around its orbit, a double

set of "jaws" open and close. The jaws are open at p = 00, 1800 and

closed at 4 = 900, 2700. In the transition from. = 00 to 4 = 1800, the

dipoles which were in the y > 0 region for p = 00, all migrate* to the

y < 0 region for 0 = 1800 and vice versa.

For a description of the motion of a single dipole, see Ref. 4.10.
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4. 7 Monte Carlo Numerical Procedure

The General Perturbation Program (see Appendix II) was used

as the basis for a Monte Carlo procedure for estimating numerically

the spacial distribution of the West Ford dipoles. This procedure requires

fewer restrictions than the analytical analysis. In particular, both the

dispersion of dipoles over long periods of time, caused by differential

perturbations and the effect of the dispensing process can be studied in

detail. This procedure is limited however to a relatively small

statistical sample (present maximum is 500 dipoles) by the computation

time required and the capacity of the computer memory.

The orbital elements of a dipole are computed by the GPP over a

period of time (see Chapters II and III) and this time history is stored on

magnetic tape. Each of the statistically distributed quantities involved in

the perturbations of the orbit of a dipole is generated by using a pseudo-

random. number subroutine available in the Fortran library. This procedure

is repeated for each new dipole until the desired sample size is attained.

The West Ford dipole dispenser is specified for the GPP by

(1) its angular velocity vector relative to its center of mass, (2) the time

that dispensing starts, (3) the duration of dispensing, (4) the initial

dispenser radius, and (5) the final dispenser radius. The orbit of the

dispenser is also specified. The radius of the dispenser is assumed to

decrease linearly with time and the dispensing rate is assumed proportional

to the radius (as described above). The resulting probability density for

time of release is therefore similar to Eq. (4. 1). In addition to the

pure tangential dipole release described above, provision is made to

allow the velocity of dipole release an additional increment in magnitude

and a component along the dispenser spin axis (both are uniformly dis-

tributed random, variables within a given percentage of V). This is an

attempt to simulate the "hinge-like" release of a long, thin dipole when

one end separates before the other (a phenom.enon observed in vacuum.

chamber experiments).

An important contribution to the long-term dispersion of the dipole

belt is the differential radiation pressure perturbations caused by the

different orientation of each tumbling cylindrical dipole relative to the

earth-sun line. The angular velocity vector of a dipole about its center of

mass is therefore an important quantity. The angular velocity of tumbling
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of a dipole at release is taken to be the angular velocity of the dispenser

plus an additional vector increment with random, components, each

uniformly distributed within a chosen percentage of w . Because of

the dependence of dispersion on the tumbling axes of the dipoles, changes

of these axes by meteoroid collisions become important. 4. To

simulate meteor collision effects in the GPP (see Appendix II) use is

made of the random, number generator.

The magnetic tape containing the orbit histories of the sample

dipoles is used as input to a second computer program, called the

Data Reduction Program. (DRP) which computes the spatial relationships

between the dipoles at some given epoch of interest.

The simplified dispensing process used in the analytic analysis

was simulated with the Monte Carlo procedure by deleting all orbit

perturbations other than those caused by dispensing. A sample of 500

dipoles was used and all parameters were approximately those of the

West Ford experiment.

The histograms in Figs. 4. 5 and 4. 6 were constructed by computing

o- and T for each dipole at a particular epoch and counting the number

of dipoles in each quantization cell. The histograms are plotted to the

same scale as the analytic theory by dividing the number of dipoles

in each cell by

4N k 4N I
2 - and 2 T

7T m, 7T m,

for Figs. 4. 5 and 4. 6, respectively. In particular . - 7-, and- -7

m m

are the lengths of the quantization cells relative to that of the maximum

in-plane (along the orbit) and maximum out-of-plane extension of the dipole

cloud, respectively and N = 500.

Figures 4. 9 and 4. 11 are diagrams of the population of dipoles

in the orbit plane for = 0' and p = 900, respectively. The photographs

were generated by the DRP on a cathode ray tube display device. A

comparison between the numerical and analytical figures shows that the

Monte Carlo procedure can demonstrate the analytic results, which lends

credibility to the extension of the Monte Carlo procedure to include

additional perturbations. Figures 4. 10 and 4. 12 are population diagrams in
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the intersection planes at # = 0 and @ = 900, respectively. The scales

of Figs. 4. 9 through 4. 12 are in earth radii except for u which is

in degrees of arc along the orbit.
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CONCLUDING REMARKS

The orbit perturbation computations presented in Chapters II

and III are, to the best of our knowledge, the most accurate theoretical

computations (short of prohibitively time consuming numerical integrations)

of near-earth satellite orbits in existence. The General Perturbation

Program (GPP), which includes the second order theory derived in Chapter I

and the detailed atmospheric density models described in Chapter III,

is nearly as accurate as a straight forward numerical integration of the

exact perturbation equations and nearly as economical of time and far

more accurate than a computer program of a closed form analytic solution.

The accuracy attained by the GPP approaches the accuracy to which orbits

can presently be determined from observation.

The importance of the second order perturbations derived in

Chapter I is clearly demonstrated in the comparison of computed orbital

elements with the observed orbital elements of 1960 Iota 2 (see Chapter II).

For example, the residuals between observed and computed eccentricity

are reduced by a factor of about 40 for 1960 Iota 2 when the second order

effects are included. This comparison also demonstrates that the obser-

vational accuracy warrants the inclusion, theoretically, of crossproduct

perturbations of the second and third harmonics (i. e., J*K terms). The

surprisingly large (but small compared with J terms) and uncertain effect

of solar radiation pressure on this satellite is also demonstrated.

In Chapter III, the GPP is employed as a new and important technique

in the study of atmospheric density. An existing atmospheric density

model is improved upon, and the existence of a north-south extension

of the atmospheric "bulge" is deduced. The same technique used in

Chapter III can be used to improve other geophysical parameters (such

as the coefficients of the zonal harmonics of the gravitational field of

the earth).

Once the accuracy of the GPP was verified by comparison with

existing orbital data, the program was used to predict the orbit of the

drag sensitive satellite 1961 Delta 1 (a 12 ft diameter balloon). The

prediction of orbital lifetime for 1961 Delta 1 (to be down on March 28,

1964 10 days) was based on orbital data for July 30, 1963. In December,

1963, the predicted perigee height (an important parameter in the lifetime

computation) was within 1 km of the observed value (the perigee height
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decreased 100 km during this interval). This prediction was relied upon

in the planning of the launch of the new 12 ft balloon satellite (Explorer 19).

A similar prediction for the orbit of the West Ford dipole belt based on

May, 1963 data is still being used to acquire the belt with one-tenth degree

beam radars. It can be concluded that this method of orbit perturbation

computation is a general and accurate method for predicting satellite orbits.

The theoretical distributions of dipoles in the West Ford dipole

belt derived in Chapter IV are in accord with the observed distributions

to within the experimental uncertainties. A Monte Carlo technique for

predicting the behavior of the West Ford dipole ensemble was also

developed and its capability verified. This technique is being used to

study the long term dispersion of the dipole belt caused by differential

orbit perturbations.
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APPENDIX I

Integration of the Perturbation Equations for the

Second Harmonic of the Gravitational Field of the Earth

I. 1 First-Order Perturbations

The first-order perturbations of the orbital elements are

derived by integrating the respective perturbation equations (see

Eq. (1. 2) of Chapter I).

The perturbation equation for the semi-latus rectum (p)

(Eq. 1. 17a), to first-order in J, is:

dp _ J .in 2.
du r 0

sin 2u

where to first-order:

p 0
+ecosv
0

and

v = V

Substituting u = +0

dp _2J .
d -P-si

du po0

and using Eq. (I. 1) gives:

2 .
n 10 [sin (2k' + Z2 ) (1 + e cos v]

Hence:

6 dp .J sin i
f du p0

0

I [cos 20 sin 2v+ sin 2w
0 0

0

11+ e cos W sin v + e cos 2w sin 3v
0 0 0 0

+ e sin 2W cos v + e sin 2w cos 3v]dv
o o o0

(I. 1)

(I. 2)

cos 2p
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Integration yields Eq.

2 J
3p =Po-

(1. 20):

sin 2i [ P + P 2 sin v + P3 sin 2v + P4 sin 3 v

+ P5 Cos v+ P 6 cos 2v+ P7 cos3v]

where:

3P = + 2e cos w

' 0 0

e2IG sin 2w0

3
P 3 sin 2w3 2 0

P 1e9e sin 2w
0

3
P5  Z eo cos2wo

3
P6 - cos2w

1
P7 Z o

To first order in

(Eq. (1. 17b)) is:

de _
d -

J, the equation for the change in eccentricity (e)

sin v
2

r

+ 2 3 sin + 3 sin v cos Zu
+ sin i 0(--a 2 2 2 2

r r

+ cos v sin Zu + cos v sin Zu
2 rp

e sin Zu

rp0

Substituting for r (Eq.

in e yields:

(I. 1)) and rearranging terms in a power series

cos Zw
0 (1. 20)

(1. 3)
rL 9



104

de _ J . 2 2
u 7[sin+ sin i (-3sinv sin u + 4cosv cosu sinu)

2 2 2
+ e (csin vcos v + 2sin i (- 3 sin v cos v sin u+(1+ 3osv)s vsinu cos u))

+ e0 (cos v sin v+ sin i (- 3 sin y cos i sin u+ 2(1+cos v)cos v sinu cos u)) ]

(I. 4)

Hence:

J. 2.
6e =- 2 fcosW - cos v + sin a

P0

1
+e ( 1cos 2o 2

1
S--gcos 2-

3 ( 2  4cos 2w ) cos v

1 . 7
+ sin Zw sin v - cos 2w cos 340 120

7
+ -sin Zo sin 3 v)

7

2 5 3 3 5
+ 2 sin i087 -T Cos 2w )+(T 8 cos 2o0)Cos 2v

53
+ 5 sin Zw sin 2v - 3 cos Zo cos 4v8 0 7, 0

3
+ sin Zw9 sin 4v))

2 1 3
+ e0 (Tcos w 1 1

0 - COS P - 1-
cos 3v+ sin 21

1
9(- Cos 2Zw Cos u

29
) + 4 Cos w

1 3
-1cos 3w0 + 8 (1 - 2 cos 2wo) cos v

5
+ 5 sin 2w

8 0
sin v + 1 (6 -17 cos Zw)cos 3v

17+ sin2w sin 3p - cos Zw cos 5v

+ sin ZW sin Sp))]
1 0

(I. 5)

r
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Rearranging terms gives Eq. (1. 21)

6e = - [EI +E 2 sin v + E3 sin 2v + E 4 sin 3v+ E 5 sin 4v+ E 6 sin 5v

+ E 7 cos V+ E8 cos 2p+ E9 cos 3v+ E10 cos 4+ E1 1 cos 5]

where

E =cos -- sin 20 cosw +e (-cos 2W +

2 1 3
+ e0 (-cos w +0 3O Wo +

1 2. 5 2 2
E = sin 1 sin Zo + - e sin i sin 2wo2 4 0 80 0 0

7 . 2. 17 2 2.
E = RZsin 10 sin 2w + e sin sin 2w4 0 48o 0 i

3 . 2.
E -e sin 1 sin 2w5 8 o 0 0

1 2 2
E 6  17 eo sin i sin 2w0

2 3 1
E =-1+ sin i ( -cos ZO)

2 5 3sin i ( 5 - 3cos 2w))
o 4 8 0

. 2. 2
sin i(-coswo))

2 1 3 2
+ e (- 1 + 3 sin i (1-2 cos 2W))

0 T 8 0 0

1 2 3 5
E 8  2e + e sin i ( - 5 s 2,)

7 .2. 2 1 2 1 17
Eq = n- sin 1 cos 2w + e0 (- 2+ sin i (T-8 T8- cos WO))

3 .2
E 1 0 -- e sin i cos ZW

00 8 0

1 2. 2.
Ell = - 7 eo sin i 0 cos Zw

(1. 21)
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The equation for the behavior of the argument of perigee (w),

Eq. (1. 17c), to first order in J, is:

dw J
-i e

0

cos v
~ 7-+

r
sin 3 cosv 3 cosv cos Zu sinv sinZu

s f 1(2 z 2 7 2 + 2
r r

sinv sin 2u 2eo 2.
+ )- cos i

p r p r 

Substituting for r (Eq. (I. 1)), and rearranging terms gives:

r

sin u]

(I. 6)

J 2 .2
- cos v + sin i (3 cos v sin u + 4 sin v cos u sin u)

e 0 p0

2 2 2.2 z+ e (- Zcos P+6sin i (cos psin u+cos v sinvsinucosu)-2cos i
0 0 0

2 3 . 2.
+ e (-cos 3v + sin i0 0

3 .2 2
(3 cos v sin u+ 2cos v sin v sin u cos u)

- 2 cos i cos V sin u)]

(I. 7)

Integration yields:

5w = - 1 2
2

e~p0

.2. 2 .
[-wsin -sinp + sin i (- sinwoo3 0

3 1
+ (-Z +q cos 2w)

7
12 Cos 2w sin 3P+- sin 2w

7
- sin 2w0 cos 3v)

1 1 1
+ e (-2(v+ w) -- sin 1o -- sin 2 V+- cos Zwo o-2 si 2w- o

2 5 3+ sin i (T (v+w) + 7 sin0

sin 2+- sin 2w
2 0

+ (-3 5
+ ( - :y Cos Zwo) sin 2P

3 5 3
8 Cos 2w sin 4P 4 sin Zw cos 2P - sin 2w cos 4v)

2 25 1 7 1 1 1
+ e (- 12- sinwo9 - I sin 3w +(- + T cos 2w 0 ) sin v + (-.+ TCos Z) sin 3v

(continued)

sinu)

A

sin v

Cos V

cos 2V

- --inq

0



.2. 125 . 1 1
+ sin i ((-- sin w + -6 sin 3wo - 7 c o s 2Zw sin w0)

17 1 19
+ ( -cos 2,w) sin v+( -19 cos Zow) sin3v

7
- cos 2w sin 5p - sin 2wo cos V

191
48 sin 2w c o s 3 p - sin 2wo c os 5 p))]"4 0

(I. 8)

Rearranging terms gives Eq. (1. 22):

6W = - 2 tW 1 + W 2 V + W 3e pO

sin p + W4 sin 2v + W5

+ W 6 sin4v + W7 sin 5v + W 8 cos V + W 9 cos 2V + W 1 0 cos 3v

+ W 11cos4v + W 1 2 cos 5v ]

where

W =-sinw + - sin i1 o 3T

5 3
-(-W +-sin2w ))+2 o 8 0

. 2. 8 .
+ sin i (3 8 sin )

5 2
W2e (-2 +fsin i)

sinw +e (-2 -- sin 2w + sin i
0o2 0 0

2 1 2
e (-2sino -- cos wo sinw

2. 3 1 2 7 1
-1 + sin i ( 3+ Icos Zw) + e z(-7+ cos ZW

+ sin 2i ( 1 cos 2W))

1 1
W 4 = e 0(-Z + 7

2 3 5cos 2w + sin i (T -T

(continued)

I

sin 3v

W
3

Cos 2W0 ))

- -

107

+ sin 2w cos v + 1sin 2w cos 3 v
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7 . .2 1 1 2 1 19W - 7? sin 1 cos Zw + e2 (-A 1 2cos02 +sin i l q)cos)W5 12 0 0 0 02 +csc. + 0in0

3 . 2.
W - e sin i cos 2w6 0 0

22 2 w
W7 =--,Teo sin i cos 2w

I . 2. .2 1 .7 Z.W =-sin sinZw + e (1sin -- sin 2 sin2w

1 5 . 2.W = e (-sin 2o - sin sin 2w )9 0 (s2 0 Ts n 10

7 . 2. 2 1 19W ~-- sin i sin 2w + e sin Zo - sin 1 sin 

3 2.
W e0 e sin i 0 sin 2s

1 2 .2.
W12 ~7 eo sin i sin 2w

(1. 22)

The first order perturbation of the inclination angle was derived

in the text. The result (Eq. (1. 24)) was:

6i = 2p cotio 6p (1. 24)7p_ 0
0

The first order perturbation of the semi-major axis (a) is simply

derived from the relation p = a (1 - e2

5a= 2 6 p + 2e 2 6e (. 9)
(l-e ) ( e -e )

0 0

This perturbation was not required in determining the second-order

perturbations, but is stated here for reference.

The first order perturbation of the right ascension of the ascending

node was also not required to obtain the second-order perturbations. For

completeness this perturbation is given here (as a function of the

argument of latitude):
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Jcosio 4
J= o eo sinW+u+- e cosw sinu

p 0 o

1 1 3-- sin Zu -Teo cosw 0 sin 3u - -eo sinw0 cos u

+ Te sinw cos 3u] (I.10)

The time at which a satellite is at a given argument of latitude,

calculated to zero order in J, is simply the time of nodal crossing plus

the time required for the satellite to travel from nodal crossing to perigee

plus the time for the satellite to travel to the true anomaly v = u -w , which

may be negative. The intermediate step of including time at perigee is

included because of the particular symmetry of an orbit about the line

of apsides. This relation is:

a 3/2
t = T + [ E ( 0) + E(u- 0 )-e (sin E (w ) + sin E (u- 0))] (1. 11)0 

GM0

where

E(x) = 2 tan tan (.12)

I. 2 Second-Order Perturbations

The net second-order perturbations after one nodal cycle are

defined by Eq. (1. 3) in the text.

To evaluate these changes, we need the expansion of the instantaneous

orbital radius to include the first-order variation of the elements.

-l 1 6p
r = - (1 - -)( + e cos P + cos v6e + e sin v6w)

P0 P0 0

+ Higher Order Terms (1.13)

Similarly,
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sin v = sin v - cos P 6 w + Higher order terms

cos v = cos v + sin v 6 w + Higher order terms

Substituting Eqs. (I. 13), (I. 14), (I. 15), and (1. 24) into Eq. (1. 17a),

dp 2J . 2.

u- p0

+ Cos 2i --
0 o p 0

(1+ e cos v + cos v6 e + e sin v 6w)-

-(cos 2w sin 2v + sin 2w
0

S2 2.8J cos i sin i
Cos 2p)] + 3 0

P3

3[(sin ucosu) (1+ Ze cosw cosu + 2e sinw sinu
0 00 0

2 .. 2 2 2+ Ze cosw sinw cosu sinu+ e Cos GCos u
00 0 0 0

2 .2 .2+ e sin w sin u)]
0 0

(1.16)

Expanding Eq. (I. 16) gives Eq. (1. 26) in the text:

2J .2.
-- [sin i (cos 2w sin 2v cos v + sin 2w
PO 0 0

2
+ sin i (e

0 0
Cos 2w

0

cos 2v cos v)6e

sin 2P sin V + e sin 2w 0 cos 2v sin v)6w
0 0

+ cos2i (Cos 2w
0 o

sin 21v + sin 2w cos 2v + e cos 2w
0 0 0

sin Zv cos P

+ e0 sin 2w 0 cos 2 cos v) 6 + Higher order terms

+ terms that will vanish upon integration]

2 2. . 2.
8J cos 1 sin 10 0

3
P0

2 . .4 2
[2e cosw sinw sin u cos u0 0 0

+ terms that will vanish upon integration]

(1. 26)

yields

(1.14)

(1.15)

dp
du

+

0
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Integration of Eq. (1. 26) gives Eq. (1. 27) in the text. This reduces

to the final form of the perturbation of p accurate to second-order,

(Eq. (1. 28)).

2
= xJ . 2.Ap = sin i
P0

16
[e sinw (--0 0 0 3

20 .2. 2 7 5 2+- -sin i )+e sin 2w (-z sin i )]3 o o 3 2 o

(1. 28)

Substituting Eqs. (I. 13), (I. 14), (I. 15), and (1. 24) into the

perturbation equation for 0 yields:

cosi

p0

W 5 6p )I
[( 2 p )( 09

-cos 2w cos 2v + sin 2w
0 0

2
4J 3.

'
P 

O

cos P + cos v 6e+e sin v 6w)(I

sin 2P)]

. 4[sin u(l+2e cosw cosu+2e sinw sinu
0 0 0 0 0

2 2 2 2 . 2 2+ e cos 0 cos u+2e cosw sino cosusinu+e sin w
0 0

2sin u)]

(1.17)

Expansion gives:

11+ (cos P - cos Zw cos 2v cos v + sin 2w
0

sin 2P cos v)6e

+ (e sin v - e cos 2w
o o o0

cos 2v sin v + e sin 2w sin 2v sin v)6w
0

5
- (I - cos 2w cos 2P + sin Zw sin 2v +e cos v

-e cos 2w cos 2p cos v + e sin 2w sin 2p cos v) -

+ terms that vanish upon integration + Higher order terms]

24J 3. . 4 2 2 . 4 2 2 .2 .6+ q cos i [sin u + e cos w sin u cos u + e sin w sin u

p0

+ terms that vanish upon integration]

(1.18) -

dQ2 J cos i
0

p 0
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Integration yields:

Zr-w
0

zX2= f
-w

d= -

) (E7 +E )+ 

8 1
-.- cosw9 W2+-cos29W3

sin Zw (E 2 +E 4 )+ W 3

-W 5 )+ sin2w (W 8 -W 10 )

5 .2-- sin i (2P -cos2wo P +sino P +e P

- -e cos Zw (P + P 1) + (e sin Pw (P + P

2 12 2+ cos i (3 +1 e (1 + 4 sin w0 7 o0

This reduces to the final form, of perturbation of

order, (Eq. (1. 29) in the text):

0 accurate to second

27Jcosi J .
S-- + q cos10

p p0

20 . 2.
[1--sin i+ cosw 16 40 . 2S o (3 3 s 0

+ e 1 0 + sin2 i (-5 + 5 cos 2Zw))]
0 - - Tcos Zwo0 1 0

The derivation of the perturbation of the argument of perigee (w)

accurate to second-order is accomplished by substituting Eqs.

(I. 14), (I. 15), and (1. 24) into Eq. (1. 17c) in the same manner as in the

derivation of Ap and AQ.

dw _

S2p
e 0p 0

The result of this substitution is:

ee{(1- ~ E)(l
0

+ e sin v 6w)2 - (sin2 i

26p
-P )(cos P + sin v 6w)(l+ e cos v+ cos P 6e

PO

+ (-3 sin2 i ) p- sin i
0 o p o e

0 0

3-[ - (cos v + sin v 6w) (cos 2w cos 2P - sin 2w sin 2P) -

(continued)

27Jcos i

2 +
p 0

[ E7 -

O2

p0

Cos i
0

~(I. 19)

(1. 29)

(I.13),
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2 3*(1+ e0 cos P+ cos v 6e+ e sinv6w) + z(Cos V+sinp6w).

-(1+ e0 cOs v + cos v 6e + e sin v 6w)2 + (sin v - cos v 6w).

22

(Cos2w0si +si 0 s e vJCos n 6ei sin6w)

+ (sin v- cos v6w)(cas Zw 0sin 2p + sin 2w 0Cos Zv)(1 + e 0Gaspv

o 0rc

+ cos v 6e + e sin v 6w)] ) - cosi d2 0
o du p 2

0p

{ [1 - cos 2w0 cos 2p + sin Zw sin 2p + e cos v - e cos 2w cos2vcosp

+ e sin 2w sin 2v cos v]-} -6 Cos2 1
0 0O e p 4

0 0

{ (2 cos 0 sin 2 ucos u+ 2 sinw sin3 u)(1+ e 0os w cosu+e sin w sin u)3
a a a a a

+ sin2 i (- 10 cos w sin4 ucosu - 6 sinw sin 5u+ 4 sinw sin3 ucos 2u)-

3 2- (1 + e cosw cosu + e sinw sinu) + sin i -0 0 0 00

.4 0 3 2-(- 4coswo sin u cos u+ 4sinw sin u cos u) (1+ e cos w cos u
0 0

+ e sinw sinu)2
0 }

(I. 20)

Expanding:

dw + Ze
TI - e OP +02

2 . 2.
Cos v - sin 1 2

S[3e9 Gas v -3e
2cas 2w cas 2pcos p

+ 3e Cos 2w
0 0

sin 2v sin p Cos ] + [ (- 1
e

a

+ e ) Cos p20

1 . 2. 3 3+e Gs 2T cas p-sin i ((- e --2 o~~ 4 02
1 3 1 3

)Cos v +-Cos Z0 + e0 0

(c ontinued)
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3 3
-T eo os 2 w0) cos 2v cos v T e cos Zw cos Zvcos 2v cos v

3 1 .3 3+ (-3 1sin 2 w +- e sin 2w ) sin 2 cos v + 3 e sin ZwZe0 040o 0 T2o 0

2-sin v + ( -- cos 2w
e

cos 2v cos V.

1
+ e cos Zw ) sin Z sin v0 o 0

2 2. 1+ e cos 2w cos 2 sin vcos V+(--- sin 2w +- e sin 2w ) cos 2p sin v0 0 e o o 0

+ 1e sin Zw cos 2v cos 2v sin v)] - 6e+ [(l+ 1e )sin v+ 2e sin 2v

2 12 2 3 3 2+e sin Zcos v+-e cosZPsinv-sini ((-+-e)sinv

+ 3e sinZv+( -e -2cos2w
0 Z o

1 2
S--e cos2w ) sin2v cas

- 6 e cos 2w cos 2v sin v cos v - 4e cos 2w cos 2 cos 2p sin v0 0 0 0

+ 6 e sin 2w sin 2v sin v cos v + 3e cos 2w sin 2v sin 2v

2 2 3 23 3 2+ 3e2 sin 2wo sin 2v sin v cos v + (, e - Cos 2w - Te cos 2w )

- cos 2v sin v + 2e 2 cos Zw sin 2v sin p 0Cos + 3e sin 2w cos 2 sin 2 v

3 2 3 3 2eo Cos 2w0 Cos Zv Cos Z sin v + ( sin 2wo+ T eo sin 2wo)sin 2p sin v

2-3e cas 2w sin 2v cs + (-2 sin 2w 1 2
-

-e sin Zw ) cos 2v cos v

7 2 . 2 2+ - e sin 2w 0cos 2v sin v cos v - 3e sin 2w cos Zv cos Va a a a

-- z eo sin 2wa
Cos 2v cos 2p GOS ))] - 6w+ [(- 2-e2)cos v-4e0-)a 0-4

2 .2. 3 32 2-e cos 2P cos - (1-3 sin i ) (-+ - e ) cos v + 3e cos0 0 2 4 o 0

3 ( 3 Z 2
+ (T eo T eo cos 2w 3

- - GcOS 2w9) G0s 2p G0s p

2 3 2-3e 0cos Zw 0cos 2v cos V - Teo cos Zw 0cos Zvcos Zvcos v

(co ntinued)

2
Cos v

o o j
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3 32 2+ (-+ - e ) sin 2w sin 2pcos v + 3e sin 2w sin 2v cosZ 4 o 0 0 0

3 2 . 2 1 2+ - eo sin Zwo Cos 2V Cos p sin v + (2 Cos 2w +- e Cos 2wo ) sin 2v sin v

2 2o2

+ 3e Cos 2w sin Z sin v cos v + e z cos Zw Cos 2V sin 2v cos v

1 2+ (2 sin 2w +- e sin 2w ) Cos 2p sin v+ 3e sin 2w Cos 2p sin v Cos va 2 a a a a

+ e sin 2wo Cos 2v Cos 2v sin V)] - 6 + Higher order terms

d&2+ terms that vanish upon integrationI -GCos 1 U

J Cos i

p 2  a [ 1  Cos 2 Cos 2 +
0p

sin 2w sin 2p + e Cos pa 0

- e Cos 2w Cos 2p Cos P + e sin 2w sin 2P Cos P ] P}

2
J 2 .2 3

.4 Cos i { (2 cosw sin uCos u + 2 sinw sin u)(1+ e cos w
e pO

3 2 .4- Gasu + ea sinw sinu) + sin i (-1lOcasw sin ucas u- 6 sinw
a a a

. 5 . .3 2- sin u+ 4 sinw sin uCos u)(1+ e osw cosu+ e

. 2. .4 3 2+ sin ia (-4cosw sin ucosu+4sinw sin ucos u)(10 0 0

+ e sinw sin u) }

sinw sinu)3
a

+e cosw cosua a

+ Higher order terms

(I. 21)

Hence:
27r-W

r dw 7rJ
du 2

-W PO0w~

2
(3 Cos i ) -Cosi

a a

1 3 E 2
2 7 -4 7 - 9 +sini

0

3 1

ea

(continued)

+ 7
T
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3 1 1 1 1+ 8(3E 7 + E 9) +T - cos 2w0 (- E 7+ 7E 9) + T_ sin 2w 0(E2 - 7E 4)e
0 e0

-- IT COS 2w 0 (8E 7 + 11E 9+ 5E1 1) + -sin2w (6 E2+ HE4

1 2 3 3 2
2 3 e 4 4 5e 0

0

+ (W3 + W 5  4

-3 -cos Zw . We 06
0

1
cos 2w (W2 3e

0

3 1
0[2 2 W 3 +

e0

+ 5E 6 )]

1
3- W4e 40

1 1
+ 7W 5 ) 4 sin Zw(W + 7W1 0

e0

11-3-sin 2w W + 1I O Z 4e 0 11 0 ca~w4 3
- llW 5-15W 7)

+ sin 2Z 9 (10 W8 -11W -15W 2)] + 1 [1+ 0~)f (~ ~Y 8 10 12 = +~ 2 [12 coswo +
0

Ze cos 2w
0 0

2 3 . 2. 4 3 3 2+ 2e0 cos w + sin 10(--3 coswo - -Z e cos 2Zw -7 e0 cosw0)]

2 . 2 2
+ s- 1 53 0 t.e- 50

+ 4PI + 2P6

3 1 p+(3P1 + 3
e + 1 P 6) +
0

+ 1e (3P + P ) + (1 - 3 sin2 i)2 0 5 +P 7 0

e (2P 5 +
3 1 1

0
Zw(P5 - 7P7 )

+ sin 2w
0 )3+cos2w(- 3p +7P4)+ osZw(- 2 p6 ) +sin Zw (zP3)

+ Ie cos2w (-8P170 0 5 -lp)+ Ie sin2w (6P + lip7)+7 0 0 2 +114 ))

1 2.
+-T cos 10 (2P 1 + eoP 5 -- cos 2w P 6 + sin 2w P3 - eo

1 2. 3 os3 1+ Te sin 2w(P2 + P4)] -Cos 1(3 - cos 2w + e ( -3 COS w)

. 2. 27 2 53 5 1 2+ sin i [-T+ 2 cos Z + e 3- + -4cas 2w - 1 -cos 2))}

(I. 22)

Equation (I. 22) reduces to the final form given as Eq. (1. 30) in the

text:

Cs O 2w(P 5 + P7 )
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7TJ 2. J 23 2.
AW = (3 cos i -1)-cosi0 A +--[---CosW (-4+ sin i

P P a
a a

10 4 2 49 23
3 sin i ) + (1 - 4 cos 2w + sin i -( + - a Cos 2W)

.4. 95 5 2 .2. 2
+ sin i (- + -G Cos 2 ))+e cosw (-4cos w +sin i (16+5cos w )

a 8 4 a a 0 a a a

4 2 5 2 5 35
-20 sin i )+ ea (+ sin i (GCOs 20)

+ sin 4 a (25 + 25Cos 2W))]

(1. 30)

The integration of the perturbation equation for the time of nodal

crossing (Eq. (1. 17) in the text) is performed in much the same manner

as for the preceding orbital elements. The appearance of the instantaneous

radius in the numeratorof this equation, however, causes functions of

the independent variable to remain in the denominator after expanding

the equation in terms of small quantities. This slightly increases the

complexity of the integration.

Substituting Eqs. (I. 13), (I. 14), and (I. 15) into Eq. (1. 17f) gives:

3/2 3 6p

dt F 1 p (1+ ) 1
d NGM [(I + e cos v) + 2cos v(l+ e cos v)+2e sin v(l+ e cos P)]

2J 2. si 2
- i Cas 2 1 sin u

Grup 0o T9[(+ e cosv)

(I. 31)

Expanding we find:

dt 0 1 3 1 6p
fITU 2 + 2 

aGM (1 + ecos v) (1 + ea cos V) a

2.
Ze sin v Z Jcos i . 2

3 6e - 3 6W - 1e cas P
( + e cos () 1+ e cos v) J N Gp

a a a

(1.32)
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Thus:
2 7T -(W

0
ATJ

0

dt
du

3/2

dv = 0

27r

. 2- s i (P-P 6 ) f
0 0 o

d'

(1+e cos v)

o 2 ? 2 7r

+ 5 -3P 7 )f Cos d 2 + 2 6 f
0 (1+0eCosV)

2
cos i' dv2

(1+e cosV)

27 s 3 - 2 7r d

+ 4P 7 f Cos 2d + 2 (W 3 - W5+ w7) f du 37 (1+ e -os V) (1+ e Cos v)
0 0 0 0

27

+ (EI-E8 + E10 + 2W 4 -4W 6)

2x 
2

-13W 7 ) f Cos v dv3 +
(1+ ecos V)

f cos v dv 3 + (7-3E + 5E 1-W3+5W
(1+e cos v)

(2E 8 -8E 1 0 -2W 4 + 12W 6) '

3
Cos 3 d

(1+e cos v)

+ (4E 9 -20E 1 1 -4W 5 +28W 7) f cosv dV 3
0 (1+ cos i)

0 0

+(8 -W 6 ).

o 27 6
+ '-16W 7) f Cos 1) 3

(1+ e Cosv)3

2
-2s -

-47rCos 210 2 0Cos Zw
e

dv + W 2 . f
-W

0

.2
sin w

9+ 00

0

(sin P)i- d- 3

.(1+ e cos v)3

+ Higher order terms

+ Terms that vanish
upon integration.

(1. 33)

7

51

27 5f Cos V 3 d

(1+e cos v)
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where:

2W

f dv
o + e( cos v)

2w 2
cos 2v di- 2

(1+ e cos v)
0 0

2w
cos 3 v dv

(1 + e cos V) 3

27
f dv

( + e cos v)3

27
f cos dv

(+ e cos v) 3

2w 2
cos i-v d'

J (1+ e cos v)

0
2w

cos3 v di-

f 3(+ e cos v)

2r-0

2w
2 73/( 1 Z-)e 3 )

2w7
2

e
0 [ 2 -

( e -- ej

2 - 3e 2

332

e 0 L( -eOT

2+ e

0

e 2 35/2

0

2 5/2
0 wI a Z

2 4-2 + 5e - 6 e7w a
13 e2 )5/2

2 4
3 Z2 5e 2 + 4e 4

~ T e2 )5/2 -2
0 ( 0-e

P sin d d' 7T

0 (1+ eo cos ')3 eo L + e0 cosw 0)2
1

3/2

Upon integration and the substitution of the coefficients of the first-

order variation of the elements (PI, P6 ' P 7 , etc. see Eq. (t. 20), (1. 21),
and (1. 22)) the change in time of nodal crossing accurate to first-order

reduces simply to (Eq. (1. 31)) in the text:

C

2]

-2
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3 3
z~=~r ~ + 2pr (l + e coswo9

GM(1 -e ) NJGMp [ (7T-7e7)

5 . 2. -
(-2 + 5 sin 2i)

+ -2 z (1. 31)
(1+ e cosw )

The derivation of the perturbation of eccentricity (e) and inclination

(i) accurate to second-order are given in detail in the text. No integration

is required in these derivations because energy and angular momentum

are integrals of the motion.

A
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APPENDIX II

General Perturbation Program

II. 1 Introduction

The General Perturbation Program (GPP) is a very general and

flexible computer program for the study of satellite orbits. It was

created at the M. I. T. Lincoln Laboratory by H. Jones and I. Shapiro,

and has been extensively modified and extended by both and by the

author, and many others. The purpose of this appendix is to give a

brief description of the capabilities of this program which is used

extensively in Chapters II, III, and IV. The program is coded in IBM

7094 Fortran, and has previously been used to study the effects of solar

radiation pressure H. 1, to predict the lifetime of Echo I I.2, to predict

the lifetimes of the West Ford orbiting dipoles II. , and for many other

general and special orbit perturbation studies.

Orbital elements are computed by this program. for the desired

number of orbital cycles using an iteration technique (see Ref. II. 4).

Net perturbations produced during one complete nodal cycle are

evaluated to first order (except for the second harmonic of the earth's

gravitational field) and the orbital elements are incremented by the

respective net change in each element at the end of each nodal period, or

by n times these net changes every n nodal periods, where n is a

constant integer and depends on the accuracy desired (a large n reduces

computation time but also reduces accuracy). This process is repeated

by calculating a new set of net perturbations, using the incremented

elements as arguments. The whole process is repeated for any desired

number of orbit cycles or until the perigee height falls below a certain

minimum, at which time the satellite is no longer considered to be

orbiting.

Flexibility and generality are attained in the program by extensive

input, output, and control features, and by using the fact that, to first

order, no cross-coupling exists between the various perturbing accelerations.

The absence of cross-coupling allows each perturbing acceleration to be

treated as a separate entity, and therefore, its effects can be calculated

in a separate subprogram completely independent of the other perturbing

accelerations. After the effects of each perturbing acceleration are computed,

L
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a subroutine increments each orbital element by the sum. of the effects

on that element from all of the perturbing accelerations. This sub-

routine structure allows several significant advantages: first, many

modifications of the program can be made without disturbing the entire

program; second, the effects of each perturbing acceleration are computed

separately, and therefore, can be studied separately; and third, a number

of mathematical models for the effects of each perturbing acceleration

can be included in the subroutine and choices can be made by varying

certain input constants.

Included below is a brief outline of the perturbations which can

be computed by this program in its present form. These are in closed

form wherever possible to conserve computational time. Where numerical

integration is required, multiple 9-point Gaussian quadratures are used.

II. 2 Outline of Included Pertrubations

I. Solar radiation pressure (Subroutine RADPR)

A. Features common to all models

1. Earth shadow boundaries

a. Computed in a separate subroutine (SUB. SHADOW)

2. Solar constant

a. Flux is corrected for varying earth-sun distance

B. Models included

1. Spherical satellite*

a. Closed form expressions

2. Tumbling cylindrical satellite

a. Closed form. expressions

b. Satellite properties

1. Rapidly tumbling

2. X percent absorption (0 - X 5 100)

3. 100-X percent specular reflection (0 5 X : 100)

c. Special effects

1. Tumbling axis change

a. random meteroid collisions

For a sphere, absorption and specular reflection of light in any com-
bination produces the same net force.

L
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3. Aligned cylinder

a. Numerical integration

b. Satellite properties

1. Alignment

a. local earth magnetic field line

2. X percent absorption (0 - X - 100)

3. 100-X percent specular reflection (0 5 X s 100)

c. Assumed magnetic field

1. Dipole

a. Displaced from earth's center

b. Tipped from earth's axis of rotation

II. Gravitational field of the earth (SUB. EARTH)

A. Closed form'expression

B. Model

1. Zonal spherical harmonics

a. Second harmonic

1. Evaluated to second order in J

b. Third harmonic

c. Fourth harmonic

d. Fifth harmonic

III. Neutral drag (SUB. DRAG)

A. Features common to all models

1. Spherical satellite

2. Free molecular flow

3. Atmospheric rotation neglected

B. Computational methods

1. Numerical integration

a. Geoid models

1. sphere

2. International Ellipsoid of Reference

b. Density models (SUB. RHO)

1. power law

2. parabolic log

3. Jacchia 1960 (See Chapter III)

4. Jacchia temperature model (See Chapter III)

5. Auroral bulge (See Chapter III)

L
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2. Closed form expressions

a. Assumptions

1. Power low density model

2. Spherical geoid

IV. Lunar Gravitational Field (SUB. MOON)

A. Closed form expressions

B. Approximations*

1. r/rmoon « 1

2. Moon ephemeris

a. Polynomials in time

V. Solar Gravitational Field (SUB. SUN)

A. Closed form expressions

B. Approximations

1. r/r sun «< 1

2. Apparent solar ephemeris

a. Polynomials in time

VI. Solar Radiation Reflected from the Earth

A. Features common to both models

1. Choice of satellite properties

a. Spherical

b. Absorbing cylinder

2. Constant albedo

B. Model of reflection properties of the earth

1. Specular reflection (SUB. SPECRE)

a. Numerical integrations

b. A predetermined percentage (f ) of the albedo
is specularly reflected (0 - f e" 100)

c. Approximation

1. Reflection properties of earth are homogeneous

2. Diffuse reflection (SUB. DIFFRE)

a. Numerical integration

b. 100-f percent (see above) of the albedo is diffusely
reflected (0 fs f e 100)e

c. Approximation

1. Reflection properties of earth are homogeneous

This subroutine is being extensively modified to remove these approximations.
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VII. Meteoroid Collisions (SUB. METEOR)

A. Transfer of Linear Momentum

1. Random variables

a. Meteoroid mass

b. Meteoroid velocity vector

c. Time of impact

B. Transfer of Angular Momentum

1. Effect on orbit

a. Changes tumbling axis (see I. B. 2)

2. Cylindrical satellite (e. g. , West Ford dipole)

3. Random variables

a. Meteoroid mass

b. Meteoroid velocity vector

c. Time of impact

d. Position on cylinder of impact

IX. Coulomb Drag (SUB. CHDRAG)

A. Ad Hoc parameterized model (Ref. II. 4)

1. Numerical integrations
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APPENDIX III

Conversion Between Smithsonian Astrophysical Observatory Mean

Orbital Elements and Nodal Osculating Orbital Elements

III. 1 Introduction

Smithsonian Astrophysical Observatory (SAO) satellite orbital

data were used for the comparison of computed orbital elements with

observation because of the standard of excellence set by SAO in measuring

and reducing photographic data. The use of the SAO orbital data requires

a conversion between the osculating elements at nodal crossing used in

the GPP (See Appendix II) and the SAO Mean Elements. The conversion

procedure is given in this appendix because the required information is

not fully documented in the literature. In general, great care must be

exercised in the comparison of computed orbital elements with orbital

data from any source, to insure that the exact definitions of the orbital

elements involved are known.

Figure III. 1 is a graphical representation of the definition of

the various types of orbital elements and the typical variations of the

osculating elements over a nodal period. The distance EB is the sum. of

the secular and long-period changes in the nodal osculating elements

(i. e., changes which do not average to zero in a nodal cycle). This

distance is of order J for the argument of perigee (w) and for the right

ascension of the ascending node (0) and of order J2 for the semi-major

axis (a), eccentricity (e), and inclination (i). The amplitude of the

short-period variations of the osculating elements is of order J for

all of the elements.

The output of the Differential Orbit Improvement Program (DOI) III1

used by SAO to reduce satellite observational data, is a set of elements

referred to an epoch (usually midnight U. T. ), from which short-period

perturbations caused by the earth' s second harmonic have been eliminated

(see Refs. III. 1 - III. 5). The inclination and argument of perigee are

referred to the true equator of date and the right ascension of the ascending
ITT. 6

node is referred to the mean equinox of 1950. 0 . The eliminated

short-period perturbations (e. g., Distance FH in Fig. III-1) have zero
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mean values when averaged with respect to the mean anomaly (III. 2)

and serve to define Smithsonian mean elements. These perturbations

are not the first-order perturbations presented in Eqs. (1. 20) through

(1. 24) (e. g. , Distance AH in Fig. 111. 1).

Each conversion from a set of SAO mean elements to a set of

nodal-crossing elements and vice versa can be made independent of

every other conversion. Hence, no error accumulates in conversion,

and the accuracy of the conversion need be only of order J for the

present comparison. A further increase in accuracy is not justified

because short-period terms of order J2 are smoothed as noise by the

DOI program.

The scheme used for the present comparison of the GPP, with

SAO, mean elements is to convert the first set of SAO m.ean elements to

the nearest previous nodal-crossing osculating elements. Then, using

these elements as input, the GPP computes nodal-crossing osculating

elements at every nodal crossing and places on magnetic tape the

nearest preceding nodal-crossing osculating elements for each epoch

where a comparison is desired. These sets of elements are then recon-

verted to SAO mean elements at the epochs for comparison.

The equations for the conversion from SAO mean elements to

nodal-crossing elements are derived from Kozai's short-period perturbation

equations 1 by evaluating these equations at nodal crossing (v = -w),

correcting w and 0 for the first-order (in J) secular perturbations and

computing the time of nodal crossing (T) fromthe mean anomaly at the

epoch. Kozai's short-period perturbation equations evaluated at nodal

crossing (distance AG in Fig. III. 1), are:*'

l J 1 eo) 3  3 .2. 23/2da = I 2 1 [2(1 + ecosw) + (I - 3 sin i)(1 -e ) ]
(1- e 2) 2

(c ontinue d)

If short-period effects of other perturbing forces are also eliminated,
the conversion process presented here may no longer be adequate.

The orbital elements in these equations are taken as nodal osculating;
however, to order J it is not necessary to differentiate between osculating
and mean elements here.

nm
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J 1 3 1 3 .2. 23/2
de = [ - (1+ e cos w) - (1G- 3 sin i)(1-e )

ep

2 . .

- (1- e 2) (+ 4 e co so)]

J 5.2 1 2 2
dw= { (2- 5sin i)(-o -M(-) - e sin w) + sin w - (-1+ 2 sin i)

p

1 1.2. 1.2 1
+ e(-I + 1sin i + 1 sin 2c)] -1 sin 2W}

d= - cosi[- - M(-)-4 e sinw)

p

4

di = - sin i cosi [1 + 4 e cosw]
2p2

dM = 1 - e- [sino (I 3 sin 
1) + e sin 2c

ep

2 . 2 .2. 1. 2
+ e 2sinw sin 1 gsin W)]

where M(-w) = E (- w) - e sin E (- w) is the mean anomaly evaluated at

- w and

- 1-e - sin w
E(-) = 2 tan ( 1+cosw

is the eccentric anomaly at -w.

The osculating elements at the nearest nodal crossing preceding

the epoch are then:*

a = am + da

e = e + de

i = i + di
m

J 5 .2.
W = W + dw -2 (z 2 sin 2 )- u

Q= 0 + d + -7 cos i . u

pI
T =EPOCH - (M - M(-w) + dM) P.--7m 27r

(III. 2)

The secular corrections to w and 0 correspond to the distance CF in
Fig III. 1. The distance GC is always of order J2 or higher and is neglected
here.

II.1)
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where"

(GM1/3 1 J 3 2 2
am 2 (3 T ~ _Z G7-sin i) l - e-)

n p

P = 7T a3/2 = osculating period at nodal crossing (III. 3)
GM

and where the subscript m denotes SAO mean elements. The argument

of latitude (u) is obtained by first solving Kepler's equation,

M = E - e sin E, for the eccentric anomaly (E) where M = M - dM.
m

Then, from the eccentric anomaly relation, Eq. (I. 12) of Appendix I,

the true anomaly (v) can be obtained, finally, adding the argument of

perigee (w) yields u. The mean motion (n) is a corrected value of the

SAO mean motion (nm) (see below).

The exact meaning of the SAO mean motion (n ) depends entirely
miii. 1

on the numerical procedure used in the DOI program to compute the

mean motion and, in fact, may change between sets of reported data at the

program operator's whim (e.g., the meaning of nm for 1961 IOTA 2

reported in Ref. I1T. 9 is different from, that report in Ref. I1. 6 and

no indication of this fact is given in either reference). The DOI program

computes nm by numerically differentiating the mean anomaly (M) with

respect to time. 1 8

The SAO mean motion is the reciprocal of the time required for the

satellite to travel froma fictitious perigee (the first-order, short-period

and secular, perturbations of w and M caused by the second harmonic

have already been eliminated and thus modified the apparent position of

perigee) around the orbit to another fictitious perigee displaced from the

first by the change in w caused by all perturbations** except the first-order

contribution of the second harmonic. This displacement of perigee is large

(~ 0. 1* per day in the case of 1960 IOTA 2) if the eccentricity is small.

The equations involving M, n and P in this Appendix are consistent for M in
radians, n in radians per second and P in seconds per revolution for GM in
earth radii cubed per second squared. In Chapters II and III, M, n and P
appear in the units revolution revolutions per day and days per revolution,
respectively(n(rev/day) ) 80 . n(rad/sec) etc.).

For low A/m satellites, this perturbation is mainly caused by the third
harmonic of the gravitational field (see the discussion of a for 1960 IOTA 2
j,4,hapter II).

The correction to the mean motion for 1961 DELTA l(e 0. 1) is small
(amplitude ~ 3 x 10-5 rev/day) and is neglected in Chapter II and III.
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The mean motion (n) which appears in Eq. (III. 3) is the SAO mean

motion (n ) corrected for this displacement of perigee. We calculate

this correction as follows: Let 6w' represent the displacement of perigee

(change in the argument of perigee) by perturbations other than the

first-order, short-period and secular, perturbations caused by the
1 1

second harmonic. Then - = -- -time (6t) required for the satellite

to travel 6w' in the vicinity of perigee. For small 6t:

n ~ n (1 + n 6t) (III.4)

n 6 t ~ E(6w') - e sin E (6w') (III. 5)

where

2tan E (Ol) tan (-6W) (III.6)

and for small 6w'

E (60') ~w' (III. 7)

and

n ~z- n (I + 6w ' (I - e) ) (III. 8)

since in the small correction term we set nm n.

For the purpose of the comparison presented in Chapter II, 6w'

was approximated by subtracting (for each epoch of interest) the first-

and second-order second harmonic perturbation from the total computed

perturbation of the osculating argument of perigee at nodal crossing

computed by the GPP. The second-order second-harm.onic effect was

subtracted in an attempt to approximate the change in the first-order

short-period perturbation of w at perigee passage which occurs during

the smoothing period of the DOI program' because of changes in the orbital

elements during this period.

Eight days in the case of 1960 IOTA 2(111. 6)
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To obtain SAO mean elements from nodal-crossing elements,

one simply solves Eqs. (III. 2) for the mean elements. The SAO mean

motion (to order J) is derived as follows:

GM [ 1 J 3 . 2
n = 3/2 -7 T sin i)N - e ] (III.9)

a p

and

n =n (I - 60 (1 - e) ) (II. 10)m 1 I +e
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Definition of Nodal
Osculating Element

)B

Osculating-
Smiths ian Mean E ement Element
for Epo h at Nodal Crossing

G

Smithsonian Mean

0 F--.-- Element at Epoch

0
H. D

0

H - .. Oscula *ng
* Element och

0 1800 3600 u

Typical Smithsonian Epoch

Fig. III. 1 The Behavior of a Typical Orbital Element During One
Nodal Crossing Orbital Period

A
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0. U. T. Jan. '58
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

U. T. Jan. '59
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

U. T. Jan. '60
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

J. T. Jan. '61
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

APPENDIX IV

Calendar

M. J. D.DAY

0.0
31.
59.
90.

120.
151.
181.
212.

243.
273.
304.
334.

365.
396.
424.
455.
485.
516.
546.
577.
608.
638.
669.
699.

730.
761.
790.
821.
851.

882.
912.

943.
974.

1004.
1035.
1065.

1096.
1127.
1155.
1186.
1216.
1247.
1277.
1308.
1339.
1369.
1400.
1430.

36203. 0
36234.
36262.
36293.
36323.
36354.
36384.
36415.
36446.
36476.
36507.
36537.

36568.
36599.
36627.
36658.
36688.
36719.
36749.
36780.
36811.

36841.
36872.
36902.

36933.
36964.
36993.
3 70 24.
37054.
37085.
37115.

37146.
37177.
37207.
37238.
37268.

37299.
37330.
37358.
37389.
37419.
37450.
37480.
37511.

37542.
37572.
37603.
37633.

0. 0. U. T.

0. 0. U. T.

0. 0. U. T.

0. 0. U. T.

0. 0. U. T.

Zero day, zero hour Universal Time (i. e., noon on Jan 1, 1958
corresponds to DAY = 1. 5). M. J. D. means Modified Julian Day.

Julian Day = 2, 400, 000. 5 + M. J. D. = 2, 436, 203. 5 + DAY
M. J. D. = 36,203.0 + DAY

Courtesy of H. Jones

Jan. '62
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Jan. '63
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Jan. '64
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Jan. '65
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Jan. 166

1,.

. . 1

0. u

DAY

1461. 0
1492.
1520.
1551.
1581.
1612.
1642.
1673.
1704.
1734.
1765.
1795.

1826.
1857.
1885.
1916.

1946.
1977.
2007.
2038.
2069.
2099.
2130.
2160.

2191.
2222.
2251.
2282.
2312.
2343.
2373.
2404.
2435.
2465.
2496.
2526.

2557.
2588.
2616.
2647.
2677.
2708.
2738.
2769.
2800.
2830.
2861.
2891.

2922.

M. J. D.

37664.
37695
37723.
37754.
37784.
37815.
37845.
37876.
37907.
37937.
37968.
37998.

38029.
38060.
38088.
38119.
38149.
38180.
38210.
38241.
3827 2.
38302.
38333.
38363.

38394.
38425.
38454.
38485.
3851 5.
38546.
38576.
38607.
38638.
38668.
38699.
38729.

38760.
38791.
38819.
38850.
38880.
38911.

38941.
38972.
39003.
39033.
39064.
39094.

39125.
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