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Abstract

The Resource Allocation Game we examined in this work is a strategic interaction
where a principal distribute an infinitely divisible good among different agents based
on their specific valuations of said good. The distribution is done by a particular
scheme first studied by Kelly [15] with no price-discrimination. In a further study
by Johari and Tsitsiklis [13], they aim to distribute the link capacities of a network
among different users. The authors prove existence of a unique Nash equilibrium
(NE) for the base case of a single link, but for a general network only existence is
proven, leaving open questions about uniqueness. In this study we characterize the
NE for a distinct structure of networks, the single-path serial network.

The problem is tackled gradually. First, we give explicit solutions for the case
with n players with affine utility functions on a single arc. Next for networks with
different are capacities and all players interested in the same path within the network,
uniqueness of the NE is proved. Moreover the NE is characterized by a variational
inequality that correspond to the first-order conditions of an optimization problem.
Thereupon, for the case where players might have different origin-destination pairs
without arcs in common, uniqueness of the NE in terms of flow is again proved.

Last but not least, we propose a sequential extension of the scheme. In this
framework, players do not act simultaneously, but in a given order of precedence. For
the base case of one arc and two players with linear utilities, we obtained an explicit
Subgame Perfect Equilibrium. In addition, we get a price of anarchy better than the
one obtained for the simultaneous case.

We propose some thoughts about the Transportation analysis application of this
type of networks for liner shipping and highways, that is to say situations where there
is a single-path of interest for every player.

Thesis Supervisor: Saurabh Amin
Title: Robert N. Noyce Career Development Assistant Professor
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Chapter 1

Resource Allocation Game

1.1 Conceptual framework

We framed the present work within Game Theory, which is the methodology of using

applied mathematical tools to model and analyze situations of interactive decision

making. Even though this discipline have connections with results from beforehand,

e.g. Cournot competition from 19th century [7], its establishment as such occurs

in 1944 by the publication of Theory of Games and Economic Behavior, authored

by mathematician John von Neumann and economist Oskar Morgenstern [27]. For

an introduction from basic to advanced game-theoretic concepts, see Fudenberg and

Tirole [10]. A game, or a strategic interaction, is a situation where

(a) There are several persons, in a broad sense. It means that these persons could

be humans, firms, animals, softwares, et cetera. They are individuals, or groups

of individuals, and are called players.

(b) Each of these players has to do something. They have to choose their strategy,

based on a set of possible actions.

(c) The utility that each player receive does not depend only in their own choice, but

may also depend on the choices of other players. This utility could be a payoff,

happiness, money transfer, et cetera.

13



Maschler, Solan and Zamir [23] explain that these games are useful to model

several situations in various fields, e.g.

" Theoretical economics: a market in which there are vendors that sell items to

buyers, or an auction.

" Networks: the interactions between users and providers in Internet and cell

phone networks, or the route choice for drivers in a congested network.

" Political science: the manner how political parties form a governing coalition

and divide government ministries and other elected offices, or electoral systems.

" Military applications: a missile pursuing a fighter plane.

" Inspection: the enforcement of laws prohibiting drug smuggling, auditing of tax

declarations by the tax authorities or ticket inspections on public transit.

" Biology: the insects and plants that by evolution inherit the properties which

are the fittest for pollination and survival.

Even in the Philosophy, where it can contribute some insights into concepts related

to morality and social justice, raising questions regarding human behavior in various

situations that are of interest to psychology. Osborne and Rubinstein [31] highlight

that game theory is sustained by the very basic assumption that decision-makers,

or players, pursue well-defined exogenous objectives, i.e. they are rational, and take

into account their knowledge and expectations of other decision-makers' behavior,

i.e. they reason strategically. For a formal mathematical basis of these concepts, the

reader is invited to visit Appendix A.

1.2 Game theoretic applications in Transportation

We have already mentioned in section 1.1 a couple of Transportation applications,

e.g. the ticket inspection on public trains and buses and the congestion games on a

network. The first direct application of Game Theory in Transportation goes back to,

14



Ordinary non-cooperative games
Generalized Nash equilibrium game

Common models Stackelberg game
Cournot game

Road/parking tolls policy
Vehicle routing problems

a aTransportation network reliability
Transportation analysis Ubntafcdmn

examplesUrban traffic demand
Drivers' response to guidance
Transport modes competition

Risk allocation
Local competition's effects to overall situation

Table 1.1: Applications in macro-policy analysis

at least, Wardrop's first principle [50], which is a Nash equilibrium characterization

for noncooperative games in disguise. Since then, numerous other applications in

games concerning both travelers and authorities have been studied. Zhang et al. [51]

presents us a survey of the main applications in Transportation classifying them in

two types: (i) Macro-policy analysis, which focuses on overall situations, where a

large number of players take part in the game in a complex and large place; and (ii)

Micro-policy simulation, which concentrates on confined situations, in which only few

players are in the game in a very limited place. A summary of the common models

and transportation analysis examples for macro-policy analysis (resp. micro-policy

simulation) can be found in Table 1.1 (resp. Table 1.2)

Out of all these examples, we focus particularly in the road and parking tolls

policy, because out of the typical applications is the one that relates with this Thesis'

content. The quantity of works on any of these subjects is immense. Just to name a

few, optimal tolls for multi-class traffic are studied by Holguin-Veras and Cetin [12],

using a Stackelberg game. The toll agency is the leader and the equilibrating traffic are

the followers. Steiner and Bristow [42] presents a case study for tolling in National

Parks to shed light on non-urban context, which is the top of mind when we talk

about road pricing. Teodorovic and Edara [431 using a combination of Dynamic

Programming and Neural Networks make real-time changes to the road toll values.

15



Ordinary non-cooperative games
Generalized Nash equilibrium game

Common models Stackelberg game
Bounded rationality game

Repeated game
Adjacent traffic signals strategy

Transportation analysis Emergency rescue

examples Conflicts between two airplanes
Collision avoidance between vehicles

Conflict between pedestrians and vehicles

Table 1.2: Applications in micro-policy simulation

Second best congestion pricing problems in the network are examined, among others,

by Verhoef et al. [44-46]. Welfare considerations are also incorporated by Ferrari [9]

or Arnott et al. [3]. They all try to find a proper toll-policy, which entails a road

efficiency improvement by their implementation.

1.3 Basic model for one link

In this section we recapitulate the framework of the Resource Allocation problem

based on the work of Johari and Tsitsiklis [13]. Traditionally this methodology

has been more used in used in communication network, as in [32], [22], [16], [15].

Nonetheless, we can find capacity allocation in transportation networks in the survey

of Johnston et al. [14] where different approaches to reducing congestion by capacity

allocation are reviewed: laissez-faire allocation, allocation by passenger load, ramp

metering, road and parking pricing or allocation by trip purpose. The decision made

on the approach to be selected will be represented in the shape of our utility function.

1.3.1 Assignment scheme

Let I be the set of players interested in using a single link with capacity C > 0. Each

player i E I has a utility un(d'), where 0 < d < C is the rate allocated to him. Utility

function u : R+ -4 R+ is strictly increasing, concave and continuously differentiable.

16



The assignment scheme, as defined in [161 , is as follows:

" Each player i E I bids wi > 0 for the link capacity.

" Given the vector w = (w)iex, the price p is uniform for each player defined as

S=Ziw (1.1)
C

" The allocation finally is given by the vector d = (d2)iE, where

wi wiC

Remark 1.1. This scheme assign the whole capacity of the arc. It is direct to calculate

EZ d' = C. In addition, this mechanism does not consider price discrimination among

the different players, i.e. charges [ to everyone. There are other mechanisms that

discriminate in price depending on the type of player interested, e.g. charging more to

higher valuation, or less to players that buy more volume. An example of a mechanism

that discriminates in price and is optimal in terms of efficiency was presented by

Sanghavi and Hajek in [36].

1.3.2 Game definition

Frank Kelly [16] in his pivotal work considered a game where players know that the

abovesaid scheme will be consider, but they are price-takers. A central assumption

in the definition of his competitive equilibrium is that each user does not anticipate

the effect of their payment wi on the price. Considering payoff defined as

Pi(wi) =u (W ) -wi (1.2)

He showed that there exists a competitive equilibrium, and the resulting allocation

solves SYSTEM to optimality. Johari and Tsitsiklis [13] consider a modification of

this problem. In their model, players instead of merely taking the given price, as in

equation 1.2; will foresee how their bids affect the price consistent with equation 1.1.

17



The players adjust their payoff accordingly, becoming price-anticipating users. We

have already established the strategies of the players, corresponding to bids (w)iEz

and the set of rules for the rate allocation, or the assignment mechanism. Now, it

simply remains to define the payoffs of the players to complete the game definition.

This last requirement is done below in equation 1.3.

ui .%C -w if wt >0

Qi(w, w-) = E (1.3)Q%(w WZ 0 (E ii f Wi = 0(13

With these specific payoffs {Q}2 E,, we can described the Nash equilibria as

Definition 1.2. A Nash Equilibrium for the game defined by the payoffs {Q}iEY, is

a vector w > 0 such that for all i E I

Q(w", w-) ;> Q(_, w-2), Vw > 0

Remark 1.3. The payoffs defined in equation 1.3 has a discontinuity in w' = 0,

when w34 wi = 0. This fact is crucial, since it can lead to the non-existence of NE.

Johari and Tsitsiklis /13] show an example of this case, but fortunately, the authors

also show that said difficulty can be settle adding enough competence.

1.3.3 Existence and uniqueness of Nash equilibrium

Hajek and Gopalakrishnan [11] prove both existence and uniqueness of a NE when

multiple users share the link. In addition, they show a characterization of this Nash

equilibrium by solving another optimization problem of a similar form to the problem

SYSTEM, but with altered utility functions. It is very important to note that even

though the Nash equilibrium is obtained by an optimization problem, this does not

correspond to a potential. The formalization of this result is presented in an adapted

form in [131. Theorem 1.4 is the adapted version of the latter.

18



Theorem 1.4. (Johari and Tsitsiklis [13]) Assume a set of players I, where Il > 1,

and that for each i E I, the utility function u'(-) is concave, strictly increasing, and

continuously differentiable. Then, there exists a unique Nash equilibrium w > 0 of

the game defined by {Q2}iEl, and it satisfies Er w' > 0. In this case, the vector

d = (d )iEz defined by
wiC

d' = ., Vi c I

is the unique solution to the following optimization problem GAME:

maximize E i'(dt )
ijE

subject to 1ct < C (1.4)
iET

dc > 0 Vi E I

where i(di) = (1 - (d) + di u(z)dz) .

For the proof of this theorem, please see 113]. In this article, it is shown as one of

the steps of the proof that a variational inequality also characterizes the equilibrium.

This result is presented in the following corollary

Corollary 1.4.1. (Johari and Tsitsiklis [13]) The vector w is a Nash equilibrium if

and only if at least two components of (w)iEz are positive, and for each player i G I,

the following conditions hold:

aui WiC Wi Ejw .j
.u ( if- = if 0

Odz Zwi Ei 3 C (1.5)
au, Ej Wj

(0) <if w2 =0
odi C

On the other hand, there exists a different optimization problem given by the

SYSTEM. In this optimization problem, the aim is to find a social optimum for the

aggregate utility given by

19



maximize Zus (di)
iE1

subject to d' < C

iE1

d' > 0 Vi E I

Johari and Tsitsiklis also proved that the Price of Anarchy, check Definition A.5 that

follows Papadimitriou [32], which is the loss of the aggregate utility given by the

selfish strategies of the players, is a tight bound of 4/3.

Theorem 1.5. (Johari and Tsitsiklis [131) Suppose that in addition to the assumption

we already have on the utility function u'(.), we also have that u'(0) 0, Vi E I.

Let ds be a solution to SYSTEM, i.e. a social optimum, and dG be the unique solution

to GAME, then

Zui dG) !5 43 'ds
iEI iE1

The proof of this theorem is also found in 1131. Similar result for traffic routing

games with affine link latency functions are found in [35]. A positive aspect of this

proof is the fact that it is constructive, in the sense that calculate explicitly the form

of the worst case that makes the bound tight, as shown in the following corollary.

Corollary 1.5.1. (Johari and Tsitsiklis [13]) The worst case for the Price of Anarchy

occurs when all players have linear utilities u'(d') = aid' and maxi ai = 1, w.l.g. say

player 1 is characterized as a1 = 1.

d' = 1/2 a, = 1
= 1/2 1/2

d' = ai = -1/2 Vi 1
I|I - 1 1 - di'

This means that player 1 receives half the capacity, and the rest of players share

equally the remaining half. More over, we have that ai -+ 1/2 as I increases.

20



1.4 General networks

Firs we need to define some notation. Let J be the set with all links j in the network,

where each link j E 3 has a capacity given by C,. Let P be the set with all paths p

that can be of interest for the players. We define each path p C 3 as a sequence of

different links to get from an origin to a destination, and Pi C P as the collection of

paths that are interesting for player i E I.

1.4.1 Extended definitions and Assignment scheme

Since we are now studying the generalization of the previous case with only one link,

we need to extend some of our definitions to fit the new model. The assignment

scheme is defined analogously as follows:

" Each player i E I bids wj > 0 for each link j E 3.

" Given the vector w = (wj)(ij)Ecxj, each link j receives a a rate allocation of X'

which respond to

. ifw >0
X Ek Wk

0 ifw = 0

Remark 1.6. There is a uniform price for each link, as in the previous case.

This means that even though the principal charges different prices to different

to different players, it does not price discriminate. The difference is based on

the different subset of paths of interest for each player i E I

" For each player i E I, we have an allocation vector xi = (X))EJ, and the

final allocation rate is given by d(xi(w)), where the function d'(.) solves the

21



Maximum flow problem presented below

maximize S Yp
PEP2

subject to E3yp < xz Vj E J
pEPr
p~j

yp > 0 Vp E P

We extend our previous definitions for payoffs and Nash equilibrium for this game.

Definition 1.7. f From dl(xz(w)) we define the payoff for player i E I as

Q(w t"w) ut (dt (xt (w))) - 1 ,

As a consequence, we define a Nash equilibrium for these new payoffs {Qi}iel as a

vector w > 0 such that for all i E I

Q2(w, w--z) > Q(_, w-), V& > 0

We realize that in reality the sum E w' is only on the arcs that are interesting

for player i, since in the arcs that do not belong to any path relevant for him, he

will naturally bid wj = 0. A problem with this generalization is that the existence

of a NE is not guaranteed. In fact, it could even be the case for a great number

of players where the competition is assured. The reason for this is the presence of

bottlenecks, then there could be cases where players are overbidding for an arc. This

can be understood crystal clear with the example provided in [13].

1.4.2 Cases without Nash equilibrium

Let II > 1 be the number of players that want to use the path of two links in figure

1-1 with capacities C1 and C2, where C2 >> C1. The player i E I has a utility

function u'(.) strictly increasing, concave and continuously differentiable. First, we

22
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0 C1 C2

Figure 1-1: No NE even though there is enough competence

realize that the flow for each player is given by a maximum flow problem solution,

that in this simple case is given by d' = min{x' (w), x'(w) } (as will be formally shown

in Lemma 2.3). Let's try to prove this using the reductio ad absurdum in two steps.

(i) We notice that the players bid positively in both arcs, i.e. Ej wj > 0, for

j E {1, 2}. This is clear since, other options are not viable. If nobody bids

on any arc, i.e. >s wi = >r w = 0 creates a situation where any player

i E I bidding E > 0 on each arcs gets d' = min{C1, C2} and since the utility

function is strictly increasing, player i sees his utility increased. Ergo there

is a profitable deviation for him and we are not before a NE. The case where

players bid in only one are, say arc 1, it means a situation where EZ w, > 0 and

2  i = 0. There exists a player i E I that bids positively on the first are and

none on the second, i.e. his bids are wl > 0, wl = 0. But this player is getting

d' = min{ax (w), 0} = 0. Hence, it is clear that there exist profitable deviations

for him, on account that he can still get the same rate but bidding less. Thus

this situation cannot be a NE. The case is analogous if players choose to bid

only in arc 2. Therefore if w is an equilibrium bidding profile, the condition

E> w'. > 0, for j E {1, 2} needs to be fulfilled.

(ii) However, as noted in the scheme definition, this allocates the whole capacity of

the arc, as consequence we have the following relations

x= wi) = C

iE-T iET '\Z3 W2)

23



Given that C1 << C2, it has to exist a player t E I such that x3 < x-, ergo

dt = X'. This player t EI has incentive to deviate and lower his bid w', as he

will be still getting the same d', but paying less. Therefore, w is cannot be a

Nash equilibrium.

Closing the argument, a Nash equilibrium must fulfill the condition that players bid

positively on both arcs, as seen in (i), but on the other hand, this provokes that at

least one player has incentive to deviate according to (ii). Finally, we conclude that

it does not exist a Nash equilibrium for this configuration.

1.5 Modified games

Given the problem presented by cases similar to the example shown in section 1.4.2,

where there are no Nash Equilibria, the authors consider necessary to extend the

scope of action of the players. This extension is in the sense of allowing not only to

bid to take capacity in any link, but also to ask for capacity when the sum of bids

on a given link are zero. In this way, the bottleneck problem that can be found in

configurations as simple as the one displayed in figure 1-1, does not occur. The idea

is formalized as follows. The strategy of each player i E I respect a link j E J

contains besides the bid a rate request. This strategy is a vector &i = (wi, 0), where

Oi := (04),e represent the request made by player i on every arc j of the network,

and w' is the same as before. This request only plays a roll when Ej w = 0, because

in the case EZ w. > 0, then the assignment is done an explained for the normal game

in section 1.3.1.

Definition 1.8. The scheme with rate request works as

Zw'>o -- > x (w,z)= C
iET Zk Wk

Zwt=0 -- x (w,$) O if $ <; C3

iE1 0 if Ei 03 > C3

24



Now the assignment for player i E I is given by x'(a) = (xj(o))yes and we redefine

the payoffs and the Nash equilibrium as we did before in Definition 1.7

Definition 1.9. From o-= (w, 0) we define the payoff for player i E I as

T'(or,o--) = us(dz(x2 (w,#))) - w,
jEJ

As a consequence, we define a Nash equilibrium for these new payoffs {Ti}iEz as a

vector o- > 0 such that for all i E I

Ti(uy, o--) ;> Ti(o, -- ), Voa ;> 0

Theorem 1.10. Assume that for each player i E I, the utility function ui(-) is

concave, nondecreasing, and continuous. Suppose that w is a strategy vector for the

game defined by payoffs {Qi}iez. For each i E I, define

W; C
{ if

0 if wi = 0

For each player i, let os = (,$i). Then player i receives the same payoff in either

game:

Ts(oA, o-i) = QZ(w , w-Z).

Furthermore, if w is a Nash equilibrium of the game defined by {Qi}Ez, then - is a

Nash equilibrium of the game defined by {T}iEz.

Once more, you can find the proof to this theorem in [13], on which we have

based our framework. Analogously to the previous section 1.3, we define the social

optimum as the optimal solution to the problem solved by the SYSTEM. Maximizing

the aggregate utility of the players.

25



Definition 1.11. The social optimum of a generalized network is a rate allocation

that solves the SYSTEM optimization problem

maximize E u' (di)
iET

subject to E y Cj Vj E J

Z y, = di Vi I
PE'P

y, > 0 Vp E P

The authors show the existence of a Nash equiibrium and the Price of Anarchy is

again 4/3. Also it is noteworthy that in the article the hypothesis for the Theorem

1.10 are different than in the previous case in Theorem 1.4. Instead of continuos

differentiability, now we have continouity. This means we are changing u' E C1 to

i E C' D C1 . Since we are relaxing the assumptions, the difficulty is increased.

Notwithstanding the importance of the results presented so far, the question about

uniqueness for other type of networks with complexity beyond the single arc remains

open to further study.

1.6 Summary of Findings

" Our hypothesis was that there exists a special structure which can be exploited

to characterize its equilibrium. In particular we get uniqueness results for the

NE on single-path serial networks, considering the same assumptions on the

utility functions as in Theorem 1.10. J. Ben Rosen [33] explains the diagonal

strict convexity condition and proves that this, along with other simple-to-

check requirements, are a sufficient condition for the existence, uniqueness, and

stability of Nash equilibria in concave games. Unfortunately, in the problem

posed in our hypothesis these requirements are not generally satisfied.

" We obtained the proof of uniqueness and a moreover a characterization of the

NE as a solution of an optimization problem for a single-path serial network
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with different arc capacities and where all users are interested in going across

the whole network, i.e. every player has the same origin-destination pair. The

importance of this characterization, in our opinion, is that it allows us to study

how the equilibria change for different sets of parameters, and gives us the

opportunity to study the dynamics of the equilibria when faced to a situation

where parameters could change in time in regular basis or because of random

events. For instance, the capacity on certain segments of a highway could change

due to rush hours or accidents.

" We prove uniqueness of the Nash equilibrium in terms of flow for a more general

case, where there is a single-path serial network where users may have different

origin-destination pairs and not even share a common arc. An example of this

situation is given in Figure 2-3.

* We present a sequential extension of the proportional assignment mechanism,

where players do not act simultaneously, but in a given order of precedence.

For the base case of one arc and two players with linear utilities, we obtained

an explicit Subgame Perfect Equilibrium and the price of anarchy of 8/7. This

result coincides both in the threshold and the final allocation with the optimal

mechanism for two players de ned by Sanghavi and Hajek in [36].
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Chapter 2

Equilibrium Characterization for

Single-Path Serial Network

2.1 Paths where all links have the same capacity

In this section the case where there are equal capacities in all links , and also every

player is interested only in one path of the network. They all have the same origin and

destination in mind. In this section, we start tackling the problem from its most basic

model for one link and affine utility functions. We get explicit results for the Nash

equilibrium profiles for the case of two players, and then generalized for n players.

Finally uniqueness in terms of flow is proven for the case with multiple links.

2.1.1 Base case for one link and affine utilities

We can first studying the case for two players to gain perspective. Let two players

have affine utility functions i.e. u'(di) = aid' + bi, for i E {1, 2}. We can explicitly

state the unique Nash equilibrium as

_ Ca2a2W = + 2(a, + a2)2

Caia2
(a, + a2 )2
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To prove this we just have to calculate the rate allocation xi, for i = 1, 2

w 1C
W1 + W2

C2aia2) Caia2(a +a2)7'
=(a, + a2 )2 ) ((a,+ a2 )2

Cal
a1 + a2

Then we have to prove the variational inequality shown in equation 1.5.

consider the left member

First we

&u ( w,C )ad' 1 w+W2 (1- w +W)1 +W2

(2.1)= a, (1 ai

a1a2

a1 +a 2

On the other hand, taking the right member of equation 1.5 we have

_ 1 2Caa2

C (al + a2) 2

2 2
a a2 + aia2

(a, + a2 )2

a1 a2

a, + a 2

Caia )
(a1 + a2 ) 2

(2.2)

Since we obtain the same result for both equation 2.1 and equation 2.2, we conclude

the proof for two players. It can be generalized for a set of any cardinality n E N +2.

Theorem 2.1. Let I = {1, 2, ... , n} be a set of players with affine utility functions

uz(d) = aid' + bi, for i E I. Then we have that the bids will be

(n - 1)C (E~ L- (n - 2) 1)

and therefore the rate assignment

C

1j
x i=

30

= a, (1
W1+W2

W1 + W2

C

2

-(n - 2)1

W =



Proof. First let's calculate the value for rw'

n

i=1

n (n -1)C ( ji-- (n -2)y'

(n -1)C(n -2)E

(n - 1)C E j4a a

(n -1)C(n 1E L-n 2 j

Once we have this result, we can calculate for any given k E 1 that equation 1.5 holds

N k w kC Wk
Odk ( (1 w3)i

_Lj~ - (n- 2)-
= a1 _

a k

+(n 1)
= a 3

(n - 1)C

ziC j
C

The degree of efficiency loss is known as the Price of Anarchy. First introduced

by Koutsoupias and Papadimitriou [18] when evaluating the worst-case ratio of Nash

equilibria to the social optimum in a general network. It was used in a traffic network

by Roughgarden and Tardos [35] to optimize the performance under congestion. The

formal definition can be found in Definition A.5
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Theorem 2.2. The Price of Anarchy for the single-link network where two players

with linear utilities compete for the capacity C > 0 of the arc is given by (1 + V2-)/2

Proof. We consider two players with linear utilities u'(d') = aid', for i E {1, 2}. First

we need to calculate the social optimum of this problem.

maximize aid' + a2d2

subject to d'i + d2 < C

0 < d' < C

0 < d2 < C

This linear program will have its solution in one of its vertices and the optimal value

will be given by W* = C max{al, a2 }. On the other hand replacing the value for the

allocations d' and d2 according with Theorem 2.1, we have

Ca 2 Ca 2
ul(dl) = 1 & u2 (d 2) 2

a, + a2 a, + a2

We define the welfare value of our unique NE as W(e) and calculate the ratio with

respect to the social optimum W*

W*_ C max{ai, a2}
W(e) + 2

al+a2 al+a2

_ (a1 + a2 ) max{a,, a2}

+ max ,2
1+ 2

(1+~a rax {9,1}

d2) a2

I+ (a)2
~\aa2

Thus, we can treat the Price of Anarchy as a function of the ratio of the slopes of

the utilities, where function f (.) is represented in Figure 2-1. Solving for optimality:

max f(x) =f (v2 -1)-f (V_2+ 1) - 1+2
X>O2
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W(e)

1.3 -

PoA = 1 + V
2

1.15 -

1-
0 2 - 1 1 2 v2+I 3 4 5 a

a2

Figure 2-1: The PoA is reached when a, = (v'2 - 1)a 2

Therefore we can assure that the Price of Anarchy is reached when the ratio of the

slopes of the utilities is (V- 1), or by symmetry its recyprocal (vi - 1)-1 = +1.

The value of the Price of anarchy is given by

PoA =
2

2.1.2 Case with one path and multiple links

Lemma 2.3. In the case of a single-path serial network, the maximum flow for a

player i E I is determined as

d' = min{x"-)}
jEJ 3

where x(o-) is the rate allocation for player i E I on edge j E J.
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Proof. We have to consider the maximum flow problem defined in section 1.4.1 at the

page 22 for the specific topology of this type of network. Since there is only one path

for every player, i.e. IPJ = 1, the optimization problem can be reduced to

maximize d'

subject to d' < x Vj EJ

d' > 0

The feasible region of this problem defined by the set of constraints is equivalent to

0 < d < min{x;(U)}

Therefore it is clear that the solution of a linear problem over an interval occurs on

one of the two vertices. In this case, it occurs in the upper bound of this interval.

Henceforth d' = minjeJ{xi()} L

Lemma 2.4. In a Nash equilibrium, every player receives the same assignment on

each arc where he bids positive, this means

w,w >0==x() = x'(a), Vi E I

Proof. Suppose for the sake of contradiction that there exist a player i that bids

positively on two different edges j and k such that x'(a) = x'(a). Without loss of

generality we can assume that xj(-) < x(a), then by Lemma 2.3 we have that

dk < X'(9) <4X(u-)

Therefore, player i has incentive to decrease his bid on k and use that to increase his

bid j getting a higher level of flow, ergo the point cannot be a NE as it says in the

hypothesis and we have the contradiction. 0
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Theorem 2.5. For a single-path serial network where all arc capacities are equal to

C > 0 and every player at least one edge in common, then the NE is unique in terms

of flow. Moreover, the flow is the same amount of rate assigned on that common arc.

Proof. First we prove that every player needs to bid on the common arc q. The case

where one players only request and other players bid is clearly not a NE, since the

flow for that player would be null and he would have incentive to deviate. Suppose

now that every player does not bid on the common arc and only request. Therefore

there must exist at least two arcs j and k with positive bids. 1 The arcs where the

bids are positive allocate the entire link capacity C, therefore we have that

Z x(a-) = xi(o) = C
ji jEk

iEIj i6Ik

where Im is the set of players that have arc m E 3 on his path. On the other hand,

it makes sense to request rate on the common arc q only if

Since q E 3 is the common arc, we necessarily have that V, 1 k C Iq = I. Therefore,

without loss of generality, there must exist a player t E Ii \ Ik such that x (o-) >

which means that player t has incentives to bid e > 0 on the common arc to get

the full capacity of this arc and increase his flow. This unilateral profitable deviation

makes that such profile cannot be a NE. Finally knowing that on a NE all players have

to bet on the common arc and by Lemma 2.4 we conclude the result of uniqueness

for what we were looking.

Remark 2.6. It is noteworthy that in the case there are multiple common arcs, then

we may have different Nash equilibria where players bid on all the arcs, or they all

bet in only one of them and request the same amount that would be assigned on said

arc on the rest. If we define a subset J C 3 with all common arcs, we know that

'The case where the NE is obtained by players that bid on no arc and request on all of them
could only be a NE in the case where utilities are constant after a given quantity. This is a very
specific case that we will not take into account in this framework.
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in a Nash equilibrium profile 3q e : wi > O and Vj E j\ Jq : wj = 0 for all the

players. These may be different equilibria in terms of bids, but they all have the same

flows, therefore the uniqueness of the equilibrium in terms of flow is preserved.

2.2 Paths where links have different capacity

In this case we note that Lemma 2.3 and Lemma 2.4 are still valid, since they are

based only in the topology of the network and not in the capacities. For the case

where all capacities are different, i.e. there is no pair of arcs with the same capacity,

we have the following result

Lemma 2.7. In a Nash equilibrium there can be but one arc with positive bids

Proof. Suppose there is a NE given by u = (w, q) such that there are two arcs j and

k with positive bids. Without loss of generality, we assume that C < Ck. Since the

scheme allocate the entire link capacity on arcs where there are bids, we have

Lxi = C < xi =
iGI iEY

Hence there exists a player L c I such that x < x, ergo a profitable deviation exists

for player t, since he can deviate -e < 0 on his bid x and the flow will remain the

same given by Lemma 2.3

d' = minx, <x' < x4 - f
eEJ e- j

This lemma implies that the NE must bid in only one edge and request on the

rest, which leads us to the next theorem.
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Theorem 2.8. The NE is unique in terms of flow. Moreover, the flow is the same

amount of rate assigned on the arc m of minimum capacity such that Cm = minj {C }

and the equilibrium profile on the extended game is given by

wZ > 0

O-i =

#= Xt

Proof. We know by Lemma 2.7 that a NE only bids in one arc and by contradiction

we can show that it must bid on m. Suppose a NE where players bid on an edge

j = m and request on the rest of the arcs. Let k E J be an arc with capacity Ck < C.

The sum of the requests on arc k must be EZ ' < Ck < C, because in other case

the assignment according to Definition 1.8 would be zero and all players would have

flow zero by Lemma 2.3. We have then that on arc k they receive xi = 0' and

x xi < Ck < E x j C

iEI iEI

Thus there must exist a player t E I such that x < x , and with a reasoning analogous

to the one used in Lemma 2.7, profitable deviations exist and this profile cannot be a

NE. Therefore the arc on which the players bid must be the one of minimum capacity

and the theorem is proved.

Remark 2.9. Analogous to the Remark 2.6, there is some important note to point

out . In the case that there are multiple arcs with minimum capacity, then we have

different equilibria where players bid on all the arcs, or they all bet in only one of

them and request the same amount that would be assigned on said arc on the rest. If

we define a subset Jm := {m E J : Cm = minjej C,} c J with all the arcs whose

capacities are the minima, then we have in a Nash equilibrium profile 3m E jm

W' > 0 and Vj E j \ J' : w = 0 for all the players. These are different equilibria

in terms of bids, but they all have the same flows, therefore the uniqueness of the

equilibrium in terms of flow is preserved.
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Lemma 2.10. A Nash Equilibrium for a single-path serial network does not depend

on the request b of players.

Proof. What we want to prove in this Lemma is that in an equilibrium condition,

the flow obtained can not be determined only by arcs where there are no bids but

only requests. Suppose there is a NE a = (#, w) such that there is a player t whose

allocation d" is determined by an arc k, where he has no bid, and only a request.

hence he has d" = minJEJ X = X'. In this case, he has a profitable deviation if he

bids e > 0 on arc k, gets a strictly increase in his allocation, and therefore an increase

in his utility. Therefore, this profile cannot be a NE. L

Proposition 2.11. The unique Nash equilibrium is characterized by the following

condition for all i E I

Oui w C wi E w_.
ad(1- . < C if wM >0

(dEj wM Ej WM-C)
aui Ej M f i

di (0) Cif w =0

Proof. We consider again the GAME problem of equation 1.4, which we know has a

unique optimal solution because it is an optimization problem with a strictly concave

objective function over a compact feasible set. Henceforth the unique optimum is

characterized by the first order conditions

di(d) 1= Aiadi C
Ouz

adi (0) A

According to Lemma 2.10 we know that the, equilibrium does not depend on #' for

any player i. Thus, the payoff function Qi(., w-') is strictly concave and differentiable

as function of wt = (w),eJ. So it reaches its optimum in the NE and meets the

optimality condition

VQ(w, w-') 0 (2.3)
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This condition becomes interesting only in the bottleneck arcs, in the rest we

have a trivial 0 < 1. Based on Theorem 2.11 we know that this arc is the same where

wj > 0, since we know that the players bid positively only in the bottleneck. Assume

now that o meets the condition and does not depend on #. Since the payoff function

is strictly concave, it suffice to revert the argument, because the condition given by

equation 2.3 characterized the optimum. The second inequality is a border condition.

Finally, to conclude our proof, we only have to identified

CM Cm

2.3 Different walks, but with one arc in common

A first intuition for this results comes from the fact that players will bid positively

on an arc only when they face competition in that arc. In a theorem this means

Theorem 2.12. If (w, #) is a Nash equilibrium, then for all (i, j) E I x J we have

(i)EWj===->w =0 & (ii) >w >0=>w >0
r~i rfi

Proof. Suppose there exist a player i E I that in his walk passes through arc j E J.

(i) iw.7; > andw>0 is not possible to occur in a Nash equilibrium. Because

bidding 0 < w - e < wj gives the same utility paying less, therefore he has

profitable deviation.

(ii) zrgiwr > 0 and w3 = 0 is not possible to occur in a Nash equilibrium. By

Lemma 2.3 player i is getting d' = 0, so it is convenient for him to bid something

and get d' > 0 increasing unilaterally his utility.

LI
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s1, s3 82 t t1 , t2

pC1 C2 03

Figure 2-2: Different O-D pairs with arc 2 in common

An example to illustrate this case is shown in figure 2-2, where we are considering

affine utility functions ul(dl) = aid' + bi. At first glance, as there is no additional

information about the game, we have to study all possible options regarding the arcs

in which players can bet. We only know that the option where players only request

and do not bid cannot be a NE, unless the utilities involved in the game at some

point become constant. Therefore, it ought to be the case that Player 1 must bid in

at least one of the three arcs, Player 2 must bid on arc 2 or 3 and Player 3 must bet

on arc 1 or 2.

Thus we have to study the four scenarios to reach a conclusion, or at least to

sharpen the intuition of the result.

(i) Bidding only in arc 2. By Theorem 2.1 we have that every player gets

= C 2(aia2 + aja3 - a2 a3 ) (2.4)
aa2 + aia3 + a2 a3

2 C2(aia2 + a2a3 - aa3 ) (25)
aa2 + aa3 + a2 a3

3 C2(aia 3+ a2a3 - aja2 ) (2.6)
aa2 + aa3 + a2a3

In addition to the conditions on the parameters for the nonnegativity of xi,

i E {1, 2, 3}, we have to meet the condition that the request are less than the

capacity of the arcs where there is no bidding, i.e.

11 + < C1 2C2a1 a3

aja2 + aja3 + a2 a3

02<2C2<02

aja2 + aja3 + a2 a3
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(ii) Bidding in arc 1 and 2. On arc 1, the players involved are 1 and 3, that will get

1 C01a

a1 -t a3

3 Ca3
a1 + a3

On arc 2, the three players bid and we get the same results of equation 2.4.

Again, besides the nonnegativity conditions, we need to meet other conditions.

xi = Xi1 1

x3 = 3
1 x2

03 X1 + X 2 =Xi + x 2

The first two conditions are known because of Lemma 2.4. Combining these

two, we obtain

C2(aia2 + aja3 - a2 a3 )

C1a1

C2(a1a3 + a2a3 - aia2 )

C1a3

a3(aia2 + aia3 - a2 a3 ) = a1(a1a3 + a2a3 - aja 2 )

(a, - a2) = a2(a3 - a2)

And from the last condition we get

C3 > 2C2aia2

aia2 + aja3 + a 2a3

(iii) Bidding in arc 1 and 3 is totally symmetric to the case (ii).
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(iv) Bidding on arcs 1, 2 and 3. Finally we consider the case where the players bid

on every single arc. Since we have no request to consider, we only focus in the

equality of the assignments.

01
= C3aia1 + a2a, + a3

C1a1 _ C2(aia2 + aja3 - a2a3 )
a, + a3  aia2 + aja3 + a2 a3
C1a3  C2(aia3 + a2a3 - aia2 )

a, + a3  aia2 + aja3 + a2a3
C3a2 _ C2(aia2 + a2a3 - aia3 )

a, + a2 aja2 + aja3 + a 2a3

(2.7)

(2.8)

(2.9)

(2.10)

Analogous to what we develop in (ii), combining 2.8 and 2.9 we get

(a, -a2) = a2(a3 -a2) (2.11)

Then, combining 2.7, 2.8 and 2.10

(a, -a3) = a2(a2 -a3) (2.12)

And associating these two equations 2.11 and 2.12 we get the last condition on

the slope of the utilities of players 2 and 3

(a, - a2) = a2(a3 - ai)

The bottom line for intuition is that, a priori, the cases studied in the example above

do not fall in contradiction. There could be more than one profile that meets these

conditions and is an equilibrium, but all of them will be the same in terms of flow,

since by Lemma 2.4 the flows on every arc with positive bid must be the same.

Lemma 2.13. In a single-path serial network, where players have walks with different

origin-destination pairs, but they all share at least one single arc. Then the Nash

equilibrium is unique.
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si s2 t2  s3  tl, t 3

0  C1 OC 2
0  03 C4 0 c5

Figure 2-3: Different O-D pairs without common arc

Proof. Let j be the common edge and let s and t be their endpoints. Therefore every

origin-destination path begins at most at s and finishes at least in t, otherwise the

common edge would not be j. Besides for a single player always we have that, in a

NE, w. > 0, w' > 0 forj k =-> x = x . Because if we had that x < x' then it

means that d' < i < x, ergo we can deviate -c in bid Wz and add it to w' and we

would be better off, ergo contradiction and the corollary is proved. F1

2.4 Players with different walks

Now we consider a case relaxing the assumption of the common arc that had before.

An example to illustrate this case is shown in figure 2-3, where we are considering

affine utility functions u'(d') = aid' + bi. At first glance, as there is no additional

information about the game, we have to study all possible options regarding the arcs

in which players can bet. We only know, as before, that the option where players

only request and do not bid cannot be a NE.

Thus we have to study the different cases to reach a conclusion, or at least to

sharpen the intuition of the result. In this case there is no common arc, and we know

that every player must bid in at least one arc, since the situation where there are only

requests cannot be a NE. Ergo, the different options are reduced to four cases. Bid in

arcs (1,4), (1,5), (2,5) or (2,5). We look to prove by contradiction the impossibility

of multiple NE in this case. For this purpose, suppose there is two NE, one that bids

on (1,4) and other in (1,5).

(i) Bidding in arc 1 we get on are 1

1 Cia1  & 2 Cia2X, a,+a
2 a,+a2
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Besides the condition to make sense a request on arc 2, i.e. C2 > x + x2 = C

In arc 4 we get
I C4 aj 2 C 4 a 2

4 a, + a2 4 a, + a2

Again with the condition that C4 < C5. Besides we have the condition given by

Lemma 2.4 that states

1 1 C _ a + a2

1 4 C4 a, + a3

(ii) Bidding in arc 1 and 5, analogously we arrive to the conclusion

1 1 C a, + a2
x15= C5 a, + a3

However, a necessary condition for the existence of two equilibria of this form is

that C4 = C, since we know that make no sense bidding in an arc with slack of

capacity. On the other hand, looking for two different equilibria we must have

that
C4a3 C5a3

4 5 ~a, + a3 a, + a3 =='C C

Then we reach a contradiction. Therefore, it is not possible to have two different

NE in a network as the one in Figure 2-3.

Theorem 2.14. In a network with only one path and players with different O-D

pairs, there exists a unique Nash equilibrium in terms of flow.

Proof. We will prove this Theorem by contradiction. Suppose there exist two equi-

libria with different flow, d, and d2 . Then the situation of figure 2-4 must occur at

some point.

{si}iEIA {si}ZELB FEA

C1 C2 C3

Figure 2-4: General one-path network with different O-D for players
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" In node A we consider a nonempty proper subset of the players 1 A C I whose

origins are in or before this node. If there were no player that starts his walk in

this node or before, then the node could be removed from the network without

any incidence on the equilibria.

" In node B we consider a nonempty subset of players V C I \ TA whose origins

are exactly in this node. It could be the case that some of the players i E 1A

have their destination in this node also.

* In node I' some players from 1 A could have their destination in this node, but

no player from B can finish their walk here. If this were the case, then both

flows would compete and bid on arc 2.

" In node A, in addition to origin for new players and maybe destination for some

player from 1 A, for the first time a player from B can finish his walk started

in node B.

Some important remarks to make before proceeding with the demonstration are

(i) Both flows cannot have arcs in common with positive bid. If this were the case,

then by Lemma 2.4 the flows would be the same.

(ii) Both di and d2 must have a positive bid on at least one arc, since we have

already cover the condition that not bidding on any arc, and only requesting

cannot be a Nash equilibrium. Then, necessarily they must bid on one arc out

of 2 or 3, and request on the other. The other player must do the symmetric

bid and request interchanging the arcs.

(iii) Suppose, without loss of generality, that NE flow d, (resp. d2 ) is obtained by

bidding on arc 3 (resp. 2). This mean we have the conditions

C2 = d di (2.13)
iEI iET

C3 = E d' > E d' (2.14)
i45 iEI
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We realize that in the case were there is actual positive bidding, then the relation is

a strict equality.

Lemma 2.15. In this context, where we are assuming two different NE, let's suppose

that an arc of capacity C has positive bidding under flow d1 and only requests under

flow d2. Then, it necessarily hold the condition

C=Edi<Edi
iEI iEI

Proof. This lemma can be proved by contradiction. Let's assume that the case where

there were two different NE in the network such that

C=Zdi=Zdi
iEI iEI

Then, there exist a player t E I such that d" =L d'. We have to remember that when

in a NE, there is a request on one arc, it means that the throughput is given by the

bottleneck which is other arc. Therefore, for player t, and the rest of players that

share at least a common with him, there exist two possible NE flows for a path with

one arc in common, which is a contradiction with Lemma 2.13.

Thus, our condition 2.13 and 2.14 become

C2 =E dC> Ed' (2.15)
iEI iEI

C3 =Zd >Zdi (2.16)
iEI iEI

Lemma 2.16. For a Nash equilibrium flow d and an arc with capacity C where there

are only requests and no bids, the following condition holds. If >j di = K < C, then

the rate allocated to each player i is a proportional fraction of K, as if there had been

bids on the arc.
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Proof. In fact, we know that an arc where there are only requests must verify the fact

i q t <C, and since by Lemma 2.3 we have that d' = minEJ x., then it must hold

iE1 iE1

Therefore, in an arc where there is only requests, it is impossible to get through more

flow than the one given by a bottelneck in other arc, in particular, one of the arcs

where there were actual positive bids. In fact, the flow d' that goes through this arc of

capacity C is exactly the same that was allowed in the bottleneck. In view of the fact

that in those bottleneck the assignment was given by the proportional assignment

scheme, then the proportion on the arc of request must be the same. 0

Let's consider the case of a player # E B. It is important that this reasoning

is the same for any player with the same destination than #. In arc 2, player / has

do = p C2 in the first NE flow d, and do = p'C3, where p"' (resp. ps) is the proportion

of capacity Cj of arc j that player / receives by bidding wf(resp. requesting 45).

Then, based on Lemma 2.16 we know that it must hold do < do (resp. do > do)

for arc 2 (resp. arc 3), i.e. we have the conditions

P2C2 < P2C2 (2.17)

p'C3 < PW3"C3 (2.18)

On the other hand, we know that when we bid positively on an arc, we obtain at

least the rate of the flow given in the bottleneck. Where there is positive bid, then

P20C2 > P3C3 (2.19)

p3C3 ;> P2C2 (2.20)
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Using equations 2.17, 2.18, 2.19 and 2.20 we get the following inequality

P3"3 ' < PC2 p3C < p3C

Which is clearly a contradiction, and proves our result about the uniqueness of the

Nash equilibrium we were looking to prove. L

Remark 2.17. The network on Figure 2-4 does not represent a loss of generality.

Based on what has been previously explained, if it were possible to coexist two different

NE flows, then they cannot have a common arc where players bid positively on it,

besides in both cases players must bid positively in at least one arc. Thus, the only

potential loss of generality could occur it there where more arcs between the arcs that

find positive bids, in this case arcs 2 and 3. In case there exist more arcs in between

them, where players can find their origin and players from node A or before can find

their destination, in none of them could be a positive bid, since in that case the NE

flow would be completely determined. This entails that Lemma 2.15 and 2.16 remain

intact, and as a result the proof continues to be valid.

2.5 Sequential Assignment Mechanism

In this section we present an extension of the standard assignment scheme presented

in Chapter 2. As described by Leme et al. [20j, typical game-theoretical models

use simultaneous move games, nonetheless in real applications simultaneity is often

hard to achieve. That is where sequential games play a crucial role, dropping the

simultaneity assumption. The main difference consist in that now, instead of playing

one-shot simultaneous games. Players face an interaction that happen in a sequence

of rounds, where a single player acts in each round. In this particular case, we analyze

the case of two players with linear functions in a single link with capacity C = 1.

We notice that, given a set of actions for the first k < n players, it is induced

naturally a subgame for the remaining players, i.e. players k+ 1,. . . , n. They take this

information as a given and play a sequential game with n - k players. The concept of
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solution for a sequential game is given by the Subgame Perfect Equilibrium, originally

formalized by Selten [39] extending the idea of backward induction

Analogously to our Definition A.5 for the Price of Anarchy, we need to define its

extension for sequential games. The Sequential Price of Anarchy (SPoA) of the game,

Definition A.9, is the ratio between the social optimal solution W* and the quality of

the worst subgame perfect equilibrium, mineESPE W(e).

2.5.1 Base case for two players

Suppose there exist two players with linear utilities functions, i.e. u'(d') = ai(d'), for

i E {1, 2}, where a,, a2 > 0.

Theorem 2.18. The unique SPE for a two-player sequential game, with linear utility

functions and nonnegative bids occur when a1 < 2a2 and the flows are given by

(d', d2)= a, 1 _ a1

2a2 2a2 )

Proof. For this proof we analyze the game by steps.

1. Player 1 bids wl > 0.

2. Player 2 wants to maximize his payoff considering w1 , then he solves

maximize a2 ( 1  - (2.21)

subject to x > 0

The result from equation 2.21 is equivalent to

w2 = maxfVa2W1 - W , 0} (2.22)

If we want that w 2 > 0, we need condition 2.23 to hold

W1 < a2 (2.23)
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We consider condition 2.23 to be true, since had not this condition hold, we

could remove these players from the game and study a equivalent game with

only positive bids. In all this analysis we consider only positive bids.

3. Player 1 knows that 2.24 will be the rational strategy of player 2. He anticipates

to this answer and solves

maximize wi = a, - x

subject to w 2 = max{ va2w1 - w', 0} (2.24)

w1  < a2

X ;> 0

where we have considered condition 2.23 and equation 2.22 as constraint, we

get that
(2

Finally, we have to analyze two cases of interest

(i) If a1 > 2a2 , then (w', w2 ) = (a2 , 0). Ergo, as said after the condition 2.23, we

disregard this case because we are only interested in games with positive bids.

(ii) If a1 , 2a2 , then (w', w2) . The NE flows are
4a2 2

/ -1
1 21 2

__ _ a1  ala2  a,
w + w 2 4 2  4a2 ) 2a2

1 a1  af 2 2 a,
d -- -+ W

w+ w2K2 4a2  a1  2a2

It is noteworthy that the SPE is unique given the concavity of the payoffs.
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2.5.2 Sequential Price of Anarchy

First we need to calculate the social optimum of this problem. Replacing the value

for the allocations d' and d2 according with Theorem 2.18, we have

1(l a U )a
u (dl) = a1 2(d2= a2 - a-2a2 2

On the other hand the social optimum will be given by

maximize aid' + a2d2

subject to d' + d2 < 1

0 < d' < 1

0 < d 2 < 1

This is a Linear Program, therefore its optimum will be in one of the vertices. It is

clear that in this case the the optimal value will be given by max{a1 , a2 }

Theorem 2.19. The SPoA for this game is equal to 8/7.

Proof. We define our unique SPE as e = (w', w 2 ) and calculate the ratio with respect

to W* = max{aia 2}

W* max{ai, a2}
W(e) 4 + a2 -

2max ,1}

2

a2 a2

=f -
(a2)

Then, we can treat the ratio between welfare of the social optimum and the welfare

of the SPE as a function of the ratio of the slopes of the utilities, where function f(-)

is represented in Figure 2-5. Solving for optimality, we find

_ 8
max f(x)=f - -
O<x<2 2 7
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W(e)

1.2

SPoA = 8/7

1.1-

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 al
a2

Figure 2-5: The SPoA is reached when 2a1 = a2 .

Therefore we can assure that the Sequential Price of Anarchy for this game is 8/7. El

The importance of the result of Theorem 2.19 is twofold. On the one hand, it is

proved that the sequential mechanism improves the efficiency and gets a value for the

welfare function of 7/8 of the optimal value, which means that exceed the Price of

Anarchy that we had before for the simultaneous game, i.e. 3/4 that we had before.

On the other hand, it meets the threshold given by Sanghavi and Hajek in [36]. In

their work, the authors show that for two buyers, their allocation mechanism is found

that guarantees that the aggregate value is always greater than 7/8 of the maximum

possible, and it is shown that no other mechanism achieves a larger ratio.
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Chapter 3

Modeling Suggestions

We have studied and characterized the equilibrium for a game where al players are

interested in only one path. This could model situation where there is a single-path

network, but also is useful to model a general network, where there is a specific path

that every user must use. This could be a physical constraint, an agreement, a legal

issue, et cetera. The latter is called Fixed Routing in connectivity networks and

there is increasing interest in them in the internet and telecommunication literature.

Nevertheless the application in Transportation is also vast and thought-provoking.

In this section we present a little review of the results in communication network

and then propose some ideas, suggestion, comments for modeling Transportation

interactions.

3.1 Applications outside Transportation

Traditionally the study of allocation mechanism and evaluation of efficiency loss has

been traditionally applied to communication networks. The study has focused for the

most part in the difference between the aggregate welfare when noncooperative users

choose their routes maximizing their own utility vs. a centralized planned routing

that optimizes the welfare. Looking for a socially desirable outcome, researches have

proposed different methods to cope with selfish behavior.There are so many authors

that we could cite here, that any list ww could make would be insufficient. Just to
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name a few, previous approaches include influencing the behavior of selfish agents via

pricing policies [6], network switch protocols [40], routing a small portion of the traffic

centrally [34], [17] generating a leader-follower situation, where after committing to

this strategy, the rest of the players, or followers, make their decisions with knowledge

of the leader's commitment , or algorithmic mechanism design [8], [29], [28].

Other authors have proposed different mechanism to address the congestion and

its undesired consequences. Shetty et al. [41] studied an Internet market. Assuming

a certain form of demand function, they are able to derive the optimal capacity

investments for Internet service providers under different regulation policies. Schwartz

et al. [37] examine a low-cost regulatory tool. Establishing property rights over a

small fraction of their capacity leads to a simplification of the capacity division and

diminishes investment disincentives of Internet service providers. The social planner

can reduce the harmful effects of transition to multiple service classes more easily using

this tool. Application of market mechanisms to manage congestion in networks, and

therefore improve quality of service, using different fixed rate pricing mechanisms, as

done by Odlyzko [30] is other option. In his paper, the author explains that most

of people are averse to varying prices. He gives examples where people are more

inclined to accept variations in quality than in price. The author also give examples

to illustrate different prima facie irrational behaviors by the economic agents, but

does not provide hard estimates. His goal is maximal simplicity for the user, rather

than maximizing any given quantifiable measure.

3.2 Highways

In an inter-urban trip, there are multiple ways to reach and exit the highway. However,

once in it, every car needs to go through the exact same road passing one by one every

exit and entrance, i.e. all users go through a single-path network. Within urban

context, it could also be seen for modeling expressways or arterial roads, which are

the primary roads in urban land that are responsible for channeling the metropolitan

long distance moves. Fulfilling the connection and distribution of vehicles in the
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urban environment, therefore being a must for most drivers in the area. In this

situation we could have an authority (governmental, municipal, regional organizations

or companies that operate public transport services or toll roads) that decide to

allocate capacity under some criteria and ask for different bids. However sometimes

it is really hard to enforce the actual compliance of these capacities given a priori,

for instance determining capacities on city street for a given type of vehicles, more

over when we are dealing with populations of driver. This fact usually precludes the

implementation of this type of measures. What is normally done is charging different

toll prices, and maybe consider congestion prices as done originally by Vickery [47,48].

3.3 Maritime transportation

Before we start commenting how our single-path network model can fit with maritime

transportation, in particular liner shipping, for the sake of clarity, we need to define

some basic concepts necessary to comprehend this industry. Agarwal and Ergun [1]

define sea cargo as the freight carried by ships, and it includes anything traveling

by sea other than mail, people, and personal baggage. A global sea carrier is a

private person, firm or organization that offers transportation services via the sea on

a worldwide basis. A shipper is a person or company that is either the supplier or

the owner of the cargo that is to be shipped.

With rates for sea cargo transportation at approximately one-tenth of air freight

rates, fewer accidents and less pollution, maritime transportation is regarded as a

cheap, safe, and clean transportation mode, compared with other modes of freight

transportation. It is no surprise therefore that according to the United Nations Con-

ference on Trade and Development [38] the international seaborne transportation

volume in 2014 was about 9,842 millions of tons, or in the vicinity of 80% of total

world merchandise traded.The breakdown for traded products is in Table 3.1. The

five major bulks refer to iron ore, coal, grain, bauxite/alumina and phosphate rock.

The increase in container cargo is important to point out, since the development

of the container is an example of unintended consequences, concept popularized by
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Year 1980 1985 1990 1995 2000 2005 2010 2014
Container 102 152 234 371 598 969 1,280 1,631
Other dry cargo 1,123 819 1,031 1,125 1,928 2,009 2,022 2,272
Five major bulks 608 900 988 1,105 1,295 1,709 2,335 3,112
Oil and gas 1,871 1,459 1,755 2,050 2,163 2,422 2,772 2,862
Total 3,704 3,330 4,008 4,651 5,984 7,109 8,409 9,877

Table 3.1: International seaborne trade (millions of tons loaded)

Source: UNCTAD Review of Maritime Transportation 2015

the famous sociologist Robert K. Merton in 1936 [24]. Containerization began as a

mean to cut costs of sending Malcom McLean's trucks between New York and North

Carolina, but ended integrating East Asia into the world economy, earlier dominated

by the North Atlantic, spearheading globalization and changing the whole landscape

of maritime transportation industry as explained by Levinson [21]. As information

flow was revolutionized by the computer, the container revolutionized the ocean trade,

by cutting costs and enhancing reliability. Container-based shipping vastly increased

the volume of international trade. Bernhofen et al. [4] gives us Figure 3-1 showing

the growth of world trade in real terms from $0.45 trillion in the early 1960s to $3.4

trillion in 1990, by about a factor of 7. Other factors influenced as well, e.g. trade

policy liberalization and other cost-reducing technological advancements.

Christiansen et al. [5] describe in detail the division of the global shipping industry

into three different modes of operation:

(i) Industrial shipping: The shipper owns the ship and looks for a minimization of

the freight cost for a given origin-destination pair.

(ii) Tramp shipping: A carrier accede to a contract with a shipper to carry bulk

cargo between specified ports within a specific time window. It is possible that

depending on availability of cargo and slack in capacity, the tramp shipping load

other cargo looking for profit maximization, but it is not its core business.

(iii) Liner shipping: A carrier decides on a fleet, a set of routes and a schedule of

trips, and operates offering its services to the shippers.
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Figure 3-1: The growth of world trade (deflated): 1948-1990

Source: Estimating the effects of the container revolution on world trade [4]

In this manner, one can make the analogy with ground transportation, associating

industrial shipping with a person driving his own car or a firm that manages its own

trucks to deliver the products.Tramp shipping with a taxi service or some current

application such as Uber or Cabify. Finally liner shipping with a bus service with

certain and known schedules and itinerary. It is in this latter type of shipping, we

mean liner shipping, that our model to allocate capacity between different users that

are interested in the same route takes on greater significance. This is the domain

where we think could get the utmost of this model. It is important to point out that

in this situation a vessel has to go through a specific route, stopping in different ports

in a determined order given by geography. This order cannot be change, but for small

differences. The vessel has a finite capacity to offer to different players. These players

can have different weights, willingness to pay, utility functions, et cetera.

To know more about this industry, please visit Agarwal and Ergun [2]. In this

paper, the authors describe the liner shipping business emphasizing three factors
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Figure 3-2: Route for Maesrk Triple E vessels from America to Asia

that drive carriers to collaborate with their competitors and make alliances: (i) liner
shipping is a capital-intensive industry; (ii) large containerships produce economies of
scale, however, they require a longer period for container accumulation, resulting in a
less frequent service; (iii) alliances help carriers to explore new markets and enhance
their service scope.
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Chapter 4

Concluding Remarks

4.1 Summary

In general terms, the main conclusion of this work is that the main objective defined

at the beginning of the work is fulfilled. We were capable of made a little extension

on the results already published by Johari and Tsitsiklis [13]. The authors had proved

existence and uniqueness for a single link network, and only existence for the general

network. Focusing in a particular class of networks, the one-path serial network, we

exploited its distinct characteristics and were able to prove the uniqueness of Nash

equilibrium, making a minuscule dent on the knowledge frontier. We gradually proved

the uniqueness of the Nash equilibrium for this particular class of networks, relaxing

assumptions one by one. Then we start with all links with equal capacity and at least

one arc in common for every user;s path and proved the uniqueness in Theorem 2.5,

more over we identified the NE profiles of bids and request in Theorem 2.8 as

Wi > 0

where we could see that make sense to bid only in the bottleneck and secure a piece of

capacity in that arc. Then we proved that this NE profile also solves an optimization

problem and is characterized by the variational inequality given in Theorem 2.11. On
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the other hand, for the sequential extension, we were also able to prove that for the

base case of a single arc and two players with linear utilities, we obtained an explicit

Subgame Perfect Equilibrium given by

(d'I d2) = a 1  a 

_ 1

2a2  2a2 )

and the price of anarchy of 8/7. A noteworthy feature of this result, is that it coincides

both in the threshold and the final allocation with the optimal mechanism for two

players defined by Sanghavi and Hajek in [36], which is a mechanism that do price-

discriminate.

4.2 Future work

There are several open question of interest to address yet. For starters, the main

result of our study was made for a one-path serial network, but an interesting line for

further research would be to have some kind of results for serial-parallel networks. The

expansion that would mean this slight difference would be uncanny. For the general

network it has not been proved the fact that there are multiple Nash equilibria,

this could be got by a counterexample exploiting the characteristic that in a general

network, the flow for different arcs is not necessarily the same, since the general

network does not have the characteristic of only one possible path.

A possible interpretation of the result obtained in section 2.5 is that the order

of precedence is in fact a discrimination, but could be interpreted and quantified

with an equivalent price-discrimination. Increasing the number of players, even for

three becomes the problem much more complicated and not possible to get explicit

solutions. Try to have numerical solutions, and then work with heuristics would a

solid choice of further work to characterize the SPE. Besides it is possible that for

more than two players, the SPE may be not longer unique.

An hypothesis that would be very interesting to study is wether the efficiency of

the mechanism is less when players less economical play first. Based on our result in
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Theorem 2.19, and as we can see in Figure 2-5, the worst efficiency loss case when

a, < a 2 is worse than the worst case when a2 < a1 . This means that for the two-player

case: when the more economical player, i.e. the one that has a higher utility for the

same rate allocation, in this case a bigger slope, plays first the aggregate utility is

higher than when he plays last. The extension to n players would be the next step.

Last but not least, the application of this results to real data and assess the

efficiency of real firm mechanism would be the culmination of this effort. There are

evidence of a strategic component on the pricing for capacity in liner shipping , as

well as freight transportation by rail, therefore it would be of tripartite interest for (i)

port authorities or operators, (ii) shippers or owners of the goods, and (iii) shipping

companies; to have an in-depth understanding of this mechanism and its dynamics.
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Appendix A

Preliminary Definitions

Formally, we can define the mathematical basis of Game Theory as done by Laraki,

Renault and Sorin in [19]

Definition A.1. A game in normal form G is defined by a triplet (I, S, u) where

(a) A set of players I with cardinality n E N.

(b) A set of strategies S := RE- Si, where each S' is the non-empty set of strategies,

or actions, for player i E I.

(c) A mapping u : S -* Rn, where ui(s) is the utility, or payoff, for player i E I

given that the profile s = (si)i ee S is played.

The interaction is the following. Simultaneously, or at least at the moment when

a player chooses his action, this player is not aware of the possible choices already

made by the rest, each player i E I chooses si E S'. Then this player receives the

payoff ut(s). With a little abuse of notation, we denote also s = (si, s-i) E S, where

s-i E S-' := 1jj Si is the vector of strategies si of all players but i. Finally each

player wants to maximize his own utility. The framework of game G is common

knowledge among players.

Definition A.2. The set of all probability distributions over a finite set T is defined

A(T) = X E = 1}
tET
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Definition A.3. The set-valued function, or correspondance, Best Response of player

i E E, BR' : S- -4 S' is

BRz(s -) = {s' E S2 u(s2 , s ) ut (t, s8) Vt' E S'}

We also denote the Best Response global of the game G as BR : S -- S, where

BR : s E S i-÷ BR(s) = HEz BR'(s-) C S. We define as well the concept of

Nash Equilibrium, developed in the beginning of the 1950s by mathematician John

Nash [25,26] where no single player has an incentive to unilaterally deviate from his

chosen strategy considering the choices of the rest of players and given that they do

not deviate. Formally we define

Definition A.4. The profile s E S is a Nash Equilibrium of game G if and only if

Vi E I, Vti E Si ut (s2 , s ) > u2(t', s )

The concept of Nash Equilibrium help us to have an idea of a 'solution for game G.

A solution is a systematic description of the outcomes that may emerge in a family

of games [31]. Since it is defined on the players' selfish actions in a non-cooperative

framework, it entails the question about the extent to which selfish behavior affects

system efficiency. The Price of Anarchy, originally defined by Papadimitriou [32] and

applied to Internet bandwidth allocation, but inspired in the work previously done

with Koutsoupias [18] addresses this question as

Definition A.5. The Price of Anarchy, usually shortened PoA, defined for a welfare

function W: S -+ R is

PoA maxsES W(s)
minsIE W(s)

where := {s E S : s E BR(s)} C S is the set of profiles that are Nash equilibria.

Other important concept is the mechanism, which in the context of this work, refers

to assign one or more goods between interested players , who have different valua-

tions of these assets. So far, the rules of the game were taken as given, the players
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had complete information about the payoffs of others and the goal was predict the

outcome of a game. Now, we deal with the inverse problem. As explained in [49],

the distinguishing feature of mechanism design is that the game structure is designed

by a game designer, called a principal who wants to choose a set of rules for his own

goal or interest. Having incomplete information about the players, who are called the

agents, and asking them to reveal their preferences. The information about the payoff

of the players are not common knowledge, and the principal ask the agents to reveal

their preferences thorough the agents' bids, or messages, and want that truth-telling

is an equilibrium strategy.

Definition A.6. A mechanism defines a message space W' for each agent i E I

and an allocation function (d, t) : W -+ D x R'. For a given vector of messages

w C W:= HI Wi, d(w) is the decision while t :=(t%)iE- contains the transfer t(w)

of each agent i E I

Definition A.7. A sequential game is defined by n players with action sets {A'} 1 ,

utility functions ui : A:= fl[ A' -> R for each player i and an ordering of the players,

say player 1, 2,. .. , n. In each round i, player i observes the actions chosen by players

1, 2, ... , i - 1 and chooses an action a' E A'. Therefore, the strategy of player i is a

mapping s' : {~.,4 Ai - A'.

Definition A.8. A strategy profile s* is a subgame perfect equilibrium (SPE) of the

game if it is a Nash equilibrium of every subgame of it.

Definition A.9. Given a welfare function W : A -+ R+, . If SPE C A are the action

profiles that can happen in a subgame perfect equilibrium and W* = maxaEA W(a),

then we define:

SPoA = max
eESPE W(e)
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