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Abstract

Years of heavy regulation and a long-standing focus on compliance have co-opted
the ability of the healthcare industry to implement novel data sharing approaches.
We now face a critical need for such innovation, as personalization and data science
prompt patients to engage in the details of their healthcare and restore agency over
their medical data. This thesis proposes MedRec: a novel, decentralized record man-
agement system to handle EHRs (Electronic Health Records), using blockchain tech-
nology. The system design gives patients a comprehensive, immutable log and access
to their medical information across providers and treatment sites. Leveraging unique
blockchain properties, MedRec manages authentication, data retrieval, update track-
ing for existing records, data entry (both for patients and providers) and data shar-
ing. MedRec accomplishes record management without creating any centralized data
repositories; a modular system design integrates with providers' existing, local data
storage solutions, facilitating interoperable data exchange between data sources and
the patients. We incentivize healthcare industry stakeholders (government-funded re-
searchers, public health authorities, etc.) to participate in the network as blockchain
"miners". This provides them with access to aggregate, anonymized data as min-
ing rewards, in return for sustaining and securing the MedRec network via Proof of
Work. We emphasize the flexibility and extensibility of our system components to
other dimensions of the healthcare industry and to applications beyond healthcare as
well. This thesis describes the MedRec technical design and early-stage prototype,
our pilot with Beth Israel Deaconess Medical Center (BIDMC), and an analysis of
MedRec's contribution in the context of national healthcare priorities. This work is
supported by the MIT Media Lab Consortium.

Thesis Supervisor: Andrew Lippman
Title: Associate Director and Senior Research Scientist, MIT Media Lab

3



MedRec: Blockchain for Medical Data Access, Permission

Management and Trend Analysis

by

Ariel C. Ekblaw

The following people served as readers for this thesis:

Thesis Reader ........ .

exander

... .. ..................... .................

Joseph Paradiso

W. Dreyfoos (1954) Professor of Media Arts and Science

MIT Media lab

Thesis Reader ........... ............ . . ...........

John D. Halamka, MD

Chief Information Office r

Beth Israel Deaconess Medical Center

4



MedRec: Blockchain for Medical Data Access, Permission

Management and Trend Analysis

by

Ariel C. Ekblaw

The following people served as readers for this thesis:

Thesis Reader..

Thesis Reader ....

ignature redacted

exander W. Dreyfoos

Joseph Paradiso

(1954) Professor of Media Arts and Science

Signature redacted
MIT Media lab

John D. Halamka, MD

Chief Information Officer

Beth Israel Deaconess Medical Center

4



Acknowledgments

The Media Lab offers students a distinct take on pedagogy-we are here to learn, not
to "be educated". We are reminded that "learning is something you do for yourself;
education is something done to you". I am grateful for this unique and engaging
environment, a place of projects, peers, passion and play. Thank you, to the Lab and
to the Hive, for inspiring my pursuit of learning in this Master's program.

When reflecting on the path to this thesis, I first and foremost thank my research
partner in this endeavor, Asaph Azaria. It was truly a privilege to work with you
through the early days of MedRec, and I have learned so much from your approach
to code and system architecture design.

Thank you to my advisor, Andrew Lippman, for the incredible opportunity to
join the Media Lab and to be part of the Viral Communications family. I will long
be grateful for the many insights, advice and new perspectives you share with us all.
Thank you to viral-grads, a troupe of the best partners in crime, co-conspirators, and
friends a gal could hope for. Thank you to MAS, the ever-supportive Linda, Monica
and Keira, who serve as such kind and thoughtful advocates throughout the academic
program. We are all lucky to have you. Thank you to the man behind it all, Joi Ito,
who keeps the Lab's mind, magic and mischief dials at full throttle! Thank you to
the legions of dedicated staff in the Director's Office, NeCSys and Facilities who do
so much to support our research work.

Thank you to my thesis readers, Joe Paradiso and John Halamka, MD, for your
support and thoughtful feedback throughout the thesis project. To Joe, thank you
for supporting the cross-lab collaboration for this project, and for encouraging me to
explore creative applications of sensors and blockchains. To John, thank you for the
pivotal opportunity to test our system with Beth Israel Deaconess Medical Center and
for the many notes of encouragement and support as we sought to situate MedRec
in a national healthcare context. To Dr. Larry Markson and the BIDMC Clinical
Information Systems team, thank you for the incredible on-site support and design
discussions that made the Beth Israel - MedRec pilot a success. It has been an honor
working with you.

Thank you to the MIT Digital Currency initiative, and to Chelsea Barabas in par-
ticular, for the class out of which this project was born. I am indebted to Blockchain
Technologies MAS.s65, both for the opportunity to build our first prototype, and for
the foundational knowledge that made this thesis possible. Thank you to Thiago
Vieira for your creative contributions to the MedRec smart contracts-it was a plea-
sure working with you as a project partner. Thank you to Brian Forde for encouraging
us to believe in the product. MedRec's visibility beyond the lab is in large part due to
your thoughtful introductions connecting our team to the healthcare industry. Thank
you to Neha Narula for enlightening discussions about the philosophy of blockchains
and distributed systems, and for encouraging me to embrace MedRec as my master's
thesis.

And finally, last but certainly not least, thank you to my dear family and friends,
at times across the country and across the globe. I so deeply appreciate your kindness,

5



friendship and knowledge. To Mom, Fritz and Ian, thank you for building and being
part of a family that is ever eager to learn and improve the world-to infinity and
beyond!

6



Contents

1 Introduction 15

1.1 Problem Definition: Electronic Health Records (EHR) Access and Us-

ability Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Thesis M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 MedRec's Development Plan . . . . . . . . . . . . . . . . . . . . . . . 20

2 Background 23

2.1 Blockchain Background . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 B itcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The Evolving EHR Landscape . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Combining Healthcare and Blockchains . . . . . . . . . . . . . . . . . 29

3 MedRec System Design and Implementation 31

3.1 MedRec Design Overview . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 MedRec System Architecture: Design Concept . . . . . . . . . . . . . 34

3.2.1 Smart Contract Structures . . . . . . . . . . . . . . . . . . . . 34

3.2.2 System Node Description . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Primary System Components . . . . . . . . . . . . . . . . . . 37

3.2.4 MedRec Blockchain Mining . . . . . . . . . . . . . . . . . . . 40

3.3 MedRec Prototype Code Review . . . . . . . . . . . . . . . . . . . . . 42

7



3.3.1 MedRec Adaptation of Core Ethereum Functionality . . . . . 42

3.3.2 MedRec Blockchain Interface Code . . . . . . . . . . . . . . . 46

3.3.3 MedRec APIs and Database Gatekeeper . . . . . . . . . . . . 48

3.3.4 MedRec WebApp . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.5 Prototype Code Review: In Summary . . . . . . . . . . . . . . 55

4 Evaluation 59

4.1 Pilot with Beth Israel Deaconess Medical Center . . . . . . . . . . . 59

4.1.1 Defining the Pilot Scope . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 BIDMC Approval Process . . . . . . . . . . . . . . . . . . . . 62

4.1.3 Preparing the Codebase and Test Dataset . . . . . . . . . . . 63

4.1.4 Onsite Integration Process and Results . . . . . . . . . . . . . 64

4.1.5 BIDMC Integration Learnings . . . . . . . . . . . . . . . . . . 66

4.2 Comments on Security . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Comments on Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Comments on Interoperability . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Comments on Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Beyond the Lab 75

5.1 MedRec in the Context of National Healthcare Priorities . . . . . . . 75

6 Future Work 79

6.1 Taking MedRec Forward . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Extensibility Beyond Healthcare . . . . . . . . . . . . . . . . . . . . . 81

7 Conclusion 83

7.1 Thesis Contributions . . .. . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Reflections and Impact . .. . . . . . . . . . . . . . . . . . . . . . . . 83

8



A Publications, Presentations, Patent and Awards 85

A .1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A .2 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A .3 Patent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A .4 Aw ard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B Beth Israel Deaconess Integration Documents 87

9



10



List of Figures

2-1 Images A and B, from the original Bitcoin whitepaper, display the

"blockchain" concept of linked data, where each subsequent block in-

cludes the hash of the former. Image A shows an excerpt of such

a linked chain, while image B describes the data contained within a

block . [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-1 Data flow schematic for the MedRec system, showing integration be-

tween input data, blockchain directory and data retrieval. . . . . . . . 33

3-2 An example MedRec network, where the MedRec database keeper is

installed at multiple nodes, all coordinating permission and access in-

formation via the blockchain log. . . . . . . . . . . . . . . . . . . . . 33

3-3 MedRec smart contracts on the left of the figure, showing data content

for each contract type. Sample relationship graph between contracts

and network nodes on the right. . . . . . . . . . . . . . . . . . . . . 36

3-4 System orchestration example: provider adds a record for new patient. 38

3-5 Code excerpt showing genesis block initialization for Ethereum testnet

[2 ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3

11



3-6 The Miner view includes metadata about the current state of the

blockchain, including a rolling network timestamp, the latest "block

number" (a chronological counting of blocks since block 1), whether

there are any pending transactions and how long in micro-seconds it

took to mine the block. For example: 10920 09: 49:02.219427

18644 worker.go:557] commit new work on block 7599

with Otxs & 0 uncles. Took 500.393 us .... ......... 44

3-7 The Patient/Provider views show two different scenarios while both

clients are crawling the blockchain: the Patient's client has found an

update on the blockchain, and the node confirms the associated Patient

Provider Relationship contract address where this update (perhaps a

new medical record) can be found. For example: MEDREC: Found

the following updates: Contract #, provider #, host

name medrecords-2.media.mit.edu, status: Info Update

Available.......... ................................ 45

3-8 The Provider's client has yet to find an update (no change in viewership

authorizations, no patient-submitted symptom reports on the horizon)

and will continue crawling the chain until there is an update. For

example: MEDREC: crawling the chain . . . . . . . . . . . . . 45

3-9 This view is taken from a demo prepared for the MAS.s65 Blockchain

technologies class in December of 2015, showing a listing of bloodwork

records. ........ .................................. 53

3-10 This view is taken from a demo prepared for the MAS.s65 Blockchain

technologies class in December of 2015, showing the original homepage. 54

3-11 A snapshot of the MedRec Version 2.0 user interface from July 2016,

with improved visual design. . . . . . . . . . . . . . . . . . . . . . . . 54

12



3-12 Code flow diagram showing all major MedRec scripts and the relation-

ships between them. Arrows point from the script making the "call" to

the script housing the function that is "called", i.e. PatientProvider-

Realtionship.py calls BlockchainHelpers.py, and PatientProviderRela-

tionship.py is in turned called by the WebApp. . . . . . . . . . . . . . 57

4-1 These photos show myself (right) and Asaph Azaria (left) on-site at

BIDMC for the two day integration test in August 2016. . . . . . . . 68

6-1 This quadrant chart attempts to place existing blockchain projects,

like Bitcoin, Ethereum, HyperLedger, etc. into a taxonomy of Value

vs Data, Open vs Closed. Credit to Neha Narula for the original axes

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1

13



14

I



Chapter 1

Introduction

In a world with abundant access to the data that underpins our daily lives, from

instant feedback on local weather to mobile banking, why do we still struggle with

the inaccessibility and obscurity of our medical data? Perhaps the most promising

dataset in its potential to teach us something about our lives, our medical data re-

mains trapped in the many silos that mark our march through "healthcare". While

advances in data science and the growing trend of "personalization" (from online ads

to fingerprint-actuated devices) prompt patients to engage in and track the details of

their healthcare, we lack the very infrastructure to supply this service across providers

and treatment sites. It is time to responsibly, and thoughtfully, upgrade the foun-

dational technologies that currently inhibit medical record accessibility; it is time to

explore new technologies that might free us from some of this friction, while still

preserving the critical layers of security and privacy around this domain of sensitive

data. This thesis, while exploring a novel application of blockchain technology for

data management in the medical context, is ultimately a story of how we can return

data ownership to the data producers; of how we can restore personal agency over

personal data to the tenants of the Information Age.

The story begins with an exploration of decentralization over centralization. Con-
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sidering the growing societal backlash against corporate and government concentra-

tions of personal data (often exploited by hackers and cyberattacks), we explore

whether there might be a viable, decentralized alternative. Keeping track of data

means keeping a ledger, not necessarily keeping all the data in one place. Can new

architectures borrowed from cryptocurrency and years of distributed systems research

be used to effectively manage access and permission rules across a network of disparate

data sources? The MedRec system described in this thesis tests an application of dis-

tributed ledger technology, namely a blockchain architecture, against that goal. Our

aim is to give users control over the flow of their sensitive information-from baked

in rights to access their own data across multiple data stewards or "providers", to

rights for data retrieval and local download, to facilitating data sharing and ulti-

mately enabling trend analysis on their holistic medical dataset. To be able to do

this with a decentralized, rather than centralized architecture, is the key. We strive

to enable this functionality for patients without requiring that patients place trust in

a large, centrally managed repository. This desire for a trustless, open (in that it is

interoperable) and immutable architecture led us to the "blockchain" as a prototype

foundation. From here, we consider the ways in which the MedRec blockchain ar-

chitecture can address the challenges of institutional and personal data management

and which other challenges it opens anew.

1.1 Problem Definition: Electronic Health Records

(EHR) Access and Usability Challenges

EHRs were never designed to manage multi-institutional, lifetime medical records.

Patients leave data scattered across various organizations as life events take them

away from one provider to another. In doing so they lose easy access to past data, as

the provider, not the patient, generally retains primary stewardship (either through
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explicit legal means in over 21 states, or through default arrangements in the process

of providing care) [4]. Through the HIPAA Privacy Rule, providers can take up to

60 days to respond (not necessarily to comply) to a request for updating or removing

a record that was erroneously added [5]. Beyond the time delay, record maintenance

can prove quite challenging to initiate as patients are rarely encouraged and seldom

enabled to review their full record [4] [5]. Patients thus interact with records in a

fractured manner that reflects the nature of how these records are managed.

Interoperability challenges between different provider and hospital systems pose

additional barriers to effective data sharing. This lack of coordinated data manage-

ment and exchange means health records are fragmented, rather than cohesive [6].

Patients and providers may face significant hurdles in initiating data retrieval and

sharing due to economic incentives that encourage "health information blocking." A

recent report from the Office of the National Coordinator for Health Information

Technology (ONC) details several examples on this topic, namely health IT develop-

ers interfering with the flow of data by charging exorbitant prices for data exchange

interfaces [7].

When designing new systems to overcome these barriers, we must prioritize patient

agency. Patients benefit from a holistic, transparent picture of their medical history

[6]. This proves crucial in establishing trust and continued participation in the medical

system, as patients that doubt the confidentiality of their records may abstain from

full, honest disclosures or even avoid treatment. In the age of online banking and

social media, patients are increasingly willing, able and desirous of managing their

data on the web and on the go [6]. However, proposed systems must also recognize

that not all provider records can or should be made available to patients (i.e. provider

psychotherapy notes, or physician intellectual property), and should remain flexible

regarding such record-onboarding exceptions [81 [9].

Medical records also prove critical for research. The ONC's report emphasizes that
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biomedical and public health researchers "require the ability to analyze information

from many sources in order to identify public health risks, develop new treatments and

cures, and enable precision medicine" [7]. Though data trickles through to researchers

from clinical studies, surveys and teaching hospitals, we note a growing interest among

patients, care providers and regulatory bodies to responsibly share more data, and

thus enable better care for others [7] [10].1

1.2 Thesis Motivation

At the beginning of the MedRec project, we settled on three key motivations for our

work. Our first priority was unifying patient access to health data across providers

and treatment sites. This is the primary functionality that the MedRec prototype

was built to offer, with a vision that providing patients clear and easy access to their

data is the first step in improving their ability to make smart decisions about their

care. As examined in the prior section, the current state of medical data access is

quite antiquated. Records, when actively requested by the patient, are often delivered

weeks later, in a format that does not easily transfer into other hospital systems (e.g.

hard copy print outs, scanned files, et cetera), and can be charged for due to the

costs of the record processing and physical media used in the transfer. We want to

change this default: rather than having to actively request a data release and being

at the whim of an incompatible transfer format, patient data should automatically

be cataloged and available for syncing through a single, unified portal. We make no

claims to who should own this portal-MedRec need not be the WebApp provider

going forward. Our goal was to build a prototype, proof-of-concept infrastructure

to enable holistic review of patient data, across time and across providers, without

building a database that centralized this data and risked creating a target for content

'This section and several subsequent sections of this thesis are drawn from our previously pub-
lished technical papers, in particular, the ONC Whitepaper submission [11]. Notations will be made
throughout the thesis when other sections of this work are included in the thesis text.
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attack.

The second motivation was to facilitate patient-initiated data sharing. Building on

the notion of a "share button" for healthcare data and Steven Keating's inspiring story

112] of opening his brain tumor dataset, we hoped to enable a streamlined process

by which patients could authorize a 3rd party to view their information. Perhaps a

patient wants to seamlessly share data with a specialist to obtain a second opinion

on their condition, or a grandmother wants to share her full medical data record with

her children to establish a family health history. We hope that MedRec has provoked

interest in and provided an early example of how these and other permissioning

schemes might be accomplished through pointer-based accounting in a distributed

ledger.

The third motivation was to empower researchers with anonymized, aggregated

"big data" from an interoperable network of health records. To do this, we theo-

rized an incentive system for healthcare industry stakeholders (government-funded

researchers, public health authorities, etc.), where they would participate in the net-

work as blockchain "miners". The research premise is to provide them with access to

data as mining rewards, in return for their contribution of computational power to

sustain and secure the MedRec network via Proof of Work. We believe this could

enable census-level insights where institutions like the Centers for Disease Control

and Prevention (CDC) might track flu trends across the MedRec network, or identify

narcotics abuse. Pharmaceutical companies and large medical research institutions

might rely on the MedRec network for longitudinal studies or clinical trial research.

Critically, in all these cases, the research would be enabled via the MedRec distributed

network rather than requiring a centralization of records.

A fundamental design guideline throughout our work was a focus on simplicity

and modularity. We did not want to build a brand new EHR system, nor design

an unnecessarily feature-rich user interface. Our recurring principle was to make
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the MedRec architecture work with existing systems-to work with a wide range

of string-queried databases that are already in use in hospitals and treatment sites

across the U.S.; to work with physicians who didn't want to enter data through yet

another interface; to work with existing data exchange protocols. We believe we

have achieved this simplicity with our database gatekeeper module that sits on top of

existing databases and provides for data retrieval post-approval from the blockchain

authentication log. Notably, the MedRec system is not a "security" solution, in that it

does not contribute to end-point security (for either the data sources or the end-user

device)', nor does it address the "DRM" problem [13] of unauthorized data copying. We

discuss the security, privacy and interoperability implications of the MedRec system

in more detail in the Evaluation. Fundamentally, the MedRec project is a backend

system design and early prototype that hopes to provoke a new model for healthcare

data management, via an access rights and permission verification log.

1.3 MedRec's Development Plan

This thesis evolved from a class project in "Blockchain Technologies" MAS.s65, a

Fall 2015 class at the MIT Media Lab. The initial MedRec prototype grew out of

a collaboration with fellow classmates Asaph Azaria (MIT Media Lab) and Thiago

Vieira (MIT CSAIL), and was subsequently presented at the IEEE 2nd International

Conference on Open and Big Data, listed on PubPub,2 and featured in the ONC's

August 2016 Blockchain in Healthcare whitepaper competition. With Dr. John

Halamka, CIO of Beth Israel Deaconess Medical Center and his Clinical Infrastructure

team, we completed a two day, on-site test with BIDMC in August 2016. This thesis

centers on the MedRec system design and prototype code. As documented in our

written materials and reflected in the MedRec Github repository, we have designed a

2PubPub is a "free and open tool for collaborative editing, instant publishing, continuous review,
and grassroots journals", developed at the MIT Media Lab in the Viral Communications group.
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novel system for decentralized record management and data sharing, using blockchain

technology. This system is extensible beyond the medical record context, and the

thesis will briefly address broader applications of our code in addition to our primary

use case in healthcare.
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Chapter 2

Background

2.1 Blockchain Background

2.1.1 Bitcoin

To understand the origin of and proliferation of blockchain technology, including the

foundation of MedRec, we must turn to the original instantiation: Bitcoin. In 2008,

Satoshi Nakamoto (a figure whose identity remains a public mystery at the time of

writing) released what has become known as the Bitcoin whitepaper [1]. The system

described therein creates a cryptocurrency, dubbed "bitcoin", and an immutable ledger

"blockchain" (a term coined later, outside of the paper) that draws together many

ideas from years of distributed systems, cryptography and digital payments research

(Proof of Work [141 , Adam Back's HashCash [15] , Merkle roots [161 , et cetera). See

Figure 2-1 for a visual representation of the Bitcoin blockchain structure.

The bitcoin currency has experienced significant volatility in the years since its ini-

tial release [17]. Without government backing or a coordinated monetary policy, the

currency at times lacks stability. What it lacks in stability, it gains in independence

and flexibility-its proponents often value the libertarian principles of unregulated

money that can be spent across borders, without government interference and free
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Figure 2-1: Images A and B, from the original Bitcoin whitepaper, display the
"blockchain" concept of linked data, where each subsequent block includes the hash of
the former. Image A shows an excerpt of such a linked chain, while image B describes
the data contained within a block. [11

from exorbitant banking fees. In the nine years since its release, Bitcoin has estab-

lished a commanding presence in the digital payments space and now includes an

extensive open-source code repository with volunteers working as the "core develop-

ers".

The blockchain uses public key cryptographic techniques to create an append-only,

immutable, timestamped chain of content. Copies of the blockchain are distributed

on each participating node in the network. The Proof of Work algorithm used to

secure the content from tampering depends on a "trustless" model, where individual

nodes must compete to solve computationally-intensive "puzzles" (hashing exercises)

before the next block of content can be appended to the chain. These worker nodes

are known as "miners," and the work required of miners to append blocks ensures

that it is difficult to rewrite history on the blockchain. This "immutability" holds,

provided that miners do not collude and attempt to direct collective hash rate (or

mining power) at modifying a block, generally known as a "51% attack" [18].

Originally designed for keeping a financial ledger, the blockchain paradigm can be

extended to provide a generalized framework for implementing decentralized compute

resources [19]. Each compute resource can be thought of as a singleton state-machine

that can transition between states via cryptographically-secured transactions. When
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generating a new state-machine, the nodes encode logic which defines valid state tran-

sitions and upload it onto the blockchain. From there on, the blocks journal a series of

valid transactions that, when incrementally executed with the state from the previous

block, morph the state-machine into its current state. The Proof of Work consensus

algorithm and its underlying peer-to-peer protocol secure the state-machines' state

and transitioning logic from tampering, and also share this information with all nodes

participating in the system. Nodes can therefore query the state-machines at any time

and obtain a result which is accepted by the entire network with high certainty. 1

This transaction-based state-machine generalization of the blockchain is infor-

mally referred to as smart contracts. Ethereum, discussed in more detail below, is

the first to attempt a full implementation of this idea. It builds into the blockchain a

Turing-complete instruction set to allow smart-contract programming and a storage

capability to accommodate on-chain state. We regard the flexibility of its program-

ming language as an important property in the context of EHR management. This

property can enable advanced functionality (multi-party arbitration, bidding, reputa-

tion, etc.) to be coded into our proposed system, adapting to comply with differences

in regulation and changes in stakeholders needs.

We utilize Ethereum's smart contracts to create intelligent representations of ex-

isting medical records that are stored within individual nodes on the network. We

construct the contracts to contain metadata about the record ownership, permissions

and data integrity. The blockchain transactions in our design carry cryptographi-

cally signed instructions to manage these properties. The contract's state-transition

functions carry out policies, enforcing data alteration only by legitimate transactions.

Such policies can be designed to implement any set of rules which govern a particular

medical record, as long as it can be represented computationally. For example, a pol-

icy may enforce that separate transactions representing consent are sent from both

'This paragraph and the following content of this section are drawn from our previously published
techincal publications [11], as explained in footnote 1.
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patients and care providers, before granting viewing permissions to a third party.

2.1.2 Ethereum

Ethereum, a system first described by founder Vitalik Buterin in 2013, has been sum-

marized as a "collection of non-localized singleton programmable data structures"

[201. This approach for encoding data on a blockchain includes two primary inter-

action modes: personal accounts orchestrated via public/private key pairs where the

monetary token of the system (Ether) can be "held", sent and received; and "smart

contracts" in a Turing complete language 2 that encode any number of real-world ar-

rangements and require Ether to fund the activity of the smart contract. Ethereum

smart contracts are "stateful", allowing updates to the status of contracts even as they

are logged on a blockchain.

Unlike in Bitcoin, where the financial token is the centerpiece of the system (both

in terms of accounting for its exchange between parties, and as the sole reward for

computationally sustaining the network via mining), the Ether token has been de-

scribed as "crypto-fuel" to run logic processes [21]. For quite some time, users were

not encouraged to hold Ether as a financial investment, but rather as a tool for run-

ning Ethereum smart contracts. The Ether token, in this role, still has economic

value as the means of executing code, and the ETH and ETC tokens 3 are traded on

some exchanges.

Ethereum consists of a distributed system of "nodes" or processing units (personal

computers, virtual machines, etc) that run one of their supported language imple-

2The significance of Ethereum using a Turing Complete language set for the scripting of smart
contracts: a Turing-Complete programming language both enhances the flexibility of the system
(compared with the very limited stack-based language of Bitcoin), but therefore also introduces a
complexity for bounding the behavior of certain contracts. This has led to security vulnerabilities
in prominent smart contracts on the live Ethereum network.

3The summer 2016 infamous DAO fork led to two competing versions of chain history, and thus
two different Ethereum currencies. Ethereum "Classic" or ETC recognizes the attack on the DAO
that effectively "stole" investors' money and maintains the original chain, and Ethereum or ETH
revised history to a state where the funds had not been hacked.
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mentations. Ethereum offers a command line interface and a series of clients through

which you can manage your node, and several supported languages for writing smart

contracts.4 As an open-source project, the level of support differs for various lan-

guages, and most nodes default to the now-standard Go implementation and Geth

client [22]. Ethereum includes a protocol for mining Ether (to computationally se-

cure and sustain the network) based on Proof of Work. Their particular variant,

ETHash, is memory-hard and stated by the Ethereum team to be more resistant to

ASICs.5 The Ethereum team has extensively researched a switch to Proof of Stake,6

an alternative mining approach, though the main codebase still uses Proof of Work.

The MedRec system is architected on an Ethereum blockchain foundation. In

November 2015, we forked the Ethereum Frontier release [23] (originally made pub-

lic in June of that year) and modified aspects of their codebase to fit our use case

scenarios. The primary components of our Ethereum test network and the modules

we forked are detailed below. In our case, by forking the codebase and taking the

development private again, we were not building on the live Ethereum network nor

working as an application "on top of' Ethereum. MedRec is, in essence, a privatized,

small-scale ethereum blockchain with extensive APIs built on top to facilitate the

healthcare application. This gave us the flexibility to explore and modify blockchain

parameters such as the wait time before accepting blocks, the "difficulty" of the Proof

of Work algorithm, and more. Over the course of our code modifications, we discov-

ered certain limitations in the original implementation of pyethapp (a python-based

Ethereum client) and contributed patches back to the Ethereum open-source project.

Since our fork of the Ethereum Frontier repository, the Ethereum network has seen

several major "hard forks" or significant, backwards-compatibility-breaking changes,

4Solidity is the most popular, and now primarily supported Smart Contract scripting language.
Other supported languages include Serpent.

5"Application Specific Integrated Chips" used in this context to refer to hardware developed
expressly for the purpose of solving hash functions used in Bitcoin and other cryptocurrencies.

'For more on Ethereum's Proof of Stake philosophy: https://github.com/ethereum/wiki/wiki/Proof-
of-Stake-FAQ .
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reflecting the rapidly evolving nature of blockchain architectures. This impacts our

strategy in taking MedRec forward, as we would need to consider a migration to the

latest Ethereum release or re-architecting on a different blockchain. I discuss these

choices in greater detail in the Evaluation section.

2.2 The Evolving EHR Landscape

The other main piece of the MedRec puzzle, beyond blockchain technology, is in-

tegration with existing EHR systems. In the last several years, EPIC has gained

significant market share and has become the center of debate around closed medical

record systems, where the "vendor" rather than the hospital or treatment community

retains certain control over the transfer and accessibility of data. Other leading EHR

providers include Cerner and McKesson. Interestingly, while many hospital networks

and providers accepted this intermediary role that EPIC and others provide, Beth

Israel Deaconess Medical Center maintained the independence of their self-built clin-

ical information systems, based on the InterSystems cache database [24]. BIDMC

was also one of the first hospital networks to offer electronic "personal health records"

to their patients, as early as 2000 [251. Interestingly, the InterSystems database also

underpins EPIC's many products [26], making their implementation an important

consideration for interoperability in any future development on MedRec. That is to

say, MedRec and future blockchain-based systems for healthcare would benefit from

preparing for integration with cache, at least until data transfer is standardized over

industry-approved APIs.

In approaching the problem of medical record fragmentation, we note a long his-

tory of related efforts, from data standards work in the 1990s on the Clinical Doc-

ument Architecture [27] (as digitization of records was becoming more common) to

recent tech industry efforts to unify access to data, such as Google Health (which
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ceased operations in 2011) [281. As "medical devices" proliferate in new packages,

such as smartphones and wearables, we also note the rising trend in corporate man-

aged healthcare datasets, notably Apple Health Kit [29] and Fitbit [30]. Though

our MedRec prototype has only been tested with traditional record architectures (i.e.

doctor-generated, stored in a hospital database), we envision a future for MedRec and

EHR systems more generally, that allows inclusion of data from these non-traditional

(in the healthcare context) devices. We are cognizant of the complex regulatory en-

vironment that governs medical data applications, from HIPAA to the HITECH Act,

and the extensive prior policy work emphasizing interoperability [311.

2.3 Combining Healthcare and Blockchains

For a discussion of prior and related work in blockchain applications for record man-

agement, we begin by acknowledging the work of Zyskind et al. to assemble references

to data and encode these as hashed pointers onto a blockchain ledger [321. Kish pro-

posed the blockchain for hypothetical key management in a medical context [101. As

interest in "blockchain in healthcare" has grown, we note extensive interest among the

MedTech industry, pharmaceutical companies, consulting firms and others in design-

ing and deploying blockchain applications [331. To the best of our knowledge, we are

the first to introduce a testbed prototype with our pointer architecture, blockchain

smart contracts and database gatekeeper, the first to propose and implement a model

for medical researchers as blockchain miners, and the first to propose that such a

blockchain prototype be designed as an open API architecture for an interoperable

health IT stack. Through our many meetings with the healthcare and tech industry

over the past nine months we have examined why certain efforts have failed (e.g.

Google Health [28], healthcare data exchange standards discarded over the years

by the HL7 community, et cetera) and which others are on the rise (e.g. personal
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healthcare aggregators [34]) in improving the usability and trend analysis potential

of health data. We believe the blockchain architecture of distributed data offers a

fundamentally new and promising approach to the problem, avoiding the pitfalls of

centralized data repositories, the creation of unnecessary intermediaries and forced

data migrations.
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Chapter 3

MedRec System Design and

Implementation

3.1 MedRec Design Overview

Our MedRec blockchain implementation addresses four major issues highlighted in the

introduction: fragmented, slow access to medical data; lack of system interoperability;

lack of patient agency over healthcare data; the need for improved data quality and

quantity for medical research. We build on the work of Zyskind et al. [32] to assemble

references to data and encode these as hashed pointers onto a blockchain ledger. We

then propose to organize these references to explicitly create an accessible bread

crumb trail for medical history, without storing raw medical data on the blockchain.

Our system design supplements these pointers with on-chain permissioning and data

integrity logic, empowering individuals with record authenticity, auditability and data

sharing. We design modular APIs to integrate with existing provider databases for

interoperability. A novel data-mining scheme is proposed to sustain the MedRec

network and bring open, big data to medical researchers. We present MedRec not

as the panacea for medical record management, but as a foray into this space to
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demonstrate innovative EHR solutions with blockchain technology.

For MedRec, the block content represents data ownership and viewership permis-

sions shared by members of a private, peer-to-peer network. Blockchain technology

supports the use of "smart contracts," which allow us to automate and track certain

state transitions (such as a change in viewership rights, or the birth of a new record in

the system). Via smart contracts on an Ethereum blockchain, we log patient-provider

relationships that associate a medical record with viewing permissions and data re-

trieval instructions (essentially data pointers) for execution on external databases.

We design the system to include on the blockchain a cryptographic hash of the record

to ensure against tampering, thus tracking data integrity. Providers can add a new

record associated with a particular patient, and patients can authorize sharing of

records between providers. In both cases, the party receiving new information re-

ceives an automated notification and can verify the proposed record before accepting

or rejecting the data. This keeps participants informed and engaged in the evolution

of their records.

MedRec prioritizes usability by also offering a designated contract which aggre-

gates references to all of a user's patient-provider relationships, thus providing a

single point of reference to check for any updates to medical history. We design an

identity confirmation system via public key cryptography and propose a DNS-like

implementation that maps an already existing and widely accepted form of ID (e.g.

name, or social security number) to the person's Ethereum address. A syncing algo-

rithm handles data exchange "off-chain" between a patient database and a provider

database, after referencing the blockchain to confirm permissions via our database

authentication server.1

In the following sections we present the design goals of our distributed system.

Please see Figures 3-1 and 3-2 below, which show the intended data flows through

'The content of this section (3.1) is drawn from our previously published techincal publications
[11], as explained in footnote 1.
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the MedRec system.
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Figure 3-1: Data flow schematic for the MedRec system, showing integration between
input data, blockchain directory and data retrieval.
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Figure 3-2: An example MedRec network, where the MedRec database keeper is

installed at multiple nodes, all coordinating permission and access information via

the blockchain log.
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3.2 MedRec System Architecture: Design Concept

3.2.1 Smart Contract Structures

Registrar Contract (RC)

This global contract maps participant identification strings to their Ethereum

address identity (equivalent to a public key). We intentionally use strings rather than

the cryptographic public key identities directly, allowing the use of already existing

form of ID. Policies coded into the contract can regulate registering new identities or

changing the mapping of existing ones. Identity registration can thus be restricted

only to certified institutions. The RC also maps identity strings to an address on the

blockchain, where a special contract described below, called the Summary Contract,

can be found.

Patient-Provider Relationship Contract (PPR)

A Patient-Provider Relationship Contract is issued between two nodes in the sys-

tem when one node stores and manages medical records for the other. While we use

the case of care provider and patient, this notion extends to any pairwise data stew-

ardship interaction. The PPR defines an assortment of data pointers and associated

access permissions that identify the records held by the care provider. Each pointer

consists of a query string that, when executed on the provider's database, returns a

subset of patient data. The query string should affix the hash of this data subset,

to guarantee that data have not been altered at the source. Additional information

indicates where the provider's database can be accessed in the network, i.e. hostname

and port in a standard network topology. The data queries and their associated in-

formation are composed by the care provider and modified when new records are

added. To enable patients to share records with others, a dictionary implementation

(hash table) maps viewers' addresses to a list of additional query strings. Each string
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can specify a portion of the patient's data to which the third party viewer is allowed

access.

Our prototype demonstrates this design with SQL data queries. In a simple case,

the provider references the patient's data with a simple SELECT query conditioned

on the patient's address. For patients, we designed a tool which allows them to

check off fields they wish to share through our graphical interface. Internally, our

system formulates the appropriate SQL queries and uploads them to the PPR on the

blockchain. Note that by using generic strings our design can robustly interface with

similar string queried database implementations. Hence, it can conveniently integrate

with existing provider data storage infrastructure. At the same time, patients are

enabled with fine-grained access control of their medical records, selecting essentially

any portion of it they wish to share.

Summary Contract (SC)

This contract functions as a bread crumb trail for participants in the system to

locate their medical record history. It holds a list of references to Patient-Provider

Relationship contracts (PPRs), representing all the participant's previous and current

engagements with other nodes in the system. Patients, for instance, would have their

SC populated with references to all care providers they have been engaged with.

Providers, on the other hand, are likely to have references to patients they serve

and third-parties with whom their patients have authorized data sharing. The SC

persists in the distributed network, adding crucial backup and restore functionality.

Patients can leave and rejoin the system multiple times, for arbitrary periods, and

always regain access to their history by downloading the latest blockchain from the

network. As long as there are nodes participating in the network, the blockchain log

is maintained.

The SC also implements functionality to enable user notifications. Each relation-

ship stores a status variable. This indicates whether the relationship is newly estab-

35



lished, awaiting pending updates and has or has not acknowledged patient approval.

Providers in our system set the relationship status in their patients' SC whenever

they update records or as part of creating a new relationship. Accordingly, the pa-

tients can poll their SC and be notified whenever a new relationship is suggested or

an update is available. Patients can accept, reject or delete relationships, deciding

which records in their history they acknowledge.

Our prototype ensures that accepting or rejecting relationships is done only by the

patients. To avoid notification spamming from malicious participants, only providers

can update the status variable. These administration principles can be extended,

adding additional verifications to confirm proper actor behavior.

Please see Figure 3-3 for examples of how the Registrar Contract, Patient-Provider

Relationship Contract and Summary Contract interact in the MedRec system.

Raghstrar Contract

-John" 1 Eth addr JC

Jane" 11Eth addr C

Sumnary Contract

John

PPR address tus

PPR address s

Patient Provider Relationship

Owner J Acce info

EMR es h
Permissions

Minin Bounties

RC

ID Disowery /Or)eo D ov

PaJtIent A L rC

owners p \~~eii~~

PPR PPR
Patient A - Provider B Patient A - Provider C

Queries reference Queries reference Bockchain

Network
NodBB

DS: Provider B DB: Provider C

Figure 3-3: MedRec smart contracts on the left of the figure, showing data content

for each contract type. Sample relationship graph between contracts and network

nodes on the right.
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3.2.2 System Node Description

We design the components of our system nodes to integrate with existing EHR in-

frastructure. We assume that many nodes, and in particular care providers, already

trustfully manage databases with patient data stored on servers with network connec-

tivity. Our design introduces four software components: Backend Library, Ethereum

Client, Database Gatekeeper and EHR Manager. These can be executed on servers,

combining to create a coherent, distributed system. We provide a prototype im-

plementation of these components that integrates with a SQLite database and is

managed through our web user interface. Notably, any provider backend and user

interface implementations can participate in the system by employing the modular

interoperability protocol as defined through our blockchain interface code.

Patient nodes in our system contain the same basic components as providers.

An implementation of these can be executed on a local PC or even a mobile phone.

Their local database can be one of many lightweight database implementations. The

databases can function merely as cache storage of the patient's medical data. Missing

data can be retrieved from the network at any time by following the node's Summary

Contract. Please see Figure 3-4 below, for a step by step diagram showing orches-

tration of the modules that define a MedRec "node". Subsequent paragraphs in 3.2.3

Primary System Components will refer back to these steps.

3.2.3 Primary System Components

Backend API Library

We construct multiple utilities, bundled in a backend library, to facilitate the sys-

tem's operation. Our library abstracts the communications with the blockchain and

exports a function-call API. Record management applications and their user inter-

faces can thus avoid the hurdles of working directly with the blockchain. One such

hurdle is verifying that each sent transaction is accepted with high confidence by
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Figure 3-4: System orchestration example: provider adds a record for new patient.

the network. Our library automatically handles the uncertainty of when transactions

are mined and deals with cases when they are discarded. The backend library inter-

acts with an Ethereum client to exercise the low-level formatting and parsing of the

Ethereum protocol.

Steps 1 and 2 in Figure 3-4 illustrate our backend implementation of a scenario

where a provider adds a record for a new patient. Using the Registrar Contract on

the blockchain, the patient's identifying information is first resolved to their matching

Ethereum address and the corresponding Summary Contract is located. Next, the

provider uploads a new PPR to the blockchain, indicating their stewardship of the

data owned by the patient's Ethereum address. The provider node then crafts a query

to reference this data and updates the PPR accordingly. Finally, the node sends a

transaction which links the new PPR to the patient's Summary Contract, allowing

the patient node to later locate it on the blockchain.

Ethereum Client

This component implements the full functionality required to join and partici-

pate in the Ethereum blockchain network. This handles a broad set of tasks, such
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as connecting to the peer-to-peer network, encoding and sending transactions and

keeping a verified local copy of the blockchain. For our prototype implementation we

use PyEthereum and the PyEthApp client. We modify the client to be aware of our

mapping of identity and addresses. We then implement a service to locate the node's

Summary Contract (SC), via Registrar Contract address lookup. This service runs

continuously within the client to monitor real-time changes to the SC. In the event

of an update, the service signals the EHR Manager to issue a user notification and,

if necessary, sync the local database.

Steps 4 to 6 in Figure 3-4 continue the use case described above from the patient

node perspective. The patient's modified Ethereum client continuously monitors her

SC. Once a new block is mined with the newly linked PPR, the client issues a signal

which results in a user notification. The user can then acknowledge or decline her

communication with the provider, updating the Summary Contract accordingly. If

the communication is accepted, our prototype implementation automatically issues

a query request to obtain the new medical data. It uses the information in the new

PPR to locate the provider on the network and connect to its Database Gatekeeper

server.

Database Gatekeeper

The Database Gatekeeper implements an off-chain, access interface to the node's

local database, governed by permissions stored on the blockchain. The Gatekeeper

runs a server listening to query requests from clients on the network. A request

contains a query string, as well as a reference to the blockchain PPR that warrants

permissions to run it. The request should be cryptographically signed by the issuer,

allowing the gatekeeper to confirm identities. Once the issuer's signature is certified,

the gatekeeper checks the blockchain contracts to verify if the address issuing the

request is allowed access to the query. If the address checks out, it runs the query on

the node's local database and returns the result to the client.
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Steps 7 to 9 in Figure 3-4 illustrate how a patient retrieves personal data from the

provider node. Note that our components similarly support third-parties retrieving

patient-shared data: the patient selects data to share and updates the corresponding

PPR with the third-party address and query string. If necessary, the patient's node

can resolve the third party address using the Registrar Contract on the blockchain.

Then, the patient node links their existing PPR with the care provider to the third-

party's Summary Contract. The third party is automatically notified of new permis-

sions, and can follow the link to discover all information needed for retrieval. The

provider's Database Gatekeeper will permit access to such a request, corroborating

that it was issued by the patient on the PPR they share.

EHR Manager

We tie together all the software components previously mentioned with our EHR

management and user interface application. The application renders data from local

SQLite databases (designed to be interchangeable with other database software) for

viewing, and presents the users with update notifications, and data sharing and re-

trieval options. Our user interface prioritizes intuitive, crisp, and informative design,

as recommended by the Department of Veteran Affairs and ONC's Blue Button design

competition [351. Our application is conveniently accessed through a web interface,

built on a python micro-framework. We are especially cognizant of future redesign

goals for compatibility for mobile devices, as modern users expect easy access and

high quality experiences while on-the-go.

3.2.4 MedRec Blockchain Mining

We incentivize "miners" to participate in the network and contribute their compu-

tational resources to achieve a trustworthy, gradual advancement of the chain. We

propose a model that engages the healthcare community in network stewardship-
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MedRec brings medical researchers and health care stakeholders to mine in the net-

work. In return, the network beneficiaries, i.e. providers and patients, release access

to aggregate, anonymized medical data as mining rewards. We explore this idea in

our prototype by implementing a special function in the PPR contract. It requires

care providers to attach a bounty query to any transaction they send updating the

PPR. For example, this bounty query can be formulated to return the average iron

levels in blood tests done by the provider, across all patients, in the previous week.

When the block containing the record-update transaction is mined, the mining func-

tion automatically appends the block's miner as the owner of the bounty query. The

miner can then collect it by simply issuing a request for this bounty to the provider's

Database gatekeeper. Because it is signed by the provider as part of the transaction,

the bounty query is safe from malicious alterations.

This "bounty query" or data reward for mining could enable medical researchers to

access population-level insights into medical treatment and healthcare outcomes, po-

tentially revolutionizing how data is gathered and accessed for research purposes. We

envision future updates to the mining model where miners (i.e. medical researchers)

can specify preferences for demographic cohorts and features of the data they are

looking for, in order to enable precision medicine and targeted research (while still

preserving the privacy of the patients). This could be accomplished by faciliating a

bid system, where medical researchers could propose queries they would like included

as their mining "bounties" (with a sum of Ether associated as the "fuel" to win the bid

auction). Such a system would necessitate vetting of the queries, to ensure that the

returned data could not be used to reidentify patients (even if drawn from a future

pool of anonymized data). The medical researchers can be incentivized to continue

mining day-to-day, as the data accessible to the bounty query could be timebound

to the time of the mined block. To continue obtaining the latest data, miners must
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continue a regular pattern of computational contributions to the network. 2

3.3 MedRec Prototype Code Review

With the MedRec system architecture concept described above, we will now go

through an in-depth code review to examine the features of our envisioned design

that are fully or partially implemented. The codebase detailed below is an early re-

search prototype. The MedRec codebase lives in an MIT Enterprise Github repo,

with separate branches for the main development and our test integration with Beth

Israel Deaconess Medical Center. This section of the thesis will be posted online to

supplement the Github repo with a detailed ReadMe, to provide helpful background

information for any future developers wishing to work on the project.

3.3.1 MedRec Adaptation of Core Ethereum Functionality

Initial Setup:

Our first step in building a private, Ethereum testnet was to set up several Virtual

Machines (VMs) as Ethereum nodes. To do this, we prepared the VMs with the

prerequisite software packages for the full necessities of the MedRec system:

Standard, Non-Ethereum installs:

" Python 2.7

" SQLite (for our particular database implementation, though others could cer-

tainly be used)

* Flask (for our particular web framework implementation)

* Jinja (for our particular web framework implementation)
2 The content of this section (3.2) is drawn from our previously published techincal publications

[11], as explained in footnote 1.
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Ethereum installs:

" Geth (the Go implementation client)

* Pyethapp (the Python implementation client)

With the VMs now properly prepared to run an Ethereum node, the next step is

to initialize clients on each VM with a genesis block and starting allocations of Ether.

Our testnet's genesis block was defined in JSON, in the format shown below in Figure

3-5 (but with our own unique values).

{
.alloc" :{,
.coinbase" : "0x 9 0 00 B",
"difficulty" : "ex2eOM",
"extraDeta" : "",
.gasLinit" : "Sx2fefd8",
"nonce" : """""^"^^^^"" " ,

"nixhash" : "Ox
"parentHash" : "x
"timestamp" : "Sx69"

}

"alloc": {
"Ox0emem ----------- OeBeeO9O99OBBsB1": ("balance": "11111lll"}

"0x600 2": ("balance": "222222222"}

Figure 3-5: Code excerpt showing genesis block initialization for Ethereum testnet
[2].

In our implementation, we use the Geth client for the designated bootstrap node-

the VM that is always turned on first and acts as the miner. Because we did not

have plans to significantly alter the mining protocols, it made the most sense to use

the best supported and most fully developed Ethereum node client for the mining

functionality. Our Geth mining client does not run automatically on VM startup,

to avoid bloating the chain with empty blocks during intermittent test development.

This could be modified in the future, when a deployed MedRec network would need

to be live and mining at all times.
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Conversely, because we required customizability for the other nodes in our system

(which would act as "provider" and "patient" nodes), we decided on pyethapp as our

Ethereum client for the subsequent VMs. With pyethapp based on python, and being

most familiar with development in python, we were better situated to move forward

with our MedRec implementation goals. When starting up the pyethapp clients for

these nodes, they connect to the bootstrap Geth node by referencing the bootstrap

node's "enode" address. Figures 3-6, 3-7 and 3-8 below are virtual machine snapshots

that show the Geth and Pyethapp clients running on the Miner and Patient/Provider

nodes, respectively.
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MedRec Virtual Machines I Patient

N MINGW32:/c/Users/Aura/Documents/GitH... - E3 Initially crawling the chain for
updates

Finds an update, identifies the
relevant Patient-Provider
Contract address and Provider
address

Patient web app will now
display a notification related to
this update

Figure 3-7: The Patient/Provider views show two different scenarios while both
clients are crawling the blockchain: the Patient's client has found an update on
the blockchain, and the node confirms the associated Patient Provider Relationship
contract address where this update (perhaps a new medical record) can be found.
For example: MEDREC: Found the following updates: Contract #,
provider #, host name medrecords-2.media.mit.edu, status:
Info Update Available

MedRec Virtual Machines | Physician/Care Provider
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Figure 3-8: The Provider's client has yet to find an update (no change in viewership

authorizations, no patient-submitted symptom reports on the horizon) and will con-

tinue crawling the chain until there is an update. For example: MEDREC: crawling

the chain
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3.3.2 MedRec Blockchain Interface Code

Scripts described in the following section, in order of appearance, include:

* BlockChainHelpers.py

" EthAdapter.py

* GlobalRegistrars.py

" PatientSummaryContract.py

" PatientProviderRelationship.py

" Patient contact record.se

" Relationship_ contract.se

" Login.py

With Ethereum clients up and running on the VMs, tailored to their use cases in

the MedRec system, we configure a series of blockchain helpers that control parame-

ters of the mining and verification steps. In our code, these are found in BlockChain-

Helpers.py and contain functions that: set the "wait time" in number of blocks that

must be mined after the current block before a transaction is "complete"; verify that

a submitted transaction has been successfully logged on the blockchain; confirm that

the transaction was found and that mining has not timed out. In addition to the

blockchain helpers code that we have modified, we imported code from Ethereum for

the "Eth" object that allows command line interfacing with the live chain and the

GlobalRegistrars approach for registering the hashes of new contracts.

The meat of any Ethereum implementation is in the smart contracts. The MedRec

system defines three smart contracts (described in detail below) and a set of blockchain-

interfacing functions that execute logic for the creation of and updates to these smart
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contracts. Our scripts "PatientProviderRelationship.py" and "PatientSummaryCon-

tract.py" read in (separate) definition files for the smart contracts, apply updates to

the data in these contracts according to the definition schema, and post the either

newly created or updated smart contracts (via Ethereum transactions that repre-

sent these changes) to our live blockchain. These two scripts are the core APIs that

take interactions from the WebApp and run the corresponding orchestration on the

blockchain. In other words, they are the heart of the MedRec implementation.

As described in the system architecture section, the MedRec prototype defines two

primary smart contracts beyond the registrar orchestration code; one that orchestrates

the "Patient Provider Relationship" (defining the data associated with a Patient and

Provider pair) and the "Summary Contract" (listing all Patient Provider Relationships

and current relationship statuses associated with a particular user, either provider or

patient). Both contracts are written in serpent.

The script "relationship_ contract.se" is the "Patient Provider Relationship Con-

tract", which:

" Confirms the patient and provider's Ethereum addresses

" Defines means of adding a 3rd party, authorized "viewer" with access to retrieve

data

" Defines means of adding a new record, and orchestrating the miner reward for

processing the transaction associated with adding a new record

The script "patientcontractrecord.se" is the "Summary Contract", which:

* confirms the owner's Ethereum address (i.e. either a patient or a provider)

" confirms the contract addresses for the associated PPRs

" confirms the "supplier's" user addresses (i.e. the other pairwise user that was

the source of data in the PPR)
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" prepares to accept status updates to the summarized PPRs (new records, new

3rd party viewer authorized, etc)

" confirms any 3rd party viewers that have been authorized for shared access

The final blockchain interface code is a Login.py module that associates the user

name set by the global name registrar (defined in GlobalRegisters.py, mentioned

above) with the public key of the user (searchable on the chain). The password

should unlock the private key of said user. This code interfaces with the blockchain

to create a new smart contract for new users (which is then posted to the blockchain

with the scripts mentioned above), and fund it with Ether.

3.3.3 MedRec APIs and Database Gatekeeper

Our bundle of APIs translates between the MedRec WebApp and the blockchain

interface code. The scripts define a layer of functions that orchestrate medical record

management tasks (new and existing record updates, new relationships with doctors,

authorization for data sharing, et cetera) with integrated feedback from our blockchain

permissioning and data access mechanisms. Scripts described in the following section,

in order of appearance, include:

* MedRecPyethappService.py

* Local Configuration.py

" PermissionsFormulator.py

" RemoteSQLiteService.py

* Setupinit.py

" SQLiteSyncingClient.py
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e UserNotification.py

* UserNotificationsSerivceAPI.py

The MedRecPyethappService.py defines a method to crawl the Ethereum chain

and flag updates that have been pushed to the smart contract, but have not yet been

updated in the WebApp. This script underpins our user notification system, allowing

the MedRec system to have a dynamic updating feature that keeps the patient's

healthcare record up to date and relevant. This script integrates closely with the

global registrar definitions, in order to associate the updates with the appropriate

contracts, and ultimately, end-users of the WebApp.

Our LocalConfiguration.py script is a relatively standard approach for grouping

passwords, database paths, server logins and more in a file that is private, and not

uploaded to public repositories. When referencing objects (like our database files)

in other scripts, we point to LocalConfiguration.py to grab the full paths or login

information.

The Permissions Formulator.py script is a "stub function", outlining a concept for

the miner bounty. As mentioned previously, instead of earning bitcoin or ether as a

financial reward for successful transaction validation and "mining", our miners are re-

warded with access to data. This script shows an example where a pre-approved query

(in this case for the type of record posted, i.e. Bloodwork, Medication or Vaccination)

is established as the miner's fee. There are a wealth of options for how to implement

this stub function in live networks, depending on the incentives and regulation in-

volved. For example, pharmaceutical companies who "mine" on the MedRec network,

or large research institutions like the CDC and NIH, may want to define their desired

reward queries in advance, specifying conditions on the demographic pool that their

research targets. Conversely, the maintainers of the MedRec system might define a set

of queries that are pre-approved and constantly changing, in order to keep the mining

entities interested in the latest, unpredictable data outputs. There is much further
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work to do on this script, integrating the simple goal of query-permission-granting

with a data science framework that can provide for the aggregation and anonymity

required to make both research-worthy and privacy-preserving queries.

The RemoteSQLiteService.py script is a key element of the "Database Gatekeeper"

functionality described previously. These methods begin to define our networked

syncing service, which allows transfer of content between SQLite instances mediated

by the blockchain's permission information (and upon further completion of the code,

mediated by the public key signatures that maintain cryptographic identities in the

system). This script first checks that the viewer identity requesting information is

logged on the blockchain as having access rights to the data in question. The MedRec

system currently accomplishes this by confirming that the requesting identity either

has ownership access to the contract (i.e. is the patient who has default rights to the

data referenced by the contract) or has 3rd party viewership rights, as previously set

by the patient. For the latter case, we consider the need to have a restricting query

that limits the information transferred, based on particularities of what has been

shared with the 3rd party. The nature of appropriate restricting queries is currently

left quite open-ended, in order to support perhaps unforeseen needs for granularity

in what is and isn't shared and transferred. After confirming access and permission

per the Blockchain smart contracts, the syncing service returns the requested data

from the source database. While this script defines a protocol for SQLite, the logic is

in principle extensible to many alternative database implementations. The approach

would transfer quite well for most string-queried databases, including SQL, a standard

of healthcare data warehousing. While we currently use RPyC (a python library) to

establish the connections and complete the data transfer, this mechanism could also

be updated to a more enterprise-friendly software suite (such as the server connectivity

tools that come with fully fledged SQL implementations). We chose RPyC mostly for

convenience in working around the limitations of SQLite (which was in turn chosen
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for its simplicity and lightweight implementation befitting a research prototype).

Working closely with RemoteSQLiteService.py, the SQLiteSyncingClient.py mod-

ule constitutes the other "half' of the Database Gatekeeper implementation. Here, we

invoke the methods defined above and take the returned records (post-release from

the source database) and sync them into the local app's Records table. The syncing

methods are separated by whether we are writing to the "owner's" (i.e. the patient's)

local records or a 3rd party viewer's local records. Updates to existing records are

handled, and new records are retrieved.

The Setupinit.py script defines a set of test patients, both from a simulated

data and simulated account perspective. Based on the preset identities, we: initialize

the database instances; generate and load sample data (fake bloodwork, medication

and vaccination records) in two different databases (simulating two different provider

sources); create Personal Summary Contracts for each patient; associate miner per-

missions for relevant contracts (i.e. tracking the miner who validated the transaction

posting a new contract or data update); define command line arguments to run setup

methods.

The UserNotifications.py defines methods that give fine-grained control to pa-

tients over what they pull into their personal health record. As described previously,

there are three notification types: initiation of a new patient-provider relationship,

updates to an existing patient-provider relationship and updates to 3rd party view-

ership rights. This script picks up updates in these categories, as logged in our

Notifications database table, and applies the patient choice of rejecting or accepting

each update. This script is called from the WebApp and determines what information

is shown in the user interface. The closely related UserNotificationsServiceAPI is

called to populate the updates in the Notification database table, from which User-

Notification.py reads. This latter script is called by MedRecPyethappService.py as it

crawls the blockchain for updates, and pushes all current notifications as they appear
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on the chain.

3.3.4 MedRec WebApp

The MedRec WebApp, as the focal point of record review for patients, is the ultimate

orchestrator that sets our APIs in motion for retrieving and updating existing data,

and initiating data sharing. Though our prototype implementation is far from end-

user readiness (in both the fullness-of-features dimension and UI design), the WebApp

has served as a useful tool for visual demonstration of the MedRec system. Current

features include a means for reviewing records (sorted by record type), sharing data

with an additional entity (other than the provider acting as the primary data source),

and the patient control mechanisms for accepting or rejecting update notifications to

their record.

Regarding our callbacks in the MedRec WebApp, we directly call only four of the

previously described modules (all others are invoked further down the stack). Please

see Figure 3-12 for a flow diagram of the MedRec codebase.

" PermissionsFormulator

* PatientProviderRelationship (both PatientProviderRelationship _ProviderAPI

and PatientProviderRelationshipPatientAPI)

" UserNotifications

" LocalConfiguration

The WebApp establishes a home page, where all bloodwork, medication and vac-

cination data are loaded and rendered on separate tabs. The WebApp also displays

available updates that require input from the user (accept/reject). We pull this data

via SQL queries from our SQLite instances. We handle the intent to share records on
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a granular basis by entry (e.g. you can share a single bloodwork result, without hav-

ing to share all data in that category), and allow the creation of new records (both for

patients contributing a symptom report and for providers submitting health record

data). For the latter use case, we realize that providers may wish to avoid data entry

through yet another interface, and rather than expecting them to always submit data

through the MedRec WebApp, we anticipate pulling in new information directly from

the provider's networked databases.

Built on Flask with simple HTML/CSS templates and running on our local servers,

the MedRec WebApp is not intended to scale to serve multiple users. We would

recommend re-architecting on a more robust web development stack, should future

developers be interested in taking the project forward.

Figures 3-9 and 3-10 show two snapshots of the MedRec Version 1.0 user inter-

face, bracketed by command terminals that are running the mining Geth client, pa-

tient/provider Pyethapp clients, and the database access interface. Figre 3-11 shows

the latest WebApp user interface mockup.

YMw iner Prvie

Figure 3-9: This view is taken from a demo prepared for the MAS.s65 Blockchain

technologies class in December of 2015, showing a listing of bloodwork records.
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Figure 3-10: This view is taken from a demo prepared for the MAS.s65 Blockchain
technologies class in December of 2015, showing the original homepage.

MED REC

Your Medical Records
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Figure 3-11: A snapshot of the MedRec Version 2.0 user interface from July 2016,

with improved visual design.
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3.3.5 Prototype Code Review: In Summary

The MedRec code base establishes an Ethereum blockchain test network, blockchain-

interfacing APIs, an off-blockchain data syncing service, and a WebApp for patient

and provider use. The interaction between modules serving these purposes is summa-

rized in Figure 3-12. The far left column in the Figure establishes base level scripts

that stand on their own, making no calls to other modules. As you progress left to

right, each column establishes a layer with more complexity and more hooks into other

parts of the system. In the final layer, the WebApp serves as the focal point of orches-

tration, driving execution of other scripts based on user input. Certain background

processes must be running at all times (such as mining and the patient/provider

clients), even when activity in the WebApp is dormant.

When considering all modules in the MedRec code base, we identify six scripts

as the "heart of the project". These scripts execute the unique ideas in the MedRec

system design, and interface with the blockchain in an innovative way. While the

other modules are of course integral to the functioning of the prototype, they repre-

sent tasks that are also handled similarly in many other systems (such as login and

local confirmation orchestration, basic database design, or slightly-modified standard

Ethereum protocols). The key scripts are:

" PatientProviderRelationship.py

" PersonalSummaryContract.py

" patient contactrecord.se

" relationship_ contract.se

" MedRecPyethAppService.py

" MedRec WebApp
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While not all features of the MedRec system design and end-product vision are

implemented in the current code base, the MedRec repository does serve as an effective

research prototype and was tested with Beth Israel Deaconess Medical Center in

Boston. Key features that merit further code development include: management of

the crypto keys for signature verification before off-blockchain data release; raw data

to pointer management for proper data referencing in the smart contracts; formulation

of bounty queries for miners beyond our simple POC cases; end-to-end encryption for

the off-blockchain data syncing (likely via integration with off-the-shelf data syncing

and management services). As discussed later in the Evaluation section, a functioning

MedRec network would also rely on a system of identification that would be able

to map patients across hospitals and treatment sites. While we could maintain an

internal directory mapping the various hospitals IDs to a single, unique patient ID

in the Ethereum address context, this would concentrate the identity management

inside the MedRec system-a design decision we would prefer to avoid for security and

privacy reasons. MedRec does not intend to solve the "global identity" challenge, and

will look to build on other blockchain-based identity solutions that are beginning to

emerge in this research area. Being able to decentralize the management of identity

is still a challenge under research development.
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Usertftcations_-Serv

iceAPI.py

ELidpter.py MedRecPyethappService.py Setup inIt.py

PmtiwntProvIder
GlobatRegistrars.py PationtPpdRelatlonsht.py, -*I

Login-py

BlockchainHelpers.py WebApp.py

____________________ UserNotifications.py
SQiteSyncIngCInt.py ---- PersonalSummaryContract.py

PermissionsFormulator.py

Figure 3-12: Code flow diagram showing all major MedRec scripts and the rela-
tionships between them. Arrows point from the script making the "call" to the
script housing the function that is "called", i.e. PatientProviderRealtionship.py calls
BlockchainHelpers.py, and PatientProviderRelationship.py is in turned called by the
WebApp.
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Chapter 4

Evaluation

The MedRec system design gives patients an immutable log of their medical history,

which is not only comprehensive, but also accessible and credible. This restores pa-

tient agency, as participants are now more fully informed of their medical history

and any modifications to it. Through permission management on the blockchain, we

enable patient-vetted data exchange between medical jurisdictions and an interoper-

able content management system for the physicians supervising these records. The

blockchain ledger keeps an auditable history of medical interactions between patients

and providers, which is likely relevant for regulators and payers (e.g. insurance) in the

future. Below, we discuss our in-situ deployment testing and consider the security,

privacy and interoperability implications of this project. 1

4.1 Pilot with Beth Israel Deaconess Medical Center

In August 2016, we completed a small-scale pilot with Beth Israel Deaconess Medical

Center (BIDMC) 2 , in collaboration with their IT team, Clinical Information Systems

and Infrastructure groups. First introduced to John Halamka, CIO of Beth Israel

'This evaluation overview and sections 4.2-4.4 are drawn and adapted from our previously pub-
lished techincal publications [11], as explained in footnote 1.

2 BIDMC also serves a role as the Harvard Medical School Teaching Hospital.
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Deaconess, in April of 2016, we proceeded through multiple stages of vetting and

project scoping to prepare the codebase for an integration with test medical data from

the BIDMC servers. We evaluated MedRec's ability to smoothly intake and parse a

standard clinical document, link our Database Gatekeeper utility to the relevant Beth

Israel endpoint and test an end-to-end system flow from the hospital's existing user

interface for physicians through our backend and out to a sample patient node. The

following sections detail the process of defining the parameters for the integration

test, obtaining BIDMC approval, preparing the code and test dataset, completing

the on-site integration test and evaluating our results.

4.1.1 Defining the Pilot Scope

To effectively test MedRec, it is important to define a scope: to identify exactly which

features we would deploy, and at what scale. On one end of the spectrum would be

a full-scale, multi-week, multi-institutional network test with real users retrieving

test data from and sharing test data between multiple provider locations (say, both

BIDMC and Massachusetts General Hospital), engaging all functionality from the

WebApp user interface down to the networked databases and blockchain log with

a large throughput of data. On the other end of the spectrum would be a simple

10-minute data entry test, determining whether the MedRec system could process

a single record, post a relevant smart contract to the blockchain, and support data

retrieval by a test patient node. In collaboration with Dr. Lawrence Markson, VP of

Clinical Information Systems at Beth Israel Deaconess (our primary contact during

the integration), we settled on an appropriate middle-ground, given both the current

maturity of the MedRec prototype and the available resources at BIDMC to support

the integration test.

The MedRec test at BIDMC included the following (drawn from our formal agree-

ment with the team, included in Appendix A):
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" The simulated "provider" databases were prefilled with test data, for batch

retrieval by the MedRec system (rather than record-by-record entry via the

WebApp). BIDMC supplied two DB instances with SQL Server 2014 (test

systems, not in-production systems) populated with de-identified medication

data (as opposed to medication, vaccination and bloodwork data), simulating

two different provider data sources. BIDMC supplied the SQL Server login

(username/password) and networking information. We were given read access,

with a discussion that write access could be considered in the future, to allow

patient nodes to contribute to their own record, as in the OpenNotes system

pioneered at BIDMC.

* MedRec "Database Gatekeeper" utility tests record exchange between the two

DB instances established above, via the MedRec blockchain permissioning pro-

tocol. The software was supplied on MIT VMware VMs, running on an MIT-

supplied machine, to be connected to the isolated network set up at the BIDMC

Lab.

" Scope of the integration: Test end-to-end flow from batch pickup of pre-filled

records in the SQL server instances, to successful pointer posting to blockchain,

with update notifications logged and accepted, permission information logged

as appropriate per the patient/provider pair identified in the record, successful

blockchain mining of the posted record transactions, and ultimately through to

data retrieval by an authorized "patient" node.

" Duration of the integration: Our timeline and extent of testing included two

full (8hr) days of on-site work at the BIDMC premises in downtown Boston, on

August 18th and 19th, 2016.
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4.1.2 BIDMC Approval Process

To agree on the project scope above, and the security parameters that would surround

our on-site visit, we met several times with Dr. Lawrence Markson and his team. An

introductory conversation with Dr. Markson and two developers on their Medication

Reconciliation team provided an overview of their backend systems and procedure

for handling in-patient and out-patient medication records. Subsequent phone calls

established the subset of MedRec features that we would test, and the nature of a

BIDMC-supplied test dataset with interesting "features", as described in more detail

below. To establish the on-site visit procedure and obtain final approval for the

integration, we met with the BIDMC Chief Information Security Officer, their server

administration team, the Infrastructure Group and Dr. Markson, where we agreed

upon the following:

" BIDMC would establish an isolated intranet for us, with static internal IP

addresses for our VMs.

" When on this intranet, we would be able to access the local SQL Server test

data instances, and would have no connection to any external internet network.

* If a second day of integration testing is required (which it was), the MIT laptop

with the provided VMs will be left overnight within the closed, secured testing

area.

" After completing the test of the MedRec codebase on our MIT-provided VMs,

we would permanently delete the VMs and wipe the host computer before leav-

ing the BIDMC building.

We were allowed to keep a copy of the updated test code in secure, offline storage

at the BIDMC premises for future integration testing. While we could not bring a

copy of the modified code back to MIT (we established a principle that the ENTIRE
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integration test would stay within BIDMC data boundaries), we do have copious in-

tegration notes on improvements we would make to the MedRec software for future

integrations, based on our learnings at BIDMC. Though this integration test never

touched live medical records nor any PII (Personally-Identifiable Information), we es-

tablished the above best-practices as a learning opportunity and kept to them strictly,

as monitored and verified by the BIDMC team.

4.1.3 Preparing the Codebase and Test Dataset

To prepare the MedRec codebase for the integration, we worked on modifications to

the off-blockchain syncing code and the WebApp in a new Github repository branch,

created for the occasion. Because our initial prototype worked with syncing be-

tween SQLite databases, we needed to modify the code to work with fully-fledged

SQL instances. We chose to use pymssql [36] as the database interface package be-

tween Microsoft SQL Server and our python orchestration scripts. The bulk of these

changes were made in the "RemoteSQLiteService.py" module, which we renamed to

"RemoteMSSQLService.py" on the Beth Israel integration branch of the MedRec repo.

In an attempt to simplify the integration, we chose the earliest, most stable version

of the WebApp for the integration test and modified the script to expect only Med-

ication records. In addition, we updated the expected data schema to match the

database table columns as provided ahead of time by Beth Israel Deaconess.

The integration also required a custom script to generate new contract addresses

for the existing patient-provider pairs in the BIDMC SQL instances. This is due to the

fact that we were testing MedRec against a pre-filled dataset that did not already have

contract addresses (as opposed to testing on data that was entered through MedRec,

where a contract address would already be provided for). This code approach will be

useful in future integrations, where existing hospital data storage would need to be

retro-fitted with contract addresses for use in a MedRec network.
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While we made internal preparations for the MedRec codebase, we also designed

features of a test dataset that would be generated by Dr. Markson. The first require-

ment was that the data be split between two databases, so that we could simulate data

posting and retrieval from two separate "providers" A and B. Within each database,

we were then interested in records where a single patient-provider pair had multiple

entries (i.e. multiple prescriptions prescribed by the same doctor) so that we could

test association of multiple records with the same Patient-Provider smart contract.

We were also seeking records for the same patient across the two databases, so that we

could test the association of data from two different sources back to the same Patient

in their Personal Summary Contract. These are just a few of our considerations that

would define interesting data features; please see the appendix for a full listing of the

dataset design criteria. In total, we landed on an estimate of about 100 to 200 test

records, representing a spread of about six months.

4.1.4 Onsite Integration Process and Results

At BIDMC, we leveraged two work stations: one in an isolated datacenter where the

laptop would run the MedRec VMs, and our conference room (thoughtfully provided

by Dr. Markson and his team) where we would remote-in to the VM intranet and

orchestrate the integration test. Below we present a summary of the integration

challenges and our solutions.

Several challenges surrounded proper networking, VM communication protocols

and SQL database connectivity. The intended DHCP and Bridging mode approach

did not work, and we reverted to the static IP plan for our VM intranet connec-

tivity needs. While onsite, we developed a supplemental script to test the pymssql

connect() call and wrote a class with methods to test retrieval of records from the

SQL instances by indexing on Ethereum contract address, and on patient ID. Ulti-

mately, we updated our pymssql syncing approach with FreeTDS version 4.2 (a type
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of compatibility mode) for integrations between a linux environment, python scripts

and SQL databases. After overcoming this hurdle, a simple escape character set

as one of the SQL server's password characters led to further hours of connectivity

troubleshooting.

These, and other relatively straightforward fixes impressed upon us the impor-

tance of "deployment scalability"-that if the MedRec codebase was to be deployed

across many hospitals as part of a future MedRec network, the interfacing code

must be exceptionally streamlined. Fortunately, due to our backend architecture,

the steps necessary to integrate with BIDMC's string queried database proved rel-

atively straightforward. As expected, rather than having to redesign the MedRec

system, our design allows certain simple updates to schema files and to the WebApp.

This validated our hypothesis that MedRec could be adapted to multiple database

table structures, provided that they are string-queryable. Furthermore, the MedRec

contract-generation script that we developed anew for this integration will prove use-

ful in retrofitting other provider datasets for future integrations. Another option

on the horizon, rather than trying to integrate with the custom specifications of each

hospitals' data storage infrastructure and networking map, lies in accessing data from

standard API endpoints that hospitals are being encouraged to support by 2018 as

part of Meaningful Use Phase 3 [371.

To summarize the MedRec codebase integration results: we were able to retrieve

records from the SQL databases, affix these with a MedRec-generated contract ad-

dress (via Dr. Markson's write access to the databases), post references to this data

into the appropriate blockchain smart contracts, run the MedRecPyethapp.py service

to crawl the chain and find these updates, and finally, to accept these updates (which

populated correctly) in the MedRec WebApp UI. While we did not ultimately make

use of the full richness of the 200+ record set due to time constraints (i.e., we did not

process the separate patient-provider contracts for all this data), we did succeed in
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validating the core MedRec functionality. This evaluation (beyond the months-long

design and approval phase) represents 16+ hours of onsite deployment time, 30 lines

of pre-prepared new code, an existing script of 100 lines of code adapted to specific

BIDMC syncing interfaces, and the sucessful resolution of both minor (syntactic)

and major (DB interfacing and connectivity) hurdles. We expect this contribution

of time and resources to be representative of integrating with test datasets at other

institutions. Integration with live, HIPAA protected records across more than one in-

stitution would present a different scale of challenges, as dicussed in Section 4.5. This

completes our initial testing goals for the MedRec prototype; based on the results of

this successful, early-stage pilot, BIDMC welcomed the MedRec project to return in

the future for further deployment testing.

4.1.5 BIDMC Integration Learnings

In evaluating the results of the integration test, we identify several key areas for im-

provement. The first is run-time performance; our blockchain implementation took

on the order of 10s of seconds to assign new contracts and to respond with the con-

tract information we needed for record update logging. We felt this delay directly,

as we would have to wait for several moments between repeat runs of the code ex-

ecution steps. We believe this can be addressed in future versions by tweaking the

parameters in BlockchainHelpers.py (shorter subsequent block count for validation of

transactions) and improving the search approach that crawls the blockchain looking

for updates. Additionally, we would look to redesign the WebApp with an asyn-

chronous structure, so that UI does not halt until all sent instructions are completed

(which improves the usability of the interface).

The second area for improvement is the "data exchange robustness" of our integra-

tion scripts, as briefly alluded to above. While we were able to successfully connect

in the end, and pull from the SQL databases as expected, the integration code re-
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quired prep work to prepare for a new schema. We also faced a few idiosyncrasies of

SQL database connection limitations during the onsite troubleshooting. Even with-

out depending on the hospital rollout of standard API endpoints (which would be the

cleanest solution), we believe this might be addressed in future versions by running

algorithms in the MedRec Database Gatekeeper that can scrape data based on certain

probabilistic patterns and pull from various schemas.

A final learning from the integration centered on the need for a better Ether-

generation mechanism in the MedRec system. While we do not heavily emphasize

the Ether token in the MedRec design, this token is required "fuel" for execution of

the smart contracts. At one point in the integration, our progress was halted until

we realized that one of our test user accounts had run out of the Ether we had pre-

supplied to it. This opens an interesting opportunity to design a new chapter of the

MedRec project-should there be a marketplace where MedRec Ether can be bought

and sold, should insurance companies furnish the Ether to their patients, can patients

mine Ether themselves, or is this an unnecessary addition to the system that might

be designed-out in a future blockchain architecture?

In closing, the Beth Israel Deaconess Medical Center integration test was a key

turning point in MedRec development. We took our research design and early pro-

totype and successfully tested MedRec functionality with an in-situ system. While

the current MedRec code would require significant updates (and likely a rearchi-

tecting plan for a new blockchain foundation), this evaluation was invaluable to our

understanding of what it takes to integrate a blockchain solution with existing record-

keeping infrastructure. We look forward to further discussion with the BIDMC team,

as they advise the project and consider their own future blockchain in healthcare

efforts.
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Figure 4-1: These photos show myself (right) and Asaph Azaria (left) on-site at
BIDMC for the two day integration test in August 2016.

4.2 Comments on Security

First, on robustness and security: our blockchain implementation enjoys several key

properties of decentralization. MedRec enjoys a strong failover model, relying on the

many participating entities in the system to avoid a single point of failure. Medi-

cal records are stored locally in separate provider and patient databases; copies of

authorization data are stored on each node in the network. Because both the raw

medical data and global authorization log stay distributed, our system does not create

a central target for content attack a crucial consideration in an age of cyberattacks

and data leaks. Though some blockchains experience robustness challenges from a

scaling limit on the "block size" or storage capacity [381, these parameters can be

modified to optimize for other performance requirements in a private blockchain net-

work. Notably, MedRec does not claim to address the security of individual provider

databases-this must still be managed properly by the local IT system admin. In the

same vein, MedRec does not solve end-point security, in that a compromised patient

computer or mobile device could potentially open a vulnerability for data theft or
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snooping (just as it might for any other software installed on the device). Further-

more, MedRec does not attempt to solve the Digital Rights Management [131 problem

of undesired data copying, as our system assumes provider nodes that are bound by

external regulation governing data copying in the medical use case, e.g. HIPAA.

On the security of the MedRec codebase itself, we speculate that it may have

many weaknesses. Our focus in developing this prototype was to test a functionality

premise, and we have not obtained a formal security review of the codebase, as we

would if this were to be used in a real, clinical setting. While we have taken common

sense steps to avoid known issues (i.e. the use of "parameter" characters in database

calls to avoid SQL-injection attacks [39] ), there may be other vulnerabilities, particu-

larly in the structure of the smart contracts. As seen with the DAO (introduced in the

Ethereum Overview section), simple logic errors in these programmable rule sets can

lead to unforeseen consequences. Before MedRec is taken further, we would encour-

age any interested developers to complete a review with a trained, system architect

and security consultant.

4.3 Comments on Privacy

Regarding privacy, use of blockchain technology introduces several limitations. The

pseudonymous property of transactions currently allows for data forensics, or inferring

patterns of treatment from frequency analysis. Without any disclosure of name or

P11, one could infer that some entity has repeatedly interacted with another network

entity through analysis of network traffic. Improving obfuscation while preserving

auditability on the blockchain is an ongoing area of exploration. One potential so-

lution is to make the blockchain a "permissioned" or private structure, where only

pre-approved, white-listed nodes are allowed read access to the ledger. This would

prevent rogue actors from extracting frequency-based insights from the blockchain
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records, and may be a necessity in the medical context where HIPAA regulations

generally lead to closed, secured systems. This may necessitate additional auditing

of mining nodes, where the medical researchers are required to run the MedRec min-

ing client on secured systems. The orchestratation of onboarding and auditing these

white-listed nodes begs the question of a centralized organization, created to man-

age these requirements. While certain blockchain proponents would consider this an

undesirable compromise in an otherwise decentralized system, we note that society

does still place trust in centralized institutions as they have their own merits (e.g.

efficiency, simplified access controls, clear maintenance accountability, etc.).

Alternatively, one could consider keeping an open blockchain approach by inte-

grating with or adapting a technology like ZeroCash [40] (which makes use of zero-

knowledge proofs) where identities in the system could stay anonymous and return

only the minimum amount of information needed to execute a transaction. Additional

research currently underway at MIT, the Enigma project [41], also offers a degree of

"secret sharing" and privacy preservation via a Multi-Party Computation approach.

These may be useful platforms for future applications of blockchain technology, where

user privacy proves a key concern. Finally, encryption could be introduced in the

MedRec off-blockchain data syncing steps to safeguard against accidental or mali-

cious content access. We note that while privacy is an important consideration for

this sytem, a complete lockdown of information would also be counterproductive. A

key feature of the MedRec model lies in the data sharing functionality that can ease

and improve the process of designating healthcare proxies. This calls for managing

contextual privacy-the facility to share with authorized parties, and the protections

to keep data private outside of these scenarios.

While outside the scope of the initial prototype (but unarguably crucial for future

development), a rigorous k-anonymity analysis [42] of privacy-preserving query con-

struction is needed, for release of the aggregated research data to medical research
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"miners".

4.4 Comments on Interoperability

By integrating with providers' existing data storage infrastructure, we facilitate con-

tinued use of their existing systems. We believe this will ease adoption and aid

compliance with HIPAA regulations. Building on the principle of interoperability, we

have designed the system with flexibility to support open standards for health data

exchange in the future-be that FHIR (Fast Healthcare Interoperability Resources)

or other flavors of HL7 proposals [43]. In addition, MedRec is source agnostic, i.e.

able to receive data from any number of endpoints (physician offices, hospital servers,

patient home computers, et cetera). MedRec does depend on the prior digitization of

medical records. We have developed MedRec not as a proprietary system, but as a

set of open APIs to facilitate EHR review and exchange. We hope that MedRec will

prove to be a layer that can be added to existing provider backends, thanks to the

design of our Database Gatekeeper utility.

4.5 Comments on Scalability

As we learned with the Beth Israel Deaconess test integration, the MedRec project

would face certain hurdles in real-world deployment. Some of these are simply lim-

itations of a research prototype that could be addressed with further development

(i.e. to bring the project to Enterprise readiness), and others remain more fundamen-

tal to the task of orchestrating cross-institutional data retrieval. Below, we consider

three interesting dilemmas that raise scalability and deployment challenges. While

these are perhaps beyond the scope of the MedRec project to solve, we consider them

worthy of consideration for a discussion of the project in a real-world context.

First, how would we envision keeping track of the networking information for
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hundreds of thousands of databases, should the MedRec model go "viral"? Because

our smart contracts rely on being able to associate pointers to the network location

where our database gatekeeper would retrieve the data from, we are assuming that

the databases we are trying to connect to will be both networked and have previously

authorized us for data retrieval. This raises the need for a separate authentication

scheme that would let us handle authentication and data connectivity across a large

network of databases, without storing authentication information for the databases

in any centralized repository. Perhaps, rather than connecting via individual logins,

we would set up a module for end-provider verification of our database gatekeeper

module, via a web certificate-like system.

Second, the MedRec system begs the question of a global ID system (which may,

depending on philosophical leanings, seem to contradict the beauty of an otherwise

decentralized system). The MedRec system needs to be able to associate data pulled

from one hospital on Patient Jane Doe, with data pulled from a second hospital

on Patient Jane Doe. While we could keep a mapping in our registrar contract of

Hospital l's ID string for Jane Doe and Hospital 2's ID string for Jane Doe, and do

the association internal to the MedRec system, it would greatly improve efficiency to

be able to recognize some aspect of the Jane Doe identity as the same across both

sources. While MedRec does not attempt to solve this larger ID-assignment problem,

there are blockchain solutions looking at the option of self-sovereign identity [44] and

we look forward to keeping abreast of their progress. Furthermore, though MedRec

attempts to simplify the user experience by abstracting away the blockchain and

cryptographic functionality from the end-user perspective, there still exists an open

question of best practices for private key management at the internal app level. This

implicates privacy, in that loss of control over a private key undermines the privacy

of the records associated with a particular "identity" in the system. We note Clark et

al.'s call for better tools for blockchain key management [45], and envision that such
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a tool might be adapted to improve the MedRec system.

Finally, if our MedRec system was deployed and the medical research mining

scheme proved to be a large success, we could envision soon having many nodes

pinging provider databases with query requests from their successfully mined blocks.

This could create a significant load on certain database servers. In response to this,

the MedRec system could establish a marketplace where an economic block might

limit querying if threatening to rise above a certain threshold or other gatekeeping

functions to place a check on the allowable query execution. Furthermore, a limit

could be set on the number of whitelisted miners, or the frequency at which min-

ers are allowed to retreive their queries.3 This method of distributing mining to a

large network of medical researchers essentially distributes the cost of MedRec net-

work maintenance (as opposed to the alternative of a centrally managed MedRec-like

system, with its own considerable maintenance costs). We remain interested to see

whether the summed investment made by all distributed parties would or would not

exceed the centrally-managed maintenance costs of a comparable system. If systems

like MedRec grew to be public infrastructure services, then the medical researchers'

distributed costs could be modeled as essentially passed on to the taxpayers, due to

the fact that tax payer money often supports medical research.

4

3We also consider the need to keep internal MedRec calls to the provider databases at a minimum,
to avoid similarly overloading these systems.

73



74



Chapter 5

Beyond the Lab

5.1 MedRec in the Context of National Healthcare

Priorities

As mentioned in the introduction, we do not present MedRec as a panacea nor as

the only blockchain-mediated solution that would be needed to achieve our stated

goals of data access, patient-empowerment, interoperability and improved medical

research. In the analysis below, we refer to MedRec by name to suggest how such a

project might address national healthcare priorities, likely as part of a larger suite of

blockchain solutions to which we hope to contribute.

Most importantly, the MedRec model restores comprehensive patient agency over

healthcare information-across providers and treatment sites, empowering citizens

with the data they need to make informed decisions around their care. By giving

patients a long-term, trusted log of their information with data sharing functionality

built-in, the MedRec system directly addresses the ONC Interoperability Roadmap's

first Outcome: "Individuals have access to longitudinal electronic health information,

can contribute to the information, and can direct it to any electronic location" [31].

As envisioned by the Precision Medicine Initiative (PMI), the MedRec patient record
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could grow to reflect the many facets of health data, by accepting not just physician

data, but also data from the patient's Fitbit, Apple HealthKit, 23andMe profile, and

more. Patients can build a holistic record of their medical data and authorize others

for viewership, such as physicians providing a second opinion or family members and

care guardians.

MedRec data could also feed into emerging technologies for predictive analytics,

allowing patients to learn from their family histories, past care and conditions to bet-

ter prepare for healthcare needs in the future. By employing open APIs like MedRec,

machine learning and data analysis layers could be added to repositories of healthcare

data to enable a true "learning health system" [31]. Due to the linked interoperabil-

ity between provider databases in a MedRec network, better-unified access to data

could facilitate a wide range of trend discovery. MedRec's modularity could support

an additional analytics layer for disease surveillance and epidemiological monitoring,

physician alerts if patients repeatedly fill and abuse prescription access (e.g. part

of the national problem with narcotics abuse [46]), personal dashboards that show

patients emerging trends in their own health, etc. In this respect, the MedRec model

enables a service-oriented architecture (SOA) as outlined in the ONC Roadmap's

"Secure, Standard Services" [31].

MedRec's community model, where medical researchers (and potentially other reg-

ulated stakeholders in the healthcare industry) can obtain insightful, population-wide

data on medical treatment offers an unprecedented opportunity to achieve goals for

precision medicine and evidence-based research. Such a system would facilitate the

Patient-Centered Outcomes Research Institute's goals for comparative clinical effec-

tiveness research [47], by linking the patients within a particular clinical cohort with

both granular and long-term medical history, thus enabling a better understanding of

patient outcomes across treatment groups and over time. By leveraging a data orches-

tration system like MedRec where the records would already be gathered, organized

76



and available for analysis, this type of research can be achieved with significantly less

overhead than traditional research trials, which often require expensive recruitment

procedures and in-person access to patients. This ability to carry out longitudinal

studies on MedRec user cohorts directly addresses both the ONC Interoperability

Roadmap stated Outcomes [31] and the PMI's goal for a national research cohort

[48].

The MedRec smart contract structure serves as one model for a "Health Care Di-

rectory and Resource Location," secured with public key cryptography and enabled

with crucial properties of provenance and data integrity. This blockchain directory

model supports the ability to "grow and change dramatically throughout its lifetime-

adding new participants and changing organizational relationships" through state-

ful updates to the smart contracts [31]. A blockchain log could provide clarity for

communicating authorization "across the Health IT ecosystem," and an audit log for

subsequent inquiries into use of such permissions and access patterns. With this func-

tionality, the system would serve as a "Consistent Representation of Authorization to

Access Electronic Health Information" [31].

Fundamentally, the MedRec project strives to enable Precision Medicine and holis-

tic understanding of patient medical status without creating a centralized repository

of data. Centrally-stored data has often proved disastrous in our modern age of cy-

berattacks and data leaks. Therefore, MedRec leverages a decentralized, blockchain

architecture to enable local, separate storage but coordinated viewing of the data

from the patient perspective. We believe MedRec fits squarely in the White House's

goals for the ONC to "support the development of interoperability standards and re-

quirements that address privacy and enable secure exchange of data across systems"

[49]. Because MedRec is a system of open APIs, we hope the project will integrate

with other key layers in the healthcare IT stack of the future. 1

'Chapter 5 is drawn from our previously published techincal publications [11], as explained in
footnote 1.
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Chapter 6

Future Work

6.1 Taking MedRec Forward

As we consider what it would take to bring MedRec from a research prototype to a

meaningful tool for enterprise, government and patient use, we have identified several

thrusts of future work. First, one would need to continue the process of actively en-

gaging with healthcare stakeholders across the industry, from hospitals and provider

offices, to pharmaceutical companies, to insurance companies, to healthcare startups,

U.S. Government institutions and more. Throughout the summer and fall of 2016,

we gathered functionality requirements and additional use-case scenarios from the

Department of Veterans Affairs, Kaiser Permanente, Merck & Co., Beth Israel Dea-

coness Medical Center, Deloitte and others to inform future redesigns of the MedRec

system.

Though the MedRec backend is already designed to be flexible with multiple

database architectures, an analysis of how to meet custom integration requirements

for InterSystems Cache technology 1 would also be a worthy next step. Our goal was

to make MedRec an interoperability layer that can be seamlessly added to existing

'As mentioned above, InterSystems technology underpins many hospital backends across the
nation and supports EPIC's record management platform.
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EPIC, Cerner, et cetera deployments, building on the open standards development

collaboration "Sync for Science" between the NIH and ONC [50].

Due to the hardforks in Ethereum since our adoption of the codebase in November

2015, MedRec's current Ethereum clients are out of date. Though the MedRec system

can run on our internal prototype VMs, it would be necessary to migrate the project

to the latest version of Ethereum for the code to work reliably going forward. We are

in a sense waiting for a better blockchain to take the project forward-either a more

stable version of Ethereum than what is currently available (as of writing, January

2016) or a side-chain technology (like the Lightning Network [51]) that would allow us

to re-architect the project on Bitcoin's scripting language, but without bloating the

Bitcoin blockchain. Another option might be to pursue integration with Hyperledger

[52], a rapidly growing consortium of open-source blockchain technologies. We note

the collaboration between Hyperledger, IBM and Walmart on a proposed supply-

chain application of blockchain [53] as a project that may have worthwhile learnings

for a future MedRec implementation at scale.

To map MedRec's position in the world of blockchains, we use the axes recently

posited by Neha Narula as a blockchain taxonomy in Figure 6-1 below: from closed

to open systems, and from systems that track exchange of data to exchange of value.

Interestingly, the chart was originally empty in the Open and Data quadrant, raising

a question of whether such a blockchain technology could remain truly open without

having a closed-loop economic incentive system (i.e. a cryptocurrency). We place

MedRec in this quadrant primarily to provoke thought on which quadrant it ought

to travel to next, should the current limitations of being an Open and Data system

prove infeasible in the medical context. Going forward, the MedRec project might

take two trajectories: go left into the Closed and Data, regulated domain as more of a

distributed ledger system than a blockchain; go up into the Open and Value quadrant

with the advent of a better privacy preserving tool like ZeroCash [40] or Enigma [41].
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Figure 6-1: This quadrant chart attempts to place existing blockchain projects, like

Bitcoin, Ethereum, HyperLedger, etc. into a taxonomy of Value vs Data, Open vs

Closed. Credit to Neha Narula for the original axes [3].

6.2 Extensibility Beyond Healthcare

Though much of the use-case analysis in the MedRec project has focused on healthcare

applications, we identify certain extensible elements of the MedRec codebase that

could be used for other record-keeping purposes. In its simplest form, MedRec is an

access and permission log, and a directory look-up tool for pointers to off-blockchain

data. This immediately suggests applicability in scenarios when a certain category of

data, of interest to a particular individual or research question, is naturally scattered

across many disparate sources: land registries, domain names, educational records,
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etc.2 In addition, MedRec may offer a new model for social networks, where smart

contracts define relationships between users, and users can retain agency over the

management of their data (pictures, posts, etc.) via pointer registries mapped to

their permissioning preferences. The distributed users, rather than a set of centralized

corporate servers, could act as the stewards and messengers for this data.

2Many of these opportunities for application of blockchain tech are currently being explored by
for-profit companies. The venture capital landscape around blockchain tech has flourished in recent
years.
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Chapter 7

Conclusion

7.1 Thesis Contributions

This thesis describes a technical design architecture, the codebase behind an early re-

search prototype and the patient-centered approach that motivates the work. Through

the course of the MedRec project, we have published our technical approach in IEEE,

documented our social and technical analysis of the project in an ONC-selected

whitepaper, and successfully tested the prototype with Beth Israel Deaconess Medical

Center in Boston.

7.2 Reflections and Impact

The MedRec prototype provides a proof-of-concept backend system that demonstrates

how principles of decentralization and blockchain architectures can contribute to se-

cure, interoperable EHR systems. Using Ethereum smart contracts to orchestrate a

content-access system across separate storage and provider sites, the MedRec authen-

tication log governs medical record access while providing patients with comprehen-

sive record review, care auditability and data sharing. We demonstrate an innovative

approach for integrating with providers' existing systems, prioritizing open APIs and
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network structure transparency. This approach was validated with an on-site pilot at

Beth Israel Deaconess Medical Center. We look forward to sharing the ideas behind

the MedRec project infrastructure, following the ONC's call for policy and technical

components of an interoperable health IT stack. The MedRec project offers a new

perspective and toolset for how we can empower patients to engage in and track the

details of their healthcare, thus restoring personal agency over personal data.
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Appendix A

Publications, Presentations, Patent

and Awards

A.1 Publications

In order of publication:

* Azaria, Asaph, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. "MedRec:

Using Blockchain for Medical Data Access and Permission Management." In

Open and Big Data (OBD), International Conference on, pp. 25-30. IEEE,

2016.

" Ariel Ekblaw, Asaf Azaria, Thiago Vieira, Andrew Lippman. "MedRec: Medical

Data Management on the Blockchain". PubPub, (2016). fhttps://www.pubpub.

org/pub/medrec] version: 57e013615dbf3f3300152554

" Ekblaw, Ariel, Asaph Azaria, John D. Halamka, and Andrew Lippman. "A Case

Study for Blockchain in Healthcare: 'MedRec' prototype for electronic health

records and medical research data." Whitepaper. Office of the National Coor-

dinator for Health Information Technology, Department of Health and Human
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Services (2016).

A.2 Presentations

" 2nd International Conference on Open and Big Data. Vienna, Austria. August

2016.

* Life Sciences and Healthcare Blockchain Workshop, MIT Media Lab. Cam-

bridge, Massachusetts. September 2016.

" HUBWeek A the Federal Reserve Bank of Boston. Boston, Massachusetts.

September 2016.

" ONC/NIST Use of Blockchain for Healthcare and Research Symposium. Gaithers-

burg, Maryland. September 2016.

A.3 Patent

* Blockchain System for Management of Electronic Medical Records. Provisional.

Receipt Date 18 May 2016.

A.4 Award

e MedRec whitepaper selected a "Blockchain Challenge Winner" by U.S. Depart-

ment of Health and Human Services Office of the National Coordinator for

Health Information Technology.
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MIT Media Lab - MEDREC
Test Deployment with Beth Israel Deaconess
Medical Center

Technology: MedRec uses blockchain smart contracts to create a decentralized content-
management system for EMRs, across separate storage instances and providers. The MedRec
authentication log governs medical record access, while providing means for auditability and
data sharing. The MedRec blockchain stores data pointers, permission rights and access logs,
while sensitive EMR content remains stored in existing provider databases. A web app and
backend APIs orchestrate communication between the user, blockchain and provider
databases. For a full description, see pubpub.org/pub/medrec.

Parties:

MIT Media Lab student developers-Ariel Ekblaw and Asaf Azaria

Beth Israel Deaconess Medical Center-Dr. Lawrence Markson, Mike Yamamoto, Venkat

Jegadessan, Steve Diorio, Steve Cinella, Ayad Shammout

Proposed scope for this deployment:

" Two instances with SQL Server 2014 (on BID test systems, not prod) populated with
de-identified medication data. BID supplies SQL Server login
(username/password). Minimum: Read access; Write access could be useful for
record updating scenarios, if able to be securely given and separated from prod
systems.

" MedRec "Database Gatekeeper" utility tests record exchange between the two
instances, via blockchain permissioning protocol. The Software will be supplied on
MIT VMware VMs, running on an MIT-supplied machine, to be connected to the
isolated network set up at BIDMC Lab.

" Goal: Test end-to-end flow from batch pickup of existing records, into the sample
"clinical data warehouses," successful pointer posting to blockchain, permission
update, and retrieval by second party (aka second data warehouse instance). As
time permits, test entry of individual new record and repeat end-to-end flow.

" Includes test of locally deployed web app UI (no external internet connection)
" BIDMC Data preparation: anonymized IDs will replace existing patient,

physician/prescriber and record IDs, while keeping the logic between linked or
repeated entries. All PHI columns (Name, Age, address, etc) will be removed.
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Timeline:

Two or three onsite appointments, week of August 15th. Infrastructure group will be
present for initial setup and coordination.

Preparation Step:

* Defining data use-cases; extracting medication data with interesting use-case
features (Dr. Markson & Ariel Ekblaw)

Security Steps:

* If a second day of integration testing is required, the MIT laptop with the provided
VMs will be left overnight within the closed, secured testing area.

" Upon completion of the integration testing, the MedRec project VMs will be deleted
to ensure that no data leaves the boundary of the BIDMC network.

MedRec System Diagram:

Single node:

Physician

+

+
Patient

: download
V

4- 4-

* Private Blockchain
smart contracts

- Governs access &

permissions

* Mined by
researchers

Modifications for this scope:

* Provider DB will be prefilled with data of interest (need not go through the manual
physician entry step aka top left corner, unless additional testing is desired)

" Patient retrieval of data (bottom row) will be modeled by the second SQL instance,
testing receipt of data after permission updates.

2
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MIT Media Lab - MEDREC

Test Deployment with Beth Israel Deaconess
Medical Center

Designing the Test Integration Dataset

Preliminary steps:

" Remove any PH1 information
* Replace actual Patient/Prescriber keys with new, random to us, numeric IDs
" Replace actual record keys with new, random to us, numeric IDs
* Maintain the logic of connected records (i.e. a patient ID, even though now represented by a

new random number, should be repeated on any records that correlate to that same patient)
" Additional privacy consideration #1: If any patients are on particularly rare medications, where it

might be possible to re-identify just based on medication name, we should likely exclude these
records as well. So if the Medication dataset could be kept to patients that use relatively
common prescriptions, that would help as an additional privacy check.

" Additional privacy consideration #2: Being able to test the code on a free-form text field would

be helpful, but if we do keep this type of field, we should be careful that none of the material
written in by the doctor would uniquely identify the patient.

" Split the selected data among the two SQL Server instances, preferably without repeats, to
simulate two different provider backend repositories

Desired Dataset Features:

o Patients with a single medication record, single prescriber (basic test)
o Patients with two or more medications under the same prescriber (to test multiple med

records associated with the same patient-provider relationship contract)
o Patients with multiple medications, but under different prescribers (to test association

of a single patient's summary contract with two or more distinct patient-provider
relationship contracts, with at least one real med record in each).

o Patients where we split their medication records across the two SQL Server instances, to
simulate them having seen two different prescribers at two different institutions. So this
example would feature patient A having at least one unique medication record in DB #1
and at least one different, unique medication record in DB #2 (with a different
prescriber).

o Patients with updated med records, where certain fields, like dosage, may change but
the patient-prescriber relationship and medication is the same

o Patients with updated med records, where the prescriber changed (to simulate change
of care role) but medication remained the same, with or without other dosage changes.



[Here, we'll need to see if the unique record ID is changed, suggesting a net-new record

or kept, suggested logic of just an update. Our backend will likely treat this as net-new,
and potentially lose the context, since it's a new provider and our system contracts are

patient-provider based. Will need to explore further.]

o Beyond the explicitly defined records designed here, could we bring the total up to 100-

200 records over about 6 months for a full dataset? The rest can be semi-randomly

selected, after covering for the specific cases above and meeting the privacy

requirements. A lower total record count is probably fine, depending on whatever is

reasonable for BIDMC!

Columns to keep from CREATE statement:

Period: January - June, will get some records that are discontinued but without a start date (i.e.,

started prior to January)

Add column: Transaction date will tell us the date that the transaction occurred, like timestamp

from audit log ([auditdt] [datetime])

Crossed-through columns from the original list have been removed
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