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Abstract

Strong trends in chemical engineering have led to increased complexity in plant de-
sign and operation, which has driven the demand for improved control techniques
and methodologies. Improved control directly leads to smaller usage of resources,
increased productivity, improved safety, and reduced pollution.

Model predictive control (MPC) is the most advanced control technology widely
practiced in industry. This technology, initially developed in the chemical engineering
field in the 1970s, was a major advance over earlier multivariable control methods
due to its ability to seamlessly handle constraints. However, limitations in industrial
MPC technology spurred significant research over the past two to three decades in
the search of increased capability. For these advancements to be widely implemented
in industry, they must adequately address all of the issues associated with control
design while meeting all of the control system requirements including:

" The controller must be insensitive to uncertainties including disturbances and
unknown parameter values.

" The controlled system must perform well under input, actuator, and state con-
straints.

" The controller should be able to handle a large number of interacting variables
efficiently as well as nonlinear process dynamics.

" The controlled system must be safe, reliable, and easy to maintain in the pres-
ence of system failures/faults.

This thesis presents a framework for addressing these problems in a unified manner.
Uncertainties and constraints are handled by extending current state-of-the-art MPC
methods to handle probabilistic uncertainty descriptions for the unknown parameters
and disturbances. Sensor and actuator failures (at the regulatory layer) are handled
using a specific internal model control structure that allows for the regulatory control
layer to perform optimally whenever one or more controllers is taken offline due to fail-
ures. Non-obvious faults, that may lead to catastrophic system failure if not detected
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early, are handled using a model-based active fault diagnosis method, which is also
able to cope with constraints and uncertainties. These approaches are demonstrated
on industrially relevant examples including crystallization and bioreactor processes.

Thesis Supervisor: Richard D. Braatz
Title: Edward R. Gilliland Professor in Chemical Engineering

Thesis Supervisor: Michael S. Strano
Title: Carbon P. Dubbs Professor in Chemical Engineering

4

W .. !M I WN I I M -- _ "Mimi pon"'s _ __ __ - __ .7 '_ "'_ - P I I I~, - - 1-11 11-111-.111.11'11111 01101,1.111,1 . I qvp"Fol IRMI",



Acknowledgments

I am extremely grateful for my Ph.D. advisors Richard Braatz and Michael Strano for

their continued support and guidance. I also thank them for allowing me the freedom

to explore many different research topics in addition to exposing me to a number of

interesting projects in the fields of modeling, simulation, and control. In particular, I

spent countless hours discussing a plethora of topics with my main advisor Professor

Richard Braatz. He not only taught me about many facets of chemical engineering and

control theory, but also how to be a better communicator, presenter, and researcher.

We often discussed the broader areas of academia, industry, and life from which I

learned so much and will be forever grateful.

I would also like to thank my thesis committee members, Bassam Alfeeli, George

Stephanopoulos, and William Tisdale, for their insightful comments and encourage-

ment. They pushed me to pursue my research interests and often suggested ways to

frame my work so that it was accessible to a chemical engineering audience.

I thoroughly enjoyed the many courses that I took during my graduate studies. I

thank Martin Bazant and William Deen for teaching me transport phenomena, Arup

Chakraborty and Brad Olsen for classical and statistical thermodynamics, Paul Bar-

ton and Joe Scott for numerical methods, George Stephanopoulos and Richard Braatz

for systems engineering and control theory, Jeffrey Shapiro and Alan Oppenheim for

communication and signal processing, and Peter Hagelstein for signals and systems.

I would also like to thank Richard Braatz, Elizabeth Lee, and James Swan for their

support, advice, and patience while I was a teaching assistant for the graduate nu-

merical methods course. Without their help, I would not have won the School of

Engineering Graduate Student Award for Extraordinary Teaching and Mentoring.

Thanks to the Braatz group members for their help and support over the past

five years with special thanks to those I worked with personally including Lucas

Foguth, Eranda Harinath, Amos Lu, Ali Mesbah, Mark Molaro, and Xiaoxiang Zhu.

I thank Darin Bellisario and Youngwoo Sun (from the Strano group) for involving me

in their work on modeling carbon nanotube solar cells and photoconductive atomic

5



force microscopy, respectively, which were interesting projects not discussed in this

thesis. Thanks to the many collaborators throughout the globe that I have worked

with during my thesis: Rolf Findeisen, Sergio Lucia, Roberto Marseglia, Tillmann

Miihlpfordt, Davide Raimondo, Stefan Strief, Marcello Torchio, and Mengling Wang.

Basketball has always been one of my favorite pastimes. I would like to thank all of

the members of the MIT basketball community for the many wonderful pickup games

over the past few years. I will fondly remember my teammates on the Chemical

Engineering Basketball Team, and I cannot thank them enough for their support and

drive during our surprise run to the intramural finals.

I gratefully acknowledge the funding agencies that have supported my work: the

National Science Foundation Graduate Research Fellowship, the Novartis-MIT Center

for Continuous Manufacturing, and the Defense Advanced Research Project Agency.

Lastly, I would like to thank my entire family for being a constant source of moral

support. My biological parents Diana Raley and Scott Paulson and my stepfather

Michael Raley have been a source of love, wisdom, and encouragement since the

day I was born, which has shaped the man I am today in more ways than I will

ever know. They also laid the foundation for my education, which made this work

possible. Words cannot express my gratitude for them. I would also like to offer

my most heartfelt thanks and gratitude to my wife You Peng who has directly and

indirectly contributed to this thesis in so many ways that I cannot even begin to

enumerate. To my unborn child, I dedicate this thesis to you. Your mother and I

already love you so much and I hope you get a chance to read this work in the future.

6



Contents

I Introduction 22

1 Introduction 23

II Uncertainty Quantification and Propagation 31

2 Control of Self-assembly in Micro- and Nano-scale Systems 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Promising Research Directions . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Outlook for Future Research . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Importance of Uncertainty: An Illustration . . . . . . . . . . . . . . . 61

3 Polynomial Chaos Framework 69

3.1 Introduction to Probability Theory . . . . . . . . . . . . . . . . . . . 69

3.2 Quantification of Uncertainty from Data . . . . . . . . . . . . . . . . 72

3.3 Power Series Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Wiener-Hermite Polynomial Chaos . . . . . . . . . . . . . . . . . . . 81

3.5 Generalized Polynomial Chaos . . . . . . . . . . . . . . . . . . . . . . 88

III Constrained Predictive Control of Large-scale Systems 91

4 Optimization Methods for Fast Model Predictive Control 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7



4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Cases of Model Predictive Control . . . . . . . . . . . . . . . . . . . . 99

4.4 Optimization Methods for Quadratic Programming . . . . . . . . . . 105

4.5 Sparse and Condensed Formulations of MPC . . . . . . . . . . . . . . 111

4.6 Explicit M PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Example: Quadratic Dynamic Matrix Control . . . . . . . . . . . . . 121

4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Plant-wide Control for Continuous Pharmaceutical Manufacturing 133

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Process Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Control-relevant Process Modeling . . . . . . . . . . . . . . . . . . . . 140

5.4 Application to Integrated Continuous Pharmaceutical Pilot Plant . . 146

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

IV Stochastic Model Predictive Control 156

6 Fast Model Predictive Control of High-dimensional Systems with

Probabilistic Uncertainty 157

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Can Parameter Uncertainty Lead to Instability in MPC? . . . . . . . 160

6.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4 Galerkin Projection for DAE Systems . . . . . . . . . . . . . . . . . . 164

6.5 Fast MPC with Probabilistic Parameter Uncertainty . . . . . . . . . . 168

6.6 Example: End-to-end Continuous Pharmaceutical Manufacturing . . 173

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Optimal Risk Allocation for Disturbance Rejection 177

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.3 Feedback Parametrization of the Controller . . . . . . . . . . . . . . . 182

8

R 11 1 .1 1 . .1- INNEWPIMM""



7.4

7.5

7.6

7.7

Joint State Chance Constraints . . . . . . . . . . . . . . .

Optimizing Feedback and Risk Allocation Simultaneously .

Example: Continuous Bioreactor Process . . . . . . . . . .

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Stability in Stochastic Receding Horizon Control

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3 Deterministic Surrogate . . . . . . . . . . . . . . . . . . . . . . . .

8.4 Tractable Stochastic Model Predictive Control Algorithm . . . . . .

8.5 Stability Analysis for the Unconstrained Case . . . . . . . . . . . .

8.6 Example: Van de Vusse Reactor . . . . . . . . . . . . . . . . . . . .

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Improved Output Feedback with Bayesian Learning

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.2 Failure of Chance Constraints in Receding Horizon Control . . . . .

9.3 Recursive Bayesian Estimation using Polynomial Chaos . . . . . . .

9.4 Output Feedback MPC with Bayesian Learning . . . . . . . . . . .

9.5 Example: Reactors in Series . . . . . . . . . . . . . . . . . . . . . .

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V Fault/Failure Tolerant Process Control

10 Multi-objective Failure Tolerant Controller Design

10.1 Introduction . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .

10.2 Systematic Design of Multi-objective Controllers . . . . . . . . . . .

10.3 Design of Failure-tolerant Controllers . . . . . . . . . . . . . . . . .

10.4 Design of Multi-objective Controllers for Multi-loop Systems . . . .

10.5 H2 -optimal Controllers for SISO Systems . . . . . . . . . . . . . . .

10.6 Example: Continuous Thin-film Dryer . . . . . . . . . . . . . . . .

9

. . . 185

. . . 188

. . . 193

. . . 197

199

199

201

204

206

211

218

220

223

223

225

230

234

235

236

239

241

241

243

250

253

257

260



10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Active Fault Diagnosis for Nonlinear Systems

11.1 Introduction . . . . . . . . . . . . . . . . . . .

11.2

11.3

11.4

11.5

11.6

Problem Formulation . . . . . . . . . . .

Convex Relaxations . . . . . . . . . . . .

Optimal Robust Separating Input . . . .

Example: Two-tank Benchmark Problem

Conclusions . . . . . . . . . . . . . . . .

275

. . . . 275

. . . . 277

. . . . 281

. . . . 283

. . . . 287

. . . . 292

VI Conclusions and Suggestions for Future Work

12 Conclusions and Future Outlook

12.1 Summary of Contributions . . . . . . . . . . . . . . . . . .

12.2 Suggestions for Future Work . . . . . . . . . . . . . . . . .

293

295

295

297

10

. 267



List of Figures

1-1 Block diagram illustrating the structure of modern "advanced" model-

based controllers where u* are control inputs calculated as the opti-

mizers of the optimal control probleml, y are the measured outputs of

the process, n is a measurement error (e.g., noise or bias), and r is the

reference value the optimizer (e.g., the setpoint for the outputs y) . . 25

1-2 General approach for the combining first-principles models with mea-

sured data to develop an accurate model for design and control. . . . 26

1-3 Illustration of the layered control structure typically utilized in plant-

wide control. The regulatory layer typically connects to the physical

hardware in the plant and should be designed to reject fast disturbances

in the process. The supervisory layer commonly utlizes dynamic con-

strained optimization (such as MPC) to drive the process to target

values. These target values are often chosen by a real time optimizer

that optimizes the economics based on a steady-state model. . . . . . 30

2-1 Active self-assembly of patchy particles enables bottom-up construc-

tion of sophisticated structures from smaller particles. Red and green

regions are surface patches positioned on particles to govern directional

interactions between particles and particle specificity. The surface

patches resemble the arrangements of bonds around atoms. Reprinted

by permission from Macmillan Publishers Ltd: Nature [117], Copyright

2012. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 41

11



2-2 A schematic of a hypothetical system of hexagonal prisms assembled

from DNA-functionalized nanoparticles, which represents a type of

active self-assembly. Double-stranded DNA is attached to the gold

nanoparticles on the surface. A small strand of self-complementary

single-stranded DNA acts as a sticky patch at the end of the DNA

linker to which the DNA on other nanoparticles is attached. Reprinted

by permission from Macmillan Publishers Ltd: Nature Materials [841,

Copyright 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-3 Active self-assembly of millimeter-scale wires using nano-scale trans-

port. Surface-adhered kinesin motor proteins enable transport of bi-

otinylated microtubules, which form microtubule bundles due to cross-

linkage of streptavidin. Reprinted (adapted) with permission from

[111]. Copyright 2011 American Chemical Society. . . . . . . . . . . . 43

2-4 Illustration of the experimental apparatus used drive the assembly of

paramagnetic colloids via toggling the external magnetic field. A pair

of Helmholtz coils are used to generate the magnetic field (whose field

lines are normal to the gravitational field) and a DSLR camera was used

to generate images. The suspension is deposited on a glass slide with a

coverslip so that the colloids can only move in the horizontal plane per-

pendicular to gravity due to their strong sedimentation. Reproduced

from [243] with permission from The Royal Society of Chemistry. . . 44

12

11"RI -1WRIMMI I Pq WPM"



2-5 The time evolution of a suspension of paramagnetic colloid particles

(dispersed in ultra-pure water with a volume fraction of 0.5%) under

the influence of a toggled magnetic field that is turned on and off at

various frequencies (denoted toggling frequency). The magnetic field

strength is 1500 A/m. Each image is 3.2 x 2.1 mm in dimension.

All suspensions appear to reach their final/slowly evolving state after

~2000 seconds. There is a clear region near 0.66 Hz in which the sus-

pension condenses into large crystalline domains (favored state). At

high toggling frequencies (;> 5 Hz), the suspension remains trapped in

the unfavorable entangled/disordered state. At 0.33 Hz, the kinetics of

chain-breaking appear to slow significantly so that it will take a long

time to reach the favored state of large crystalline domains. This repre-

sents an open-loop control policy for magnetic toggling frequency that

was computed heuristically. Reproduced from [2431 with permission

from The Royal Society of Chemistry. . . . . . . . . . . . . . . . . . . 46

2-6 Open-loop control policy used to drive the system to a desired arrange-

ment of particles. Please refer to the text in Section 2.3 for detailed

descriptions of this figure and the underlying optimization problems

that must be solved to derive the control law. (a) Dynamic path that

restricts the system to progressively smaller subsets of the system phase

space (denoted Q' for the ith stage). (b) A one-dimensional example

of the phase space restriction. Reprinted (adapted) with permission

from [234]. Copyright 2010 American Chemical Society. . . . . . . . . 49

13



2-7 Experimental demonstration that clathrin self-assembly is robust to

changes in pH due to weak specific interactions. This methodology

can be useful for designing open-loop control policies to be more ro-

bust. (a and c) Cryo transmission electron microscopy (TEM) image

of clathrin self-assembly at pH = 6.0 after 20 minutes and 4 days. (b

and d) Cryo TEM image of clathrin self-assembly at pH = 5.1 after 20

minutes and 4 days. Representative spherical cages and disordered ag-

gregates of clathrin are outlined in blue and red, respectively. (e) Dot

plot showing the major axis distribution of ellipses fit to the clarthrin

assemblies at pH = 6.0 (circles) and pH = 5.1 (triangles) after 20 min-

utes (open) and 4 days (filled). Solid lines represent the mean value

(n = 63, 169, 64, and 54). Reproduced from [2241 with permission

from The Royal Society of Chemistry. . . . . . . . . . . . . . . . . . . 52

2-8 Image of a microfluidic platform that uses evaporation to induce nu-

cleation in microliter droplets (see [245, 246]). The evaporation rate in

each droplet is specified by the partial pressure of water at the droplet

surface, the area and length of the channel that connects the droplet to

external air, and the humidity of the external air. This apparatus can

be used for open- or closed-loop control based on manipulation of the

evaporation rate. Reprinted from [250] with permission from Elsevier. 54

2-9 Comparison of closed-loop (feedback) and open-loop control policies

for microliter droplet crystallization for the system in Fig. 2-8. The

output is the number of crystals at the final time in the simulation

while the manipulated variable (input) is the volume of the droplet.

A proportional controller was used to incorporate feedback with the

desired number of crystals (i.e., setpoint) set to 1. The open-loop

input trajectory was taken to be the average of the input trajectories

for the 1000 closed-loop simulations. Other intuitive open-loop input

trajectories (e.g., those corresponding to fastest/slowest induction time

in the 1000 simulations) resulted in even worse performance. . . . . . 55

14



2-10 Experimental apparatus used for closed-loop control of colloidal as-

sembly. (a) Experimental setup of gold film quadrupole electrodes

on a glass slide microscope slide and an o-ring container that houses

an aqueous dispersion of silica colloidal particles. (b) Example image

taken using optical microscopy used as a sensor for system measure-

ments. Theoretical Cartesian coordinate-based potential energy wells

were computed, using the electrode center as a reference, at (c) V = 4

V, w = 1 MHz and (d) V = 4 V, w = 0.1 MHz. Reprinted (adapted)

from [118] with permission from John Wiley and Sons. . . . . . . . . 56

2-11 Feedback controlled self-assembly of a colloidal crystal containing 130

particles using the control law in (2.8). Optical microscopy measure-

ments with (C6 )sp equal to (a) 2, (b) 3, (c) 4, (d) 5, and (e) 6. (f)

Feedback-controlled self-assembly (0 to 360 seconds) and disassembly

(480-720 seconds). The top pane shows (C6 )SP (solid blue line) and

(C6 )Pv (blue points) versus time. The bottom pane shows the manip-

ulated variables voltage V (green line) and frequency w (orange line)

versus time computed using (2.8). Reprinted (adapted) from [118] with

permission from John Wiley and Sons. . . . . . . . . . . . . . . . . . 57

2-12 Optimal temperature profile for the crystallizer problem in Section 2.5.

The temperature trajectory was approximated with a piecewise linear

function with 8 discretization intervals. Also, an industrially common

two-stage linear cooling profile is shown for comparison. . . . . . . . . 66

2-13 Nucleated to seed mass ratio distributions for the optimal temperature

profile. The distribution at the final time has significant variation

due to uncertainty in the nucleation and growth parameters, which

indicates that this "optimal" profile is not robust to uncertainty. . . . 66

15



2-14 Nucleated to seed mass ratio distributions for the two-stage linear cool-

ing profile (commonly type of profile implemented in industry). Al-

though the objective is 15% higher than the optimal profile when the

system is at nominal parameter values, the profile has significantly less

variation due to parametric uncertainties. . . . . . . . . . . . . . . . . 67

3-1 Basic description of the polynomial chaos framework and how to sys-

tematically select the order to achieve a desired level of accuracy. . . 90

4-1 Critical regions Hi for a randomly generated example. . . . . . . . . . 120

4-2 Solution to (4.40) for a unit step in the input. The output values,

and thus step response coefficients, are directly computable from the

E(1/2, t) line on this plot. . . . . . . . . . . . . . . . . . . . . . . . . 129

4-3 Closed-loop response of the hyperbolic PDE system output. See Sec-

tion 4.7 for the details of the simulation. . . . . . . . . . . . . . . . . 129

4-4 Input profile, computed using the QDMC algorithm, supplied to the

hyperbolic PDE system and corresponds to the output profile shown

in Figure 4-3. See Section 4.7 for the details of the simulation. . . . . 130

4-5 Comparison of CPU times (of a single optimization problem averged

over 20 runs) versus number of states in the true system for a naive im-

plementation of sparse state-space MPC and QDMC. The algorithms

were coded in Matlab@ and run on a laptop PC (Intel i7, 2.7 GHz, 8

GB RA M ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-1 Integrated continuous pharmaceutical manufacturing pilot plant equipped

with a stabilizing control layer. R reactor, S separator, C crystallizer,

M mixer, W washing/filtering unit, D dilution tank, E extruder, MD

molding unit, P pump, CC concentration control, FC flow control, LC

level control, SP setpoint. . . . . . . . . . . . . . . . . . . . . . . . . 137

5-2 Synthetic reactions from intermediate 1 to active pharmaceutical in-

gredient 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

16

....... ......



5-3 Dynamic sensitivity analysis of the critical quality attributes with re-

spect to the potential critical process parameters (the streams are or-

dered as in Figure 5-1). . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5-4 Validation of the identified and linearized models with respect to an

independent data set generated using the plant simulator . . . . . . . 144

5-5 Illustration of the receding-horizon implementation of the plant-wide

QDM C system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5-6 Closed-loop control of the ICM pilot plant with the plant-wide MPC

and regulatory control systems in the presence of parametric uncertain-

ties in the intermediate and API synthesis reaction kinetics (reactors

R1 and R2 in Figure 5-1). . . . . . . . . . . . . . . . . . . . . . . . . 150

5-7 Closed-loop control of the ICM pilot plant using the plant-wide MPC

and regulatory control systems in the presence of persistence distur-

bance in the filtration units (filter units W1 and W2 in Figure 5-1). 152

5-8 Closed-loop control of the ICM pilot plant using the plant-wide MPC

and regulatory control systems in the presence of temporary distur-

bance in the purity level of the intermediate compound 1 (stream 1 in

Figure 5-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5-9 Dynamic response of the ICM pilot plant to a step increase in the

production rate. The pilot plant is in closed-loop operation with the

plant-wide MPC and regulatory control systems. . . . . . . . . . . . . 154

6-1 Illustration that LQG optimal controller does not provide guaranteed

stability margins when there is process gain uncertainty. The output

of interest is y(t) = xi(t). . . . . . . . . . . . . . . . . . . . . . . . . . 162

6-2 Dynamic response of production rate (normalized) for 200 closed-loop

simulations of a setpoint change in the production rate. . . . . . . . . 174

6-3 Dynamic response of API dosage (normalized) for 200 closed-loop sim-

ulations of a setpoint change in the production rate. . . . . . . . . . . 175

17



6-4 Histograms of the API dosage (normalized) at various times based on

200 closed-loop simulations of a setpoint change in the production rate. 175

7-1 Probability distributions of butanol at process times 1, 10, 20, 30, and

40 hr; the black dashed line shows the setpoint. A 10% change in the

butanol setpoint is applied at time 0 hr. . . . . . . . . . . . . . . . . 197

7-2 Joint probability distribution of acetate and butyrate at process time

1 hr; the black dashed lines show the bounds of the state constraints. 198

8-1 Histograms of x, at different times obtained from 100 closed-loop sim-

ulations of the receding-horizon SMPC (blue) and MPC (red). The

proposed SMPC approach leads to smaller mean and variance of x1 in

the presence of probabilistic uncertainties and process noise. . . . . . 220

8-2 Time profiles of X2 obtained from 100 closed-loop simulations of the

proposed SMPC approach and nominal MPC. The red-dashed line rep-

resents the state constraint. Nominal MPC results in violation of the

constraint in 46% of the cases. . . . . . . . . . . . . . . . . . . . . . . 221

9-1 Cascade of two CSTRs with reaction A -+ B -+ C and nonadiabatic

flash with purge and recycle, e.g., [2541. . . . . . . . . . . . . . . . . . 236

9-2 Histograms of PDF (M = 1000) of parameters 91 and 92 for cascaded

CSTRs and flash over time t with 0* = 0* = 2.5 depicted as solid line. 237

9-3 Stochastic MPC inputs (as deviations from steady state) to cascaded

CSTRs and flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9-4 States (as deviations from steady state) of cascaded CSTRs and flash

under inputs from Figure 9-3. Measurements depicted as dots. . . . . 238

10-1 General classical feedback control structure. . . . . . . . . . . . . . . 244

10-2 General control structure for a stable LTI system. . . . . . . . . . . . 245

10-3 Cascade control system. . . . . . . . . . . . . . . . . . . . . . . . . . 255

10-4 Classical parallel cascade structure. . . . . . . . . . . . . . . . . . . . 268

10-5 Coordinated control system. . . . . . . . . . . . . . . . . . . . . . . . 269

18

PROR19 11 1 - -



10-6 Dynamic behavior of the single-loop control system for a step change

in the reference r, the measured load disturbance 1m, the measured

output disturbance di, and the unmeasured output disturbance d" at

t = 0, 150, 200, and 250 s, respectively. . . . . . . . . . . . . . . . . . 270

10-7 Dynamic behavior of the single-loop control system during various fail-

ures in the sensors of the measurable variables for a step change in the

reference r, the measured load disturbance l, the measured output

disturbance din, and the unmeasured output disturbance d, at t = 0,

150, 200, and 250 s, respectively . . . . . . . . . . . . . . . . . . . . . 271

10-8 Dynamic behavior of the series and parallel control systems for a step

change in the reference r, the unmeasured output disturbance in the

primary loop di, the measured output disturbance in the primary loop

di, the unmeasured output disturbance in the secondary loop d"2 , the

measured load disturbance in the primary loop l, and the measured

load disturbance in the secondary loop 1m2 at t = 0, 100, 150, 200, 300,

and 350 s, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 272

10-9 Dynamic behavior of the coordinated control system for a step change

in the reference r, the measured load disturbance for the slow input

1m2, the measured load disturbance for the fast input 'mi, the measured

output disturbance d,, the unmeasured output disturbance d,, and the

input setpoint u, at t = 0, 50, 100, 150, 200, and 300 s, respectively. . 273

11-1 Sequential two-tank system. . . . . . . . . . . . . . . . . . . . . . . . 287

11-2 1000 sampled outputs are shown by circles from the nominal and faulty

models when the optimal separating input, calculated from the t-LP

relaxation, is injected. f[OM, f 11, f[ 2], and f[3] are represented by the

blue, red, green, and yellow circles, respectively. The convex hulls

(black lines) in the lower-right panel were drawn for clearer illustration. 291

19



THIS PAGE INTENTIONALLY LEFT BLANK

20

P" M opt 119111, q MIRR"Pwfm



List of Tables

2.1 Parameters used in the batch cooling crystallization optimal control

case study. The parameters and model were adapted from [1711, which

is based on an industrial crystallization of potassium nitrate from water. 65

3.1 Correspondence of Wiener-Askey polynomial chaos basis to the distri-

bution of the random input . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 The effective CPPs used for plant-wide identification and control (the

streams are ordered as in Figure 5-1). . . . . . . . . . . . . . . . . . . 142

6.1 Variance comparisons of API dosage (normalized) at various times

based on 200 closed-loop simulations of a setpoint change in the pro-

duction rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.1 Settings of the SMPC problem in the continuous bioreactor case study. 196

10.1 Multi-objective controllers for the single-loop control system. . . . . . 262

10.2 Multi-objective controllers for the series cascade control system. . 264

10.3 Multi-objective controllers for the parallel cascade control system. 265

10.4 Multi-objective controllers for the coordinated control system. .... 266

11.1 Comparison of the proposed method at different levels of convex re-

laxation. By including the additional constraints in (11.4), t-LP is a

tighter relaxation than LP. Computations performed on a Desktop PC

(Intel i7, 2.7GHz, 8 GB RAM) running Windows 7 (64-bit) using a

single core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

21



Part I

Introduction

22



Chapter 1

Introduction

Issues in Chemical Process Control Most chemical products are manufactured

through a number of interconnected unit operations whose underlying phenomena

mainly involve chemical reaction networks, fluid mechanics, and heat and mass trans-

fer. As the design and operation of chemical plants have become more sophisticated,

the control of chemical processes has become increasingly difficult, which has driven

the demand for improved control techniques and methodologies.

Industrial model predictive control (MPC) is the most advanced control technol-

ogy widely practiced in industry [174]. This technology initially developed in the

chemical engineering field in the 1970s was a major advance over earlier multivari-

able control technologies such as decoupling control, mainly in its ability to explicitly

handle actuator, state, and output constraints. Industrial MPC technology has its

limitations, so significant research has been carried out over the past two to three

decades to develop advanced control methods that have some increased capability

compared to past control methods. For such "advanced control" to be widely imple-

mented in industry, its capabilities must be a major step beyond current industrial

MPC technology. The main reason for the limited application of current "advanced"

control techniques (that have been developed/explored in academia) is that they do

not adequately address all of the requirements of industrial control systems [321:

1) The controlled system must be insensitive to the presence of uncertainties and
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plant/model mismatch including unknown parameter values, neglected dynamics,

unmeasured or poorly modeled disturbances, and sensor noise.

2) The controlled system must perform well under input, actuator, and state con-

straints.

3) The controller should be able to handle a large number of interacting variables

(due to, for example, interrelation of sequential processing steps as a result of

recycles, heat integrations, etc.) and nonlinearity in the process dynamics.

4) The controlled system must be safe, reliable, and easy to maintain in the presence

of system faults.

Methods for designing controllers for single-input single-output (SISO) plants that

are insensitive to plant/model mismatch and unknown disturbances were developed

in the 1940s. The extension to multivariable plants was found to not be as straightfor-

ward. The theory of "optimal" control (e.g., Linear Quadratic Gaussian control) was

developed for multivariable linear systems in the 1960s [61]. Soon after, however, it

was shown that optimal controllers could be very sensitive to plant/model mismatch

(i.e., small perturbations in the model can lead to very poor performance/instability

when applying the controller to the real system) [179, 181].

Most modern advanced control techniques are model based and look to apply

mathematical optimization tools to optimize the performance based on future model

predictions. The necessary components for this framework are (i) a dynamic model,

(ii) an estimator that converts measured process variables into estimates of unmea-

sured states and/or parameters, and (iii) a control algorithm that computes the op-

timal control action based on model predictions from the state estimate for a given

objective function and constraint set [216]. A typical block diagram of this procedure

is shown in Figure 1-1.

Clearly, a model of the process must be developed when using this type of control

strategy. In this case, control performance is strongly related to the accuracy of this

model, which is intimately tied to how the model was developed. The field of system
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Figure 1-1: Block diagram illustrating the structure of modern "advanced" model-
based controllers where u* are control inputs calculated as the optimizers of the
optimal control probleml, y are the measured outputs of the process, n is a measure-
ment error (e.g., noise or bias), and r is the reference value the optimizer (e.g., the
setpoint for the outputs y)

identification uses statistical methods to build models of dynamical systems from

measured data. Most system identification algorithms (including those used in current

industrial control technology) are black-box in nature, meaning that no prior model

is assumed and the model is developed entirely from input-output data. Although

these purely data-based methods are general and relatively easy to implement on

complex systems, data-based methods have many limitations including that (1) most

methods restrict the model to be linear, (2) the methods require a very large amount

of data (that is not always available) to provide any statistical guarantees, and (3) the

resulting uncertainty descriptions are not necessarily accurate or related to physical

quantities (that is, are hard to interpret). On the other hand, white-box models are

developed entirely from first principles meaning the internal structure is assumed to be

known exactly [561. For most chemical process systems, typically there is much first-

principles knowledge of the system when the plant was designed, but all the system

parameters may not be known (for example, a chemical reactor may be known to

operate approximately in plug flow, but with many unknown rate constants).

The combination of data-based and first-principles models is commonly referred to
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as gray-box modeling. A commonly used approach for developing accurate gray-box

models, that has been applied in its simplest form since the early 1970s, is summarized

in Figure 1-2. This approach, which designs experiments so as to maximize model

accuracy, has much lower data requirements than constructing black-box models of

similar accuracy. This approach also has a much higher computational cost, which is

strongly correlated with model complexity. For sufficiently complex systems, develop-

ment and optimization over first-principles models can become quite time-consuming

and expensive, which is likely the reason that the current state-of-the-art plant-wide

system identification algorithms used in industry are geared toward black-box mod-

els developed purely from data. The first part of this thesis discusses ways to the

bridge this gap through the use of first-principles modeling for a variety of complex

chemical systems. Certain mathematical tricks can be used to simplify the models

(including how to characterize and propagate their uncertainty descriptions) needed

in optimization, design, and dynamic control.

ab initio computational chemistry calculations

experimental D- . Uncertainty -ode-

constraints Ex-im descriptionsconstaint Deig throughout+

Is model L_

No accurate?

_ O YES

design constraints &
performance criteria

Integrated
design

Figure 1-2: General approach for the combining first-principles models with measured
data to develop an accurate model for design and control.

The next major part of this thesis aims to develop a control methodology that
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meets all the requirements listed above. Very few industrial control algorithms explic-

itly account for uncertainties during controller design. Instead, robustness is achieved

through tuning a large number of parameters in the controller, which can be quite

cumbersome to select as many iterations may be needed to achieve a desired level

of robustness. Furthermore, it is difficult to systematically trade off robustness and

performance in an optimal manner. Using gray-box models (with rigorously quan-

tified uncertainty descriptions), control formulations, algorithms, and theory can be

developed to provide robustness guarantees with minimal-to-no tuning.

Thesis Overview First, a detailed discussion of the modeling and control of micro-

and nano-scale self-assembling systems is provided. This is done, both to familiarize

the reader with an important family of chemical processes (that includes crystalliza-

tion which is one of the most challenging chemical separation processes to control),

and to illustrate the importance of handling uncertainty within model-based control

methods using a well-known batch crystallization example.

Next, a detailed discussion on uncertainty quantification and of polynomial chaos

methods for uncertainty propagation is provided. The relationship of polynomial

chaos to other commonly used uncertainty propagation methods is also explored and

summarized. Polynomial chaos' ability to handle a wide-range of probability distri-

butions (e.g., Gaussian, uniform, and Beta distributions), as well as its computational

efficiency relative to these other methods, motivates the core of this thesis which is

the pairing of the polynomial chaos framework with MPC.

The state-of-the-art MPC formulations and solution methods are overviewed and

elaborated upon next. The main focus is on the various methods that have been

developed for so-called fast MPC, in which the resulting optimization problem can

be solved most efficiently. Fast MPC methods fall into two categories, mainly the

choice of optimization method and the structure of the formulated MPC optimization

problem. It is shown how the quadratic dynamic matrix control (QDMC) algorithm

(the most commonly applied variant of model-based control applied in the chemical

process industry) relates to the more modern state-space MPC, and the features of
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the algorithm that make it so effective in the chemical process industry are discussed.

These concepts are illustrated on systems that can be modeled by a second-order

hyperbolic partial differential equation.

The QDMC framework is then used to develop a plantwide controller for a contin-

uous pharmaceutical manufacturing pilot plant. Integrated continuous manufacturing

offers ample opportunities for efficient and cost effective production of pharmaceutical

drugs. In the pharmaceutical industry, the ability to directly handle constraints is

a key requirement in order to meet the stringent regulatory requirements on critical

quality attributes (CQAs). One of the biggest challenges in plantwide control of such

processes is highly interactive dynamics of the integrated units, which if not properly

accounted for during controller design can lead to unacceptable performance. It is

demonstrated that QDMC effectively handles both of these challenges in the presence

of a number of uncertainties/disturbances.

This directly leads to the next part of the thesis, which explores stochastic con-

trol methods for handling probabilistic parameter uncertainty and disturbances as a

way to reduce the conservatism of their worst-case counterparts. First, we develop

a method to handle probabilistic time-invariant parameter uncertainty in MPC for

high-dimensional systems by applying polynomial chaos methods within the QDMC

algorithm. We show how this approach is more robust to parametric uncertainty

when compared to nominal QDMC using continuous pharmaceutical manufacturing

as the motivating case study.

Next, stochastic MPC of linear systems subject to arbitrary (possibly unbounded)

stochastic disturbances is explored. The proposed method tackles the stochastic dis-

turbance rejection MPC problem, which is one of the other main sources of uncertainty

encountered in chemical processes. Joint state chance constraints are incorporated

into the method using the idea of risk allocation. These two ideas are then brought

together to develop a stochastic MPC method that is capable of handling both prob-

abilistic time-invariant parameter uncertainty and additive stochastic disturbances.

Stochastic closed-loop stability of this approach is also explored using theory for

Markov processes.
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Next, it is proved (by counterexample) that chance constraints are not guaranteed

to be fulfilled by the closed-loop system when applying a receding-horizon controller

to systems with time-invariant uncertainty. This motivates the development of algo-

rithms that can adapt the parameter distribution at each step based on measurements

of the system. This concept of Bayesian learning is then discussed within the context

of stochastic MPC, and an algorithm for solving this problem using polynomial chaos

is introduced.

The final part of this thesis explores methods for failure and fault-tolerant process

control. First, a general internal model control structure (with multiple degrees-

of-freedom) for stable systems is presented. This control structure, which could be

placed at the regulatory layer below that of MPC (see Figure 1-3 for brief illustration),

enables designing independent controllers that each can be optimized according to a

particular objective. The global optimality of the multi-objective control system is

shown to remain intact when one or more controllers is taken offline. This circumvents

the need to redesign the control system whenever one or more of the manipulations

and/or sensors fails, which suggests tolerance to failures. Next, a model-based fault

diagnosis method is developed for uncertain nonlinear systems. The approach is

referred to as active as it looks to determine input actions that guarantee that the

reachable sets of measurements do not overlap between the nominal and faulty models.

This is useful as it allows for early detection of non-obvious faults in the system to

avoid catastrophic failure. This is followed a summary of ideas for future research.
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Figure 1-3: Illustration of the layered control structure typically utilized in plant-wide
control. The regulatory layer typically connects to the physical hardware in the plant
and should be designed to reject fast disturbances in the process. The supervisory
layer commonly utlizes dynamic constrained optimization (such as MPC) to drive the

process to target values. These target values are often chosen by a real time optimizer

that optimizes the economics based on a steady-state model.
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Chapter 2

Control of Self-assembly in Micro-

and Nano-scale Systems

2.1 Introduction

Self-assembly is a process in which particles spontaneously arrange into complex pat-

terns or organized superstructures [265]. Systems with self-organizing characteristics

are commonly encountered in nature and engineered technologies, where particles can

be of all scales ranging from molecules in a crystal to cells in a tissue to planets in a

galaxy [264]. Bottom-up engineering of self-assembly systems enables manufacturing

materials and devices with novel optical, mechanical, and electronic properties. The

innovative applications of self-assembly at the micro- and nano-scales have sparked in-

terest in understanding the physics, dynamics, and implementation of self-organizing

systems. Control of self-assembly processes is key to the manufacture of materials

with unique properties.

This chapter aims to provide an overview on the recent progress of controlling

self-assembly of micro- and nano-scale systems. Controlled self-assembly implies pro-

moting or accelerating the organization of particles towards desired structures. Inter-

vention is expected in a self-organizing process, for example, by changing the particle

interactions [84, 117] or by manipulating the environment (i.e., global system vari-

ables) in which self-assembly takes place [118, 235, 243]. This idea is often called
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"directed self-assembly" [45, 931. The concept should be distinguished from "directed

assembly", which refers to the precise manipulation of particles one-by-one during

the construction of the structure (like a mason building a brick wall) [1181. Directed

assembly at the microscale is now considered standard manufacturing technology such

as in three-dimensional printing (see e.g., [141, 49, 154] and the citations therein). In

addition, directed assembly was recently demonstrated at the nanoscale by moving

particles using the tip of an atomic force microscope [147, 133]. Directed assembly

has a very strong bottleneck from a manufacturing point of view due to the limiting

speeds at which you can manipulate the building blocks of the system. For example, a

reasonable estimate for the printing speed of a three-dimensional printer with resolu-

tions on the micro- to macro-scale is ~ 1 cm/s [173]. Assuming nanometer resolution

is attainable with this printing speed, it would take ~ 10" seconds to print a device

of 1 cm3 volume with nanometer precision. Although directed assembly is a very

active area of research, the topic is beyond the scope of this work.

Organization In the attempt to control self-assembly systems, many practical dif-

ficulties arise that are associated with the small-scale characteristics of the systems,

which limit current technology and practice. This chapter outlines the major chal-

lenges in the control of self-assembly systems. Promising research directions in the

areas of active self-assembly, open-loop control, and closed-loop control are moti-

vated using examples from the literature. The chapter concludes with perspectives

on the research outlook of control of self-assembly systems, and an illustration of the

importance of uncertainty analysis using a batch crystallization example.

The majority of this chapter was published in Journal of Process Control [200].

2.2 Challenges

High-dimensional Stochastic Nonlinear Dynamics

In macroscopic systems, measured variables (i.e., outputs) typically are stochastic due

to sensor noise and unknown disturbances arising from environmental fluctuations in

34



variables (e.g., temperature) acting on the systetn. Isolated stochastic terms can

be included in deterministic models to account for this behavior on the macroscale

[131. In other words, the measured outputs of macroscale systems are most often

deterministic in the absence of noise and unknown disturbances.

Micro- and nano-scale systems are different in that their underlying phenomena are

inherently stochastic so that repeated experiments can produce different results even

if the system has no noise or unknown disturbances [2501. This inherent stochasticity

can greatly impact the self-assembly of particles at these scales. For example, self-

assembly of colloidal particles (at fixed conditions) can require excessively long periods

of waiting time before initiation of the first step of the process (e.g., nucleation) needed

to make a product, due to the first step having a high-energy activation barrier [1181.

Another example is a microfluidic platform that uses evaporation to induce crystal

nucleation of organic compounds such as amino acids and proteins [245, 246]. The

measured output for a single droplet is the induction time (i.e., the time at which the

first crystal nucleates) and is best represented as an induction time distribution due

to the stochastic nature of the system.

Stochastic dynamics with continuous states are typically described by Langevin

equations [50, 2841, which describe the time evolution of a group of variables that

change slowly relative to other variables in the system. The original Langevin equa-

tion was derived as a modification to Newton's equations of motion to include Brow-

nian motion and frictional drag due to collisions of particles (slow variables) with the

solvent (fast variables). This system can be formulated as a stochastic differential

equation (SDE) of the form [1911

dXt = p (Xt, t)dt + a(Xt, t)dW , (2.1)

where Xt E R"n denotes an n-dimensional stochastic process, P = (Pi, - , pN) de-

notes the drift vector, Wt denotes an rn-dimensional Weiner process (i.e., Brownian

motion), and u- = [u-,j] is directly related to the diffusion tensor D = [Dij] with
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elements

1 
( 2 2Dij (Xt, t) = 2 ZOik(Xt, t)ak(Xt, t). (2.2)

k=1

This SDE is nonlinear and difficult to solve directly. Methods such as Monte Carlo

simulation or Molecular Dynamics (MD) are available for obtaining time-averaged

quantities of interest while avoiding direct simulation of (2.1). However, these meth-

ods are very computationally expensive and are only able to simulate complex systems

for a very short period of time.

The dynamics of self-assembling systems involve the evolution of hierarchical com-

ponents at different time scales due to their architecture (e.g., atoms make up proteins,

proteins make up capsomers, and capsomers make up viral capsids [95]). Equation

(2.1) alone cannot describe this behavior; instead, a multiscale approach is required

(e.g., see [1951). However, multi-scale modeling approaches are very computationally

expensive, taking on the order of days .to simulate a relatively small self-assembly

system (a system consisting of - 50 particles) using standard personal computers.

For systems with a discrete number of possible states, the stochastic dynamics are

described by the Master equation [70, 121]

dP
dt= ( w,, (t )P,,(t ) - ( wwi (t )P,(t), ( 2.3)

011 at,

where P(t) denotes the probability that the system is in configuration o at time t

and w,,,(t) denotes the rate of transition from configuration a' to configuration a

at t. The overall system is described by writing (2.3) (i.e., conservation equation for

probability of configuration o-) for every possible configuration of the system. The

probabilities can be stacked into a state vector x(t) and the transition rates collected

into a matrix A(t, u(t); p) so that (2.3) can be written in the state-space form

dx = A(t, u(t); p)x(t) (2.4)
dt

where A(t, u(t); p) depends on time-varying variables (e.g, temperature), system in-
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puts (i.e., manipulated variables) u(t), and model parameters p such as chemical

kinetic rate constants, diffusion coefficients, and thermodynamic properties of the

system.

The main challenge in implementing control systems for processes modeled by

(2.4) is that the number of states is usually very large (usually much greater than

1010) for processes of practical importance [250]. Kinetic Monte Carlo (KMC) simu-

lations are commonly used to approximate the solution of (2.4) by computing specific

realizations of the Master equation. This approach uses calls from a random number

generator to select a specific event to occur from a queue of all possible events, along

with its corresponding time step, so that the time simulated in the KMC algorithm

corresponds to real time [70]. Although this approach is usually much faster than

solving (2.4) directly, KMC simulations can still take in the order of days for realistic

systems. If state or output distributions are required for- control, then a large number

of KMC simulations are needed, which makes real-time control infeasible even for

relatively simple systems. If the control objective depends only on coarse statistics

of the distribution, then one approach is to develop low-order "equation free" models

(e.g., [124, 123]) by fitting the KMC simulation results; however, the relationship be-

tween the manipulated variables and the system states in these models will no longer

be transparent, making control less intuitive and more black box in nature [250].

Limited Sensors for Real-time Measurements

Controlling self-assembly systems at the micro- and nano-scale requires the acquisition

of real-time information about the system status. This requirement leads to the needs

of advanced real-time sensing techniques, while traditional self-assembly systems often

rely on imaging or other characterization techniques performed after the assembly

process to measure the local properties (e.g., using transmission electron micrographs

to inspect the morphology in a self-assembling block copolymer system [1281).

Several factors result in real-time sensing in self-assembly systems being a chal-

lenge, including the small length scales, the slow and invasive nature of most obser-

vation techniques, and the limited variables that can be used to quantify the system
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status. For crystallization in a nanoliter droplet implemented in a microfluidic plat-

form [245, 246, 87], the small scale of the system inhibits implementing conventional

methods of probing the solute concentration. While visual observation of the dynam-

ics in self-assembled systems could be accessible through advanced microscopes (such

as the fluorescent imaging technique used to track the real-time movement and clus-

tering of Janus particles [461), such information has to be translated into a variable

that can represent the assembly status for control.

Limited Actuation for Control

Another challenge that naturally arises in controlling self-assembly systems is the

limited availability of actuators. For a micro- or nano-scale self-assembly system,

localized manipulation by local actuators to influence the assembly of the particles is

constrained. Instead, controlling the self-assembly process often relies on manipulat-

ing macroscopic variables in the system (denoted global actuators). The underlying

principle is that changing the global properties can change the dynamic pathways

of assembly. For example, during crystallization, optimized temperature control can

improve the yield of one particular crystal polymorph over another [101, 1691. The

number of global variables that can be useful for altering the state of assembly are

somewhat limited, which often includes temperature, pressure, concentration, com-

position, and, for some systems, external fields such as electric and magnetic fields.

The use of the macroscopic variables as actuators acting globally on the system

implies an impact on all particles-no matter what the particle association state is.

This non-specific action may lead to disruption of already formed structures. On the

other hand, identifying the relationship between actuation and system response, as

well as specifying the amount of actuation in order to drive the system towards the

desired state of assembly, is not trivial. The task may become even more challenging

when a system has complicated dependency on the variables used as the actuators.

For example, the formation of snowflakes from water vapor is very sensitive to the

particular changes in temperature and pressure [143].
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Kinetic Traps in the Energy Landscape

Self-assembling systems typically have a range of stable or metastable configurations

that can have vastly different structures and properties [85, 551. A common but

practically important example of multiple configurations is crystal polymorphism,

which is the ability of a compound to crystallize as one or more distinct crystal

species. Different polymorphs of a compound have different molecular structures and

usually very different properties such as solubility, melting point, density, hardness,

vapor pressure, optical properties, and electronic properties [961.

Although most self-assembling systems have one lowest energy state (i.e., the state

that is thermodynamically favored), systems can become trapped in "kinetically ar-

rested" states associated with local minima in the free energy landscape, giving rise to

various metastable configurations (e.g., glasses, gels, polycrystals) [118]. For example,

suspensions of micrometer-sized paramagnetic colloidal spheres form disordered en-

tangled chain-like structures in a steady magnetic field at high field strengths, where

thermodynamic calculations indicate that the formation of well-ordered crystalliza-

tion domains is favored. The thermodynamically most stable crystalline state is not

observed experimentally because the system is trapped in the entangled state and

the energy barrier is too high for the system to overcome in a reasonable amount of

time [2431. Avoiding kinetically arrested states is key to consistently achieving the

thermodynamically most stable state and is an important issue to account for when

designing control laws for self-assembling systems.

2.3 Promising Research Directions

This section describes some promising approaches for addressing the aforementioned

challenges (see Section 2.2) in the control of micro- and nano-scale self-assembly

systems. These approaches can be grouped into three broad categories: active self-

assembly (particle design), open-loop control, and closed-loop control. The advan-

tages and disadvantages of these different approaches are illustrated through the use

of examples.
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Sufficiently general systems engineering methods for multiscale systems can be

applied to self-assembly systems, which have been discussed in detail in past reviews

(e.g., see [250, 34, 35] and the citations therein). These methods are well-known and

will not be discussed in this chapter, mainly because multiscale system techniques

applied to small-scale self-assembling systems are computationally expensive and do

not take advantage of underlying structure that can facilitate control tasks such as

parameter estimation and feedback control [250].

Active Self-assembly

In active self-assembly [127, 273, 4], particles interact to reach a consensus regard-

ing the desired global behavior of a self-organizing system, which depends on the

state of all particles. The interactions among the particles are governed by a con-

sensus protocol that specifies the information exchange between a particle and all of

its surrounding particles. The primary challenge in active self-assembly is how to

task the individual particles so that the global behavior of a self-organizing system

is engineered (e.g., a desired structure emerges) with high probability, despite the

stochastic nature of the system. This tasking requires the ability to design local rules

for individual particles, which ensure the unique convergence to a pre-specified global

behavior with the fastest convergence rate [2731.

Active self-assembly provides opportunities for bottom-up engineering of micro-

and nano-scale systems such as proteins in cells and nanoscale molecular machines.

Self-assembly of patchy particles [117] has emerged as an effective approach to actively

control structures that are assembled from small particles. Placing sticky patches on

particles can cause the particles to interact only along certain directions and, there-

fore, alleviates the lack of specificity of particles (see Fig. 2-1). Generation of di-

rectional interactions between patchy particles mimics atomic bonding in molecules,

and can significantly increase the structural complexity of a self-organizing system

(see e.g., [86, 63] and the citations therein for detailed discussions on patchy parti-

cles/colloids and how their self-assembled patterns can be theoretically predicted).

For example, Wang et al. [262] synthesized micrometer-sized particles with symmet-
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rically arranged sticky patches of DNA on their surfaces to enable DNA-mediated

interactions. The single-stranded DNA molecules attached to the patches mediate in-

terparticle binding through hybridization with complementary DNA strands attached

to patches on neighboring patches. In such a particle, the location of patches governs

the directionality, and the sequence-dependent binding of DNA dictates specificity.

Figure 2-1: Active self-assembly of patchy particles enables bottom-up construction

of sophisticated structures from smaller particles. Red and green regions are surface

patches positioned on particles to govern directional interactions between particles

and particle specificity. The surface patches resemble the arrangements of bonds

around atoms. Reprinted by permission from Macmillan Publishers Ltd: Nature

[117], Copyright 2012.

Patchy particles have been used to synthesize artificial molecules by combining

mixtures of particles that have matched directional interactions and complementary

DNA strands, such as DNA-functionalized gold nanoparticles shown in Fig. 2-2 [84].

In addition, an energy source can be used to accelerate the movement of particles,

while modifying the particle interactions using sticky patches. Fig. 2-3 shows the

assembly of biotinylated microtubules partially coated with streptavidin into linear

bundles [1111. The movement of the biotinylated microtubules is facilitated by gliding

them on a surface coated with kinesin motor proteins, which can result in gliding

velocities up to 1 pm/s. The streptavidin coating enables microtubules to cross-link

into microtubule bundles.

Similarly, Janus particles that combine incompatible elements in the same unit
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Figure 2-2: A schematic of a hypothetical system of hexagonal prisms assembled from

DNA-functionalized nanoparticles, which represents a type of active self-assembly.

Double-stranded DNA is attached to the gold nanoparticles on the surface. A small

strand of self-complementary single-stranded DNA acts as a sticky patch at the end of

the DNA linker to which the DNA on other nanoparticles is attached. Reprinted by
permission from Macmillan Publishers Ltd: Nature Materials [84], Copyright 2010.

structure lead to the formation of persistent and defect-free superstructures [90]. This

ambivalence principle is ubiquitously used in nature to create complex self-organizing

structures. Examples are the formation of biological membranes from self-assembly

of phospholipid molecules with polar head groups and hydrophobic tails, or the for-

mation of a DNA strand from nucleotides that consist of a part capable of forming

hydrogen bonds and an inert part. Applications of Janus particles are emerging for

bottom-up manufacturing of complex matter through spontaneous self-assembly. It

has been shown that, when immersed in an aqueous salt solution, spherical Janus

particles (e.g., symmetric micelle structures) that are hydrophobic on one hemisphere

and polar on the other polymerize into elongated strings and branched anisotropic

structures [106].
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Figure 2-3: Active self-assembly of millimeter-scale wires using nano-scale transport.

Surface-adhered kinesin motor proteins enable transport of biotinylated microtubules,
which form microtubule bundles due to cross-linkage of streptavidin. Reprinted

(adapted) with permission from [1111. Copyright 2011 American Chemical Society.

Open-loop Control

The term open-loop control is used to describe a system whose input profiles are set

a prior (not informed by measurements/feedback). Open-loop input profiles can be

computed heuristically, based on experimental observations and intuition, or using a

model-based optimization, which requires a mathematical formulation of the system

and control objective. For complex systems, a hybrid approach can be used to embed

heuristic knowledge of the system in the optimization procedure and, therefore, reduce

the complexity of the problem.

Open-loop control strategies are independent of measurements, which is the only

option for micro- and nano-scale self-assembling systems that do not have real-time

sensors available (see Section 2.2). However, the reduced information comes at the

expense of robustness (i.e., the ability of the controller to reject disturbances, model

imperfections, etc. by accounting for the current measured system state). The impact

of feedback control using real-time measurements is explored in Section 2.3. As
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discussed in Section 2.2, actuators that drive micro- and nano-scale self-assembly can

be introduced either globally (changes felt throughout the system) or locally (changes

felt only in the local environment). Global actuators act on the macroscopic scale

which is easy to implement the manipulation, but do not provide the controllability

enabled by local manipulations. Local actuators are more challenging to implement

experimentally, but enable more effective actuation at the micro- and nano-scale.

A recent example of an open-loop control procedure developed heuristically using

a single global actuator is the self-assembly of paramagnetic colloids into well-ordered

crystalline domains using toggled magnetic fields [243]. The experimental setup is

shown in Fig. 2-4. When no magnetic field is applied, the colloidal suspension re-

mains dispersed in solution. In a constant magnetic field, the colloidal suspension

forms chains parallel to the magnetic field lines, which start to aggregate laterally.

The aggregation arrests the motion of the particles and leaves them in an entan-

gled/disordered state that is at higher energy than the thermodynamically favored

state of well-ordered crystalline domains.

Helmholtz

objective
DSLR

Figure 2-4: Illustration of the experimental apparatus used drive the assembly of
paramagnetic colloids via toggling the external magnetic field. A pair of Helmholtz
coils are used to generate the magnetic field (whose field lines are normal to the
gravitational field) and a DSLR camera was used to generate images. The suspension
is deposited on a glass slide with a coverslip so that the colloids can only move
in the horizontal plane perpendicular to gravity due to their strong sedimentation.
Reproduced from [243] with permission from The Royal Society of Chemistry.

Toggling the magnetic field on and off at particular frequencies enables the suspen-
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sion as a whole to quickly enter its lowest energy state (well-ordered crystals). This

open-loop control strategy is effective because, when the magnetic field is turned off,

the attractive interactions between the colloids are suppressed allowing the particles

to relax and reconfigure (thus breaking out of the kinetically trapped state) and reach

the desired state in a much shorter period of time. In a constant magnetic field, the

entangled chains are unlikely to break apart due to the attractive forces between

the colloids, which creates a high energy barrier that traps the suspension in this

disordered state.

The toggling frequency is the key parameter in such systems since the time that

the field remains off must be long enough for the suspension structure to rearrange

but not long enough for the colloids to diffuse very far and redisperse. That is,

the toggling frequency should be similar to the characteristic relaxation rate of the

suspension. The time evolution of the suspension at different toggling frequencies

measured in [243] is shown in Fig. 2-5, where the dark regions represent the particle-

rich phase. All frequencies form the entangled/disordered (unfavorable) state initially.

As time increases, the chains start to merge and the system begin to "coarsen." The

near-optimal toggling frequency is ~0.5-1 Hz, where the coarse chains start to break

apart at -500 seconds and form the desired state of well-ordered crystals (the favored

state) after -2000 seconds.

The open-loop approach of cycling manipulated variables has proved useful in a

variety of self-assembly processes, where the particles in the system are indistinguish-

able. Another related example is the use of temperature cycling in crystallization

to change crystal shape, enhance crystal size uniformity, and increase polymorphic

purity [7, 115].

An interesting alternative to these methods, which can increase controllability

in small-scale self-assembling systems, is to introduce small external controls (e.g.,

electric charges, magnets). The external controls introduce attractive or repulsive

interactions to the system potential energy to drive the system towards a particular

configuration. Two approaches have been proposed for the design of these external

controls:
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Figure 2-5: The time evolution of a suspension of paramagnetic colloid particles
(dispersed in ultra-pure water with a volume fraction of 0.5%) under the influence
of a toggled magnetic field that is turned on and off at various frequencies (denoted
toggling frequency). The magnetic field strength is 1500 A/m. Each image is 3.2 x 2.1

mm in dimension. All suspensions appear to reach their final/slowly evolving state
after -2000 seconds. There is a clear region near 0.66 Hz in which the suspension
condenses into large crystalline domains (favored state). At high toggling frequencies

(> 5 Hz), the suspension remains trapped in the unfavorable entangled/disordered
state. At 0.33 Hz, the kinetics of chain-breaking appear to slow significantly so

that it will take a long time to reach the favored state of large crystalline domains.
This represents an open-loop control policy for magnetic toggling frequency that

was computed heuristically. Reproduced from [243] with permission from The Royal

Society of Chemistry.

1. Robust Static Structures - What are the optimal external controls (number,

locations, and strengths) so that the self-assembled micro- or nano-structure is

stable to a desired degree of robustness (i.e., obtained with a sufficiently high

probability in spite of system stochasticity)?

2. Robust Dynamic Paths - What external control profiles over time are needed to

ensure that, with a high probability, the system evolves to the desired structure

46

mom



from any initial distribution of particles?

The theoretical challenges associated with these systems-level questions are explored

in detail in a two-part series (Robust Static Structures in [233] and Robust Dy-

namic Paths in [234]). This work falls into the open-loop control category of optimal

local actuation computed using model-based optimization.

Algorithms for computing energy landscapes such that the system remains in the

desired configuration with a sufficiently high probability are proposed in [233] (please

refer to [233] for a detailed discussion of these algorithms and their results as they

are only summarized here). An energy functional is proposed of the form [233]

V Nd

E(z) = 13 E ZiHi,kS + z ZJizj = zTHs + zTJz (2.5)
i=1 k=1 i<j

Eext (z) Eint (

where z E {0, 1} denotes the system configuration with zi = 0 indicating an empty

lattice site and zi = 1 indicating the presence of a particle, V denotes the system

volume (i.e., number of available lattice sites), Nd denotes the number of external

field controls, s E RNd denotes the configuration of the external field controls with sk

being the strength of the kth external field, Hi,k denotes the interaction between the

ith lattice site and the kth external field, Jjj denotes the interaction between the ith

and jth lattice sites, and the superscript T refers to the vector transpose. The first

sum Eext(z) represents the external field's contribution to the system energy while

the second sum Eit(z) represents the interactions between particles in the system.

Higher-order interaction terms can easily be incorporated into this model if necessary

(depending on the underlying physics of the system).

The first step of the static problem [233 is to qualitatively shape the energy

landscape by determining the number Nd and locations of the required well- and

barrier-forming point conditions (external controls) to keep the desired self-assembled

structure in place (termed the minimum tiling problem). The goal of the minimum

tiling problem is to reduce the number of degrees of freedom in the system to be

practical both from an implementation and optimization point of view. Given the
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number Nd and locations of the point-conditions, the second step is to quantitatively

shape the energy landscape by determining the strengths of these point conditions to

maximize the probability of the desired configuration, i.e.,

e--3 E(zd,s)
max p(zd, s) = max flE() (2.6)
ses ses E -COE(zj,s)

where p(zd, s) denotes the probability of desired state Zd given external control field

s, and S denotes the set of all possible point condition strength values. The canonical

Boltzmann probability distribution function (constant particle number, volume, and

temperature) is used here to calculate p(zd, s) based on the energy function (2.5). The

parameter 3 determines the "flow" of system through the system phase space (low /

implies more accessibility of the states to the system). The denominator represents

the partition function and is defined as a sum over all configurations Q, (see [1941 for

a detailed discussion on the use of partition functions in the quantitative prediction

of self-assembly). Numerous ways to solve this problem are discussed in detail in

[233] and the resulting optimal control policy s* is applied once the system reaches

the desired configuration.

To dynamically force the system to this desired configuration, a method was devel-

oped that progressively restricts the system phase space (i.e., allowable configurations)

to smaller and smaller regions of the physical domain (see Fig. 2-6) [234]. The basic

idea is to systematically break the phase space up into components (i.e., subsets of

phase space in which all configurations in the subset are accessible from any other

configuration in the same subset). This decomposition occurs during distinct time

periods denoted as "stages" where the starting stage 0 comprises the entire phase

space. At the end of each stage, the starting component will be decomposed into two

subsets-one of which will be processed further and another that is neglected. Take,

for example, a system described in [2341 shown in Fig. 2-6b. Stage 0 shows that the

6 particles can be in any combination of the 16 lattice sites. During stage 1, the

objective is to drive the system to have 5 particles in the left half of the domain and 1
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particle in the right half of the domain. Although a number of configurations satisfy

this requirement, the target configuration is restricted to be within a particular subset

of phase space. During each stage, the system is further restricted until the desired

configuration is reached in the final stage.

(
a)Z

Desired E EE

Stage 3 (V~: E L L

Stage 2 (fle): [11111 LIiII]IIIIL 1112

stage 1 (Q.* 5

stage 0 ): 11 6 Ii

Figure 2-6: Open-loop control policy used to drive the system to a desired arrange-
ment of particles. Please refer to the text in Section 2.3 for detailed descriptions of
this figure and the underlying optimization problems that must be solved to derive the
control law. (a) Dynamic path that restricts the system to progressively smaller sub-

sets of the system phase space (denoted Q' for the ith stage). (b) A one-dimensional

example of the phase space restriction. Reprinted (adapted) with permission from
[234]. Copyright 2010 American Chemical Society.
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To achieve this progressive restriction of phase space, Solis et al. [234] proposed

solving a series of pseudostatic optimization problems over time until the system

reaches equilibrium, with the optimization at stage k being

e-#E(zj 
s(k))

max p( ), s(k)) m E(zjs(k)) (2.7)
S(k)ES s(k)Es -

(jGk-1)

which is essentially maximizing the probability of the system moving into the re-

stricted set of configurations Q(k) from the set of configurations of the previous stage

a (as the domain is halved at each stage, the resolution of the Q. is 1 / 2k). This

optimization looks very similar to that of the static problem (2.6) and the same min-

imum tiling ideas can be used to determine the number and locations of the external

controls s(k) at each stage. This maximization is a nonlinear nonconvex optimization

with a combinatorial number of potential configurations. A "genetic algorithm" is

described in [234] for solving this complex problem; however, convergence and global

optimality of the solution are not guaranteed.

The lack of measurements in the latter approaches implies that the (stochastic)

system evolution is unknown since the positions of the particles are never observed.

This no-measurements situation naturally gives rise to stochastic models for describ-

ing the system dynamics such as (2.1) and (2.3). In [1371, a Master equation model

was used in conjunction with the aforementioned methods of [233, 234]. It is shown

that open-loop control schemes can drive the self-assembly of the system (in simu-

lations) to a targeted configuration with high probability. The main challenges for

this task are estimating the parameters in the Master equation model and design-

ing the physical actuators. These techniques provide a mathematical framework for

controlling the self-assembly process and have the potential of constructing systems

of higher complexity from simple particles than what is attainable by manipulating

global field variables.

Strong specific interactions between particles can be used to achieve self-assembly
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of specifically tailored structures (see Section 2.3), however, these design strategies

can result in kinetically trapped irregular/undesirable structures that are unable to

reorganize on relevant time scales. The prevalence of specific interactions that are

weak and reversible, on the other hand, allows dynamic reorganization that can en-

able systems to explore a wider range of geometric configurations thereby increasing

the probability that the thermodynamically favored self-assembly structure will even-

tually form [224]. Moreover, certain particles have shown the ability to combine

local specific order-determining interactions with delocalized non-specific interactions

(attraction or repulsion) to achieve robust self-assembly.

Recently, this behavior was studied with the three-legged protein clathrin, which

plays an important role in reshaping the cell membrane during endycytosis [224].

Self-assembly of clathrin is stabilized by multiple (specific) weak leg-leg interactions

[258]. Three main states were observed during clathrin assembly: monomer, assem-

bled cages, and disordered aggregates. Experimental results from [224] indicate that

two distinct kinetic routes occur in clathrin self-assembly. At pH values above the

isoelectric point (IEP) of clathrin (pH = 5.8), the assembly proceeds monotonically

from monomers to cage structures. At pH values below the IEP, the protein quickly

forms disordered aggregates in solution that subsequently form cage structures over

time due to large-scale remodelling of the ciathrin aggregates. Cryo transmission

electron microscopy images of clathrin assemblies at pH = 6.0 and pH = 5.1 from

[224] clearly show these distinct paths (Fig. 2-7).

Both of these kinetic routes lead to similar final self-assembled states, which sug-

gests that the mechanism of clathrin assembly has evolved to be robust. Brownian

dynamics simulations suggest that stronger non-specific interactions in the system,

which are likely caused by clathrin becoming increasingly hydrophobic at pH below

the IEP, result in aggregation [224]. These results suggest that non-specific inter-

actions, such as hydrophobic condensation due to local pH changes, can be used as

additional degrees of freedom for robustly controlling self-assembly in an open-loop

setting (without measurements), and that the use of multiple weak specific interac-

tions can allow the system to escape disordered kinetically trapped states while still
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Figure 2-7: Experimental demonstration that clathrin self-assembly is robust to
changes in pH due to weak specific interactions. This methodology can be useful
for designing open-loop control policies to be more robust. (a and c) Cryo transmis-
sion electron microscopy (TEM) image of clathrin self-assembly at pH = 6.0 after 20
minutes and 4 days. (b and d) Cryo TEM image of clathrin self-assembly at pH = 5.1
after 20 minutes and 4 days. Representative spherical cages and disordered aggregates

of clathrin are outlined in blue and red, respectively. (e) Dot plot showing the major
axis distribution of ellipses fit to the clarthrin assemblies at pH = 6.0 (circles) and

pH = 5.1 (triangles) after 20 minutes (open) and 4 days (filled). Solid lines represent

the mean value (n = 63, 169, 64, and 54). Reproduced from [224] with permission

from The Royal Society of Chemistry.

forming a desired ordered structure. These phenomena have been shown to be impor-

tant in a number of other systems including, for example, the formation of a kagome
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lattice structure from colloids [45] and two-dimensional S-layer protein assembly on

supported lipid bilayers [263].

Closed-loop Control

In closed-loop control, system output measurements are used to compute the input

profiles repeatedly based on the current state of the self-organizing system. Measure-

ment feedback enables effective handling of system stochasticity, as the incorporation

of measurements in the control input synthesis robustifies the inputs to uncertain-

ties to a large extent. Such a control approach is capable of coping with the inherent

stochastic nature of self-assembly, and facilitates driving the system towards a desired

structure in the presence of uncertainties.

Feedback control techniques can improve the performance compared to their open-

loop counterparts. To illustrate this point, consider the nucleation of organic com-

pounds (e.g., amino acids, proteins, and active pharmaceutical ingredients) within

droplets of solution using a high-throughput microfluidic platform (see Fig. 2-8). The

crystallization of crystals in small volumes requires the use of stochastic models (e.g.,

[87]). The nucleation and growth processes for the microfluidic platform in Fig. 2-8

can be modeled by a Master equation (2.3). When only the number of crystals is

considered (i.e., nucleation events), the Master equation can be solved analytically as

a function of time [87]. However, when the state is extended to include the length

of all crystals (i.e., nucleation and growth), the number of Master equations becomes

infeasible to construct/solve directly and a KMC strategy must be used to generate

approximate statistical results from the model.

The input to this system is the volume of the droplet, which can be manipulated

directly by changing the properties of a local reservoir that sets the evaporation rate

(see [246]), and the output of interest is the number of crystals produced in the

droplet. The rate expressions and parameter values used in all model simulations are

given in [246, 87] for lysozome. For all simulations, the droplet initially has a total

volume of 5 pL, a protein loading (Cprotein) of 18 g/L, a salt concentration (Cait) of

0.36 M, and a solubility curve defined by Cprotein-eq = 1.57C2/s g/L, where Cprotein-eq
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Figure 2-8: Image of a microfluidic platform that uses evaporation to induce nucle-

ation in microliter droplets (see [245, 2461). The evaporation rate in each droplet is

specified by the partial pressure of water at the droplet surface, the area and length
of the channel that connects the droplet to external air, and the humidity of the

external air. This apparatus can be used for open- or closed-loop control based on

manipulation of the evaporation rate. Reprinted from [250] with permission from
Elsevier.

denotes the equilibrium (saturated) protein concentration.

The desired number of crystals at the final time was chosen to be 1 with a time

horizon of 99 hr for all simulations. A proportional controller was used to determine

the input applied to the system based on measurements. In the simulations, mea-

surements of the number of crystals in the droplet were taken every 0.1 hr where the

crystals could only be observed once they grew larger than 0.1 Pm. Fig. 2-9 com-

pares the distribution of the system output for closed- and open-loop operation. The

open-loop input profile results in the formation of zero crystals approximately 30%

of the time, which is extremely undesirable since that result produces no crystals for

analysis and would require repeating the experiment. On the other hand, closed-loop

control is able to compensate for stochastic fluctuations in the system (e.g., in the

induction time) by altering the droplet volume in response to observing a crystal

form, which results in the precipitation of at least one crystal in every simulation.
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Figure 2-9: Comparison of closed-loop (feedback) and open-loop control policies for

microliter droplet crystallization for the system in Fig. 2-8. The output is the number

of crystals at the final time in the simulation while the manipulated variable (input)
is the volume of the droplet. A proportional controller was used to incorporate

feedback with the desired number of crystals (i.e., setpoint) set to 1. The open-

loop input trajectory was taken to be the average of the input trajectories for the

1000 closed-loop simulations. Other intuitive open-loop input trajectories (e.g., those

corresponding to fastest/slowest induction time in the 1000 simulations) resulted in

even worse performance.

In another example, the use of feedback to control the self-assembly of silica

colloids was recently demonstrated experimentally [118], with the configuration shown

in Fig. 2-10a. The colloid positions are sensed in real time with an optical microscope

(Fig. 2-10b) while the electric potential is manipulated to control the crystal assembly

process, which is directly tunable from its voltage and frequency dependence (Fig. 2-

10cd). A simple proportional control law

IV, W]= [-KA(C 6 ), 0.1 MHz]; A(C6 ) < -0.25 (2.8)

[KA(C6), 1 MHz]; A(C6 ) > -0.25

was used to compute the system inputs [118], where V denotes voltage, w denotes

frequency, K = 4 V denotes the proportional gain, and A(C 6 ) = (C6 )SP - (C6)PV

where SP denotes setpoint and PV denotes process value (i.e., measurement). The
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variable (C6) is an order parameter 1118] used to quantify the degree of crystallinity

for any configuration of colloidal particles. Specifically, (C6 ) denotes the number

of hexagonal close-packed (hcp) neighbors around each particle averaged over all

particles in a given configuration. The results from applying the feedback law (2.8)

to the system in Fig. 2-10a are shown in Fig. 2-11, which demonstrates the controlled

assembly and disassembly of a colloidal crystal. The use of feedback allows defects in

the crystal to be repaired through partial disassembly, repair, and then re-assembly.

A B

C D

Figure 2-10: Experimental apparatus used for closed-loop control of colloidal as-
sembly. (a) Experimental setup of gold film quadrupole electrodes on a glass slide
microscope slide and an 0-ring container that houses an aqueous dispersion of sil-
ica colloidal particles. (b) Example image taken using optical microscopy used as a
sensor for system measurements. Theoretical Cartesian coordinate-based potential
energy wells were computed, using the electrode center as a reference, at (c) V = 4

w, = 1 MHz and (d) V = 4 V, w = 0.1 MHz. Reprinted (adapted) from [118] with
permission from John Wiley and Sons.

The use of order parameters in the latter example enables collapsing the massive

amount of information in the measurement of these systems (position of all parti-
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Figure 2-11: Feedback controlled self-assembly of a colloidal crystal containing 130

particles using the control law in (2.8). Optical microscopy measurements with (C 6 )sP
equal to (a) 2, (b) 3, (c) 4, (d) 5, and (e) 6. (f) Feedback-controlled self-assembly
(0 to 360 seconds) and disassembly (480-720 seconds). The top pane shows (C 6 )sp

(solid blue line) and (C6 )Pv (blue points) versus time. The bottom pane shows the

manipulated variables voltage V (green line) and frequency W (orange line) versus

time computed using (2.8). Reprinted (adapted) from [1181 with permission from

John Wiley and Sons.

cles) to a single variable, which simplifies the control strategy at the cost of losing

information about the current system state. However, this control strategy may not

always be effective, depending on the type of system and order parameter selected.

For example, as noted by [1181, (C6 )-like order parameters may not be useful for

condensation processes that terminate in amorphous states because they only take

on finite values once geometric ordering occurs.

Advanced model-based control approaches can be implemented in a closed-loop
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fashion using available real-time measurements to optimize the process of self-assembly.

An example of such control has been demonstrated in [247] where model predictive

control was used to drive the self-assembly of the quadrapole system in Fig. 2-10a

instead of the proportional control strategy in (2.8). The simulation results indicate

that the computed input trajectory is able to accelerate crystallization of the colloidal

particles. However, this acceleration is achieved at the price of the computational cost

of optimizing over the Langevin-based model. This example demonstrates that the

tradeoff between controller complexity and performance can be an important issue in

the context of controlling micro- and nano-scale self-assembly.

2.4 Outlook for Future Research

The assembly of a large number of small particles into complex ordered structures can

aid in the bottom-up engineering of devices with novel characteristics. The primary

challenges in the control of micro- and nano-scale self-organizing systems are high-

dimensional stochastic dynamics, lack of sensing, limited actuation, and the formation

of kinetically trapped configurations. This chapter provides an overview of the recent

developments in active self-assembly and open- and closed-loop control of small-scale

self-assembly systems.

A promising research direction is the design of particles that enables active con-

trol of particle interactions and increases particle specificity toward forming a desired

structure. The design of particles for active self-assembly induces what can be in-

terpreted as internal feedback where each particle responds to its local environment

by exchanging information between different components of the system. Internal

feedback allows the particles to reach a consensus about the desired structure of the

self-organizing system based on the state of all particles. Such an approach offers vast

opportunities for sensing and actuation at the micro- and nano-scale.

Actuators can be introduced either globally (changes felt throughout the system)

or locally (changes felt only in a local environment) to drive the system toward the

desired ordered structure. Simple open-loop control policies have been developed
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to facilitate self-assembly for a variety of systems by manipulating global fields of

such variables as temperature [243] and pH [2241. Examples of these strategies were

discussed in detail in Section 2.3. A major drawback of these open-loop strategies is

their lack of robustness such that small perturbations during the self-assembly process

can lead to undesired structures (e.g., kinetically trapped states). Recent work on

the self-assembly of the protein clathrin suggests that these open-loop strategies can

be made more robust by replacing strong specific interactions between particles with

multiple weak specific interactions [224]. These weak interactions allow the system

to escape kinetically trapped states during the assembly process while still forming

the desired self-assembled structure.

An alternative method to create more robust open-loop control policies is to intro-

duce local actuation at the micro- and nano-scale. Local manipulation of fields (e.g.,

temperature, concentration, pH, electric field, and magnetic field) has been shown in

simulations to drive the system toward a particular desired configuration with a high

probability [233, 234, 137]. Methods for qualitative and quantitative shaping of the

energy landscape through manipulation of these fields were reviewed in Section 2.3.

Currently, it is common to apply only one or two of these approaches at a time.

However, integrating global and local actuators with "optimally-designed" particles

could enable precise control of extremely complex structures during the self-assembly

process. We believe this is a key direction for future research in controlled self-

assembly.

Another promising research direction is the use of model-based control to optimize

the self-assembly process through manipulation of local and/or global system inputs.

In particular, model predictive control can handle complex multivariate dynamics and

competing sets of objectives while satisfying system constraints. The control perfor-

mance largely depends on the quality of the system model, which indicates that the

development of compact models for complex system dynamics in self-assembly is a

key need. As discussed throughout this chapter, common models for these systems

include the Langevin equation, the Master equation, and partition functions, whose

dimensionality/complexity limit their applicability for many systems of practical im-
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portance.

The use of feedback (measurements) in the control policy is another way to make

the system more robust to stochasticity and disturbances by counteracting this un-

certainty with available measurements from real-time sensors. These closed-loop ap-

proaches require the development of advanced sensing technologies to monitor local

system properties (e.g., positions of all particles). Real-time estimation of the system

state is required when implementing most advanced model-based control strategies.

A key challenge in this space is being able to utilize the system measurement within

a complex model of the self-assembly process in real-time. One alternative, discussed

in Section 2.3, is the use of order parameters to collapse the large amount of detailed

information within the measurement to a relatively small number of variables. In

addition, models in terms of these order parameters (see e.g., [2471) can be much

cheaper to evaluate than their full-information counterparts. Another alternative is

to employ advanced control strategies whose online computations are based purely

on input-output models used in concert with output estimation. Control algorithms

that employ this approach for systems with stochastic uncertainties [1691 may be

promising for application to self-assembly.

The development and use of nano-scale sensors for control of micro- and nano-

scale self-assembly is an important route to explore. Some recent examples of nano-

scale sensors include: (1) single-walled carbon nanotubes (SWCNTs), which exhibit

discrete changes in the fluorescence signal when molecules adsorb and desorb from the

SWCNT surface [51], (2) asymmetric catalytic particles that use chemical reactions for

self-propulsion so that the speed of the catalyst is indicative of the local concentration

[119], and (3) gold nanoshells with a pH-sensitive adsorbate that can be used as a

standalone all-optical nano-scale pH meter [25]. Experimental verification of advanced

control methods utilizing these types of nano-scale sensors remains largely unexplored

in the area of controlled self-assembly.
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2.5 Importance of Uncertainty: An Illustration

Uncertainties, such as unmeasured disturbances, unmodeled dynamics, faults, and un-

known parameter values, are important in a large number of self-assembly processes as

they represent a diverse set of applications. In particular, unknown parameter values

in first principles models (for example, unknown rate constants in a reaction network

that is carried out in a continuously stirred tank reactor) are the main focus of this

thesis. To illustrate how parametric uncertainty can greatly impact optimal control

strategies, a batch crystallization example (i.e., a type of self-assembly process) is

presented below.

Moment Model for Seeded Crystallization

Crystallization is an industrially important unit operation for attaining high purity

separation. Control of the crystal size distribution (CSD) can be extremely impor-

tant for efficiency of downstream processes and product quality (e.g., tablet stability,

dissolution rate, activity). A large portion of batch crystallizers are seeded to better

control the CSD. The most common control problem is to determine the temperature

profile that minimizes the ratio of nucleated to seed crystal mass subject to meeting

a mass yield constraint at the end of the batch. The CSD can be modeled using

a population balance equation (PBE) approach, which is a integro-algebraic partial

differential equation (PDE). When the growth rate is size-independent, the PBE can

be replaced by a set of ordinary differential equations (ODEs) using the method of

moments. As shown in [48], the set of ODEs can be written as

M(t) f(X(t), u(t), 0), (2.9)

where x = [Po, Pi, P2, /13, C, Pseed,O, /Pseed,1, Pseed,2, Pseed,3]T is the state, pj is the 3 th

moment of the CSD, C is the solute concentration, and PseedJ is the Jth moment of
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the seed CSD initially put into the crystallizer. The nonlinear function is given by

B

Gpo

2GI p1

f(X(t), u(t), 6) = 3G2 , (2.10)
-pekeh(3Gp 2)

Gyseed,0

2Gyseed,i

3 Gyseed,2

where pc is the density of the crystal, k, is a volumetric shape factor, and h is a

units conversion factor. Many different models for the crystal growth rate (G) and

nucleation rate (B) have been proposed in the literature. The most common kinetic

models when nuclei form from existing crystals (secondary nucleation) are

G = kgS9, (2.11)

B = kbk, SbA 3 , (2.12)

where kg, g, kb, and b are the kinetic parameters for growth and nucleation, respec-

tively, S = (C - Csat)/Csat is the relative supersaturation, and Csat is the saturation

concentration assumed to be fit to a quadratic model A 0 + A1 T(t) + A 2 T2 (t) where

u(t) = T(t) is the crystallizer temperature (the manipulated variable in this problem).

Characterizing Parameter Uncertainty

This case study uses parameters for an industrial-scale process involving the crys-

tallization of potassium nitrate from water, as reported in [1711 (see Table 2.1). As

typically done in the literature, assume that only the growth and nucleation param-

eters need to be estimated from data, i.e., define 6 = [g,ln(kg),b,ln(kb) T . Due to

measurement noise, model errors, and having a finite amount of data, the estimates of

these parameters will not be exact. The majority of parameter estimation algorithms
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quantify uncertainty in terms of a multivariate normal distribution of the form

= (27r)no/ 2 jVOjl/ 2 exp ( - )T V- 1 (6 -0)1) (2.13)

where 0 is the nominal parameter vector (values shown in Table 2.1) and V is the

positive definite covariance matrix. The uncertainty of the nucleation and growth

kinetics is characterized (from experimental data) by the covariance matrix [171]

102873 -21960 -7509 1445

- -21960 4714 1809 -354 (2.14)
-7509 1809 24225 -5198

1445 -354 -5198 1116

Optimal Temperature Profile

The optimal control problem of interest is given by

min J = nucleated crystal mass p /3(tf) - Psed,3(tf)

T(t) seed crystal mass pseed,3(tf

subject to: model equations (2.9), Vt E [0, t1 ]

Tmin T(t) Tmax, Vt E [0, tf] (2.15)

dT (t)
Rmin -dt < Rmax, Vt E [0,t1 ]

dt

C(tf) Cfinal,max,

where tf is the time of the batch, Tmin, Tmax, Rmin, and Rmax are the minimum and

maximum temperatures and temperature ramp rates, respectively, and Cfinal,max de-

fines the minimum yield requirement. To obtain a finite number of decision variables

in the optimization problem, T(t) was parametrized as a piecewise affine function

with eight discretization intervals. The optimal temperature profile, obtained using

a standard nonlinear programming solver with 0 = 0, is shown in Figure 2-12. For

the nominal system, this profile results in a nucleated to seed mass ratio of 4.75,

which is a decrease of more than 15% when compared to a common industrial profile
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consisting of two stages of linear cooling with different rates.

Although the optimal nominal temperature profile decreases J compared to the

two-stage linear profile when the parameters are at the nominal values, it is important

to see how the system responds to realistic uncertainty in the nucleation and growth

parameters as defined by the probability density function (PDF) (2.13). This analysis

involves propagating this PDF through the nonlinear dynamics to the objective of

interest. For this example, polynomial chaos is used as the uncertainty propagation

tool (see Chapter 3 for details). The PDFs of the nucleated to seed crystal mass ratio

over time for the optimal nomimal temperature trajectory and the two-stage linear

cooling profile are shown in Figures 2-13 and 2-14, respectively. The optimal nominal

temperature profile (designed for nominal parameter values) produces a significant

spread in J, i.e., the sample standard deviation of J is 0.52. Compare this value to

the two-stage linear cooling profile typical of industrial practice, which has a larger

nominal objective value of 5.65, but a smaller standard deviation of only 0.13.

This analysis indicates that the optimal profile may only nominally give better

performance. The system under the optimal nominal design may be very sensitive to

uncertainties in the parameter values, and could produce worse performance than not

doing optimization at all. This example motivates the development of methodology

that can robustly account for uncertainties directly in the formulation of the optimal

control problem. Such a methodology would allow for one to trade off performance

and robustness in a systematic way based on actual uncertainties in the model. This

methodology, developed throughout the subsequent chapters of this thesis, is one of

the main contribution of this work.

64



Table 2.1: Parameters used in the batch cooling crystallization optimal control case
study. The parameters and model were adapted from [171], which is based on an
industrial crystallization of potassium nitrate from water.

Process Parameters Symbol Value Units
growth exponent g 1.31

growth coefficient k9  6.5682 x 10-3

nucleation exponent b 1.84

nucleation coefficient kb 3.5321 x 1013 #

crystal density Pc 2.11 x 106 g(solute)

volume shape factor k1

conversion factor h 1.5062x 10-6 m
3 (slurry)

g solventT

saturation parameters AO 1.286 x 10- g(solute)
g(solvent)

A 1  5.88 x 10- 3  g(solute)
g(solvent) C

A 2  1.721 X 10- 4  g(solute)
g(solvent) C2

Initial Conditions Symbol Value Units

initial concentration Co 0.5 g(solute)
gs o v ent)

initial moments Po,o 3 x 106

i,0 1 x 102

P2,0 1 x 102m 3

p3,0 1 x 10-6 M
3

time to startup tf 160 min

Constraint Parameters Symbol Value Units

maximum final concentration Cfinal,max 0.4292 uste

minimum temperature Tmin 28 0C

maximum temperature Tmax 32.4132 c

minimum temperature ramp rate Rmin -0.4OC
minimum temperature ramp rate Rmax 0.4
maximum temperature ramp rate Rmax 0.4 mm
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Figure 2-12: Optimal temperature profile for the crystallizer problem in Section 2.5.
The temperature trajectory was approximated with a piecewise linear function with 8
discretization intervals. Also, an industrially common two-stage linear cooling profile

is shown for comparison.
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Figure 2-13: Nucleated to seed mass ratio distributions for the optimal temperature

profile. The distribution at the final time has significant variation due to uncertainty

in the nucleation and growth parameters, which indicates that this "optimal" profile

is not robust to uncertainty.
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Figure 2-14: Nucleated to seed mass ratio distributions for the two-stage linear cooling
profile (commonly type of profile implemented in industry). Although the objective is
15% higher than the optimal profile when the system is at nominal parameter values,
the profile has,significantly less variation due to parametric uncertainties.
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Chapter 3

Polynomial Chaos Framework

3.1 Introduction to Probability Theory

Random Variables

A random variable X : Q -+ S is a measurable function from the set of all possible

outcomes Q to a set S. A formal (axiomatic) way to define random variables can be

done using measure theory, which is beyond the scope of this thesis. It suffices to say

that a probability space (aka probability triple) is the mathematical construct used to

model real-world processes/experiments. Probability spaces consist of three parts:

e A sample space, Q, which is the set of all possible outcomes of the experiment.

e A set of events, B, where each event in this space contains zero or more outcomes

(for example, the sample space is an element of the event space Q E B). This

is needed since more complex events can be described by groups of individual

outcomes. The collection of all such events is a --algebra B.

o The measure function, P : B -+ [0, 1], which specifies the likelihood/probability

of each event happening.

For a set A C S, the notation P(X ( A) is used as a shorthand for P({w G Q

X(w) E A}). When X is a real-valued random variable, the set S is equal to R.
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By recording the probability of every output range of a real-value random vari-

able X, we can construct its probability distribution. The probability distribution

effectively "forgets" about the underlying probability space used to define X and in-

stead pushes the measure P on Q to a measure Fx on R where Fx is the cumulative

distribution function

Fx(x) = P(X < x), Vx c R. (3.1)

The probability density function (PDF) is commonly used to characterize continuous

random variables and describes how likely X takes on a value in a particular interval

IbIP(a < X < b) = jb dx (3.2)

where the PDF is defined by

d
fx(x) = -Fx(x). (3.3)

dx

These concepts extend straightforwardly to random vectors. Interested readers are

referred to [22, 2711 for further details on probability and measure theory.

Moments

One of the most common ways to describe a PDF is in terms of its moments. These can

be used to characterize/parametrize a distribution as done in, for example, Gaussian

random variables which are uniquely described by their first and second moment.

Moments are used heavily throughout this thesis in both estimation and control as

they represent a compact way to describe process variation without the need for

the full PDF. Additionally, often statistical algorithms can be greatly simplified by

considering propagation of only moments of distributions. A well-known example is

the Kalman filter, which describes the evolution of an estimated state vector based

on process measurements in the presence of Gaussian white noise [120].

The nth order (raw) moment of a random variable X (with support S and PDF
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fx(x)) is defined as

E [X"] = j xnfx(x)dx, (3.4)

where E[.] is the expectation operator. The first moment (m = 1) is commonly

referred to as the mean/expectation of X. The variance (or second central moment)

is defined as

Var[X] = i/(x - E[x]) 2 fx(x)dx. (3.5)

Joint, Marginal, and Conditional Probability Distributions

Given two or more random variables X1 , - - - , Xn, defined on a shared probability

space, the joint probability distribution describes the probability that each X1 , - - - , X"

falls in a particular set of values, which can be described mathematically by a joint

cumulative distribution function

Fx1,...,xn(X 1 --- , ,x) = P(X1  xI, - - - ,Xn < X), (3.6)

or a joint probability density function

fx 1,...,x(, 1 , X) = O F . (3.7)

The PDF of each individual random variable fx, (xi) for i = 1, - - - , n is termed the

marginal density function and is calculated by integrating over all other values of the

random variables

fXi (Xi) = fxli,...,Xi ,...,7Xn (X ", Xi- I' _ i+17, - , X,)d i -.-.- dxi-idxi+1 ... d s,,

(3.8)
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where the multidimensional integral is over the proper support. The conditional PDF

of X given the occurrence of a value of the random variable Y = y is defined as

fx1y(xly) = fxy(x,y) (3.9)
fy (y)

for any fy(y) > 0. Two random variables are independent if and only if the condi-

tional distribution of X given Y is equal to the marginal distribution for all possible

realizations of Y, i.e., fxly(xly) = fx(x) for all possible x and y.

Bayes' Theorem

Bayes' theorem describes how two conditional PDFs are related and can be stated

mathematically as

_fyix (ylx)fx (x)
fxjY(xly) = f-() (3.10)

fy (y)

This expression can easily be derived by substituting the definitions of fxly(xly)

and fylx(ylx) from (3.9) into each other. The denominator of this expression is

a normalization constant that is simply the marginal PDF of Y defined by (3.8).

This concept easily extends to random vectors of arbitrary length (see, e.g., [881 for

details). One of the most common applications of Bayes' theorem is the quantification

of parameter uncertainty from data using a statistical model of the process. This is

described in the following section as a precursor to uncertainty propagation. Note

that an algorithm for online recursive Bayesian estimation is presented in Chapter 9

of this thesis.

3.2 Quantification of Uncertainty from Data

Preliminaries

In this section, capital letters will denote random variables/vectors. Let fx(-) denote

the probability density function (PDF) of a random variable X and fxly(xly) denote
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the conditional PDF of random variable X given information Y (where X and Y

can be vectors). A vector of random variables X E R' follows a multivariate normal

distribution with mean p E R' and covariance E E R" ' if its PDF has the form

fx(x) - (27r)/21I-1/2 exp I (X - ,)TE- 1 (X - P) , (3.11)
12

where I - denotes the determinant of a square matrix.

Bayesian Estimation Framework

While some parameters are known or can be directly measured easily with currently

available sensor technology (e.g., mass or density), other parameters must be esti-

mated from experimental data based on a model of the system. Some examples

include kinetic parameters in a chemical reaction network, growth and nucleation

kinetic parameters in a crystallizer, and transition probabilities in a self-assembling

colloidal suspension. Determining the best possible values for the unknown parame-

ters is a problem commonly referred to as parameter estimation, which has been an

important topic in the statistics field for many decades.

In Bayesian statistics, unknown model parameters P E RnP are viewed as random

variables that are related to experimental measurements/data Y E R nm (commonly

a vector composed of repeatedly measured output values at various sample times)

where nP, is the number of parameters and nm is the number of measured data points.

Using Bayes' theorem, we can write the a postermori distribution as a function of the

a priori distribution fp(p) and the likelihood function fylp(ylp) [131

fyjp(ylp)fp(p)
fply(ply) = , (3.12)

where fy(y) is a normalization constant to ensure the a posteriori distribution inte-

grates to one. The a posteriori distribution is defined by fply(ply), which gives the

PDF of the parameters based on all experimentally observed data. This captures all

available information about the parameters. To compute the a posteriori distribu-
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tion, one must select the prior fp(p) (based on previous experimental runs and/or

knowledge of the process) and the likelihood fyip(y~p) that essentially describes how

well a particular set of parameter values matches a particular set of observations,

which should be derived from a model of the process.

For realistic problems, (3.12) cannot be solved analytically and the problem must

be approached numerically. Markov chain Monte Carlo (MCMC) is a sampling-based

approach for constructing the a posteriori distribution numerically. See, for example,

[1021 for a discussion on MCMC methods for estimation of kinetic parameters in

polymorphic crystallization.

Maximum A Posteriori Estimation

MCMC (and similar sampling-based methods) can be quite computationally expen-

sive as they require one to simulate a model of the system many different times for

a number of different parameter values. To reduce the computational burden, often

engineers are interested in point estimates which represent the "best estimate" of the

unknown parameters. One of the most common point estimates is typically referred

to as the maximum a posteriori (MAP) estimate, denoted as p* in this chapter, which

is the parameter value that maximizes fply(ply). The MAP estimate is one of the

modes of fply(ply) such that it satisfies [941

VrPly(Ply) I, = 0. (3.13)

where Vf(x) denotes the Jacobian of the function f(x) with respect to x. The MAP

estimate can then be derived by solving a (possibly) nonlinear optimization problem.

MAP Estimation in the Presence of Gaussian White Noise

The objective function of the MAP problem can be greatly simplified when certain

(very common) assumptions are made about the system as detailed below. Let g(x, P)

be a model of the process data usually derived from the physics of the problem where x

are the independent variables (e.g., initial conditions and manipulated input values).
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Experimental errors E are assumed to be additive and normally distributed with

zero-mean and covariance Ee such that

Y = g(x, P) + E. (3.14)

The model g(x, P) can be derived from, for example, ordinary or partial differential

equations that describe the state evolution of the process. Assuming that there are

no errors in g or x (meaning that the structure of the model is correct), the likelihood

function corresponds to that of a normal PDF

fylp(ylp) = (27r)nm/2 Iel -1/2 exp [-(Y - g(X, P))Z-1(y - g(x, P)) . (3.15)

It is also assumed that the prior distribution is a normal PDF

fp(p) = (27r)n/ 2 ypl-1/ 2 exp (P - -)p1 (p - ip) , (3.16)

where Mp and Ep are the mean and covariance matrix of the prior parameter distri-

bution, respectively. Lastly, it is assumed that the parameters and measurements are

uncorrelated, that is cov(P, E) = 0.

Using the property that the maximizer of a function is also a maximizer of any

monotonic transformation of that function, we can write

p* = arg max fply(ply) = arg max [lnfylp (ylp) + Infp(p)] .
p p

Substituting (3.15) and (3.16) into this expression, the optimization problem to de-

termine the MAP estimates reduces to the following form (whenever Ee and Ep are

independent of p)

mi {(y - g(x, p))TE-(y - g(x, p) + (p - ipp)TZEp(p - ipp)}, (3.17)
pE_':

where 9 represent (optional) constraints on the possible parameter values. Ideally,

these constraints (such as requiring the diffusion coefficient to be positive) would
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be enforced through the definition of the prior; however, often the prior is selected

to be a normal distribution for simplicity, as done in this analysis, which has an

unbounded support. In the absence of prior information (such that E = 0), the

MAP problem reduces to the well-known maximum likelihood estimation problem

that is fully captured by the first term of the objective function.

Quantifying Uncertainty in Parameter Estimates

The accuracy of the estimated parameter values p* can be quantified in a number

of different ways. Due to the stochastic fluctuations associated with measurements,

the parameter estimates are also stochastic variables with probability distributions.

Ideally, we would capture the full a posteriori PDF using, e.g., a MCMC method;

however, as mentioned previously, this can be computationally prohibitive in certain

applications. An alternative method is to use multivariate statistics applied to a local

linearization of the model accurate in the vicinity of the estimates p* such that [131

g(X, p) g(x, p*) + S(p - p*). (3.18)

where S = VPg(x, p)| P is the sensitivity matrix of the model with respect to the

parameters, which can either be calculated analytically or estimated numerically by

finite differences. When the measurement errors are independent and normally dis-

tributed, the covariance matrix of the parameter estimates can be approximated from

the linearized model by [131

E-1 ST E-IS + E--1.(.)P * e P(3.19)

The approximate 100(1 - a)% confidence region is the hyperellipsoid defined by

911ipsod = {P E np I (p - p*)TEIE (p - p*) ! X2 (a)}, (3.20)

where x, (a) is the chi-squared distribution with np degrees of freedom for a given

100(1 - a)% confidence region. Note that the eigenvectors of E~* give the direction
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while the eigenvalues give the length of the axes of the hyperellipsoid. Also, note that

the sensitivity values in the matrix S can be used to determine what parameters have

the largest effect on the output. This is intimately tied to experimental design and

uncertainty management and evaluation (illustrated in Figure 1-2).

Regardless of the method used to approximate/characterize the parameter un-

certainty, this uncertainty must be propagated through the system dynamics to un-

derstand its effect on important states/outputs of the system. Furthermore, this

information must be incorporated into the model predictions utilized in model-based

control in order to manage the control actions taken based on all currently available

knowledge. This concept was illustrated on a self-assembly process in Section 2.5.

The rest of this chapter focuses on various uncertainty propagation techniques,

in which a parameter PDF (characterized by an uncertainty quantification method

run using a particular set of data) is propagated through the model equations to

obtain PDFs of the important model outputs. A number of uncertainty propagation

tools/techniques have been developed by various communities (e.g., computational

fluid dynamics [183] and CO2 sequestration [280]). Since the main focus of this thesis

is on real-time process control, a particular emphasis is given to polynomial chaos

methods as they can be more computationally efficient than traditional Monte Carlo

methods, which are extremely expensive in certain applications, in addition to having

high accuracy and nice theoretical properties.

3.3 Power Series Methods

For the remainder of this chapter, the PDF of a random variable x will be denoted

as f(x), so that no distinction is made between the PDF function argument and the

random variable itself. Also, there will be no particular nomenclature used to denote

a variable as random, and each defined variable should be understood to be random

(as opposed to just a particular realization of the random variable) by context.
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Define a perturbed model parameter vector of dimension no as

0 = + 60 (3.21)

where 6 E R"e is a nominal/mean of the model parameters and 60 is the perturbation

about 9. As discussed in the previous section, the parameter estimates are random

variables due to stochastic fluctuations in the process measurements. From now on,

it is assumed that the uncertainty in these estimates has already been quantified.

Let be some scalar output of interest in the process with the nominal parameter

values, y is its value for the perturbed parameters 0, and Jy = y - Q is their difference.

The power series approach expands 6 y as a Taylor series in 60

Jy = L60 + IOT M60+--- , (3.22)
2

where the elements of the Jacobian (aka sensitivity) vector L E R'Xfnt and Hessian

matrix M E R"nlXlG are

Li = - , = 1, . no, (3.23)

Miy = 2 , i, j = 1, .. no. (3.24)

Worst-case Uncertainty Analysis

Parameter uncertainty is represented as sets in worst-case approaches. A fairly general

uncertainty representation is given by the Hlider p-norm defined for a general vector

x c R' as

||zlp= (IX1IP + - -+ xn|I) 1P, p > 1,

ixoo = maxIxil.

This description can be used to represent hyper-ellipsoidal sets (such as the confidence

region (3.20)) and general box sets as discussed in [179]. The set of possible parameter
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values can then be represented as

2 = {0 : 0 = 0 + 60, ||Wo6011, <; 1} , (3.25)

where WO is a specified positive definite weight matrix of dimension (no x no). The

worst-case deviation in a particular process output is then defined by

6YW.c. = max I6y. (3.26)
OEP

First-order Expansion Consider the case where a first-order expansion, of the

form (3.22), is used to approximate the output deviation, i.e., Jy ~ L60. Then,

(3.26) reduces to

6Yw.c. = max 1LJ60, (3.27)

whose solution can be derived analytically for all p > 1 as done in [151]. The results

are provided here for completeness:

" For p = 1

6Yw.c. = ||LW--'I|oo.

* For finite p > 1

no (2--1)/P

yW..c. = (|LWojk )P1(P-1).

k=1

* For p = oc

6Yw.c. = ||LW -1|11.

Second-order Expansion Consider the case where a second-order expansion, of

the form (3.22), is used to approximate the output deviation, i.e., 6y ~ LMO +
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(1/2)66TM60. This problem can no longer be solved analytically, but can be rewrit-

ten in terms of the mixed structured singular value P as described in [1791. Upper

and lower bounds for this problem can be computed by iterative P-computation and

are typically tight enough for engineering purposes. Higher-order expansions can be

handled in a similar manner.

Drawbacks The main drawback of worst-case approaches are that they do not cap-

ture the likelihood of each event occurring in the output space based on the likelihood

of particular parameters being realized. If we have some knowledge of the probability

distribution of the parameters, this can be used to understand how likely each sce-

nario will occur (relative to the other possibilities). If only the worst-case possibility

is considered in isolation, standard control methods can lead to quite conservative

solutions that are not desired in practice. Less conservative solutions can be achieved

by determining the PDF of the output values, which can also be done (in certain

simplified cases) using power series methods as the distributional propagation tool

as discussed next. The focus of this thesis is on stochastic propagation methods as

they capture more information than their worst-case counterparts (i.e., worst-case ap-

proaches attempt to characterize the range/support of the PDF of the output values

whereas probabilistic approaches determines the range/PDF support as well as the

likelihood of each possibility).

Distributional Uncertainty Analysis

When the distribution of the parameters f(0) has been estimated from data, a power

series can be used to estimate the distribution of each output y of interest. When a

first-order expansion Sy = L60 is used, the output PDF can be derived as

/ no-1

f(6y) = j- ... f j61... ,f 6 -y - Lii4 d(1)66 ... d(One), (3.28)

where the PDF inside the integral is that of the parameter perturbation f(66). This

integral must often be solved numerically; however, it greatly simplifies when the
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PDF of the parameters is assumed to be a multivariate normal distribution since the

sum of normal random variables is also a normal random variable. This implies that

y will also be normally distributed with mean 9 and variance LVOLT where V is the

variance of the parameter distribution (see [1791 and the references therein for further

details).

Analytic expressions for the output distribution cannot be obtained for higher

order series expansions. Under this situation, y is related nonlinearly to 0 such that

the PDF must be computed numerically (oftentimes using some sort of Monte Carlo

sampling method). For highly nonlinear processes, first-order expansions may not

be accurate enough to capture the true system behavior. Additionally, (3.28) is not

a simple expression that can utilized directly except in the case of, e.g., Gaussian

uncertainties. As such, an alternative approach to power series based techniques

(referred to as polynomial chaos methods) can be useful since they can be quite

efficient and can handle a broader range of distributions. These methods are over-

viewed in the following sections.

3.4 Wiener-Hermite Polynomial Chaos

The term polynomial chaos was introduced by Norbet Wiener in his 1938 paper [266],

in which he applied his generalized harmonic analysis to a mathematical formulation

of statistical mechanics (where Brownian motion is the main motivation). The basic

concept of Wiener-Hermite polynomial chaos is to represent a (finite variance) random

variable by a series of Hermite polynomials in a countable sequence of independent

Gaussian random variables. These exact representations can then be truncated to an

expansion of finite order to be used as approximations.

Notation Let X and X, be a real-valued random variables defined on a probability

space (Q, B, P). For some set A, the notation P(X E A) is used as a shorthand for

P({w c Q : X(w) E A}). Let the cumulative distribution functions (CDFs) of X

and X,, be denoted by F and F, respectively. The mean or expectation of a random
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variable X is denoted by E[X].

Definition 3.1 (Lp Space) Let F(x) = P(X < x) be the CDF of random variable

X. The random variable X G Lp for p > 1 if E[IXIP] < oo. Note that for the special

cases p = 1 and p = 2, we have E[IXII < oo and E[X 2] < oo such that X has finite

mean and finite variance, respectively.

Modes of Convergence

Depending on how the sequence of random variables {Xn, n > 1} is defined, this

sequence may or may not converge to X is a number of different ways depending on

the way in which their difference is measured. These are often referred to as modes

of convergence, and are briefly reviewed below.

Definition 3.2 (Almost Sure Convergence) The sequence is said to converge

almost surely to X, denoted by X, - X, if

lim Xn(w) = X(w), Vw E Q \ A, (3.29)
n-+00

for any event A with P(A) = 0.

Definition 3.3 (Convergence in Probability) The sequence is said to converge

in probability to X, denoted by X-, ? X, if

lirn P(IX - Xnj > c) = 0, (3.30)
n-+oo

for any choice of E > 0.

Definition 3.4 (Convergence in Distribution) The sequence is said to converge

in distribution to X, denoted by Xn * X, if

lim Fn(x) = F(x), (3.31)
n-+oo

for all x E R such that F(x) is continuous.

82



Definition 3.5 (Convergence in LP Sense) For any p 1, the sequence is said

to converge to X in the LP sense (or simply {Xn, n > 1} exhibits Lp convergence),
L

denoted by Xn -%X, if

(3.32)lim E [nX - XnP] = 0.o
n--+o

This is commonly referred to as mean-square convergence for the special case of p = 2.

Connection between Probabilistic Convergence Modes Almost sure conver-

gence is the strongest mode of convergence and implies convergence in probability.

Convergence in probability implies convergence in distribution, which can be shown

using the definition of the CDF. Convergence in LP for any p > 1 implies convergence

in probability, which can be shown using the Markov inequality. Convergence in LP

also leads to the sequence converging in the L, sense for any 1 < r < p. The chain

of implications between these different modes of convergence can then by compactly

written using arrow notation [252]:

LI Lr
X, X X, X -L4X

p>r>1
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Representation of Wiener Polynomial Chaos Expansions

In his original paper, Wiener represented a general (finite variance) random variable

X(w), viewed as a function of the random event 0 E Rn , in the following way [272]

X(9) = aoHo (3.33)

+ Zaj H( i (0))
i =1
n s

+ E E i1,42 H2 ( il(0),7 2 (0))
i1=1 i2=1

n ii i2

+ 1 1,42,3 H3 ((i(0), 32(0), (())
1=1 i2=1 i3=1

where H( jj , - - - , ) represent the orthogonal Hermite polynomials of order j (for all

j > 0 with Ho = 1 being a constant) and ( jl, - -- , j,) denotes the multidimensional

independent Gaussian random variables with zero mean and unit variance. The

general expression for these polynomials is given by

a3
Hj((gj, - - ,j4) = e 2+-Q)_3 tj I-% +-+e 2 (3.34)a.i1 . &i

For example, the one-dimensional hermite polynomials are

HO = 1,

Hi = ,

H 2 = 2 _ 1,

H3 =H - ,

Ha= (Ha_ 1 - (n -1) -2
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For completeness, the two-dimensional version of the expansion (3.33) is expanded as

X(O) = aoHo + a1 Hi( 1) + a2H1(( 2 ) + ai,1H2 ( 1, 1) (3.35)

+ a1,2 H 2 ( 2 , 61) + a2 ,2 H 2 ( 2 , (2) +

For notational convenience, we can rewrite (3.33) as

00

X(6) = I: 3 ' (F), (3.36)
j=O

where ( = ( ,2,.- , n.There is a one-to-one correspondence between the func-

tions Hj ((,.- , j) and Tj ( ). To illuminate this correspondence, the two-dimensional

version of (3.36) is also expanded as

X(6) = &O'O + &1 J 1 + &2 T2 + h3P 3 + h4 P 4 + a5 T5 + - (3.37)

= doHo + &1H1( 1 ) + &2H1 ( 2 ) + &3 H2 ( 1 , 6) + 64H2 ( 2 , 6) + &5H2 ( 2 , 2) + -

=&0 + &161 + &262 + h3( - 1) + 6,4(66() + 5 (2-)+---

The Wiener-Hermite polynomial chaos forms a complete orthogonal basis in the L2 -

space, i.e.,

('pi'j pji) (,26j(3.38)

where 5ij is the Kronecker delta (takes on the value zero when i 7 j and the value one

with i = j), and (-,-) is the inner product in the Hilbert space of Gaussian random

variables, given by

(= Jf( )g( )W( )d, (3.39)
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where the weighting function is

W(1) . (3.40)
(27r)2

The main difference the Wiener-Hermite from other possible complete sets of basis

expansions is that the (Hermite) polynomials are orthogonal with respect to the zero

mean and unit variance Gaussian weighting function [2721.

The orthogonality condition can be used to find the corresponding coefficients of

each term in the expansion (3.36)

(Iy X)
aj (3.41)

This projection requires the stochastic process X(9) to share the same probability

space with the Gaussian measure. When X is directly a function of independent

Gaussian random variables (for example, X = en' sin( 2 )), these can be used as

the basic random variable and no transformation is required. Otherwise, we must

transform X and the basic random variables into the same probability space.

Wiener-Hermite Polynomial Chaos for non-Gaussian Uncertainties One

possible method, based on an idea proposed in [219], is to transform both to a uniform

distribution. Let U"(0, 1) denote a n-dimensional multivariate uniform distribution on

the hypercube [0, 1]" (with each element be uniformly and independently distributed

on [0, 1]). The notation - implies "distributed as." Denote the CDF of random

vector X = (X 1, - - - , Xn) as F(x1, - - - , x,). The random vector ~ W where W

is the multivariate Gaussian PDF of zero mean and unit variance defined in (3.40).
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Define the transformation z = (ui, - - - ,un) = Tx

zi = FI(xi),

Z2 = F2(X2|zi),

Z= , X 1 ).

As shown in [219], the random vector Z = TX - Un(O, 1) (i.e., is composed of

independent uniform random variables). Using a similarly defined transformation,

one can write Z = N . Combining these results, we can write X = T-1 N where

T- 1 is the inverse of T. Now, X and have been mapped to the same probability space

such that the integration in (3.41) can be performed by substituting X = T-N .

See [12, Example 2.3.2] for an example of this method being applied to a random

variable whose PDF is described by a Gaussian mixture model.

Convergence via the Cameron-Martin Theorem

For practical reasons, the Wiener-Hermite polynomial chaos expansion must be trun-

cated to a finite number of terms. For notational simplicity, only a scalar random

variable is considered here. The n-term polynomial chaos expansion approximation

of X can then be stated as

n-I

X = Zaj H(). (3.42)
j=0

Cameron and Martin [39] studied the convergence behavior of this sequence to Xas

n -+ oo. This can be encapsulated in the following theorem, which states that the

Hermite polynomial chaos representation of any functional X : R -+ R of a Gaussian

random variable :Q -> IR converges in the mean-square sense.

Theorem 3.1 (Cameron-Martin Theorem [39]) The Wiener-Hermite polyno-

mial chaos expansion (3.42) of any second-order functional X( ) converges in the
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mean-square sense to X. This implies that if X E L 2, then X, -% X.

The proof of this result is not trivial and requires a background in probability

and measure theory. Interested readers are referred to the original paper [39] for

details. This result can also be extended to multidimensional polynomial chaos ex-

pansions as shown in [65]. As discussed previously, the mean-square convergence of

Wiener-Hermite polynomial chaos expansions implies convergence in the mean (L1),

convergence is probability, and convergence in distribution.

3.5 Generalized Polynomial Chaos

The Wiener-Hermite chaos expansion has been effectively used to solve stochastic

differential equations with Gaussian inputs based on the Cameron-Martin theorem.

However, for more general (non-Gaussian) random inputs, the convergence rate can

be quite slow [272]. To handle a more general set of random inputs, Askey-chaos has

been introduced as a generalization of the Wiener's original Hermite-chaos [272]. The

expansion basis is formed by the complete set of polynomials from the Askey-scheme.

In Askey-chaos, the underlying random variables are not limited to Gaussian random

variables. Instead, the orthogonal polynomial basis of the Askey-chaos is selected

based on the PDF of the input random variables.

Similarly to that shown in Section 3.4, a general second-order random process

X(9) can be represented as

X(6) = cOIO (3.43)

+ Zc 1I1(zI 1(6))
i1 =1

n 4

+ E ci,42 I2 (i1 (0), (i2(0))
i1=1 i2=1

n ii i2

+ E E Cei,i2,i3 13((ii(O), (i2(0), (i3 (0))
i1=1 i2=1 i3=1
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where I((4j1, ... , (i,) represent the Askey-chaos polynomials of order j in terms of the

multidimensional random variables ((i,- , (). Again, for notational convenience,

(3.43) is rewritten as

00

X(O) = E 5I(C), (3.44)
j=0

where = ((1,..., Q. Again, there is a one-to-one correspondence between the

functions Ij ( j,- , ,) and 'Ij (C) as discussed in Section 3.4. The key difference

between (3.33) and (3.43) is that H, are Hermite polynomials while I are not re-

stricted to be Hermite polynomials, but could be any type of orthogonal polynomials

from the Askey scheme. The orthogonality condition of the Askey-chaos polynomial

expansion is written as

('i, J) = (Di)645. (3.45)

Here, the inner product (-,-) is defined in the Hilbert space of random variables (

( f(,g(c)) = f(C)g(C)g W (C)d(, (3.46)

where W(C) is the weighting function corresponding to the Askey-chaos basis {4}.

The key idea is to select a polynomial basis that is orthogonal with respect to a weight

W(C) that equals the PDF of certain types of random variables. Table -3.1 shows the

Wiener-Askey polynomial basis for particular distributions of C.

The basic steps of how to compute a generalized polynomial chaos expansion

(PCE) and a systematic method for determining the number of terms to keep in the

expansion is described in Figure 3-1.

The subsequent chapters of this thesis introduce the model predictive control

framework and attempt to utilize generalized PCE within model predictive control to

handle probabilistic parameter uncertainty. This is an important problem because, as

shown later, parameter uncertainty can destabilize model-based "optimal" controllers.

This methodology allows for operators to systematically tradeoff between system
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Table 3.1: Correspondence of Wiener-Askey polynomial chaos basis to the distribu-
tion of the random input

Random Input Wiener-Askey polynomial chaos Support
Gaussian Hermite-chaos (-o0, o)
Beta Jacobi-chaos (a, b)
Gamma Laguerre-chaos [0, oc)
Uniform Legendre-chaos [a, b]

performance and system robustness with minimal controller tuning parameters.

Specify PDFs for parameters
Ex- Gaussian

Select corresponding optimal
orthogonal polynormials

Ex. Hermite polynomials for Gaussian
PDFs

Approximate model variables by first
order PCEs

Estimate PCE coefficients
Use collocalion Galerkin projection

Estimate error either in PDF or
moments via sampling

4D NO

Use PCE for uncertainty analysis

Increase the order
of the expansion

YES

Figure 3-1: Basic description of the polynomial chaos framework and how to system-
atically select the order to achieve a desired level of accuracy.
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Chapter 4

Optimization Methods for Fast Model

Predictive Control

4.1 Introduction

In classical model predictive control (MPC), the control action that minimizes some

performance objective subject to constraints is computed as the solution to an online

optimization problem at each time step. This optimization problem will be a convex

quadratic program (QP) whenever the model is linear, the constraints are polyhedral,

and the cost is quadratic. Solving this QP online using general purpose methods can

be quite slow and has traditionally limited MPC to applications with relatively slow

dynamics. However, a significant reduction in the computational cost can be achieved

by exploiting the structure and sparsity of the QP [268, 215, 2601.

In this chapter, we look to review a collection of methods that can be used to

greatly reduce the online cost of the computation of the control action in MPC. We

explore two main ideas: 1) the choice of optimization method used to solve the QP

and 2) the formulation of the optimization problem to provide "optimal" structure.

Interior point, active set, and fast gradient projection methods have all been suc-

cessfully applied to MPC problems. Significant decreases in computational cost have

been demonstrated in these methods when taking into account the formulation and

structure of the problem when compared to a naive approach. We also briefly discuss
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currently available toolboxes that implement these methods for MPC problems.

Not only must we choose the particular optimization algorithm to solve the prob-

lem, we must also choose a formulation of the optimization (i.e., which decision vari-

ables to include). Traditionally, the MPC optimization problem is formulated either

in a form where the states are also kept as decision variables or a form where only the

control actions are decision variables. The latter is often referred to as condensing.

If the states are kept, then the system of equations solved at each iteration is sparse,

whereas if the condensed formulation is used then the problem becomes dense. For

example, using an interior point method on a problem with n, states, n, inputs, and

horizon of length N will require O((n. + n,) 3N) operations per iteration if the spar-

sity is exploited in the sparse formulation [2151 while it requires O(n.N3 ) operations

per iteration for the condensed version of the problem [260J. Some recent work sug-

gests that it is possible to consider not just these two distinct choices of formulations,

but instead consider a family of formulations each with a different level of sparsity

and number of variables to obtain even better performance [6]. As such, we would

expect the fastest formulation to depend strongly on the problem data and size and,

in particular, the relative size of n,, n,, and N.

Recently, it has been shown that the MPC QP can be solved explicitly offline as a

function of the initial state [151, such that the control action can be determined online

using a simple lookup table. Although this enables MPC to be applied to very fast

sampled systems (sampling times < 1 ps) [116], the table size can grow exponentially

with the horizon, state, and input dimensions. As a result, so-called explicit MPC is

only tractable for small problems. We review the details of explicit MPC as well as

discuss recent approaches that attempt to make the offline program more tractable.

The quadratic dynamic matrix control (QDMC) algorithm is a particularly preva-

lent MPC method in industry that solves a QP online [76, 2111. This has been shown

to be a special case of the more general state-space MPC in [1421. We speculate on

why this method is heavily used in the chemical process industry as well as highlight

the circumstances in which it will be most effective. We also demonstrate its perfor-

mance on an example system to illustrate that the choice of optimization algorithm
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and formulation has a great impact on the QP solution speed.

Organization The standard nominal MPC problem is defined. An overview of

recent theoretical advances for MPC is then overviewed. Special cases of the MPC

problem that provide additional structure that can exploited during solution of the

QP are also discussed. Then, the interior point, active set, and fast gradient projection

methods for solving convex QPs are discussed. Different formulations of the QP in

the MPC setting are then explored, with a focus on how the structure of the problem

can be exploited in each of these methods to greatly reduce the cost of solving the

MPC problem. It is shown that QDMC is a special case of state-space MPC with a

particularly advantageous structure amenable to fast compuations (illustrated on a

distributed parameter system). Lastly, some conculding remarks are made.

Notation Let ff>- = {,1,.. .}, R>o, R nxm, S", and S"+ denote the sets of non-

negative integers, non-negative real numbers, real matrices with n rows and m columns,

and symmetric positive semidefinite and positive definite n by n matrices, respectively,

IN is the identity matrix of size N by N, lN is a column vector of ones of size N,

diag(.) puts the vector argument along the diagonal of a matrix, blkdiag(.) is a block

diagonal matrix, and 0 is the Kronecker product. A polyhedron is the intersection of

a finite number of half-spaces, a polytope is a closed and bounded polyhedron, and

UN = U x ... x U for any set U. Lastly, let O(-) denote order of magnitude.

4.2 Problem Formulation

System Dynamics

Throughout this chapter, we consider the regulation of the discrete-time linear system

x(k + 1) = Ax(k) + Bu(k), (4.1)

y(k) = Cx(k), (4.2)
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to the origin while fulfilling general mixed constraints

(x(k), u(k)) E Z, (4.3)

for all k E 11>0, where x(k) E R"- is the state, u(k) E R"I is the manipulated input,

and y(k) E R"y is the output. Here, we focus on the nominal problem, which neglects

model uncertainty and disturbances, to highlight fast computational procedures for

optimization problems prevalent in model-based control. The mixed state and input

constraint set is assumed to be a collection of n, linear inequalities

Z = {(X, u) E R"T x R"n I Fox + Fuu < f}, (4.4)

where Fx E Rnexn., F E R n"x", and f E Rnc. To simplify notation in the sequel,

we will commonly drop the time index k and express (4.1)-(4.2) as

x+ = Ax + Bu,

y = CX,

where the superscript + denotes the successor state at the next sample time.

Constrained Linear-Quadratic Regulation

Constrained linear-quadratic (LQ) control can be considered to be the core problem

in MPC formulations and is defined as follows [161]. Assume full state information x
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is available at the current time step. Then, solve the optimization problem

N-1

min VN(x, u) (Xj, uj) + Vf (XN), (4.5a)
u'x

j=O

s.t. xj+1 = Axj + Buj, j=0, ) N - 1, (4.5b)

xo = x, (4.5c)

(xj, Uj) E: Z,) 0, 1,...,N - 1, (4.5d)

XN E X, (4.5e)

where xj denotes the state predicted j steps into the future from initial state x under

control sequence uo,.... uj 1 by (4.1), N is the control horizon (assumed equal to

the prediction horizon for simplicity), and Xf is the terminal set assumed to be a

polytope of the form

X { = x I FNx . fN}, (4-6)

with FN E RN Xx and fN E RnN. The stage cost is assumed to be of the form

1x Q M x T T
l(xIu) = ] +q x+r U, (4.7)

2 U MT R u

and the terminal cost is assumed to be of the form

1TT
V (x) = 2 TQNX + qNX, (4.8)

where Q, R, M, and QN satisfy

[Q Mi
R E S n+ Q M E gnxf+u QN E Sn

++7 MT R +
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such that the optimization problem (4.5) is a convex quadratic program (QP) and

has a unique solution. Denote the input sequence associated with (4.5) as

U ( o, .. . , UN-1) , (4.9)

and the corresponding state trajectory as

x(x, u) = (XO, . , XN (X, u)) - (4.10)

The optimization problem (4.5) implicitly defines a set of feasible control sequences

9 N(X) = {u I (x(x, u), u) E ZN X (4.11)

and set of feasible initial states

XN =XI 'WN(X) 0}, (4.12)

commonly referred to as the domain or region of attraction in the MPC literature. By

definition, problem (4.5) is infeasible for any x XN. For any x E XN, the solution

to (4.5) yields an optimal control sequence

u*(x) = arg min{VN(x, u) I u E 9 /N(X)I,
U

(4.13)

and the implicit MPC control law

rhN(X) = [I10 ... 01u*(X), (4.14)

is computed based on what is known as a receding horizon implementation, in which,

the first element of u*(x) is supplied to the nominal system (4.1). The closed-loop

system then evolves as

X-= Ax + BKN(x), (4.15)
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starting from some initial condition x = x(0).

Many methods reviewed in this work for solving (4.5) can be extended to problems

with costs and constraints on the input rates uj+1 -u, time-varying costs, constraints,

and/or models, reference tracking, affine system descriptions, input parametrizations

Uk = KXk + Vk, and different control and prediction horizons. Additionally, sequences

of LQ problems similar to (4.5) often arise in control of nonlinear systems [267, 215,

10]. For example, when applying the sequential quadratic programming method to

nonlinear MPC problems, we obtain a search direction at each iteration by solving a

problem like (4.5) [11].

Problem (4.5) is a multi-stage optimization parametrized by initial condition x and

can theoretically be solved to optimality using dynamic programming (DP) methods

[21, 216]. The DP solution yields an optimal sequence of control laws, which is a

list of N functions that will often vary with time over the horizon. MPC, on the

other hand, implements the time-invariant control law I'N at every time step. Thus

the evolution of (4.15) will differ from the closed-loop system evolution generated by

the optimal DP control laws. As such, MPC is not truly optimal for (4.5) on a finite

horizon. However, DP is computationally intractable for constrained and/or nonlinear

control problems unless the problem size is very small while MPC is a practical way

to evaluate the maps V (x) and KN(x) at a point x. A detailed discussion of these

issues, including worked out example problems, is provided in [2161.

4.3 Cases of Model Predictive Control

In this section, we describe special cases of (4.5) that commonly arise in MPC prob-

lems. We also describe how selection of the terminal cost Vf and constraint set Xf can

be used to guarantee feasibility of (4.5), ensure stability of the resulting closed-loop

system, and exactly compute the infinite-horizon cost.
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Feasibility and Stability

When N < oo, there is no explicit guarantee that problem (4.5) is always feasible as

the system might enter regions of the state-space where no solution exists; however,

setting N = oo yields an infinite number of constraints that are not possible to handle

directly in the optimization [15]. Recursive feasibility of (4.5) can be guaranteed

whenever the following assumption is satisfied for some terminal controller Kx

(A + BK)Xf 9 Xf, X1 x KXf C Z, (4.16)

such that Xf is a positively invariant (PI) set for the system (4.1) and constraint set

Z under control law Kx, i.e., ensures once the state enters Xf, there exists at least

one controller that keeps the state inside of Xf for all time while satisfying constraints

[161].

A number of methods have been developed to compute an Xf that satisfies (4.16).

The maximal PI (MPI) set is a polytope that can be finitely determined for stable A+

BK [82], but is expensive to compute for higher dimensions. Most approaches derive

Xf as a level set of a quadratic Lyapunov function. This ellipsoidal approximation

to the MPI can be computed from a simple linear program (LP) that is solvable for

high dimensions. Although this ellipsoidal approximation can be conservative, it is

often the only choice when the state dimension exceeds 6-7 [277]. Here, we focus on

the case in which Xf is a polytope (4.6) for simplicity such that problem (4.5) is a

QP. When Xf is an ellipsoid, (4.5) is a quadratically constrained QP (QCQP). Many

of the methods reviewed below for quickly and efficiently solving the MPC problem

will directly extend to this case as well since the resulting QCQP is convex and has

a limited number of quadratic constraints [277].

If (4.16) holds, 'N(x) asymptotically stabilizes the closed-loop system (4.15) when-

ever assumption

Vf ((A + BK)x) - Vf (x) < -l(x, Kx), Vx E Xf, (4.17)
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is satisfied, since this condition guarantees that the optimal value function V (x) =

VN(x, u*(x)) is a Lyapunov function for (4.15) with region of attraction XN. Inter-

ested readers are referred to [161] for explicit proofs of these statements.

Infinite-Horizon Cost

The constrained infinite-horizon LQ regulator minimizes the cost _=0 l(xj, uj) sub-

ject to constraints (4.5b)-(4.5e) with q = r = 0 in (4.7). This problem is not solvable

directly since it is posed as an infinite-dimensional optimization [215]. We can reduce

this to a finite-horizon problem of the form (4.5) by using a linear control law to

determine Uk after a certain time horizon, that is,

Uk = KXk, for all k > N. (4.18)

With these added constraints, the states Xk, k > N and inputs Uk, k > N are

completely determined by the state at the end of the time horizon XN. Then, the tail

of the infinite-horizon cost is exactly written as

(XIQXj + X7KT RKxj + 2XT MKxj), (4.19)
j=N

where this infinite summation can be replaced with a single quadratic term (1/2)xkPXN

whenever A + BK is stable. The gain K is normally found from the solution to the

classical unconstrained LQ regulator, which minimizes (4.19) in the absence of con-

straints. In this case, P is found as the solution to the following discrete-time algebraic

Riccati equation

P = AT PA - (AT PB + M)(R + BT PB)-1 (BT PA + MT) + Q, (4.20)

and the feedback gain K is computed from P by

K = -(R + BTPB)-1 (BTPA + MT), (4.21)
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which corresponds to the optimal unconstrained linear control law (see, e.g., [215]).

The terminal cost term in problem (4.5) will then exactly represent the infinite tail

of the cost whenever QN = P and qN = 0-

Problem-Dependent Structure

As mentioned previously, (4.5) can be straightforwardly extended to include a number

of of common variants of MPC and it represents a very general form of MPC for linear

systems. However, as one might expect, there are a number of ways to restrict the

objective and constraints such that (4.5) has more structure. One example often

encountered is when the objective and constraints are separable in the state and

inputs. This means M = 0 and the constraints (4.5d) can be written separately as

X3 GX, ujEU.

A further specialization is when Q and R are diagonal matrices. Also, the state and

input constraints can be simple box constraints

Xmin - Xj < Umax, Umin Uj < Umax

that consist only of lower and upper bounds. Only output constraints Y can be

considered in place of state constraints X such that y3 E Y (or ymin yi Ymax in

the case of box constraints) where y3 = Cxj for all j E f>o.

Obviously, the exact formulation of problem (4.5) depends on the specific problem

one is trying to solve. As discussed in the sequel, the structure and sparsity of the

optimization problem can greatly influence the speed at which one can solve (4.5).

We focus on the more general case in this work, as it is not possible to enumerate all

possibilities, but point out that any and all structuring/simplifications should be taken

into account when solving problem (4.5) to maximize the reduction in complexity

when solving the optimization.
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Output feedback

The MPC problem (4.5) assumes full (perfect) state information at every time step.

In most applications, the full state cannot be measured exactly and must be recon-

structed from (typically noisy) measurements instead. This problem is known as state

estimation. We let the output y = Cx denote the measured variables for notational

simplicity. The outputs are typically a small subset of the states, such that ny < nr.

A number of state estimation methods have been developed and explored in the

literature. Some of the most common ones are the Kalman filter and moving hori-

zon estimation (MHE). For linear systems subject to normally distributed process

and measurement noise (with known covariances), the Kalman filter is the optimal

estimator and has a relatively simple analytic solution [1201. When the model is non-

linear or constraints on the estimates need to be considered, a closed-form solution

usually cannot be obtained. Linear MHE, on the other hand, solves a finite horizon

least-squares optimization to obtain state estimates [2141.

In the sequel, we denote the estimate of the state as , . The majority of output

feedback MPC methods for linear systems look to apply a certainty equivalence argu-

ment, wherein the state estimator is independently designed from the controller, such

that x can merely be replaced with its estimate J in problem (4.5). In the control

literature, this is referred to as the separation principle and will retain optimality

under certain assumptions, for example, in LQ Gaussian control [5].

Another common state estimator for deterministic systems is the Luenberger ob-

server

j2+ = + Bu + L(y -Q), (4.22)

C, (4.23)

where - and 9 are the estimator state and output, respectively, and L is some observer

gain. If L can vary with time, (4.22)-(4.23) can be used to represent the more general

case of a Kalman filter. The observer error e = x - - for the nominal system then
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satisfies

e+ = (A - LC)e, (4.24)

and will converge to zero when A - LC is stable. Stability of the combined Luenberger

observer/MPC controller system x+ = Ax + BrIN(), for the case in which only the

initial condition is unknown, was explored in [162] using results for perturbed systems.

When e is exponentially stable and rN(-) is Lipschitz continuous, asymptotic stability

can be guaranteed for some initial states x(O) E %' c XN and initial observer error

e(O) E g where g is a small enough bounded set.

Reference Tracking

Setpoint tracking, in which one wants to design a controller such that the output

tracks a constant reference y, E R"v, is a common variant of MPC. We can easily

extend problem (4.5) to setpoint tracking by computing the state and input target

condition from [216]

I, A B x, 0
[~cl (4.25)C 0 us YS

which must have (xe, u.) c Z for y, to be reachable. If this set of linear equations has

a solution, we can convert the tracking problem to a regulation problem by shifting

the coordinates of (4.1) in terms of deviation variables , = x - x. and i! = u - us.

Interested readers are referred to [178] for further details.

This method, however, assumes that the model is accurate and the system is not

affected by any unknown disturbances (which is rarely the case in practice). It is

often a desired property of the MPC controller to force the outputs to their setpoints

without offset, referred to as zero-offset MPC. We can obtain integral action in MPC

(making it zero-offset) by redefining the system model (e.g., rewriting (4.1) in terms

of the change in the input u3 - uj_1 or in "velocity" form [177]) or by modeling and

estimating the disturbance [216]. The latter is a standard method and works as
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follows. Augment the state-space system (4.1) with a step disturbance d E R nd

= B + B , (4.26)
Ld 0 Ind. d_ 0

y =[C Cd] (4.27)

d

where matrices Bd and Cd describe how the disturbance effects the state and output,

respectively, and are selected by the user. Next, design an observer of the form

(4.22)-(4.23) so that the state and disturbance can be estimated at every time step.

Then, compute targets x., and u, at every time step using a modified version of

(4.25) to account for the estimated disturbance, and solve a MPC regulation problem

(4.5) replaced with deviation variables. Under certain assumptions, this strategy will

provide a zero-offset MPC controller. Please refer to [216, 1.51 for further details.

4.4 Optimization Methods for Quadratic Program-

ming

Problem (4.5) is a convex QP under the aforementioned assumptions of a linear model,

polyhedron constraints, and a quadratic cost. Many methods and solvers have been

proposed for solving the QP that arises in MPC for linear systems. In this section,

we consider three approaches: interior point methods, active set methods, and fast

gradient projection methods. We give an overview of these algorithms for a general

convex QP of the form

min !zTHz + CTZ s.t. Dz = d, Gz < g, (4.28)

where z E Rn are the decision variables, H E S n, c E R n, D E RPxn, d E

G E Rmxn , and g E R". Obviously, the LQ problem (4.5) is a special case of (4.28).

Thus, the complexity of solving (4.5) will strongly depend on the formulation of the
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optimization and the problem size, which are discussed in detail in Section 4.5.

Interior Point Methods

Interior point (aka barrier) methods come in a variety of flavors. The class of primal-

dual path-following interior point methods (IPMs) is widely considered to be the most

successful, wherein, the predictor-corrector scheme by Mehrotra is the basis for most

implementations. This approach has been applied to MPC in, e.g., [215, 601 and

has proven to be efficient in practice. An overview of the details are provided in the

following.

The Karush-Kuhn-Tucker (KKT) conditions for (4.28) are

.F(z, v, A, s) =

Hz+c+DTv + GT A

Dz - d

Gz -g+s

SAim

(A, s) > 0,

where s E Rm are slack variables, v E RP and A E Rm

S = diag(sl, S2, . . ., sm), and A = diag(A1 , A2, - - -, Am).

are Lagrange multipliers,

Primal-dual IPMs generate iterates (zi, Vi, A', si), i > 0 for which (Ai, si) > 0 and

approach satisfaction of (4.29) as i -- oo. Like most iterative optimization algorithms,

they are composed of two basic ingredients: a procedure for computing a step and

a measure of optimality of each point. The step is composed of a search direction

(Az', Av', AA', As') and a step-length ac that determines the distance to be taken

along the search direction. The search directions are Newton-like directions for the

nonlinear set of equations in (4.29a) determined from the following system of linear
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equations

H DT GT Az rH

D AV= rD (4.30)
G Im AA TG

S A As rs

where we have dropped the superscript to denote the current iterate and (rH, rD, rG, rs)

are the residuals. When the residual vector is set equal to F(z, v, A, s), this is a pure

Newton step. The duality gap is defined as

p = ATs/m (4.31)

and is commonly used as the measure of optimality of the current iterate so that the

algorithm will terminate when p is below some tolerance.

Primal-dual IPMs differ mainly by their choice in right hand sides (rH, rD, rG, rs)

[2691. The Mehrotra predictor-corrector algorithm is one of the most widely used

as it has been very successful in practice [163]. Here, we will elaborate on the most

expensive step of these methods, which is the computation of the search direction

(4.30).

Block elimination can always be applied to (4.30) to derive a reduced system of

equations with a convenient structure. First, we can eliminate As

H DT G ]T Az rH

D AV = rD (4.32

G -A-1S JLA A T G - A~rsj

where As = -A- 1 rs - A- 1 SAA. Since A'S is a diagonal matrix with all positive

elements, we can also eliminate AA to obtain the so-called augmented system

A = - (4.33)
D AV TD
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where AA is recovered from the relationship AA = S-1 A(GAz + rG) - S rS while

the terms in (4.33) are given by 1 = H +G T S-AG and r. = rH+GT S-1(ArG - rs).

A very similar set of equations to (4.33) is obtained when using an infeasible

start primal barrier IPM to solve the QP (4.28). The main difference is that D and

rn are replaced with new values 4, and rK, respectively, which are functions of a

barrier parameter r, and the inequality constraint violation. See [261] for more details

including the definitions of I, and r,.

The KKT system, either (4.30), (4.32), or (4.33), is typically solved with some

modified form of Gaussian elimination that scales cubically with respect to the number

of unknowns. Since the coefficient matrix is a function of the current iterate in IPMs,

the system must be solved from scratch at every iteration. Therefore, it is cheapest

to solve (4.33) instead of (4.30) or (4.32) since it has the fewest number of unknowns.

Active Set Methods

Active set methods (ASMs) are the main alternative to IPMs for handling inequality

constraints in convex optimization problems. ASMs solve (4.28) by identifying which

constraints are active (that is, hold with equality) at its solution. The collection of

active inequalities at the solution is called the active set. These methods start with an

initial guess of the active set, termed the working set. At every iteration, the working

set is modified by either adding a constraint to it or deleting a constraint from it. In

this way, the guess of the active set is iteratively refined until the exact active set is

determined [2681.

ASMs are classified as either primal or dual [129]. All primal ASMs start with a

feasible initial iterate and ensure that all subsequent iterates remain feasible. This is

useful for MPC problems as the algorithm can be stopped at any moment while still

providing an input sequence that satisfies constraints. However, a feasible point must

be found before the procedure can actually start, which can be expensive to find.

Dual ASMs systematically identify constraints that are not active at the solution. As

such, they only satisfy constraints at the final iterate, but do not require a feasible

initial iterate. Furthermore, the dual QP only involves box inequality constraints
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that can simplify computations. See [129, 5.1] and the references therein for more

on primal versus dual ASMs.

The details of ASMs are more complicated than those in IPMs. We focus on de-

scribing one iteration of the primal approach (see 174] for a more complete description)

to give some insight into the algorithm and make a high-level comparison to IPMs.

Let C denote the subset of the rows of G that make up the working set of constraints.

A step is computed from the current point z by minimizing the objective in (4.28)

while maintaining activity of the working set constraints and ensuring Dz = d holds

min j(z + Az)T H(z + Az) + cT(z + Az),Az2

s.t. DAz = 0, GAz = 0.

This equality-constrained QP is equivalent to [268]

min 1AzH THAz + JTAz, s.t. DAz = 0, GAz = 0, (4.34)

where i = c+ Hz. To obtain the step-length, a standard line search can be performed

along this direction that terminates when a new constraint is encountered or when

the minimum of the objective function along this direction is reached. The KKT

conditions for (4.34) are

H D T OT AZ -6

DAv = 0 (4.35)

G AA 0

where A,\ are the Lagrange multipliers associated with the working set.

Similarly to IPMs, ASMs require the solution of a KKT system (4.35) that is

almost identical to (4.32) except for the diagonal matrix -A--S in the lower left

corner and some rows deleted from G. Notice that we cannot derive an augmented

system of the form (4.33) in this case. We can, however, recognize that the systems

(4.35) solved at each iteration are closely related in that only a column is added to
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and/or deleted from the working set matrix G. Therefore, it is inefficient to solve

(4.35) from scratch at every iteration. For ASMs, we can significantly decrease the

cost of solving this KKT system (from cubic to quadratic in the unknowns) by simply

modifying the matrix factorization computed at a previous iteration. Readers are

referred to [268] for a method for updating these factorizations specifically in MPC

problems.

The search direction is relatively inexpensive to compute at each iteration in

ASMs when the matrix factorizations are updated efficiently, but they may require a

large number of iterations if the active set changes a lot. In fact, the computational

complexity is exponential in the worst-case and is a strong function of the number

of active constraints at the optimum [11]. In comparison, IPMs usually involve a

relatively small number of iterations (that is largely insensitive to the number of in-

equality constraints), but each step is relatively expensive to compute. One pays a

"fixed price" to solve the KKT system at each iteration that may overwhelm the ex-

pense of the active set solver for problems with few active constraints [11]. Therefore,

as a general rule-of-thumb, ASMs are suited for medium-sized problems (as the num-

ber of inequality constraints is relatively small) while IPMs are suited for large/sparse

problems.

Fast Gradient Projection Methods

Fast gradient projection (GP) methods [185, 186] can be used to iteratively solve

constrained optimization problems, such as (4.28). The basic idea stems from the

traditional gradient method (aka steepest descent [186]) for solving unconstrained

optimizations wherein the new iterate zi+1 is computed from the previous iterate z'

based on the gradient at the current iterate, i.e., zi+1 = Zi - aiVf(z') where ai is the

step size and Vf(z') is the gradient of the objective function f(.). For constrained

optimization problems, one can simply replace the gradient Vf(-) with a projection

of the gradient onto the feasible region defined by the collection of equality and

inequality constraints. Fast GP methods construct the "optimal" projection of the

gradient in the sense that no better convergence ratio can be attained when relying
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solely on gradient information for minimizing a convex objective subject to a closed,

convex constraint set (see [186, 2.11 for details).

There are a few advantages to fast GP methods that make them a promising al-

ternative to active set and interior point methods in a variety of MPC applications.

First, it is possible to compute a practical/tight upper bound on the number of it-

erations needed to obtain a solution of pre-specified accuracy with fast GP methods

[2171. On the other hand, convergence of ASMs can only be guaranteed after a finite

number of steps in general (that scales exponentially in the worst-case as every pos-

sible combination of active constraints may need to be checked) and bounds on the

number of iterations in IPMs are too conservative to be of use in practice. Further-

more, fast GP methods do not involve the solution of a linear system of equations

at every iteration, which is often a limiting factor for simple control hardware (e.g.,

microcontrollers or field-programmable gate arrays).

One major disadvantage of most fast GP methods is that the gradient projection

operation (required at every iteration) is difficult to compute in general. Therefore,

these methods are limited to cases in which the projection operation is simple, mainly

box inequality constraints and no equality constraints. This limits the applicability

of certain fast GP methods in MPC to special cases such as box input-constrained

MPC problems [217}.

4.5 Sparse and Condensed Formulations of MPC

In this section, we present different ways of formulating the MPC problem (4.5) as a

QP (4.28) of varying dimension and levels of sparsity. Two formulations are dominant

in the MPC community. The first formulation keeps the state and input as decision

variables resulting in a relatively large, but sparse QP. In the second formulation,

the state variables are eliminated from the optimization problem by substituting

the dynamic equations (4.5b) into the objective and constraints. This is commonly

referred to as the condensed approach and produces a smaller, but dense QP. We also

describe how the different iterative solution methods in Section 4.4 can be applied

111



to each particular formulation, including currently available software packages that

implement these algorithms that are customized for MPC problems.

Sparse

The sparse (aka non-condensed) formulation of (4.5) keeps the future states as deci-

sion variables and enforces the system dynamics with equality constraints [2151. In

this case, the decision variable vector is

Z <- te Q, (2, ... , tUN-1gm tN

and the QP (4.28) has the following problem data

B

R

Q M

MT R

Q M

MT R

QN

,C 4-

-Inx

A

A B -In.,

Fx Fu

FN

2MTX

q

r

q

r

qN

-Ax

0

0

f - F~x

f

f

fN
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in which the matrices are sparse and block banded. The relevant dimensions of the

QP (4.28) are then

n <-- N(n., + n,,), p - Nn,,, m +-neN + nN-

If the KKT system was solved with a naive dense LDLT factorization, it would cost

O(N3 (n, + n) 3 ) flops. As described in [268, 215], exploiting the structure of the

coefficient matrix for interior point or active set methods reduces this cost to be

O(N(no + n,) 3 ) flops, which is linear instead of cubic in the horizon. This can be

improved upon in ASMs by updating the factorization as discussed in Section 4.4,

but the cost is also a function of the number of active constraints.

Due to the receding-horizon implementation of the controller, a sequence of MPC

problems (4.5) need to be solved online in which the problem data and/or initial condi-

tion vary only slightly from one problem to the next. Solvers can benefit substantially

by using this information in the algorithm, e.g., by selecting good initial guesses for

the variables. The process of using previous information to solve a perturbed problem

is called warm starting in the optimization literature [2681.

An example of warm starting in MPC is based on the fact that we plan the control

policy for the next N time steps. As such, we can use the previously computed

trajectories as a good starting point for the current problem [261]

(zo,~~ zi, . . .,N2 --- V new)
(XO,,. . , XN) 1, 2-7 N- N

(uo, U1 ,. . UN-1) =(u_7,uj,. 1_' new

where x is the current initial state, u , x7 are the optimal input and state solutions

at the previous step, and un 1 , Xe are estimates for the final stage.

Warm starting strategies such as this typically save significantly more computation

time in ASMs than in IPMs [268]. This is likely due to the fact that IPMs try to follow

the central path, which can be quite sensitive to data perturbations near the solution.

It may then require many iterations to get back to the central path. ASMs, on the
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other hand, look to identify the active set of constraints, which will typically not

change significantly from problem to problem. Therefore, they can locate the active

set for the new problem starting from the previous active set in a few iterations.

Several attempts have been made to develop efficient warm starting methods for

IPMs. A warm starting technique for the primal barrier IPM is presented in [261]

wherein the previous solution is used as the initial guess for the first Newton step

of the KKT system at the reduced value of the barrier parameter r,. Furthermore,

[261] discusses ways to decrease complexity of the algorithm by sacrificing optimality

by solving the KKT system at a single fixed value of n, which produces reasonable

closed-loop performance in their case studies.

For IPMs, we can further speed up computations by more efficiently solving (4.33)

in normal equation form since the matrices are block banded [60]. This conpact

formulation is obtained from the Schur complement of the coefficient matrix [269]

YAv = b (4.36)

where Y = D bDT c SN, b= rD - D<D-'r,, and Az = <b- 1(-r. - DTAv). The

system (4.36) is efficiently solved by Cholesky factorization due to the symmetric

block tri-diagonal structure of Y.

There is software available for automatically generating high-speed custom solvers

that take into account the structure of the sparse (non-condensed) MPC formulation

in the ways outlined above. Two state-of-the-art examples are CVXGEN [1581 and

FORCES [60], which generate custom primal-dual interior point solvers that can yield

computation times that are orders of magnitude faster than generic solvers. Readers

are referred to these works for further details.

As discussed previously, the complexity of solvers based on the sparse formulation

of the MPC optimization problem (4.5) is roughly O(N(n. + n,)3) since the number

of iterations depends weakly on the horizon [215]. Therefore, this formulation is

best suited for problems with long horizons as the complexity scales linearly in N.

However, systems with a large number of states and/or inputs can still present major
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computational challenges for these algorithms as they scale cubically with respect

to these variables. As discussed in the next section, one way to mitigate this effect

is through condensing of the state variables wherein we produce a smaller, but less

structured QP.

Condensed

In the condensed formulation of (4.5), we eliminate the state variables by expressing

them as an explicit function of the current state and the input variables

x = Ax + Bu, (4.37)

where

Inx

A

A 2

AN

0

B

AB

AN-1B

0

0

B

AN- 2 B

In this case, the decision variable vector becomes

z +- [usU u*** I. ,uNiT

while the problem data for the inequality-constrained QP (4.28) is defined by

H +- BTQB+R+2BTM,

c <- (BTQTA + MTA)x + BTq +r,

D +- 0,
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d +- 0,

G +- FB + F.,

g +- f-F.Ax

where

IIN Q

0
[IN (9 M 1N0(]

qN

R = IN0R, r=1N9r,

FX= IN Fx 0 , Fu= IN Fu f 1N(f

0 FN 0 N

The relevant dimensions of the QP (4.28) are

n +- Nnn, p <- 0, m <- neN + nN-

In this formulation, G is a Topelitz lower block triangular matrix while H is a sym-

metric positive definite dense matrix, hence the KKT system can be solved using an

unstructured Cholesky factorization in O(N3 n') flops [1141. Notice that the compu-

tational requirements are independent of the number of states, making this approach

preferable for problems with a large state dimension. Recently, a method for ex-

ploiting the structure of the dense Hessian matrix H in condensed unconstrained LQ

problems was described in [75] costing roughly 2N2 nrin + 3Nn.nr2 + (1/3)Nn3 flops.

This approach may be faster when the number of states and horizon length are of a
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moderate dimension.

Standard IPMs are usually applied in the condensed approach. On the other

hand, an active set strategy for the condensed approach has been developed in [68]

that exploits the parametric nature of the QP (see Section 4.6 for more details).

This strategy builds upon traditional warm starting techniques by fully exploiting

the knowledge of the solution of the previous QP under the assumption that the

active set does not change much from one QP to the next. The open-source software

package qpOASES [691 implements this parametric ASM.

In [2171, fast GP methods were applied to the condensed version of the MPC

problem. The state variables needed to be eliminated from the primal formulation

in order to make the gradient projection operation simple enough to calculate ana-

lytically by removing the dynamic equality constraint. The Matlab toolbox FiOrdOs

[251] implements this fast GP method, but only works for simple constraints. As

discussed in [1131, the fast GP approaches are especially well-suited for inexpensive

embedded platforms as they only require simple operations instead of the solution to

a linear system of equations.

A dual fast GP algorithm was proposed for MPC problems in [196] that can handle

general polyhedral state and input constraints. It does this by solving the dual QP

that involves only box constraints on the Lagrange multipliers. This formulation,

however, uses the non-condensed approach such that is scales cubically with respect

to the state and input dimensions.

Quasi-Sparse

The sparse and condensed approaches represent two extremes in which one keeps all or

none of the state variables, respectively. The authors of [6] explored the possibility of

doing better by combining both approaches. The basic idea is to partially condense

the state by partitioning the horizon N into N blocks of length Mb.ck and then

eliminating the states within each block.

As shown in [6], the resulting optimization problem can be interpreted as an

MPC problem of the form (4.5) with a virtual horizon N = N/Mbock, virtual state
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dimension i, = n,, and virtual input dimension h, = Mb1ocknu. The number of

flops required to solve the KKT system can then easily be computed as a function

of Mblock. The theoretically optimal choice for Mb0 ck is derived in [61 when solving

(4.33) with a sparse Ricatti factorization. For a small number of states, the classical

sparse approach Mblick = 1 is optimal whenever n., n.

Although the methods discussed in this section can speed-up the solution of the

MPC QP substantially, they all require it to be solved online. In the next section,

we review a method for pre-computing the solution to this QP offline for all possible

values of the initial state. Even though this is only possible for problems with reason-

ably small dimensions, the online cost of the controller merely requires the evaluation

of a lookup table of linear control gains. This method opens the door to applications

with very fast sampling times and has been applied to systems with sampling times

on the order of 1 ps (see, e.g., 1116]).

4.6 Explicit MPC

The main disadvantages to the solution approaches reviewed in Section 4.5 is that

they require the solution to a QP online. In this section, we review a popular alter-

native approach to these methods that is valid for low-dimensional problems and was

introduced to the MPC community by [15]. The main idea is to construct an explicit

representation of the QP solution offline (i.e., before the runtime of the process). See,

e.g., [21 for a recent review on explicit MPC.

Piecewise Linear Solution

The MPC problem (4.5) can be written in terms of a number of equivalent QP

representations (see Section 4.5). All possible QPs differ only in the gradient c(x) in

the objective function and the constraint vector g(x), which are affine functions of the

current state x [681. This means that the MPC problem is defined by a parametric QP

with a particularly favorable structure, such that the control law KN(X) is completely

parametrized by the current value of the state x.
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When (4.5) is of a small enough dimension (usually with the state, input, and

constraint dimensions all lower than ~ 10), the QP can be solved offline to determine

KN(x) as an explicit function of x. This is done by noting that the domain of attraction

cN can be subdivided into N, polyhedral critical regions Hi on each of which the

set of active constraints is constant. The critical regions are mutually exclusive and

collectively exhaustive with respect to the domain of attraction. The result is a

piece-wise affine (PWA) control law of the form

Fix + gi, if x E U1

KN(X) = F 2 x + g2 , if x E 1 2

FNx + gNc, if x E Nc

Explicit MPC can easily be implemented using built-in functions available in the Mat-

lab toolbox MPT3 [1001. After the control law r-N(X) is calculated explicitly offline,

the only online computations will be a set membership calculation, a matrix-vector

multiplication, and a vector addition. Therefore, the major advantage of explicit

MPC is the very small online computational cost.

The largest drawback of explicit MPC is the large offline computational cost,

which generally scales poorly with the number of states and constraints, and the

space requirements of storing Hi, F, and gi. The online set membership test can also

be prohibitively computationally expensive for large problems. These drawbacks have

limited the application of explicit methods to small problems. Another drawback is

that explicit MPC is best applied when KN(r) is time-invariant, making applications

difficult for time-varying systems, trajectory tracking, and online tuning [68].

Methods for Complexity Reduction

As mentioned above, when there are many complicated critical regions Hi, storing

these sets and evaluating membership can be difficult for large problems. This has
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Figure 4-1: Critical regions II; for a randomly generated example.

motivated the development of various methods for replacing the complicated explicit

control law IKN(X) by a simpler control law iRN(x). These methods can be divided into

two different classes: 1) approximate methods, where kN(x) is chosen to approximate

KN(X), and 2) exact methods, where kN(X) ~~~ N(X) for all x in SKN-

The challenge with approximate explicit MPG methods is to approximate KN (x)

by a less complicated function KN(X) while preserving properties of the original con-

troller 1N(x), e.g. recursive feasibility, stability, and constraint satisfaction of the

closed-loop system. For example, [1351 approximates IiN(X) by a single polynomial of

pre-specified degree by solving a single linear program. [244] proposes approximat-

ing IiN(X) by solving a simpler MPG optimization problem (for example, one with

a shorter prediction horizon) and finding a PWA function RN(X) defined over the

critical regions of the simpler problem which minimizes the error between KN(X) and

KN(X). Another method involves performing explicit MPG on a reduced-order model,

although it may be difficult to use bounds on the approximation error to preserve

guarantees [1081.

One method for simplifying the control law KN(X) involves deriving an equivalent
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PWA function RN(x) which is minimal in the number of polyhedra [80]. This method,

called optimal region merging (ORM), can in some cases reduce the complexity of

rN(x) by an order of magnitude, with the downside being that ORM is NP-hard.

Another approach is to replace regions in which rN(X) obtains a saturated value

by extending regions in which the value of KN(X) is unsaturated. This procedure

defines a resulting control law kN(x) and a clipping function 0(.) so that RN(X) =

q(kN(X)) is equivalent to KN(X) for all x in XN. An extension of this technique uses

a function which strictly separates saturated regions to eliminate these regions from

the definition of the control law [134].

4.7 Example: Quadratic Dynamic Matrix Control

In the early 1970s, engineers at Shell Oil developed an MPC technology for con-

strained multivariable systems, which they named dynamic matrix control (DMC).

The DMC algorithm uses a linear step response model to predict the future behavior

of the plant while the optimal inputs are computed as the solution to a least-squares

problem that tries to drive the output to follow the stepoint as closely as possible [541.

To explicitly handle input and output constraints, Shell engineers posed the DMC al-

gorithm as a QP. This algorithm, termed quadratic DMC (QDMC), was published in

a comprehensive paper in 1986 [76]. One of the key features in QDMC is the constant

disturbance update rule used to provide feedback within the control algorithm. The

simplicity and power of this methodology has had an enormous impact on industrial

MPC, especially within chemical process industries. See, e.g., [211] for a review of

industrial MPC technology.

Step Response Modeling

In QDMC, a finite step response (FSR) model is used to predict the dynamic response

of the output to changes in the input from some steady state. For the single-input
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single-output (SISO) case, the FSR model is of the form

n-1

yk+j siAuk+j-i + SnUk+j-n (4.38)

where si are the step response coefficients, which are defined as the integral of the

impulse response, and is equivalent to the output value at time step i when a unit

step in the input is applied at time zero. The summation is truncated whenever the

input no longer effects the future output; truncated at n in (4.38), which is commonly

referred to as the model length. This model will only be accurate for stable linear

systems in which n . sn+1 -- ~ s.. Note that the step response coefficients can

be obtained from a model of the plant or from data.

Multiple inputs and multiple outputs are handled by superposition in which many

SISO models can be stacked into one model of the form (4.38) where si are matrices

(instead of scalars) of the appropriate dimensions [142]. We can also readily feedfor-

ward measured disturbances by modeling the effect of the measured disturbance on

the output using an FSR model (4.38).

State-Space Interpretation

The FSR model (4.38) can be put into the standard state-space form (4.1)-(4.2), as

was demonstrated in [142, 139], where the states, inputs, and outputs are chosen to

be

x (k) <-- [yo (k) ', y1 (k) ..... , yn_1(k)']', u(k) <-- Au(k), y(k) <- yo(k),
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and the problem data is of the form

0 In, 0 ... 0 Si

0o I . s2

A 0 0 ,B<-

Invl Sfl-4

0 In., Sn

C [In. 0 -.. 0].

The vector of states in this case has dimension n, +- nyn and represent the so-called

dynamic states or free response of the system. In this section, we denote the dynamic

states at time step k as Y(k). In fact, each element yj(k) of Y(k) can be interpreted

as the output at time k + j assuming constant inputs into the future. Thus, Y(k + 1)

is merely the previous "states" Y(k) shifted up by ny elements plus the contributions

from the most recent input. Note that the A matrix in this case is very sparse and

the dynamic states are only a function of the model length and the output dimension

(independent of the "true" state dimension n.).

Output Feedback via Disturbance Update Rule

Using the FSR (4.38), one can write the predicted future outputs as a linear combina-

tion of future input moves. However, the measured plant outputs will be different than

the predicted values due to measurement noise and unmeasured disturbances. There-

fore, we must make some assumption about these before we can proceed. QDMC uses

an additive disturbance assumption in which the future unmeasured disturbances re-

main constant over time and can be estimated as the difference between the current

measurement and the current predicted output. The QDMC predictor is then de-
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scribed by the following equations [1491

Y(k + ilk) = MpY(k) + S/A?/ (k) + ,9[y(k) - (k)], (4.39)

where 0'(k + ilk) is the predicted outputs over a horizon of p future time steps

given current information at time step k, MN is the first pny rows of the A matrix

from Section 4.7, Y(k) and 9(k) are the dynamic states and model output from the

state-space recursion form of the FSR model described above, respectively, y(k) is the

measured output from the plant, m < p is the control horizon (after which the input

is assumed to remain constant to reduce complexity), AZV( is a vector of m future

input moves, / = [In, . .. , I, and Sp", given by,

S1 0 0

S2 S1 0 0

S,"=
Sm Sm-1 S1

SP SP1 Sp-m+1

is the so-called dynamic matrix that relates the predicted future outputs to the future

input moves. Note that this procedure is very related to the processes of condensing

discussed in Section 4.5. As such, the optimization cost in QDMC is completely

independent of the state dimension nx and of the dynamic state dimension nyn. Since

the inputs are fixed after the control horizon m, the cost is also independent of the

prediction horizon p. This technique for reducing the number of decision variables is

commonly referred to as move blocking. Thus, the complexity of solving the QDMC

optimization problem using a standard QP solver is roughly O(m3n 3).

The objective function is chosen as a quadratic function similar to that in (4.5).

In fact, we can exactly represent the QDMC algorithm as a special case of the general

MPC algorithm (4.5) by selecting our state-space system to be of the form (4.26)-

(4.27) with Bd = 0 and Cd = I,. This is done by initializing the state with the
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observer (4.22)-(4.23) using a filter gain L = [0, I,]T on the augmented system.

It has been shown in [139] that this filter gain is optimal for stochastic integrated

white noise disturbances (random steps) at each output and noise-free measurements.

Interested readers are referred to [177, 139, 149] and the references therein for further

details.

When to use QDMC: Pros and Cons

The recent academic literature on MPC has favored the state-space formulation due

to its generality. Often, input-output formulations such as QDMC are viewed as

limited. This way of thinking is well-illustrated from a paper in the mid-1990s titled

"Limitations of Dynamic Matrix Control" [149]. The three limitations described in

this paper are 1) good performance may require a large number of step response

coefficients, 2) poor performance may be observed for disturbances affecting the plant

inputs or ramp-like disturbances on the output, and 3) poor robust performance for

multivariable plants with strong interactions [149}. We focus on the first and second

limitations below.

Although these can be viewed as limitations of DMC and QDMC in many sit-

uations, they may have advantages in certain cases that are often overlooked. For

example, although one may need a relatively large model length n for systems with

slow time constants, the dynamic state dimension can still be significantly lower than

the original state dimension of the plant model. In this case, the FSR model is a

simple/accurate reduced-order model. The FSR model also introduces significant

sparsity as discussed previously. As such, the QDMC algorithm is a very efficient

alternative to state-space MPC for large-scale systems with a high-dimensional state

vector.

In terms of the second limitation, although the disturbance update rule is not

optimal for non-additive disturbances, it completely avoids the need for state estima-

tion. This is important because state estimation can be quite expensive depending on

the methodology used and may not even be possible when the system is not observ-

able, which is commonly the case for systems with high state dimension. Therefore,
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it is extremely cheap from a computation point-of-view. It is also a generic rule that

works regardless of the true disturbance affecting the plant. Although it may not be

optimal, designing a better rule requires additional knowledge about how- the distur-

bances enter the system. Since these disturbances are unknown by definition, it is

often difficult to choose a better assumption beforehand. Additionally, optimal rules

for other types of disturbances can be sensitive and may lead to performance and

robustness issues.

It is also important to note that since QDMC is merely a special case of the

more general MPC problem (4.5), many of the ideas touched on in Section 4.3 can

also be incorporated into the QDMC algorithm. For example, we can set p = 00

by adding a terminal constraint based on the solution to a Ricatti equation. In

essence, the key concepts of input-output modeling and the disturbance update rule

(for output feedback) can be used to reduce the cost of the MPC optimization problem

and overall algorithm in a simple manner as well as can be nicely blended with more

recent advances in the field of MPC. Furthermore, QDMC formulates the optimization

problem in a condensed form (see Section 4.5), which is the best choice for systems

with many states.

Case Study: A Hyperbolic Distributed Parameter System

Hyperbolic partial differential equations (PDEs) are commonly used to model an

important class of problems that arise in applications exhibiting wave-like behavior.

Such PDEs are found in a variety of fields including quantum mechanics, elastic and

plasma physics, acoustics, and fluid dynamics. The second-order hyperbolic PDE of

interest is given by

0 2E 8E a2E

2 + -j- + AE(z, t) = c2 Z2 + u(t), (4.40)

for z E [0, LI and t E R>o with initial conditions

E(z, 0) = 0, = 0, (4.41)
at t=O
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and boundary conditions

E(0, t) = E(L, t) = 0, (4.42)

where E(z, t) is the dimensionless distributed state, z is the spatial coordinate from

zero to length L, t is continuous time, c is a constant related to the propagation

speed of the wave, 'y is a damping, coefficient, and A is a constant external restoration

factor. The control input u(t) appears directly in the PDE as a time-dependent

forcing function. The output of interest is the state at the center of the domain, i.e.,

y(t) = E(L/2, t).

The open-loop transfer function G(s) can be analytically derived to be

e(eV-L 2 _eV&L) a

G(s) = 1-[e 2 e - 2 2i + 2e - 1 (4.43)
c 2 a ce&/_L _ e-VOL )

where a = (1/c 2 )(S 2 + -ys + A). The poles, found by solving for the roots of the

denominator of G(s), are

22 L

for all n E II>o. There are an infinite number of poles as this is a distributed parameter

system. For realistic parameter values of c2 , y, A, L > 0, all poles will have negative

real parts, thus, the system is open-loop stable.

We look to apply QDMC to this system to illustrate how fast the algorithm can

be for high state dimension systems while still providing very good performance.

We selected the parameters to be c = 1 ', -y = 1 s-1, A = 1 s-2, and L = 1 m.

The control objective was to track a sinusoidal reference trajectory subject to input

constraints u E [-10, 10], actuator constraints Au E [-10, 10], and output constraints

y E [-10, 10].

Since the system (4.40) is open-loop stable, we can generate a step response model

(4.38) by performing a unit step test as shown in Figure 4-2. The plant output is
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shown in Figure 4-3 while the corresponding input profile, computed using QDMC,

supplied to the plant is shown in Figure 4-4. In the simulation, the prediction and

control horizon were both chosen to be 30 seconds. Furthermore, an additive mea-

sured load disturbance occurs at time 6.5 seconds, an additive unmeasured output

disturbance occurs at time 10.5 seconds, and the output measurements are continually

corrupted with white noise.

Notice that the QDMC controller almost perfectly rejects the load disturbance

through its feedforward action, even with the relatively fast-changing reference tra-

jectory. Additionally, the unmeasured disturbance is also quickly rejected due to the

simple disturbance update rule that provides feedback. This controller can very eas-

ily be implemented in an online fashion, as each QP takes only approximately 0.01

seconds to solve. This is in direct contrast to a standard state-space implementation

of the MPC controller using a discretized version of (4.40), which could take on the

order of minutes (or longer) per QP depending on the fineness of the discretization.

To get a feel for the impact on computation time, in Figure 4-5, we compare a

naive implementation of the sparse MPC formulation to QDMC for this example.

Both optimization problems were solved using the Matlab@ built-in quadprog func-

tion. We can see that the time required to solve the QDMC optimization problem is

independent of the number of states in the original model as only the FSR model is

used for optimization. On the other hand, the naive state-space MPC optimization

problem (where the states are kept as decision variables) is a strong (cubic) function

of the number of states used to discretize (4.40). Although this can be improved

by taking into account sparsity and applying better heuristics, the poor scaling with

respect to state dimension is inherent in the formulation of the problem.

4.8 Concluding Remarks

In this chapter, we reviewed and discussed the many methods that have been devel-

oped to efficiently solve the convex optimization problem arising in MPC problems

for linear systems. We focused on three different optimization methods for solving
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Figure 4-3: Closed-loop response of the hyperbolic PDE system output. See Section

4.7 for the details of the simulation.

this problem including interior point methods, active set methods, and fast gradient

projection methods.

We discuss how, not only the optimization method used, but also how the MPC

optimization problem is formulated can greatly impact the. solution speed. In fact,

we demonstrate that the fastest method and formulation for a particular application

will be a strong function of the state and input dimensions as well as the number of
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constraints included in the optimization. For small enough problems, an explicit MPC

method, which completely solves the parametric optimization offline for all possible

initial conditions, will be the fastest method as the only online cost will be the cost

of traversing a lookup table. However, the number or regions that one must compute

grows exponentially with the size of the problem and quickly becomes intractable for

state, input, and constraints dimensions larger than around five.

One particularly popular MPC approach used in industry is QDMC. The main ad-

vantages of QDMC are its input-output modeling framework and simple, yet effective,

feedback strategy. We discuss how QDMC is a particular case of the more general

state-space MPC as well as demonstrate its performance and speed on a distributed

parameter system whose dynamics are governed by a PDE. We also note that the

disturbance update rule used in QDMC is an optimal state estimator for integrated

white-noise disturbances on the output and noise-free measurements.

Although only touched on briefly, accounting for uncertainty directly in the syn-

thesis of the MPC controller is important for guaranteeing safe operation and good

performance, and is still a very active area of research. Many forms of uncertainty

may be present in practical problems including time-varying disturbances, sensor

noise, bias, and drift, parametric uncertainty, and model structure errors. Many dif-

ferent strategies have been developed to account for these types of uncertainties. The

term robust MPC broadly refers to methods in which the uncertainty is assumed to

lie in a deterministic and bounded set (see, e.g., [14]) while stochastic MPC assumes

that the uncertainty is described by an underlying probability distribution (see, e.g.,

[1641).

Many of the results discussed in this chapter can be applied to robust and stochas-

tic MPC algorithms, especially as they share the same multistage structure as nomi-

nal MPC. One interesting route for handling additive disturbances and measurement

noise is so-called tube-based MPC [1601. Since the tube-based MPC problem reduces

to almost exactly a nominal MPC problem of the form (4.5), its structure can be

exploited in exactly the same way. As an example of this, real-time implementable

tube-based MPC has been explored in [277].
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Chapter 5

Plant-wide Control for Continuous

Pharmaceutical Manufacturing

5.1 Introduction

In recent years, there has been a growing interest in the pharmaceutical industry

to adopt novel synthesis and manufacturing approaches [140, 242]. The paradigm

shift from conventional pharmaceutical manufacturing (i.e., batch-wise processing)

is mainly driven by the demands for enhanced sustainability, reliability, and cost-

effectiveness of pharmaceutical processes, as well as the need for novel synthesis

pathways [203]. Integrated continuous manufacturing (ICM) has received increas-

ing attention to realize efficient and cost-effective pharmaceutical production. Recent

studies have demonstrated that ICM can substantially reduce environmental foot-

print, manufacturing times, and costs compared to the existing batch pharmaceutical

processes [218, 17, 223]. In addition, the increased use of online monitoring (i.e., pro-

cess analytical technology [270]) in ICM leads to improved real-time understanding

of process dynamics. This understanding facilitates online control to achieve consis-

tently high-quality product in the presence of process uncertainties and disturbances

by taking corrective actions before product goes off-spec.

Online control is an alternative to so-called design space-based control strate-

gies in pharmaceutical manufacturing [145]. A design space is defined as the multi-
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dimensional space of critical process parameters (CPPs)-input variables and process

parameters-that has been demonstrated to result in acceptable critical quality at-

tributes (CQAs) of the product. The design space-based control strategies are typ-

ically devised to monitor (and possibly control) the CPPs within the design space.

Such control approaches enable robust process operation in that process variations

within the design space (due to uncertainties and disturbances) can be readily ac-

counted for without any active control (i.e., quality by design [276]). However, es-

tablishing a design space involves a costly and exhaustive practice of identifying a

high-dimensional space of CPPs a priori, which is often of limited applicability dur-

ing process scale-up [145]. In particular, the establishment of a design space is likely

to be more challenging for ICM processes. This is because the interactions between

several process units connected through a network of mass and energy streams can

result in an excessively large design space, and any unexplored attractive region of

operation (i.e., set of CPPs leading to adequate product quality) can drastically re-

duce flexibility in process operation. On the other hand, when the product CQAs are

monitored in real-time, feedback control can be applied to retain the CQAs within

their admissible limits by actively manipulating CPPs to counteract process varia-

tions. Hence, active control is likely to enable a more robust and flexible process

operation compared to design space-based control strategies.

The key challenge in active control of a continuous pharmaceutical manufacturing

process arises from complex plant-wide dynamics of the integrated process units.

Advanced control of isolated process units (e.g., crystallizers, thin-film processing

units, granulation units, compaction units, etc.) in pharmaceutical processes has

been extensively investigated (e.g., see [259, 109, 213, 182, 167, 165] and the references

therein). However, the shift from batch-wise processing to ICM requires harnessing

the multivariable dynamics of a plant composed of several interconnected units with

recycle, bypass, and heat streams, which can significantly increase the complexity of

the plant-wide dynamics. The plant-wide interactions in an ICM process often result

in poor performance of decentralized control systems at the process unit level. Hence,

a plant-wide control strategy should be designed for the integrated process units to
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realize the stringent regulatory requirements on the CQAs of the end product.

This chapter investigates plant-wide model predictive control of an end-to-end

integrated continuous pharmaceutical manufacturing pilot plant. Model predictive

control (MPC) is the most commonly applied approach for advanced control of com-

plex dynamical systems due to its ability to systematically deal with multivariable

dynamics, system constraints, and competing sets of objectives [1741. The ICM pro-

cess manufactures a pharmaceutical product from start (synthesis of intermediate

compounds) to finish (molded tablets in final dosage form) in a fully continuous

mode [157]. This includes chemical synthesis, purification, formulation, and tablet-

ing. A nonlinear plant-wide dynamic model of the pilot plant is used to simulate

the dynamics of the real process' [18]. The plant-wide dynamics are described by a

set of nonlinear differential algebraic equations (DAEs) with nearly 8,000 state vari-

ables. The quadratic dynamic matrix control (QDMC) algorithm [76] is used to devise

an input-output control framework for plant-wide MPC of the integrated continuous

manufacturing pilot plant. The input-output framework of QDMC is independent of

the state dimension. Therefore, QDMC alleviates the prohibitive costs of plant-wide

control of ICM processes with a large state dimension, as such processes typically have

a relatively small number of inputs (CPPs) and outputs (CQAs). In addition, QDMC

enables incorporating output constraints into the control problem. This is particu-

larly important for online control of pharmaceutical processes, as quality-by-design

considerations (i.e., design spaces) can be explicitly accounted for in the plant-wide

MPC framework.

To design a plant-wide QDMC system, two modeling approaches are investigated

to obtain a linear time-invariant (LTI) approximation of the nonlinear plant dynam-

ics. In the first approach, subspace identification [1481 is applied to identify a low-

dimensional state-space description of the plant dynamics using input/output data

generated by the plant simulator around some desired steady state operating condi-

tion. Alternatively, the set of nonlinear DAEs is readily linearized around the steady

'Certain features of the plant simulator (e.g., recycle streams) have not been implemented in the
real 1CM pilot plant, which was built at the Novartis-MIT Center for Continuous Manufacturing.
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state operating condition to arrive at a high-dimensional state-space model based on

first principles. The developed LTI descriptions of the plant-wide dynamics are used

to characterize the finite step response (FSR) dynamics 2 of the plant and, subse-

quently, design two plant-wide QDMC systems.

The performance of the plant-wide QDMC systems is assessed in closed-loop op-

eration with the nonlinear plant simulator under various scenarios for process uncer-

tainties and disturbances, as well as setpoint changes. To demonstrate the potential

benefits of plant-wide model predictive control for the ICM process, the performance

of the QDMC systems is compared against that of a plant-wide regulatory control

system presented in 11361.

Organization The integrated continuous pharmaceutical manufacturing pilot plant

is presented in Section 5.2. Section 5.3 describes the data-driven and first-principles

approaches adopted to develop a linear time-invariant state-space representation for

the nonlinear plant-wide dynamics using the existing plant simulator. The formula-

tion of the plant-wide MPC problem for the ICM process considered in this chapter

is presented in Section 5.4 along with simulation results comparing MPC and a reg-

ulatory control system under various uncertainties and disturbances.

5.2 Process Description

A schematic representation of the integrated continuous pharmaceutical manufactur-

ing pilot plant is depicted in Figure 5-1 (see [18, 157] for a detailed description of

the process). The target active pharmaceutical ingredient (API) is aliskiren hemifu-

marate (compound 6 in Figure 5-2), which is synthesized from aliskiren (intermediate

compound 5). The process consists of several units for synthesis and purification of in-

termediates and the API, followed by a series of downstream units in which excipients

are added to the API and tablets are formed. The process starts with mixing the inter-

2FSR models are commonly generated in industry by perturbing the inputs of the plant during
operation around a steady-state point and measuring the resulting outputs. This alternative method,
of developing FSR models from the first principles model equations, does not require any plant data
such that material need not be wasted when generating the model.
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Figure 5-1: Integrated continuous pharmaceutical manufacturing pilot plant equipped
with a stabilizing control layer. R reactor, S separator, C crystallizer, M mixer, W
washing/filtering unit, D dilution tank, E extruder, MD molding unit, P pump, CC
concentration control, FC flow control, LC level control, SP setpoint.

mediate compound 1 with amine 2 and acid catalyst 3 (see Figure 5-2), which is then

fed to a tubular reactor (Ri) to produce the intermediate compound 4. Water and

ethyl acetate (EtOAc) are added to the reactor outlet stream to solubilize the reagents

before cooling in a static micromixer (M2). The two-phase stream is separated in a

membrane-based liquid-liquid separator (Si), from which an aqueous-phase stream

(Aqi) containing 2 and 3 is purged. The outlet stream of S1 (containing 1 and 4)

is fed into a two-stage, mixed suspension, mixed product removal (MSMPR) crystal-
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lization unit (Cl and C2) to crystallize the intermediate compound 4 by antisolvent

heptane (HEP) addition. The crystallization slurry in then fed into a continuous filter

(Wi) to wash and filter crystals with ethanol (EtOH) and EtOAc to remove mother

liquor. The permeate stream of the filter unit W1 contains a substantial amount of

reactant 1 and, therefore, is recycled back to reactor R1. A flash evaporator (S2) is

used to remove EtOAc from the recycled stream. A fraction of the material in the

recycle loop is purged (Orgi) to avoid excessive buildup of impurities (i.e., reaction

byproducts) in the process.

The purified crystals of the intermediate compound 4 in the outlet stream of WI

are diluted with EtOAc in a dilution tank (Dl) to adjust the concentration of 4 for

the second reaction (i.e., 4 to 5 in Figure 5-2). The slurry of compound 4 in EtOAc is

mixed with aqueous hydrogen chloride, and fed into a tubular reactor (R2) to perform

acid-catalyzed removal of the Boc protecting group (Boc=tert-butoxycarbonyl) from

4. The reactor outlet stream, which contains the second intermediate compound 5,

is quenched with sodium hydroxide (NaOH) to neutralize the acid catalyst. The two-

phase mixture is then separated in a decanter (S3), from which the aqueous phase

(Aq2) is purged. The organic-phase stream containing compound 5 is passed through

an adsorption column (S4) to remove the traces of water, as EtOAc is the main

solvent that can be used in the subsequent units. The API 6 is formed in a reactive

crystallization step (C3), in which fumaric acid reacts with the second intermediate

compound 5. The API is initially synthesized in the first MSMPR vessel (C3), and

the yield is further increased in a second MSMPR vessel (C4). The API crystals are

purified in a combined washing and filtration unit (W2), similar to W1, and then fed

into a dilution tank (D2) to adjust the concentration of the API wet cake by adding

EtOAc.

Prior to tablet formulation, the first excipient (SiO 2 ) is added to the crystal slurry

to improve the flowabilty of the needle-shaped API crystals. This is followed by two

drying steps. The bulk of EtOAc is evaporated in a double drum dryer (S5) and,

subsequently, the traces of the solvent are removed in a screw dryer (S6). The dried

powder is then mixed with polyethylene glycol (PEG) to improve the stability of the
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final tablets. The powder mixture is conveyed to an extruder (El), which is coupled

to a molding unit (MD) that forms tablets with a defined geometry. At the end of

the process, the solvent content, total impurity content, and API dosage of the final

tablets are measured using a near infrared instrument. In addition, the production

rate of the tablets is measured. In this study, the potential CPPs consist of flow

rates of all the inlet reactant, solvent, and excipient streams to the process. The API

dosage and total impurity content constitute the primary CQAs of the manufactured

tablets, whereas the production rate is considered as the secondary CQA.

0 0

0 
NH NH2

4 OH

0 0 NH NH
2  

Aq. HCI

lp HBOC 
EtOAc

0
OHH

6 OHH

O 0

H
2

H

H2 NH NH
2  1

2OH H

Figure 5-2: Synthetic reactions from intermediate 1 to active pharmaceutical ingre-

dient 6.

The ICM pilot plant depicted in Figure 5-1 is equipped with a stabilizing control

layer to maintain sufficient holdup in each vessel. The stabilizing control layer con-

sists of proportional-only level controllers (LC), which regulate the outlet flow rate

from the vessel using a pump (P). In addition, a control loop is established to reject

disturbances in the recycle stream to reactor R1. An in-line measurement instrument

is used in the outlet stream of the reactor to measure the concentration of the reaction

effluents to control the concentration of the byproducts recycled back to R1. This

is done by cascade control of the flow rate of the purge stream (Orgi), where the

manipulated variable of a concentration controller (CC) serves as the setpoint of a

flow controller (FC) implemented on the purge stream (see [136] for the design of the
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stabilizing control layer).

5.3 Control-relevant Process Modeling

This section presents two modeling approaches to obtain a linear time-invariant de-

scription of the plant-wide dynamics in terms of a state-space model that can be

used for designing the plant-wide MPC. A plant simulator is utilized to simulate the

nonlinear dynamics of the end-to-end integrated continuous pharmaceutical manufac-

turing pilot plant [18]. The plant simulator is developed in the JACOBIAN simulation

platform (RES Group, Inc.) based on first principles (i.e., mass, energy, and moment

conservation laws) and empirical equations that describe physicochemical phenomena

such as reaction kinetics, crystallization kinetics, and washing/filtration characteris-

tics. The stabilizing control layer depicted in Figure 5-1 is incorporated into the plant

simulator.

Identification of a Low-dimensional Model

System identification is a common engineering practice to build models of dynamical

systems from measured input/output data using statistical methods [1481. System

identification is an alternative to first-principles modeling of complex systems, when

the latter approach is too involved or the complexity of a first-principles model makes

its use prohibitively expensive (e.g., for real-time control). An identified model is

typically developed specifically for a certain application to tradeoff model complexity

versus accuracy given the application requirements.

In this study, the subspace identification approach (e.g., see [210]) is used to

obtain a low-dimensional description of the plant-wide dynamics in the form of a LTI

state-space model

y(t) = Ax(t) + Bu(t) + w(t) (5.1a)

y (t) = Cx(t) + Du(t) + n(t) (5. 1b)
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Figure 5-3: Dynamic sensitivity analysis of the critical quality attributes with respect

to the potential critical process parameters (the streams are ordered as in Figure 5-1).

where A, B, C, and D denote the system state-space matrices, t denotes time, x E R'x

denotes the state variables, - is the derivative of x with respect to time, u E R'"
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denotes the system inputs (i.e., CPPs), y E Rl' denotes the system outputs (i.e.,

CQAs), w E R=' denotes the process noise, and n E R"Y denotes the measurement

noise. In general, subspace identification involves two steps: (i) the model order n,

and a state sequence I: are determined by projecting row spaces of the input/output

data block Hankel matrices, and applying a singular value decomposition; and (ii) a

least-squares problem is solved to obtain the state-space matrices 12531.

Prior to system identification, a dynamic sensitivity analysis is preformed using the

plant simulator to determine the CPPs to which the CQAs are most sensitive. This

enables identifying the CPPs with the largest influence on the plant-wide dynamics

relevant to control of the ICM pilot plant. Hence, merely the chosen CPPs are used

to excite the pilot plant (i.e., plant simulator) to generate sufficiently informative

input-output data for identification of a state-space model (5.1). This is to avoid

excessively long experimentation times and unnecessary process perturbations during

data collection. Figure 5-3 shows the results of the dynamic sensitivity analysis for

the different CQAs. The simulation results indicate that the flow rates of the Streams

2, 3, H20, and NaOH in the pilot plant (see Figure 5-1) have a negligible dynamical

effect on the CQAs and, therefore, are not useful as effective CPPs. On the other

hand, even though the flow rates of the Streams HEP and C 4H4 0 4 influence the CQA

profiles somewhat largely, these CPPs cannot be utilized for plant-wide control due

to practical considerations pertaining to the process operation (see [1361).

Table 5.1: The effective CPPs used for plant-wide identification and control (the
streams are ordered as in Figure 5-1).

Flow rate of Stream 1 (compound 1 in Figure 5-2)
Flow rate of Stream EtOAc
Flow rate of Stream EtOH/EtOAc
Flow rate of Stream EtOAc
Flow rate of Stream HCl
Flow rate of Stream EtOH/EtOAc
Flow rate of Stream EtOAc
Flow rate of Stream Si0 2

Flow rate of Stream PEG
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The CPPs that can be used to effectively regulate the CQAs are listed in Ta-

ble 5.1. These CPPs, along with purity of Stream 1 that is considered as a measured

disturbance, are excited in a multistep fashion to generate input/output data for iden-

tification of the plant-wide dynamics. The canonical variate analysis (CVA) subspace

identification method [1381 is used to identify a LTI state-space model of order 12

(i.e., n. = 12 in (5.1)). The subspace identification is performed using the MATLAB

function n4sid. The predictions of the identified model validated against an inde-

pendent data set are depicted in Figure 5-4. The model validation results suggest

that the identified low-dimensional model provides an adequate description of the

steady-state process behavior.

Linearization of the Plant-wide Model

The plant simulator describes the plant-wide dynamics by a set of nonlinear, continuous-

time differential algebraic equations

0 = F(#(t), z(t), v(t), u(t), 6), z(0) = zo (5.2)

where z C Rnz denotes the differential state variables, i denotes the derivative of

z with respect to time, z(O) = zo denotes consistent initial conditions, v E R nv

denotes the algebraic state variables, 0 E R", denotes the system parameters, and

F : R 2
n+"n > R n2l+nv denotes the n_, + n, equations describing the nonlinear system

dynamics. The system state vector is comprised of the differential and algebraic state

variables denoted by x = [zT vT] E C Rn with nx = nz + nv. The system outputs

(i.e., y E R"nfl) are algebraically related to x, u, and 0. Hence, y can be included in

the definition of x in (5.2) as algebraic state variables for notational simplicity.

Taylor series expansion can be used to obtain a LTI state-space approximation of

(5.2) around a steady-state operating point (e.g., see [191)

M.(t) = A (x(t) - xss) + B(u(t) - uss) (5.3)
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Figure 5-4: Validation of the identified and linearized models with respect to an
independent data set generated using the plant simulator.

with the subscript "ss" being the steady-state solution (i.e., x(oo) = x,, that satisfies
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(5.2) given u(oo) = u,,, i(oo) = 0, and 0). The system matrices are defined by

M = Onx xnv (5.4a)

aF aF
A =(5.4b)

az a v
OF

B = F (5.4c)
au Sss

where !2 denotes the Jacobian of the function F with respect to the variable a

evaluated at the steady state such that the ijth element is the partial derivative of

F with respect to aj, and Onxx, denotes a zero matrix of size nx by nv. The state-

space model (5.3) is high dimensional with 7, 613 state variables (nz = 6, 087 and

n, = 1, 526). The system inputs consists of the CPPs listed in Table 5.1 (n" = 9).

The system matrices (5.4) are derived efficiently using the automatic differentia-

tion feature of DAEPACK [249], which takes a Fortran-based system model as input

and generates the Jacobian matrices of the model. A Fortran version of (5.2) was

generated using a code generation patch to the JACOBIAN simulation platform, in

which the plant simulator is implemented. The consistent initial conditions for the

high-dimensional state-space model are obtained by solving the sparse linear set of

equations in (5.3) at t = 0

OF OF ik o OF

a Sa -_ Bo - a zo (5.5)

Ainitial binitial

where Y denotes the deviation variable form of x (i.e., : x - xs,) and xO denotes

the initial condition of x (i.e., xo := x(t = 0)). For the given initial inputs io and set

of differential state values io, (5.5) is solved to determine the remaining unknowns

v0 and iO. In this study, the stiff, ordinary differential equation solver odel5s in

MATLAB is used to solve (5.3) with the consistent initial conditions given by (5.5).

The predictions of the state-space model (5.3) are shown in Figure 5-4. The high-

dimensional model can adequately describe the predictions of the nonlinear plant
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simulator. The simulation results indicate that the high-dimensional model outper-

forms the identified low-dimensional model in describing the transient dynamics from

one steady-state operating point to another. This arises from the first-principles na-

ture of the linearized model, which leads to more accurate representation of process

dynamics at the expense of computational complexity due to the significantly larger

state dimension.

5.4 Application to Integrated Continuous Pharma-

ceutical Pilot Plant

In this section, we explore how well QDMC can reject realistic process uncertainties

and disturbances within the integrated continuous pharmaceutical manufacturing pi-

lot plant. Two plant-wide QDMC systems are designed using the low-dimensional

identified model (5.1) and the high-dimensional linearized model (5.3) to obtain finite

step response models (labeled SS-MPC and LM-MPC below, respectively). Closed-

loop simulation results are obtained by applying the optimal control inputs to the

nonlinear plant simulator. The CQAs are assumed to be measured and sampled

every 5 minutes, which are fed back to the control systems to update the model pre-

dictions. The performance of these plant-wide QDMC systems is compared to that

of a plant-wide regulatory control system that consists of multi-loop proportional-

integral controllers (see [136]). These plant-wide control systems are mounted on

top of a stabilizing control layer to ensure stable operation. These results are also

compared to an open-loop case, in which only the stabilizing control layer is applied

to the plant. In what follows, all CQA plots are normalized with respect to desired

steady-states. Note that a small amount of random i.i.d measurement noise was in-

cluded in all simulations using LM-MPC whereas it was not considered in simulations

with SS-MPC.
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Control Problem Formulation

As listed in Table 5.1, the process has nine effective CPPs that can be used as manip-

ulated variables. The control objective is to regulate the API dosage and production

rate of the manufactured tablets to follow desired setpoint trajectories in the pres-

ence of process uncertainties and disturbances, while ensuring that the total impurity

content of the tablets remains below an admissible threshold.

The QDMC algorithm presented in Section 4.7 is adopted in this work. The

outputs y are defined as

Y <- [API, PR, IMP]T

where API is the concentration of the active pharmaceutical ingredient in the pro-

duced tablets, PR is the production rate of tablets, and IMP is the impurity con-

tent of the tablets. Box constraints are considered on each of the input values

such that the inputs can vary within 20% of their steady-state values, i.e., 0.8u.,

u(k) < 1.2u,,. One-sided box constraints are also considered for the impurity content

of the tablets, which cannot increase more than 8% of its steady-state value, i.e.,

IMP(k) < 1.08IMP,. These output constraints are enforced over the entire predic-

tion horizon of the QDMC problem (can be thought of as state constraints as shown

in Section 4.7).

The output weight matrix Q is selected to be a diagonal matrix with a large value

for (1,1) element since API dosage is the primary CQA of the manufactured tablets.

The impurity content in the tablets must always meet the constraint limit or many

days worth of produced tablets must be discarded due to current regulations. Note

that the QDMC framework is very flexible as it also allows for QbD constraints to be

directly included in the optimization to ensure regulatory compliant operation.

The plant-wide QDMC system is implemented in a receding-horizon mode, as il-

lustrated in Figure 5-5. This requires online solution of a optimal control problem of

the form (4.5) over the horizon at every time instant. The online measurements of

CQAs are used to continuously update the prediction model at each sampling time in-
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stant. The receding-horizon implementation of the control system partly circumvents

performance degradation of the optimal control inputs due to model imperfections

and process disturbances.

Past Future
Setpoint

S*
y(k+1) .

y(k) . 0 '0

u(k+Nc-l)
*u(k

Au(k+1)

k k+1 k+Nc -1 k+NP

Prediction Horizon

Figure 5-5: Illustration of the receding-horizon implementation of the plant-wide

QDMC system.

Parametric Uncertainties in Reaction Kinetics

To investigate the effect of parametric uncertainties on plant-wide control of the ICM

pilot plant, a gradual change in synthesis of the intermediate and API compounds in

reactors R1 and R2 (see Figure 5-1) is induced by defining the reaction kinetics as

kR1,1 (t) _ 1 - 0.005t if t < 20 kR2 ,2(t) 1 + 0.Olt if t < 100
ko koR,1 0.90 if t > 20 R2,2 2.0 if t> 100

where kR1,1 and kR2,2 denote the rate constants for the intermediate and API com-

pound synthesis reactions, respectively (see Tables 1 and 2 in [18]). kii,1 and ko2 ,2

denote the nominal values of the rate constants.

Figure 5-6 depicts the closed-loop simulation results for the plant-wide QDMC

and regulatory control systems, as well the open-loop case where only the stabilizing
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control layer is used for level control. As can be seen, in the open-loop case with

no active control the ICM pilot plant cannot be retained at the desired steady-state

operating condition in the presence of process uncertainties (i.e., the normalized API

dosage and production rate profiles do not remain at 1.0 in Figures 5-6a and 5-6b,

respectively). In addition, the impurity level violates its maximum admissible level

in the open-loop case, leading to production of off-spec tablets. This calls for active

control of the ICM pilot plant to be able to fulfill the stringent regulatory requirements

for the CQAs of the manufactured tablets.

The simulation results indicate the ability of plant-wide MPC in effectively dealing

with process uncertainties, as the API dosage and production rate profiles can follow

the setpoint trajectories closely. Figure 5-6a shows that both plant-wide QDMC sys-

tems with the underlying low-dimensional identified model (SS-MPC) and the high-

dimensional linearized model (LM-MPC) outperform the regulatory control system in

terms of maintaining the desired API dosage specification. This is due to the ability

of MPC to deal with multivariable dynamics of the ICM pilot plant, while multiloop

PID controllers cannot accomplish this systematically. Even though the improvement

gained in the API dosage setpoint tracking is approximately 1% using the plant-wide

QDMC systems as compared to the plant-wide regulatory control system, this is

paramount in pharamaceutical manufacuring since the CQAs of the tablets cannot

be compromised. As shown in Figure 5-6b, SS-MPC outperforms the LM-MPC in

terms of the production rate setpoint tracking, which can be attributed to controller

tuning. Figure 5-6c clearly shows the ability of plant-wide MPC in constarint han-

dling (i.e., circumventing violation of the maximum admissible impurity level). Note

that the plant-wide regulatary control system maintains the impurity level at some

pre-specified value using a PI controller (see [136]) and, therefore, the impurity level

profile remains at 1.0. However, by explicitly incorporating the CQA constarints into

the control framework, plant-wide MPC systems are able to systematicaly exploit

the extra degrees of freedom of the process to more effectively achieve the regulatory

requirements for the other CQAs (e.g., the API dosage in this scenario).
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Figure 5-6: Closed-loop control of the ICM pilot plant with the plant-wide MPC

and regulatory control systems in the presence of parametric uncertainties in the

intermediate and API synthesis reaction kinetics (reactors R1 and R2 in Figure 5-1).

Persistent Disturbance in Filtration Units

The effect of persistent disturbances on plant-wide control of the ICM pilot plant is

investigated by persistently decreasing thb"0 washing efficiency in the filtration units

1.0 A-i

1 .02-

1

-o
C0
0

N

E
0
z

.- Open-loop Control
-Regulatory Control
- --SS-MPC
-LM-MPC

0.98 -

0.96 -

0.94'-0

1.041

1 02

1

co

0
0

a..

a
E
0z

-Open-loop Control
-Regulatory Control
--- SS-MPC
-LM-MPC

0.

0.96

0.94 -0

1.15

CL 1.1

E 0

z

-- Open-loop Control
-Regulatory Control
-- -SS-MPC

Maximum Admissible Impurity

..-....

I

98[



W1 and W2 (see Figure 5-1) as

Kwi(t) Kw,2 (t) _ exp(-0.002t) if t < 200

w 1  K, 2  0.70 if t > 200

where Kiy1 and K02 are the nominal values for the wash factor in the filtration units

W1 and W2, respectively (see [181). The closed-loop simulation results are depicted

in Figure 5-7. It is evident that the plant-wide QDMC systems (especially SS-MPC)

lead to effective tracking of the setpoint trajectories and, therefore, enable operat-

ing the ICM pilot plant around the desired steady-state operating point effectively

in the presence of persistent disturbances. The plant-wide QDMC system with the

low-dimensional identified model (SS-MPC) slightly outperforms the plant-wide reg-

ulatory control system in terms of achieving smoother setpoint tracking. Yet again,

open-loop control with the stabilizing control layer results in a substantial degradation

of the CQAs of tablets due to significant and persistent process disturbances.

Temporary Disturbance in Purity Level of Intermediate Com-

pound

The purity level of the intermediate compound 1 (stream 1 in Figure 5-1), denoted

by xi(t), is changed, i.e.,

0.97 5 if 50 < t < 200
xi(t) =

0.99 otherwise,

to investigate the ability of the plant-wide control systems to deal with temporary

disturbances. The closed-loop simulation results suggest that the plant-wide QDMC

systems outperform the plant-wide regulatory control system, in particular for the

API dosage setpoint tracking (see Figure 5-8). Both SS-MPC and LM-MPC enable

maintaining the API dosage tightly at the desired setpoint in the presence of feed

impurities. This is crucial for industrial-scale pharmaceutical manufacturing to have
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Figure 5-7: Closed-loop control of the ICM pilot plant using the plant-wide MPC and
regulatory control systems in the presence of persistence disturbance in the filtration
units (filter units W1 and W2 in Figure 5-1).

robust fulfillment of the regulatory requirements for CQAs in terms of coping with

process changes and disturbances.

Step Increase in Production Rate

The ability of the plant-wide control systems in dealing with setpoint changes is

evaluated by changing the production rate setpoint for 5% (see Figure 5-9b). As can

be seen in Figure 5-9a, the plant-wide QDMC systems enable tracking the API doage

setpoint trajectory more closely than the plant-wide regulatory control system. In

addition, the plant-wide QDMC systems lead to faster transition dynamics to the new

setpoint, as shown in Figure 5-9b. Hence, plant-wide MPC results in production of
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Figure 5-8: Closed-loop control of the ICM pilot plant using the plant-wide MPC and
regulatory control systems in the presence of temporary disturbance in the purity level
of the intermediate compound 1 (stream 1 in Figure 5-1).

less off-spec tablets during the production rate setpoint change and, therefore, offers

more flexibility in operation of the ICM pilot plant.

5.5 Conclusions

This chapter presents two plant-wide MPC systems for an end-to-end continuous

pharmaceutical manufacturing pilot plant built at the Novartis-MIT Center for Con-

tinuous Manufacturing. Two modeling approaches (subspace identification and lin-

earization of the nonlinear DAE plant-wide model) are investigated to obtain a linear

low-dimensional and high-dimensional representation of the nonlinear plant dynam-
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Figure 5-9: Dynamic response of the ICM pilot plant to a step increase in the pro-
duction rate. The pilot plant is in closed-loop operation with the plant-wide MPC
and regulatory control systems.

ics, respectively. The quadratic dynamic matrix control algorithm is applied to design

an input-output control framework for plant-wide MPC of the integrated continuous

manufacturing pilot plant, independent of the plant state dimension.

The.closed-loop performance of the two plant-wide MPC systems designed using

the low-dimensional and high-dimensional plant models is evaluated for various sce-

narios pertaining to process uncertainties, disturbances, and setpoint changes. The

simulation results indicate that plant-wide MPC facilitates effective regulation of

CQAs and flexible process operation in the presence of process uncertainties and dis-

turbances of different nature. In addition, plant-wide MPC enables incorporating the

QbD considerations into the control problem through input and output constraints
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to ensure regulatory compliant process operation. This is paramount for meeting the

stringent regulatory requirements in the pharmaceutical industry.
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Part IV

Stochastic Model Predictive Control
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Chapter 6

Fast Model Predictive Control of

High-dimensional Systems with

Probabilistic Uncertainty

6.1 Introduction

Model predictive control (MPC) is the most widely used approach for the advanced

control of complex dynamical systems due to its ability to systematically deal with

multivariable dynamics, system constraints, and competing sets of objectives [1741.

Chapter 4 provides a detailed discussion on the current state-of-the-art methods in

deterministic MPC. While many MPC formulations have been developed to account

for exogenous disturbances and measurement noise, few formulations are able to sys-

tematically handle probabilistic uncertain parameters, in spite of their ubiquity in

complex systems. Probabilistic uncertainties can lead to severe closed-loop perfor-

mance degradation and, as a result, impair high-performance operation of complex

systems using classical MPC approaches.

Robust MPC is a popular approach for dealing with model uncertainties (e.g.,

see [14]). Assuming that uncertainties are bounded, most robust MPC approaches

compute the optimal control law to minimize the performance for the worst-case
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model uncertainties. While this approach can guarantee constraint satisfaction un-

der all disturbances and uncertainties, the resulting control law is conservative in

most control applications, as the worst-case perturbations usually have a very low

probability of occurrence. Recently, novel methods for robust MPC have been inves-

tigated using the so-called scenario approach (e.g., see [38, 278], and the references

therein). The scenario approach provides a sampling-based technique to solve convex

chance-constrained optimization problems and, therefore, enables a paradigm shift

from deterministic algorithms to randomized robust MPC approaches that exploit

the statistical description of uncertainties. However, typically the number of samples

(i.e., scenarios) results in an on-line computational cost that is too high for imple-

mentation in high-dimensional systems.

Stochastic MPC (SMPC) offers an alternative approach for robust MPC in a

probabilistic uncertainty setting. SMPC approaches enable shaping the predicted

probability distribution functions (PDFs) of system states and outputs in an opti-

mal manner over a finite prediction horizon (e.g., see [27, 41, 125, 110, 169], and the

references therein). In SMPC, chance constraints can be considered in a probabilis-

tic sense to circumvent the inherent conservatism of deterministic worst-case robust

MPC approaches. However, a key challenge in SMPC is the propagation of proba-

bilistic uncertainties through the system model. The commonly used approaches for

probabilistic uncertainty analysis (e.g., Monte Carlo methods [255J) are prohibitively

expensive for real-time control for high-dimensional systems.

This work presents a fast stochastic MPC algorithm applicable to high-dimensional

stable systems with time-invariant probabilistic uncertainties in initial conditions and

system parameters. The quadratic dynamic matrix control (QDMC) algorithm [76],

which is the MPC algorithm most widely applied to large-scale industrial systems, is

adopted to formulate an input-output framework for SMPC with output constraints.

Such a probabilistic input-output framework has an online computational cost that is

independent of the state dimension, which enables its application to uncertain systems

with high state dimension .

'Such systems are referred to as large-scale or high-dimensional systems in this chapter.
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Generalized polynomial chaos theory [266, 2721 is used for propagation of prob-

abilistic uncertainties through the high-dimensional system model. In polynomial

chaos theory, the implicit mappings between uncertain variables/parameters and the

system states are replaced with expansions of orthogonal polynomials that are func-

tions of the random variables (see Chapter 3 for further details). In contrast to

sampling-based uncertainty analysis approaches, the orthogonality property of poly-

nomial chaos expansions (PCEs) enables efficient computation of the statistical prop-

erties of the state PDFs. Galerkin projection is ued to determine the coefficients of

the PCEs for a general class of linear differential algebraic equations (DAEs). As

such, the proposed fast SMPC approach can be applied to a large class of complex

systems, whose dynamics are described by a set of high-dimensional DAEs.

Organization The next section illustrates that parameter uncertainty can lead to

instability in even the unconstrained version of the standard MPC problem (meaning

that they do not provide guaranteed robustness properties). This explicitly motivates

the need to account for parameter uncertainty within MPC. Section 6.3 formulates

the stochastic MPC problem for high-dimensional systems with probabilistic uncer-

tainties. Section 6.4 presents the Galerkin projection method and briefly extends

it to linear dynamical systems described by index-1 DAEs. This is combined with

the quadratic dynamic matrix control (QDMC) algorithm in Section 6.5 in order to

write the MPC problem in terms of the system inputs and outputs, such that the

online computational cost is independent of the large state dimension. Then, the

proposed approach for fast MPC of large-scale systems with probabilistic uncertain-

ties is applied to an end-to-end continuous pharmaceutical manufacturing pilot plant

in Section 6.6 (see Chapter 5 for results for this process with standard QDMC under

various disturbance case studies) and conclusions are drawn in Section 6.7.

The majority of this chapter was published in the Proceedings of the IEEE Con-

ference on Decision and Control [1991.
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6.2 Can Parameter Uncertainty Lead to Instability

in MPC?

Before developing a method to account for parametric uncertainty in MPC, it is useful

to consider how badly performance can be effected by model uncertainty. To do this,

we explored the application of linear-quadratic-Gaussian (LQG) control (which is one

of the fundamental optimal control problems that was solved in 1960s) to a simple

system. LQG control combines the Kalman filter [1201 (optimal estimator for linear

systems subject to i.i.d. Gaussian white noise) and an unconstrained linear-quadratic

regulator (unconstrained version of (4.5) with l(xj, uj) = xIQxj + uIRuj and initial

state x equal to the estimated state from the Kalman filter). The solution to this

problem is the best possible controller when the model is known exactly.

However, a well-known example problem, presented in [61], illustrates that the

closed-loop system may have an arbitrarily small gain margin when using the LQG

controller, which means that the system can go unstable whenever the system gain

is slightly different than the assumed gain by an arbitrarily small amount in either

direction. The simple two-state system is stated as

= + m [ U+ W, (6.1)
' 2 0 1 X2 1 1

Y =1 1 :] + V, (6.2)

where u is the control action, y is the output of interest, w is the process noise

(with variance o.2), v is the measurement noise (with variance 1), and m is the scalar

system gain matrix (nominally equal to 1). We select the state penalty matrix to be

1 1
Q = q and the input penalty matrix to be R = 1. Letting i, and i' 2 denote

the state estimates of x 1 and X2 , respectively, the overall closed-loop system can be
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derived to be

1 1 1 0 0 X1 1 0

k2 0 1 -mf -mf X 2  1 0 W
+ , (6.3)

X1 d 0 1-d 1 0 d v

X2 d 0 -d-f 1-f x 2  0 d

where f = 2+ /4 - q and d = 2+ /4 u 2 . As shown in [611, the stability margins can

be made arbitrarily small in either direction by appropriate choice of q and a 2 . The

system simulated for the nominal gain m = 1 observed good performance. However,

when the gain m is slightly above or below this nominal value, the system response

can go unstable even though an optimal estimator and controller is applied (Figure

6-1).

The main point of this example is that optimal-performance LQG solutions do

not provide any guaranteed robustness properties. Being able to explicitly account

for system uncertainty in the design stage is important for building in these margins

to ensure safe operation and guaranteed performance, which is true even for simple

two-state systems and becomes more important as system complexity increases.

6.3 Problem Formulation

Consider an uncertain continuous-time stable linear differential-algebraic system,

M(9),(t, 9) = A(9)x(t, 9) + B(9)u(t) + r(0), x(0, 9) = xo(9), (6.4a)

y(t, 0) = C(0)x(t, 0), (6.4b)

where x E R"= denotes the system states, denotes the derivative of x with respect

to time t, xO denotes the initial conditions, u E R"' denotes the inputs to the system,

y E R'" denotes the outputs of the system, and 0 E R"O denotes the system random

variables (i.e., uncertain parameters and initial conditions). Eq. (6.4a) is a differential

algebraic equation (DAE) and is assumed to be in its equivalent index-1 form (e.g.,
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Figure 6-1: Illustration that LQG optimal controller does not provide guaranteed
stability margins when there is process gain uncertainty. The output of interest is

y(t) = xI(t).

see [78]). The state vector x = [x T x j]T is composed of differential states Xd C Rnd

(i.e., states whose derivatives appear in the vector M(9) (t, 6) in (6.4a)) and algebraic

states Xa C Ra (i.e., the remaining states) with n, = nd+ na. For a consistent initial

condition in (6.4a), nx + nd variables must be specified (x(O, 9) and d(O, 9)), with

nr degrees of freedom (DOF) set by (6.4a) holding at t = 0 and nd additional DOF.

The system outputs are assumed to be linearly related to the states as shown in

(6.4b). The vector r E R"x is used to represent time-invariant stochastic behavior

such as process disturbances and actuator response variations due to, for example,

static friction and backlash. Note that r can also be used to represent additional

terms or error from linearization of nonlinear dynamics.

The system (6.4a) is often called a descriptor or singular system in the control

literature (e.g., [31, 71] and references cited therein), with systems described by or-

dinary differential equations being a special case. The extra algebraic terms enable

the representation of a much broader classes of systems, including pH neutralization,

electrochemical systems, and some classes of electronic and mechanical systems.
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In (6.4), 0 is composed of independently distributed random variables 9, with

known probability distribution functions (PDFs) foi. A probability triple (Q, F, 'P)

is defined on the basis of sample space Q, --algebra F, and probability measure P

on (Q,F). The PDFs are defined such that 9i E C2 (Q, F, P), Vi E {1, .. . , n9 }, where

2 (Q, F, P) represents the Hilbert space of all random variables 9i with finite L2

norm. The expected value (first-order moment) of a stochastic variable b : Q '-+ R

is denoted by E[V'] := f2 Odfp, where fp is the PDF of 0 over its support Q. The

variance (central second-order moment) of 4 is denoted by Var[O] := E [(0 - E[V])2

Due to the probabilistic uncertainties 9, the solution trajectories of system (6.4)

are probabilistically distributed. In this work, the goal of controller synthesis is

to shape the probability distributions of system outputs to have desirable statistics.

Assuming that the system states can be estimated at all times, a finite-horizon SMPC

problem can be stated as follows.

Problem 6.1 (Finite-horizon Stochastic MPC)

min J(Gi(tk), u(t)), (6.5)
u(t)

s.t.: M(0) (t, 0) = A(0) (t, 9) + B(0)u(t) + r(0), tk t < t,,

9(t,9) = C(9)x(t, 9), tk t < tP,

AhIE[P(t,0)] bh, tk t ,

u(t) E U, tk < t < tm,

d(0, ) = ad(tk),

where u(t), t E [tk, tm], denotes the input profile (control policy), tn denotes the control

horizon, tp denotes the prediction horizon, (t, 9) denotes the predicted states from the

DAE system model in (6.4a), p(t, 9) denotes the predicted outputs, xA(k) denotes the

estimated differential states at time instant tk computed from measurements, (Ah, bh)

specifies the linear constraints on the expected value of the outputs, and U E Rn

denotes the convex compact set of input constraints.

Problem 6.1 specifies an optimal input profile based on the uncertain DAE model
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(6.4a) and the estimated state variables &d(tk), while satisfying hard constraints on

the inputs and general inequality constraints on the outputs. The cost function

J(-d(k), u(t)) is commonly defined in terms of some statistics or moments of the PDFs

of the outputs (see, for example, [1691). Note that a unique consistent initialization

of (6.4a) can be computed from -td(O, 0).

Solving Problem 6.1 for high-dimensional systems is particularly challenging. The

difficulties arise from (i) the prohibitive computational costs of model simulation and

optimization for on-line control due to a large state dimension, (ii) the need for high-

dimensional state estimation to determine Id(k) from limited system measurements

(even more difficult since the system is most likely not observable), and (iii) the

propagation of probabilistic uncertainties 0 through the system model (6.4).

To address challenges (i) and (ii), the QDMC algorithm is used in this work

to reformulate the high-dimensional control problem in terms of system inputs and

outputs, which are nearly always of much lower dimensions than the system states

in real applications. The input-output framework of QDMC not only eliminates the

high computational costs associated with on-line control of high-dimensional systems,

but also alleviates the need for high-dimensional state estimation since the output

measurements can be readily incorporated into the control algorithm to update the

system model. To enable efficient uncertainty analysis, polynomial chaos expansions

(PCEs) are used to propagate the uncertainties 0 through the dynamics in (6.4).

PCEs are advantageous as they can be written directly in terms of system inputs and

outputs, and enable efficient computation of the statistical moments of outputs.

6.4 Galerkin Projection for DAE Systems

Polynomial Chaos Expansions

As discussed in detail in Chapter 3, polynomial chaos expansions provide a means

for approximating a stochastic variable V)(0) E L2(Q, Y, P) with the L2-convergent
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expansion [2721

00

(0) = k a (6), (6.6)
k=O

where ak denotes the expansion coefficients and 1 k(O) denotes the polynomial chaos

basis functions of degree m with respect to the random variables 0. These basis

functions belong to the Askey scheme of polynomials, which encompasses a set of

orthogonal basis functions in the Hilbert space defined by the support of the ran-

dom variables. Hence, the basis functions satisfy (<Di(0), 4()) = (<D2(6))gj where

(h(0), g(0)) = fn h(9)g(0)fodO = E[h(0)g(0)] denotes the inner product with respect

to the weight fo (PDF of 6) and over the domain Q (support of 6). The choice of

orthogonal polynomials is made such that their weight function is the multivariate

PDF of 0. Table 3.1 shows the orthogonal polynomials corresponding to particular

distributions in 6.

For practical reasons, the PCE (6.6) must be truncated to a finite number of terms.

The total number of terms L + 1 - ("0+m)! in the truncated expansion depends on

the number of uncertain parameters no and the highest order of the polynomial basis

functions m retained in the expansion

L

0(0) := akk(O) = aTA(6), (6.7)
k=O

with a = [ao,. . . , aL T and A(6) = [4o(0),.. , 4L (OTf. The vector of PCE coefficients

a can be computed using probabilistic collocation methods or Galerkin projection,

depending on the complexity of system dynamics (e.g., see [272, 168, 248] and ref-

erences therein). The orthogonality property of the multivariate polynomials can be

used to efficiently compute the PDF statistics of the stochastic variable 0(6). For

instance, the first- and second-order central moments of b(6) are defined by

E[ =()] = ao, (6.8)
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L

Var[b(0)] = Z a2(Kk(0)2 ). (6.9)
k=1

Galerkin Projection for Index-1 Stochastic DAEs

For linear systems described by a set of ordinary differential equations (ODEs), the

Galerkin projection can used to generate a set of deterministic ODEs to determine

the PCE coefficients (e.g., 173, 209, 239]). This section outlines how to use Galerkin

projection to generate a set of deterministic DAEs for determining the expansion coef-

ficients, which provides an approach to efficiently compute state/output distributions

for systems whose dynamics involve uncertain algebraic equations/constraints.

For the uncertain system (6.4), let xi, yi, and ri denote the ith component of x,

y, and r, respectively, and Mij, Aij, Bij, and Cij denote the ijth elements (i.e., the

ith row and jth column) of matrices M, A, B, and C, respectively. Applying the

truncated PCE expression in (6.7) to each element in (6.4a) gives

L

&i(t, 0) Zxik(t) 4k(0) = x[ (t)A(O), (6.10)
k=O
L

M (6) :=Zmik (9) = mT A(O), (6.11)
k=O
L

Ai,(0) := [ asJ,<Dk(O) = aTA(6), (6.12)
k=O
L

Bij(0) : 3 bik(O) = b A(6), (6.13)
k=O
L

ri (0) := ri k(0) = r A(0), (6.14)
k=O
L

( :c Cikk) = c A(O), (6.15)
k=O
L

p&(t,6) :yi(t)4k(6) = yT (t)A(6), (6.16)
k=O

where xi(t), mij, azj, bij, ri, cij, yi E RL+1 are defined similarly to a in (6.7).

The elements of M, A, B, r, and C are known a priori and, therefore, their PCE
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coefficients can be computed from the normal equations

m~ M - , 4Pk) __ ( A 3, Ik) b - Bi, k) (ri, 1k) - (Cii, (Dk)
-I k a(D2) -i (42 1 ik - (D2) 7'k (4D 2) , - 2

There are a total of n,(L+1) unknown PCE coefficients for the states {Xik}i=1,.. ,n;k=O,.. -,L

and n,(L + 1) unknown PCE coefficients for the outputs {yik}i=1,---,ny;k=,- ,L. A

deterministic DAE for these coefficients can be constructed by

" Creating the polynomial chaos approximation of (6.4) by substituting the PCEs

(6.10), (6.11), (6.12), (6.13), and (6.14) into (6.4a) to yield

nx L L nx L L nu L L

E E E m2Jkxi,( k 4= 55 aikxik3 1 IP/ + 5 E bijui4Dk + ri k,
0=1 k=1 1=0 j=1 k=0 1=0 j=1 k=O k=O

(6.17)

and substituting (6.15) and (6.16) into (6.4b)

d

Yik = 5 Cixk Xjl (D kI. (6.18)
:=1

" Projecting these approximations onto the orthogonal basis functions (i.e., taking

the inner product of (6.17) and (6.18) with (m for i = 1, - - - , n. and m =

0,.--..,L)

MX(t) = AX(t) + Bu(t) + R, (6.19a)

Y(t) = CX(t), (6.19b)

where X = [xT -. Y [yT - - ]T, R = [(Pri)T ... (Prnx)T] T, and

the matrices M, A, B, and C are defined by their blocks,

L L L

Mij= E m 3ijTk, Aij = I ajkTk, Bij = Pbij , C- =5 cijkTk,
k=0 k=0 k=0
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with the symmetric inner product matrices P and Tk being

(4D2) 0 ... 0 ((kIODWO) (o'11) ... (IkVoWL)

0 (4D2) ... 0 _(ko1 
1 1 1 )..( ~ 1 L

0 0 L koIL) (kI1L) ... (I 4 LIL)

The PCE coefficients for the states (stacked into X) are composed of differential and

algebraic states. Denote the PCE coefficients of the differential and algebraic states as

Xd and Xa, respectively. Similar to (6.4a), X,(0) and Xd(0) are uniquely determined

from Xd(O) and (6.19a) at t = 0 (must be satisfied for consistent initialization). The

elements of Xd(0) can be computed from the known, but possibly uncertain, initial

conditions Xd(0, 6) using

(xi(0, 0), 4%(0))
Xi, (0) = , (4h(O)') 7 = 1, - - - , nd; k = 0, - L,

where the first nd elements of x are Xd.

Note that (6.19) is a deterministic DAE in terms of the unknown time-varying PCE

coefficients of the states and outputs. The PCEs (6.10) and (6.16), along with the

solution to (6.19), describes the uncertain states and outputs as an explicit function

of time and 6. This description can be used to efficiently compute the evolution of

the mean and variance of ,(t, 6) and D(t, 6) over time by exploiting the orthogonality

property of the multivariate basis functions.

6.5 Fast MPC with Probabilistic Parameter Uncer-

tainty

The QDMC algorithm and its relationship to the more modern state-space MPC

was described in detail in Chapter 4 of this thesis. As mentioned there, QDMC

has certain major advantages that are particularly prevalent for large-scale systems,

mainly that it can significantly reduce the number of states needed to model the
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system (while still being exact for linear models of the system) and it avoids the

need to design and implement a dedicated state estimation algorithm (which can be

quite expensive in addition to the original states of the system possibly not being

observable). This section extends the ideas of QDMC to to handle time-invariant

probabilistic uncertainty that often occur within first-principles models of processes.

Step Response Modeling of Output PCE Coefficients

The QDMC algorithm utilizes finite step response models, shown in (4.38), to describe

the dynamic response of the output due to changes in the input. QDMC uses the

following open-loop observer (aka free response)

Y-PCE = MYIPCE + SXk-1, (6.20)

where

0 In,(L+1) 0 ... 0 Si

0 In,,(L+1) S2

M= 0 -. 0 , S=

-Iny(L+l) Sn-1

0 - Inv(L+1) n

where LUk = Uk-Uk_1 is the change in the input (at discrete time k which corresponds

to continuous time tk = kT + to where T is the sampling time and to is the initial

time). Here, YkPCE represent the so-called dynamic states of the system. In this case,

we define the dynamic states to correspond to the PCE coefficients of the output

defined by (6.19b). Based on the notation introduced by [1391 (and that used in

Chapter 4), the dynamic states here are defined as

_ PCE o(tk ,Y(tk7... )T]T (6.21)

169



where Yj(tk) can be interpreted as the set of output PCE coefficients Y at time

tk + Tj assuming constant inputs into the future.

Step Response Matrix The matrices {Si} in (6.20) are defined to be

8 1,1,i 81,2,i . ' ,n,,i

Si = , s2,2, ... , (6.22)

SnV(L+1),1,i Snv(L+1),2,i S Sny (L+1),n.,i

for i = 1,--- , n where the FSR is truncated whenever the input no longer effects

future outputs; truncated at n in (6.20) commonly referred to as the model length

for which the system should satisfy Sn Sn+1 ~~ - S,,. The scalar value Si,j,k is

the kth step response coefficient of the ith element of Y resulting from a step in the

jth input value. In this case, the step response coefficients can be computed offline

by solving (6.19) for steps in each of the input values. Since this Galerkin-projected

DAE system is linear, the FSR representation is an extremely accurate reduced-order

model. In fact, the FSR representation of (6.19) will be exact for n = oo (i.e., for

any choice of E > 0, there exists a finite n* such that the truncation error, defined by

some appropriate norm, can be made less than e).

Objective Function

The predicted output values over the prediction horizon p (given current information

at discrete time step k) are denoted by

+11k(0) = [Y(tk, 6 )T, Y(tk+1, 0)T',.- , 9(tk+p, 9 )T]T. (6.23)

The vector of future control moves over the control horizon m < p (after which the

input is assumed to remain constant) starting at discrete time step k is denoted by

A /Wk= [Au(k)T, Au(k + 1)T, ... , Au(k + m - 1)T]T. (6.24)
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A multi-objective optimization in terms of the moments of the output distribution

avoids the conservatism of robust (worst-case) control [180] while shaping the distri-

bution to have a desired PDF [169]. The proposed objective in this work is

J = IE [( +1Jk(O) -- Mkk+1)Q k+1(k(O) - -k+1)] + AWkRA 'k, (6.25)

-E[0411k (O)T Q~k lk(e)] - 2 q T QE[gk l~k)+

where Mk+1 is the output reference trajectory into the future, Q is a symmetric

positive semidefinite output weight matrix, and R is a positive definite change in

input weight matrix. Other choices of objective function can be made, however, this

quadratic objective was chosen such that the resulting MPC problem is a convex

quadratic program as shown in the following.

Disturbance Update and QP Formulation

We would like to simplify the computation of (6.25) by using PCE to approximate

the expectation terms E [34+11k (O)TQ+lk(9)] and E[0+1Jk(0)]. First, let us write

out the prediction equation for the output PCE coefficients (denoted by 6WP) as a

function of the future input moves

W = igPCE m Ek+ PCE yk-iP CE,7P + SnALo ~c(y(k) - NykPE,(.6

where

Si 0 0

S2  Si 0 0

Sm Sm-1 Si-M+1
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Mp is the first pnp(L + 1) rows of the matrix M defined above, -/PCE -0 0 eL+1,

,, r = [I,. ,I JT, y(k) is the measured plant output at discrete time step k, N =

IV 0 eI+ 1 , and 0 is the Kronecker product, eL+1 is an L + 1-dimensional vector with

its first element equal to one and its remaining elements equal to zero.

The term JPCE(y(k) - NYkPCE) is the expression above represents the feedback

correction, which is analogous the additive disturbance update in standard QDMC.

The main difference here is that the observer output is stochastic. Therefore, we

propose to correct over the horizon based on error between the measured value and

the observer's mean value at the current time as this is the output's most likely value,

which is approximated from the PCE coefficients by N kPCE

From (6.8), we know that the mean of a random variable can be approximated by

the first coefficient of its PCE. Using the notation introduced above, we can derive

E[k+1k(O)] = (Inp 9 eL+1) +2 = Ek+11- (6.27)

The term E [ +11k()T Qk+k(6)] is related to the variance/covariance of 9k+1Ik( 9 )

so that we can use (6.9) to determine an (approximate) expression of this term in

terms of the predicted output PCE coefficients. To simplify notation, the subscript

k + 11k is dropped in the following derivation, 3' and / will be used to denote

the Zth element of their respective vectors, and qij will be used to denote the (i, j)th

element of Q.

nyp nyp

E [(e () T Qg(9)] = E q E [i(O)9j(O)], (6.28)
i=1 j=1

nyp nup L

~ S S ~+(i-1)(L+1)+k 1+(j-1)(L+1)+k k
i=1 j=1 k=O

(gPCE) T QPCEgPCE,

where QPCE = Q 0 p.

Since (6.27) and (6.28) are linear and quadratic in yP2C, respectively, and, as

shown in (6.26) W+ is linear in the input variables, the objective function and
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constraints are a convex functions with respect to A/k. This implies that Problem

6.1 can be rewritten as a quadratic program (QP) when using polynomial chaos as

the uncertainty propagation tool. This QP can be formulated and solved using the

numerous methods detailed in Chapter 4.

6.6 Example: End-to-end Continuous Pharmaceuti-

cal Manufacturing

The proposed fast SMPC approach is applied to control an end-to-end continuous

process for manufacturing pharmaceutical tablets [181. This is the same example

detailed in Chapter 5, while here the proposed control algorithm is extended to handle

parameter uncertainty. The dynamics of this high-dimensional system are described

by a set of nonlinear DAEs with nearly 8000 states. The process has nine inputs

and three outputs-the active pharmaceutical ingredient (API) dosage of tablets, the

impurity content of tablets, and the production rate of the process. The critical

quality attributes (CQAs) of the manufactured tablets consist of the API dosage and

impurity content of the tablets, which should be effectively regulated in the presence

of process uncertainties and disturbances.

In this work, the nonlinear DAE model is linearized around a desired steady-state

operating condition and, subsequently, the linearized model is used to develop a fast

SMPC controller (from applying FSR modeling and PCEs to solve Problem 6.1 as

discussed above) to suppress the adverse effects of uncertainties in kinetic parameters

on the CQAs of tablets. The objective is stated as a setpoint tracking problem for the

production rate and API with an upper bound on the impurity content of the tablets

included as a constraint. The performance of the fast SMPC controller is evaluated for

the case of a 5% step increase in the production rate. Figure 6-2 shows the production

rate for the fast SMPC and QDMC for 200 closed-loop simulations, where the step

change in the setpoint is applied at 5 hr. The fast SMPC controller results in a

lower variance in the production rate than that of the QDMC controller (Figure 6-2),
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providing a more robust performance in the presence of system uncertainties.

The SMPC approach leads to tighter setpoint tracking of the API dosage profiles

as well (see Figure 6-3). Figure 6-4 shows the distributions of the API dosage at

different points in the course of the transient system dynamics resulting from the

production rate setpoint change. The SMPC produces a lower variance in the API

dosage at all times. The variance in the API dosage at time 65 hr is a factor of 25

lower for the fast SMPC controller than that of the QDMC controller (Table 6.1).

The optimization consistently took less than one second to solve (on a laptop running

Windows 7 with 8 GB of RAM) for a variety of prediction and control horizons,

meaning that the control inputs could easily be found and supplied to the plant in

real-time. Given the high importance of drug products meeting the specifications

in the presence of uncertainties, these results indicate that SMPC is a promising

approach for application to pharmaceutical manufacturing. Moreover, the speed at

which the proposed fast MPC algorithm is able to compute the solution indicates that

algorithm could easily be implemented in real-time on large and complex processes.

1.1
-QDMC

.Fast SMPC
-- t-Setpoint hr

0

70

0z
0.95r II

0 10 20 30 40 50 60 70
Time (hr)

Figure 6-2: Dynamic response of production rate (normalized) for 200 closed-loop
simulations of a setpoint change in the production rate.
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Figure 6-3: Dynamic response of API dosage (normalized) for

lations of a setpoint change in the production rate.
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Fast SMPC
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9 9 40- 50 60.9 30
0.985 20
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Figure 6-4: Histograms of the API dosage (normalized) at various times based on 200
closed-loop simulations of a setpoint change in the production rate.

Table 6.1: Variance comparisons of API dosage (normalized) at various times based

on 200 closed-loop simulations of a setpoint change in the production rate.
Time (hr) QDMC Variance of API x 106 SQMPC Variance of API x 106

20 11.57 7.47
35 10.70 2.68
50 6.98 3.99
65 2.42 0.09
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6.7 Conclusions

This chapter presents a stochastic MPC approach for high-dimensional systems with

time-invariant probabilistic uncertainties. The concepts of quadratic dynamic ma-

trix control and polynomial chaos expansion are used to develop an input-output

formulation for fast SMPC whose on-line computational cost is independent of the

state dimension. This approach circumvents the prohibitive online computational

costs associated with model predictive control of uncertain high-dimensional systems.

The Galerkin projection is modified to handle a general class of linear DAEs so that

the SMPC approach is applicable to a large class of complex systems that include

descriptor/singular systems. The effectiveness of the proposed control approach is

demonstrated for control of a continuous pharmaceutical manufacturing process with

nearly 8000 states, where the SMPC controller effectively regulates the critical quality

attributes of the product in the presence of parametric uncertainties. In addition, the

proposed control law was found in less than one second at each time step so that the

algorithm can easily be implemented in real-time.
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Chapter 7

Optimal Risk Allocation for

Disturbance Rejection

7.1 Introduction

Recent years have witnessed significant developments in the area of robust model pre-

dictive control (MPC) with the aim to devise optimal control approaches that enable

systematic handling of system uncertainties [1591. Generally, robust MPC approaches

consider bounded, deterministic descriptions of uncertainties. The deterministic ap-

proaches to robust MPC commonly use a min-max optimal control formulation in

which the control policy is designed with respect to the worst-case performance and

system constraints are satisfied for all possible uncertainty realizations [14]. These

approaches can lead to overly conservative or possibly infeasible control designs.

In practice, system uncertainties are often considered to be of stochastic nature.

When the stochastic description of uncertainties is available, a natural approach to

robust MPC involves explicitly accounting for the probabilistic occurrence of uncer-

tainties in designing the robust control policy. This consideration has led to the

emergence of stochastic MPC (SMPC). A core component of SMPC is (state) chance

constraints that allow for constraint satisfaction in a probabilistic sense. Chance con-

straints enable SMPC to trade off robustness to uncertainties (in terms of constraint

satisfaction) with control performance in a systematic manner, possibly resulting in
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less conservative robust control performance.

A recent review on different SMPC approaches and their applications is given in

[164]. Stochastic tube approaches to SMPC, e.g., [130], use probabilistic tubes with

fixed or variable cross sections to replace chance constraints with linear constraints

on the nominal state predictions as well as to construct terminal sets for guarantee-

ing recursive feasibility. These approaches use a prestabilizing feedback controller to

ensure closed-loop stability. However, stochastic tube approaches cannot handle hard

input constraints as the prestabilizing state feedback controller is determined offline.

SMPC approaches based on an affine parametrization of the feedback control law have

been extensively investigated, e.g., [105, 192, 202]. Such control law parametrizations

allow for obtaining convex SMPC algorithms while solving the stochastic optimal

control problem over the feedback gains as well as the open-loop control actions. The

notion of affine disturbance (or equivalently state) parametrization of the feedback

control laws originates from the fact that disturbance realizations and system states

will be known at the future time instants [89]. Therefore, the controller can use this

information when determining the future control inputs over the control horizon. A

key challenge in using such parametrizations, however, arises from handling hard in-

put constraints in the presence of unbounded stochastic uncertainties (e.g., Gaussian

noise), as unbounded uncertainties almost surely lead to excursions of states from

any bounded set. To address this challenge, the inclusion of a saturation function

into the affine feedback control policy has been proposed [105]. Saturation functions

render the feedback control policy nonlinear to enable direct handling of hard in-

put constraints without relaxing hard input constraints to input chance constraints.

Extensive work has also been reported on SMPC approaches that use the so-called

sample-based approaches (aka scenario-based approaches). These algorithms char-

acterize the stochastic system dynamics using a finite set of random realizations of

uncertainties, which are used to solve the optimal control problem in one shot, e.g.,

[27, 38]. This class of SMPC approaches typically does not rely on any convexity

requirements; however, establishing the recursive feasibility and closed-loop stability

of these algorithms is generally challenging, particularly for the case of unbounded
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uncertainties.

This chapter considers the MPC problem for stochastic linear systems with arbi-

trary (possibly unbounded) disturbances. A SMPC approach is presented that han-

dles both joint state chance constraints and hard input constraints under closed-loop

prediction in the presence of unbounded additive disturbances. The key contribution

of this work lies in using risk allocation [257, 152] in combination with the Cantelli-

Chebyshev inequality [155] to obtain computationally tractable surrogates for the

joint state chance constraints when only the first two moments of an arbitrary distur-

bance distribution are known (i.e., the full distribution is unknown). An algorithm is

presented for solving the SMPC problem to determine the optimal feedback gain and

optimal risk allocation iteratively. The problem setup is similar to that in [105, 67].

In contrast to [105], the proposed SMPC approach accounts for both hard input con-

straints and state chance constraints. What distinguishes this work from [67] is the

direct handling of hard input constraints without relaxation as well as the convexity

of the optimization program. The proposed SMPC approach is demonstrated on a

continuous acetone-butanol-ethanol (ABE) fermentation process [98], which is used

in production of high value-added drop-in biofuels from lignocellulosic biomass. The

performance of the proposed approach is evaluated with respect to that of a certainty

equivalence MPC algorithm and a MPC algorithm with fixed uniform risk allocation.

Notation In this chapter, R and N = {1, 2,.. .} are the sets of real and natural

numbers, respectively; No A N U {0}. Sn and SI+ are the sets of positive semidefinite

and definite matrices, respectively. IN denotes the N by N identity matrix and 1N

denotes a column vector of ones of length N. tr(.) denotes the trace of a square

matrix. 11 - 11, denotes the standard p-norms. 0 denotes the Kronecker product.

For given random vectors X and Y, E[X] denotes the expected value, o[X, Y] A

E[(X - E[X])(Y - E[Y])T] denotes the cross covariance matrix, and E [X] A -[X, X]

denotes the covariance matrix. P(A) denotes the probability of event A. 1A(-) is the

indicator function defined on set A.
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7.2 Problem Formulation

Consider a discrete-time stochastic linear system

X+ = Ax + Bu+ Gw, (7.1)

where x E R", u E Rm, and w E RP are the system states, inputs, and disturbances at

the current time, respectively; x+ denotes the system states at the next time; and A,

B, and G are the known system matrices. It is assumed that the states x are observed

exactly at all times (although this assumption can be relaxed using methods reviewed

in Chapter 4), and the disturbances are mutually independent such that system (7.1)

is a Markov process. The disturbances w can have an arbitrary (unbounded) distri-

bution that is unknown to the controller; the mean E[w] and covariance E[w] E S+

are, however, assumed to be known.

Let N E N be the prediction horizon of the predictive control problem. The states,

inputs, and disturbances over the prediction horizon are defined, respectively, by

x A (XO, 7i ... XN)

U (UO, U1. .,UN-1)

w (wo, wi, .. . WN-1),

where Xk = AXk-1 + Buk1 + Gwk_1 is the predicted states k steps ahead from the

known current states xO = x; and Uk and Wk are the inputs and disturbances k time

steps into the future, respectively. Using this compact notation, the system model is

written as

x = AxO + Bu + DGw, (7.2)

where the matrices A, B, D, and G can be straightforwardly derived, e.g., see [1041

for details on the explicit construction of these matrices.

The control inputs are assumed to be constrained to a convex feasible region FU
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described by a finite set of NU linear inequalities

Fu f{u I Hu h}, (7.3)

where H E RNu xNm and h c RNU. The system states are also restricted to lie in a

convex region Fx, which is defined by a collection of Nx linear inequality constraints

Nx

Fx AO{xIaT x < bi}, (7.4)
i=1

with a, E R(N+1)n and bi c R. For linear systems, the cost function is typically chosen

to be quadratic, i.e.,

VN(xO, u, W) = XTQX + UTRu, (7.5)

where Q E S(N+1)n and R E SN' are specified weight matrices. As the distribution

of the disturbances is unknown and could be unbounded, it cannot be guaranteed

that there always exists a control action such that hard state constraints x E Fx are

satisfied. Therefore, x E Fx is replaced with a joint state chance constraint of the

form

P(x V Fx) 6, (7.6)

where 6 E (0, 1) is the maximum probability of constraint violation. The SMPC

problem is now stated as

Problem 7.1 (SMPC)

min E[VN(x, u, w)]
U

subject to: x = Axo + Bu + DGw (7.7)

u E Fu, P(x V Fx) < 6, xO = x

Problem 7.1 is solved online given the most recently observed states x. Let u*(x)
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be the optimal feedback control policy that solves Problem 7.1 as a function of the ini-

tial states. The receding-horizon implementation of Problem 7.1 implies that only the

first element of this policy, u*, is applied to the system (7.1). Note that VN (xO, u, w)

is a random variable with an unknown distribution (as it is a function of w). Here,

the expected value of the value function is optimized to obtain a convex program.

There are two main difficulties that prevent direct solution of Problem 7.1. First,

the control input u should be a causal feedback policy that is some function of the

current and past states. In general, solving Problem 7.1 over arbitrary functions of

states is impractical using available optimal control approaches. Second, the distribu-

tion of the disturbances is unknown and possibly unbounded, which makes handling

the hard input constraints and joint state chance constraints challenging.

To address these challenges, a certain class of causal feedback policies is adopted to

define the control policy u. The adopted feedback policy allows for building feedback

into the prediction to reduce uncertainty in the state predictions as well as directly

handling the input constraints in the face of unbounded disturbances. In addition, the

joint state chance constraints are approximated for arbitrary disturbance distributions

using distributionally-robust bounds that are only a function of the mean and variance

of the stochastic disturbance (i.e., bounds do not depend on the full distribution of

the disturbance, which is usually not known in practical applications).

7.3 Feedback Parametrization of the Controller

A natural approach to obtaining a computationally tractable surrogate for Problem

7.1 is to adopt an affine state feedback parametrization for the control policy u.

Affine state feedback is in fact the solution to the Linear-quadratic-Gaussian (LQG)

problem, which minimizes (7.5) in the absence of the input and state constraints.

Solving Problem 7.1 over an affine state feedback control policy, however, results in

a nonconvex optimization due to the product of the gains over time. An alternative
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parametrization is an affine function of the sequence of past disturbances [891

uiZ MijGwj + vi, Vi = 0 ... , N-1, (7.8)
.j=o

where Mij E Rmxn and vi E Rm. This parametrization yields convex optimizations,

and is shown to be equivalent to the class of feedback control policies that are affine

in the past states [89, Theorem 91. Using (7.8), the control policy u can be written

as

u = MGw + v, (7.9)

where the block lower triangular matrix M E RmNxnN and stacked vector v E RmN

are given by

0 0

Mi'O 0 --- 0
M 0 0 (7.10)

U

MN-1,O ... MN-1,N-2 0

v (VO, V 1),... ,VN-1). (7.11)1

The pair (M, v) comprises the decision variables in Problem 7.1.

A key challenge in using the feedback control policy (7.9) arises from guaranteeing

the hard input constraints (7.3) in the presence of unbounded disturbances. SMPC

algorithms commonly overcome this difficulty by relaxing the hard input constraints

to expectation-type constraints [2081 or probabilistic chance constraints [671. These

approaches, however, suffer from the fact that the computed inputs may not be feasi-

ble in practice, which will cause the controller to saturate. In this work, a saturated

disturbance affine parametrization of the form [104]

u MGW(w) + v, (7.12)
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is used, where, for any vector z = (zi, . ), p(z) - (So(zi),- . . , o(z,)) with W :R -+

I denoting any function with the property supaNR kR(a)I m for some max > 0.

The functions cp(-) are known as saturation functions [104]. This definition implies

that IIW(w)II Wmax, which can be written as a polytope of the form

Fw A{w I Sw s},

with S E RNwxNp and s E RNw, and allows the hard input constraints u E FU to be

rewritten as

Hv + max (HMGV(w)) h, (7.13)
p(w)EFw

where the maximization is row-wise (i.e., maximum of each element in the vector).

The below lemma indicates that (7.13) can be defined by a set of linear inequalities.

Lemma 7.1 The input constraint (7.13) is represented exactly by linear inequalities

Hv + ZTs < h and Z > 0 (element-wise) for any Z satisfying ZTS = HMG.

Proof. The proof follows from the concept of the dual norm as shown in, e.g., [24].

Let the ith row of the maximization in (7.13) be the primal linear program. The

corresponding dual linear program is

min sTzi, s.t.: STzi = (HMG)), Zi > 0,

where (HMG)(i) denotes the ith row of HMG and zi E RNw denotes the dual

variables. By the strong duality theorem, it is known that

max (HMG)(j)p(w) sTzi
W(w)EFw

holds for any zi satisfying the dual linear program constraints. Stacking the dual

variables into a matrix Z A [zi.,... , ZNU] yields the inequality

max (HMGW(w)) < ZTs
p(w)EFw
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for any Z > 0 satisfying ZTS = HMG. Hence, the assertion of the lemma directly

follows. E

7.4 Joint State Chance Constraints

It is generally impractical to ensure that the system states lie in the feasible region

x E Fx when the disturbances w are unbounded. Hence, the hard state constraints

(7.4) should be replaced with the joint chance constraint (7.6), as in Problem 7.1.

Joint chance constraints are, however, intractable and nonconvex.

To obtain a tractable deterministic surrogate for (7.6), this work uses Boole's

inequality to bound the probability of violation of the joint chance constraint

P(x o Fx) = P X E {x aT x > bi}) (7.14)

Nx

P(a Tx > bi).
i=1

This expression implies that the joint chance constraint (7.6) can be replaced with

Nx individual chance constraints of the form

P(a Tx > bi) < Ei, i = 1,. .. ,Nx, (7.15)

where Ei E [0, 6] denotes the violation probability for the Zth individual chance con-

straint. When the so-called risk allocation e is chosen such that

is satisfied, then the joint chance constraint (7.6) will be satisfied according to (7.14).

Two main approaches exist for defining the risk allocation. The first assumes a fixed

risk allocation in which the values of Ei are fixed a priori, usually using a uniform

allocation ei = 3/Nx [184]. Although this approach simplifies the optimization prob-

lem, it may lead to significant conservatism in many situations as the prespecified
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risk may be better allocated to other constraints. To address this shortcoming, the

second approach optimizes the risk allocation by treating ei as decision variables in

the optimization [26].

The knowledge of the cumulative distribution function (cdf) of the disturbances

w is required to exactly evaluate the individual chance constraints (7.15). Once

this knowledge is available, the cdf of x can be straightforwardly determined using

the linear relationship (7.2). Then, the probability of violating an individual chance

constraint is given by [257]

P(a Tx > bi) = 1 - cdfaTX(bi).

This expression is, however, difficult to evaluate for general disturbances as their cdfs

do not necessarily have a convex form. More importantly, the distribution of distur-

bances is not known in many practical applications. Hence, the Cantelli-Chebyshev

inequality is used in this study to evaluate the individual chance constraints (7.15) for

arbitrary distributions of disturbances when only their first two moments are known.

Lemma 7.2 (Cantelli-Chebyshev Inequality [155]) Let Z be a scalar random

variable with finite variance. For every c > 0, it holds that

E [Z]P(Z > E[Z] +c) < .--- E [Z] +c2

Proof. Let pz(z) denote the PDF of random variable Z. Define a corresponding zero-

mean random variable Y A Z - E[Z] with PDF py(y). Consider P(Z > E[Z] + c) =

P(Y > c) = f. py(Y)dz = E(1[co)(Y)). Define the function h(y) (c+b)-2(y+b)2

for any c > 0 and b > 0. It is evident that 1[c,o)(y) h(y), Vy E R such that

E[1[co)(Y)] 5 E[h(Y)] = (c + b)-2E[(Y + b) 2 ] = (c + b)- 2 (E[Y] + b2 ). The smallest

upper bound for P(Z > E[Z] + c) is obtained by minimizing the right-hand side of the

latter inequality with respect to b. The solution to this minimization is b* = E[Y]/a.

The assertion follows by noticing E[Y] = E[Z] and substituting b* for b into the upper

bound. 0
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To apply the result of Lemma 7.2 to (7.15), assume some Abi > 0 exists such that

a7 E[x] + Abi < bi. (7.16)

The goal is to derive a lower bound on Abi. Notice that

P(aiTx > bi) P(a Tx > aTE[x] + Abj),

a7 E[x]ai
-aE[x]ai+ Ab?

When this upper bound is less than or equal to ej, then the individual chance con-

straint (7.15) must be satisfied. This inequality implies that

af E [x] a, < A bi. (7.17)Ei

Combining (7.16) with (7.17), the individual chance constraint (7.15) can be (conser-

vatively) approximated by the deterministic constraint

T - 6
aT E[x] + 1- a Ea[x]ai < bi, (7.18)

Ei

which is guaranteed to hold for any distribution of the states x. This result has been

derived previously in [37, Theorem 3.11. The key contribution of this work is to com-

bine this result with optimal risk allocation to substantially reduce the conservatism

of (7.18). In the next section, we present an MPC formulation that incorporates

these robust constraints while also including feedback into the predictions such that

the state variance can be shaped by the controller.
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7.5 Optimizing Feedback and Risk Allocation Simul-

taneously

This section uses the saturated affine disturbance parametrization of the control in-

puts in conjunction with the risk allocation method for bounding the joint state

chance constraint to obtain a tractable formulation for the SMPC Problem 7.1. To

this end, explicit expressions are first derived for the mean and covariance of the

states x. Using the system model (7.2), the dynamics for E[x] and E[x] are described

by

E[x] =Axo + BE[u] + DGE[w], (7.19a)

E[x] =BE[u]B T + DGE[w]G TDT + B-[u, w]GTDT + DGo[u, w]T BT, (7.19b)

where E[w] = 1N 0 E[w] and E[w] = IN 0 Z[w] are assumed to be known. The

statistics of the control inputs u are derived from (7.12) as

E[u] =MGE[p(w)] + v, (7.20a)

E[u] =MGE[p(w)]G T MT , (7.20b)

o[u, w] =MG-[W(w), w]. (7.20c)

For any chosen saturation function p(-), the following statistics E[p(w)], E[p(w)],

and o[W(w), w] can be straightforwardly computed by applying the saturation func-

tion to the data used to estimate the mean and covariance of the disturbances w.

The mean and variance equations (7.19) and (7.20) are used to recast Problem 7.1 to

the following program.

188

MMrWO Im - fl IF 11m n .. 1. - ___ . 7 _1 -1 __ ,



Problem 7.2 (Deterministic Surrogate for SMPC Problem)

E[x] TQE[x] + E[u] TRE[u] + tr(Q E[x]) + tr(RE[u])min
Mve

subject to: given by (7.19)

given by (7.20)

satisfies (7.10)

satisfy Lemma

= (1 -i)/Ei

- \aT [x]ai

< bi

> 0

<6

= X

Vi = 1, ... ,Nx

where the risk allocation of the joint state constraint violation

E - (El,...ENx)-

is defined in terms of

Convexity Analysis

Problem 7.2 is nonconvex due to the multiplication of vi and /i in (7.21g), which

makes simultaneous optimization over the feedback gain M and risk allocation : a

nonconvex problem. An iterative strategy can be devised to solve Problem 7.2 by

taking advantage from the fact that the optimization problem is convex when either

M or c is fixed. To prove this, notice that E[u] and E[x] are linear functions of

the decision variables v and M, while E[u] and E[x] are quadratic functions of M.

Thus, the objective function is quadratic in v and M, and is a convex function of the

decision variables since Q and R are assumed to be positive semidefinite and definite

matrices, respectively.

Requiring M to be lower block triangular can be represented by linear equality

constraints so that (7.21c) is convex. The hard input constraints (7.21d) are exactly
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represented by a set of linear inequalities that are convex in v and M (see Lemma

7.1). Clearly, (7.21h)-(7.21j) are linear inequalities or equalities, which are convex.

Now, let us consider the surrogate expressions for the state chance constraints

(7.21g). When the feedback gain M is fixed, E [u] and E[x] must be constant matrices

from (7.20) and (7.19), respectively. Therefore, vi from (7.21f) will be constant for

all i = 1, ... , Nx. Since the risk allocation E still comprises the decision variables,

(7.21g) reduces to aTE[x] + vi (1 - ci)/ei < bi. The first term is an affine function of

v. The second term is convex for any ej E [0, 0.75], which can be verified by observing

that the second derivative of V(1 - cE)/Ej is positive on this range. Since the sum of

convex functions is a convex function, (7.21g) will be convex for any fixed M and any

choice of 6 < 0.75.

On the other hand, when the risk allocation E is fixed, #3 from (7.21e) will be

constant for all i = 1,..., Nx. In this case, (7.21g) reduces to aTE[x] + ,v. K bi

where the first term is linear in v and the second term is linear in vi. By substituting

the expression for E[x] in (7.21f), this constraint can be rewritten as a second-order

cone constraint

- 1/2

E= [(w)] o-[p(w), w] [GTMT BT

E[w] LGTDTai]

This expression can be substituted into (7.21g), which renders Problem 7.2 a convex

second-order cone program for fixed E.

Iterative Optimization Strategy

The optimal control problem in Problem 7.2 can be solved by optimizing both the risk

allocation E and the control feedback gain M. An iterative two-stage optimization

strategy is presented in [257] to bisect the uniform risk allocation in the upper stage

and to optimize the feedback gain with fixed uniform risk allocation in the lower

stage. On the other hand, [1521 proposed optimizing the risk allocation and feedback

gain simultaneously using a tailored interior point method that exploits the sparse
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Algorithm 7.1 Coordinate descent for SMPC

Require: Initial feedback gain M 0 ) and maximum number of iterations Imax.

1: for i = 0 to Imax - 1 do
2: Solve convex optimization Problem 7.2 with fixed M <- M() for the optimal

risk allocation E*
3: Set E(i+) _ r*

4: Solve convex optimization Problem 7.2 with fixed E +- E('+') for the optimal
feedback gain M*

5: Set M('+1) <- M*

6: end for

multistage structure of the nonconvex optimization. Although these approaches were

developed under different disturbance assumptions and control law parametrizations,

they can be applied for solving Problem 7.2 owing to the similar structure of the

optimization problems.

In this work, a simple iterative approach is proposed for solving Problem 7.2, as

summarized in Algorithm 7.1. The primary notion of Algorithm 7.1 is to solve for

the optimal risk allocation given a fixed feedback gain and then solve for the optimal

feedback gain given a fixed risk allocation. This approach is similar to the well-known

DK iteration used in p-synthesis problems [8]. This technique is known as a (block-

)coordinate descent algorithm, and has been applied more broadly to optimization

problems subject to bilinear matrix inequality (BMI) constraints [231]. Although this

algorithm is not guaranteed to converge to a local optimum (as each iteration provides

a solution that is optimal in the "directions" of one subset of variables, but not in all

directions), it is a commonly applied heuristic that performs well in practice.

Two choices have been made in Algorithm 7.1: (i) initializing the algorithm with

a fixed feedback gain M 0 ) (instead of a fixed risk allocation E 0) and switching the

order of the optimization problems), and (ii) running the algorithm for a fixed num-

ber of iterations instead of running until a prespecified tolerance has been met. The

initial feedback gain M(0 ) can be designed optimally without explicitly considering

constraints using any of the numerous existing robust control methods, e.g., [131].

Since there has been a plethora of work on offline feedback control design, initializing

the algorithm based on a nearly optimal feedback gain is likely to yield better perfor-
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mance than initializing the algorithm using a fixed uniform risk allocation, which will

rarely be optimal in practice. In addition, since adequate closed-loop performance

can often be obtained with just a few iterations from a near optimal choice of MM,

it is best to run Algorithm 7.1 for a fixed number of iterations so as to ensure that

the control inputs can be computed within a reasonable computation time. This idea

has been widely used in the fast MPC literature to significantly reduce the cost of

solving MPC problems online as discussed briefly in Chapter 4 and in [261].

Feasibility and Stability Considerations

Due to the inclusion of input and state constraints, the region of attraction KN for

Problem 7.2 (i.e., the set of initial conditions for which there exists a feasible solution

to the optimization problem) will be a subset of R'. In the robust MPC literature,

feasibility is commonly addressed by ensuring that the states remain in KN at all

times upon entering NK. When the disturbances lie in a compact set, recursive

feasibility (as well as closed-loop stability) of the MPC problem can be guaranteed

by defining terminal constraints and/or terminal penalties [161, 89].

The proposed SMPC approach, however, considers arbitrary stochastic distur-

bances with a (possibly) unbounded support. Hence, it is impractical to ensure that

the states remain inside iN in the presence of input constraints [43]. One approach

for guaranteeing recursive feasibility for SMPC problems with unbounded distur-

bances is to choose between a closed-loop and open-loop initialization strategy online

[671. The key idea in this approach is to choose the closed-loop strategy when the

problem is feasible and to choose the open-loop strategy (whose feasibility is guar-

anteed through a proper selection of terminal constraints) when the SMPC problem

is infeasible for the most recently observed states. Although this approach guaran-

tees recursively feasibility, it completely ignores the most recent state measurements,

which will degrade closed-loop performance when the states are not in the region of

attraction of the controller.

Alternatively, a backup controller can be applied when the states leave the region

of attraction of Problem 7.2. In this case, a natural choice is to soften the state
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constraints in Problem 7.2, as this will enable driving the states back into XN [192].

To this end, the exact penalty function method can be used to ensure that the backup

controller yields the same solution as the fully constrained MPC problem when it is

feasible [122]. This approach allows for solving a single optimization instead of having

to verify feasibility and decide which MPC problem to solve accordingly.

Stability of stochastic linear systems (in a mean-square boundedness sense) in the

presence of unbounded disturbances and bounded control inputs has been explored

extensively in [44]. If the eigenvalues of the system matrix A lie inside the unit disc,

the variance of the states is shown to be bounded as long as the disturbance has

bounded variance. When A has eigenvalues on the unit disc (with equal geometric

and algebraic multiplicities), the variance of states will be bounded provided that

IlUll 2 < R for a large enough R. However, if A has even one unstable eigenvalue and

the system is subjected to unbounded stochastic disturbances along the directions of

the unstable eigen-subspace of A, the linear system cannot be stabilized by means

of bounded control inputs [44]. These results are readily inherited by the proposed

SMPC approach (Algorithm 7.1).

7.6 Example: Continuous Bioreactor Process

Bioreactor Model The performance of the proposed SMPC approach is evaluated

on a continuous clostridial acetone-butanol-ethanol (ABE) fermentation. The model

of [98] is linearized around a desired steady-state operating point to obtain the system

description (7.1) consisting of 12 states and 2 inputs. All system states are perturbed

by arbitrary unbounded disturbances with known mean and variance (see Appendix

A for the system description).

The system description, in terms of the notation used throughout this chapter is

as follows. The state vector for the continuous ABE fermentation process is defined

by

X = [CAC, CA, CEn, CAaC, CAa, CBC, CB, CAn, CBn, CAd, CCf, CAh],
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where C denotes concentration (mM) of AC = Acetyl-CoA, A = Acetate, En

Ethanol, AaC Acetoacetate-CoA, Aa = Acetoacetate, BC = Butyryl-CoA, B =

Butyrate, An = Acetone, Bn = Butanol, Ad = adc, Cf = ctfA/B, and Ah = adhE

[981. The input vector is defined as u = [D Go]T, where D is the dilution rate (hr-)

and Go is the inlet glucose concentration (mM). The system matrices are

51 5.3 0 29 0 0 -2.7 0 0 0 3.4 -10

-2.5 85 0 -43 0 0 3.4 0 0 0 -5.1 -0.014

37 1.8 93 12 0 0 -0.59 0 0 0 1.4 1.1

3.3 -4.5 0 18 0 0 -5.0 0 0 0 -8.8 -0.036

0 0 0 0 0 0 0 0 0 -0.030 0 0

A =10-2  0 0 0 0 0 0 0 0 0 0 0 0

-2.1 2.6 0 -35 0 0 85 0 0 0 -4.1 0.012

4.6 4.9 0 78 93 0 4.9 93 0 0.030 9.1 -0.027

2.1 -2.6 0 35 0 93 8.3 0 93 0 4.1 -0.012

0 0 0 0 0 0 0 0 0 93 0 0

0 0 0 0 0 0 0 0 0 0 93 0

0 0 0 0 0 0 0 0 0 0 0 93
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-1.7 5.7 x 10--5

-13 -7.9 x 10-7

-7.8 1.6 x 10-5

0.94 2.0 x 10-6

0 0

0 0
B=

-10 -6.8 x 10-7

-45 1.5 x 10-6

-51 6.8 x 10- 7

-1.4 0

-14 0

-37 0

and

G = diag(0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0).

Control Problem The control problem is formulated in terms of setpoint track-

ing for the ABE products while satisfying hard constraints on both inputs as well

as a joint chance constraint on acetate and butyrate (i.e., two of the key interme-

diate species in the metabolic pathway). Algorithm 7.1 is used to iteratively solve

the deterministic surrogate for the SMPC Problem 7.2 for determining the optimal

feedback control policy and risk allocation (see Table 7.1 for the parameter settings

used in this example). The performance of the proposed approach is compared to

that of a certainty equivalence MPC algorithm (in which the disturbance is set equal

to its expected value for the purposes of prediction) and a MPC algorithm with fixed

uniform risk allocation. The fixed gain optimization problem is solved using IPOPT,

whereas the CVX package with the Mosek solver is utilized to solve the fixed risk

allocation optimization problem [91].
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Table 7.1: Settings of the SMPC problem in the continuous bioreactor case study.
Sampling time 1 hr
N 10
Q diag(0,0,0.01,0,0,0,0,0.01,10,0,0,0)
R diag(0.1,0.1)

13.83 mM < CA < 15.68 mM
State constraints 10.55 mM CB < 12.30 mM

0.005 hr-' < D < 0.145 hr-'
Hard input constraints 0 mM < Go < 80 mM

Results Figure 7-1 shows the probability distribution of butanol at times 1, 10,

20, 30, and 40 hr in the case of a butanol setpoint change of 10% applied at the

beginning of the process. The histograms in Figure 7-1 are constructed based on 50

Monte Carlo simulation runs under identical disturbance realizations for the three

control algorithms. The proposed SMPC approach and the certainty equivalence

MPC algorithm show comparable performance in terms of minimizing the variations

in butanol concentration around the setpoint. The MPC algorithm with fixed uni-

form risk allocation resulted in the worst performance in terms of large variance in

the butanol concentration. The poor performance of the MPC algorithm with fixed

uniform risk allocation can be attributed to its conservative state constraint handling

as it attempts to fulfill the individual state chance constraints (decomposed from the

joint chance constraint) with equal risk regardless of the likelihood of their violation.

Figure 7-2 shows the joint probability distribution of acetate and butyrate at

time 1 hr; the process exhibits maximum state constraint violation at this time point.

The proposed SMPC approach results in a joint state constraint violation of less

than 8%, which is below the prespecified admissible joint constraint violation level

of 20%. Figure 7-2 indicates that the proposed approach significantly outperforms

the equivalence MPC algorithm in terms of state constraint handling, as the latter

algorithm gives rise to 78% constraint violations. The MPC algorithm with fixed

uniform risk allocation exhibits a constraint violation level of approximately 14%,

implying a less effective constraint handling than the proposed SMPC approach with

optimized risk allocation. Overall, the proposed SMPC approach led to the best
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control performance in terms of tracking the setpoint while dealing with the joint

state chance constraint.

100 -

C50 L
E - --
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54

52 0

Butanol Concentration (mM)

(a) Proposed SMPC with
tion

30
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Time (hr)
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56 . 40
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(b) Certainty equivalence MPC
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Butanol Concentration (mM)

(c) MPC with fixed uniform risk allocation

Figure 7-1: Probability distributions of butanol at process times 1, 10, 20, 30, and 40
hr; the black dashed line shows the setpoint. A 10% change in the butanol setpoint
is applied at time 0 hr.

7.7 Conclusions

This chapter presents a MPC approach for linear systems subject to arbitrary (pos-

sibly unbounded) stochastic disturbances with known mean and variance. The ap-

proach enables: (i) accounting for hard input constraints and joint state chance con-

straints under closed-loop prediction, (ii) efficient handling of joint chance constraints

by using the Cantelli-Chebyshev inequality in conjunction with risk allocation, and

(iii) determining the optimal feedback gain and risk allocation by iteratively solving

convex optimizations. Additionally, feasibility and stability properties of the proposed
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Figure 7-2: Joint probability distribution of acetate and butyrate at process time 1
hr; the black dashed lines show the bounds of the state constraints.

MPC method are briefly summarized. The performance of the method is evaluated

using a continuous bioreactor (used for the production of high value-added drop-in

biofuels from biomass) case study
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Chapter 8

Stability in Stochastic Receding

Horizon Control

8.1 Introduction

Robust model predictive control (MPC) approaches have been extensively investi-

gated over the last two decades with the goal to address control of uncertain systems

with bounded uncertainties (e.g., see [14] and the references therein). Robust MPC

approaches rely on a deterministic setting and set-based uncertainty descriptions to

synthesize controllers such that a worst-case objective is minimized or constraints are

robustly satisfied [29]. These deterministic approaches may however lead to overly

conservative control performance [14] if the worst-case realizations have a small prob-

ability of occurrence. An approach that can alleviate the intrinsic limitation of a

deterministic robust control setting is to use stochastic descriptions of system uncer-

tainties, which are available in many applications. This notion has led to the emerging

field of stochastic MPC (SMPC) (e.g., [225, 103, 52, 42, 20, 27, 193, 43, 38, 169]), in

which probabilistic descriptions of uncertainties and chance constraints are used to

allow for pre-specified levels of risk in optimal control.

This chapter investigates stability of SMPC. There is extensive literature that

deals with tractability and stability of MPC in the deterministic setting (e.g., see [14,

1611 and the references therein). However, the technical nature of arguments involved
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in stability of stochastic systems is significantly different in the case of unbounded

uncertainties, such as Gaussian process noise. In addition, there exist diverse notions

of stability in the stochastic setting that are non-existent in the deterministic case

[43].

The work on stability of uncertain systems under receding-horizon stochastic op-

timal control can be broadly categorized into two research directions: first, studies

that consider multiplicative process and measurement noise [52, 42, 208] and second,

studies that treat process and measurement noise as additive terms in the system

model [16, 23, 193, 1051. The latter approaches mainly rely on the notion of affine

parameterization of control inputs for finite-horizon linear quadratic problems, which

allows converting the stochastic programming problem into a deterministic one. Other

approaches to SMPC based on randomized algorithms [20, 27, 38] and SMPC formu-

lations with chance constraints [67] have also been reported.

Organization In this chapter, a SMPC problem is presented for discrete-time linear

systems with arbitrarily-shaped probabilistic time-invariant uncertainties and addi-

tive Gaussian process noise (Section 8.2). Chance constraints are incorporated into

the SMPC formulation to seek tradeoffs between control performance and robustness

to uncertainties. To obtain a deterministic surrogate for the posed SMPC problem,

the individual chance constraints are converted into deterministic expressions in terms

of the mean and variance of the system states and a state feedback paramterization

of the control law is applied (Section 8.3). This work uses the generalized polyno-

mial chaos (gPC) framework [266, 81, 272] for probabilistic uncertainty propagation

through the system dynamics in order to obtain a computationally tractable formula-

tion for the proposed SMPC problem (Section 8.4). The Galerkin-projection method

[81] is used for analytic computation of the coefficients of the series, based on which

the state's statistics can be computed in a computationally efficient manner. Inspired

by the stability results for Markov processes [170], the closed-loop stability of the

stochastic system is established by appropriate selection of the cost function in the

unconstrained case. It is proven that the proposed SMPC approach ensures closed-
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loop stability by design under the corresponding receding-horizon control strategy

(Section 8.5). This algorithm is applied to control a continuously stirred-tank reactor

that is carrying out the Van de Vusse series of reactions (Section 8.6).

The majority of this chapter was published in the Proceedings of the American

Control Conference [202].

Notation Hereafter, N = {1, 2,.. .} is the set of natural numbers; No := N U {0};

R>o is the set of nonnegative real numbers; Z[a,b] := {a, a + 1, . . . , b} is the set of

integers from a to b; Ia is the a x a identity matrix; la is a a-dimensional vector of ones;

Ia is the a x a all-ones matrix; IA(-) denotes the indicator function of the set A; E[-]

or (.) is the expected value; E[-x] is the conditional expected value given information

x; Var[.] is the covariance matrix; P(.) denotes probability; A(p, E) is the Gaussian

distribution with mean y and covariance E; 0 is the Kronecker product; o is the

Hadamard (entrywise) product; tr(.) is the trace of a square matrix; IIxI1I := xTAx

is the weighted 2-norm; and vec(.) denotes the column vectorization.

8.2 Problem Formulation

Consider a stochastic, discrete-time linear system

X+ = A(9)x + B(9)u + Fw, (8.1)

where x E R"- is the system state at the current time instant; x+ is the state at the

next time instant; u E U C Rn" denotes the system inputs, with U being a nonempty

set of input constraints that is assumed to contain the origin; E l1i denotes the

time-invariant uncertain system parameters with known probability distribution func-

tions (PDFs) f(0); and w - K(0, E) - Rn'- denotes a normally distributed i.i.d.

stochastic disturbance with known covariance E E R"l' X'. It is assumed that the

pair (A, B) is stabilizable for all uncertainty realizations 0, and that x can be observed

exactly at any time.

We include individual state chance constraints, that must be satisfied for all time,
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of the form

P(X E Xi) ;> Ni i = 1, . .. , nc, (8.2)

where Xi := {x E RnzIcTx < di}; ci E R"l; di E R; n,- denotes the number of

chance constraints considered; and 3i E (0, 1) denotes the lower bound of the desired

probability that the ith state constraint should be satisfied in the presence of system

uncertainties.

This chapter aims to design an SMPC approach for the system (8.1) such that the

stability of the closed-loop system is guaranteed. The SMPC approach incorporates

the statistical descriptions of system uncertainties into the control framework. Such a

probabilistic control approach allows the shaping of the state PDFs, which is essential

to trade off the performance and robustness of the closed-loop system.

Let N E N denote the prediction horizon of the control problem, and define

w := wT,..., w_]T as the disturbance sequence over 0 to N - 1. We consider a

full state feedback control policy 7r defined by

7r := {7rO, 7r1(-), .. . ,7rN-1(')} (8-3)

where 7ro E U is a control action that is a function of the known current state and

7ri(-) : R"n -+ U are feedback control laws for i = 1, ... , N - 1.

Let #i (x, 7, w, 0) denote the solution to (8.1) at time i when the initial state is

x at time 0, the control law irj is applied at time j = 0,... , i - 1, the disturbance

realization is wo, ... , wi_ 1 , and the parameter realization is 0, i.e.,

Oi+1 = A()Oj + B(0)7ri(#i) + wi (8.4)

where #o = x. Note {#i(x, 7r, w, 0)}'O represent model predictions from the observed

state x, and that the explicit functional dependencies on the initial condition, control

law, and uncertainties will be dropped for notational convenience.

We can now formulate the SMPC problem for the stochastic linear system (8.1)
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with time-invariant parametric uncertainty and unbounded process noise as follows.

Problem 8.1 (SMPC with hard input and state chance constraints) Given

the current states x, observed from system (8.1), the stochastic optimal control prob-

lem to be solved at each time instance is defined as

Jk(x) min JN(x, 7), (8-5)

s.t. dynamics (8.4), i E Z[,N-1],

iri E U, G Z[C,N-1,

P(cTi < di) ;> #i, Z E Z[1,N-1], 1 E Z[l,ncc],

q0 = x, 0 ~ f(6), w ~ A(O, E,),

where the objective function is defined as

'N-1~

JN (x, 7r) = E 1 |10i1I + 117ri112 , (8.6)
i=O 

R

Q and R are symmetric positive definite weighting matrices, and E, = diag(E, E). ,

Note that since the system is time-invariant, we are able to define the observed

state x (at any time) as the initial state at time 0 for model prediction in the SMPC

program. Problem 8.1 cannot be solved directly for three main reasons:

" Cannot optimize over arbitrary functions r.

" Chance constraints are non-convex and intractable.

" Traditional methods for propagating time-invariant uncertainty are inefficient.

In this work, approximations are introduced to Problem 8.1 to tackle the aforemen-

tioned issues. First, we introduce a state feedback parametrization of the control

policy. Next, the chance constraints are replaced with a deterministic surrogate, in

terms of the mean and variance of the predicted state, to yield a tractable expres-

sion. These approximations are introduced in Section 8.3 to produce a deterministic

version of Problem 8.1
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However, the problem is still not yet fully tractable due to the presence of time-

invariant uncertainties 0. Generalized polynomial chaos (gPC) is proposed for efficient

propagation of these probabilistic uncertainties through the system dynamics. The

Galerkin projection, coupled with gPC, directly provides an approximation of the

moments of the predicted state #i that appear in the reformulated chance constraints

and objective function of the SMPC problem (Section 8.4). Stability of the uncon-

strained version of this approximated SMPC problem is then explored in Section 8.5

using methods for Markov processes.

8.3 Deterministic Surrogate

Approximation of Chance Constraints

We use the following result to replace chance constraints in (8.5) with a deterministic

expression in terms of the mean and variance of the predicted states.

Theorem 8.1 (Distributionally robust chance constraint [37]) Consider an

individual chance constraint of the form

P(cTl ; 0) 1 -_, 3E (0, 1), (8.7)

where 1 E R"n are some random quantities with known mean I and covariance Ei and

c E R n are some constants. Let L denote the family of all distributions with mean I
and covariance El. For any 3 E (0, 1), the chance constraint

inf P(cTl < 0) > 1 - /,

(where 1 - L denotes that the distribution of 1 belongs to the family L) is equivalent

to the constraint

E[cTl] + , VVar[c Tl] 5 0, , = (1 - 0)/0, (8.8)
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where E[c l] = cT I and Var [cT l] = cTic.

Using Theorem 8.1, we can replace the chance constraints in (8.5) with a deter-

ministic counterpart

cT E[#i) + ri,-,3, cTVar[#i]c1 di (8.9)

which guarantees the constraint Oi E X, is satisfied with at least probability /3#.

State Feedback Parametrization of Control Policy

To incorporate feedback over the prediction, we choose to have the control policy

parametrized as an affine function of the state. This leads to policy 7r having elements

of the form

7ri(Oi) := gi + Li, i E [ (8.10)

where gi E Rn"- and Li E R nu " are the affine terms and feedback gains, respectively.

Let L = {L,... , LN-1} and = {go, ... , gN-1} denote the set of set of decision

variables in (8.5) to be optimized over the horizon N. A deterministic reformulation

of Problem 8.1 is then stated as

Problem 8.2

state chance

(Deterministic formulation for SMPC with hard input and

constraints)

min JN(x, L,g),
(L)

s.t. Oi+1 = A()#i + B(6)7ri + wi,

iri = gi + Liqi C U,

cTE[i] + r'1_3,f c;Var[#i]c < di,

(8.11)

Z[O,N-1],

Z[O,N-1],

Z[1,N-1],

Zpl,nec],

# 0 = x, 0 ~ f(0), w ~ A(0, EW),

In Problem 8.2, the objective function and chance constraints are only in terms of
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the mean and variance of the predicted states 0j. Using the gPC framework, we can

propagate uncertainties 6 and w through the system dynamics to approximate these

moments using deterministic equations.

Remark 8.1 In general, it is impossible to guarantee input constraint satisfaction for

a state feedback control law in the presence of unbounded disturbances unless Li = 0

for all i = 0, - - - , L-1, meaning that (8.10) takes the form of an open-loop control law.

This concept was further elaborated on in Chapter 7 where a method was introduced

for handling unbounded disturbances within SMPC. Those methods can also be utilized

here, but for simplicity we do not consider hard input constraints for the remainder

of the chapter by assuming U = Rnu.1

8.4 Tractable Stochastic Model Predictive Control

Algorithm

Polynomial Chaos for Uncertainty Propagation

The gPC framework enables approximation of a stochastic variable 0( ) in terms of a

finite series expansion of orthogonal polynomial basis functions. A detailed overview

of gPC and its relationship to Weiner-Hermite chaos is provided in Chapter 3 of this

thesis. A brief review is provided here for clarity and to introduce the notation used

in this chapter:

p

( () : akpk() = aT A( ), (8.12)
k=O

where a := [ao, ... , ']T, A( ) := [Po(6),..., Cp(()]T is the vector of pk of maximum

degree m with respect to the random variables 6, and p + 1 = (ng+m)! denotes the

total number of terms in the expansion. The basis functions belong to the Askey

scheme of polynomials, which encompasses a set of orthogonal basis functions in the

1Alternative approaches include truncating the distribution of the disturbances to have a finite
support or defining input chance constraints (see, e.g., 1671
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Hilbert space defined on the support of the random variables [2721. This implies that

= (W(f))6, where (h( ), g( )) = fo h( )g( )f( )d denotes the inner

product induced by f( ), and Jij denotes the Kronecker delta function. Hence, the

coefficients ak in (8.12) are defined by ak =

For linear and polynomial systems, the integrals in the inner products can be

computed analytically [811. Note that the basis functions Pk are chosen in accordance

with the PDFs of the uncertain variables as discussed in Chapter 3.

Evaluation of Multivariate State PDF

The time evolution of the multivariate predicted state PDF, given 00 = x, describes

the propagation of 6 and {wi} through the system dynamics (8.4). For a particular

realization of {wi}, the propagation of 0 through (8.4) can be efficiently described

using gPC. This represents the conditional predicted state PDF f( i+1 Iwo, - - , wi),

which can be integrated over all possible realizations of wo, - , wi to obtain the entire

predicted state PDF at the next time f(Oi+1), i.e.,

(#i+i) = f(i+1| Iwo,- -wi) f f(ws)dws, (8.13)

Since f(wi) for all i E Z[o,N-1] is a Gaussian distribution, this integral reduces sub-

stantially when evaluating moments of the states, as shown later in this section.

To use the gPC approach, approximate each element of the predicted state 0, input

7r, A(9), and B(9) in (8.4) with a finite PC expansion of the form (8.12). Define 4Di,t =

[aio,t, ... , ai,,t]T and Hi, = [bio,,. . ., bi,,t]T to be the set of PC expansion coefficients

for the ith predicted state and input at time t, respectively, and then concatenate these

into vectors <Pt := [<b~t, ... , <DT ,t]T E IRn- p+) and Ht := [HIF, .T . .,flt]T E Rn.p+1.

Then, use the Galerkin projection method, as described in [199], to project the error

in the truncated expansion approximation of (8.4) onto the space of orthogonal basis
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functions {~kpke-o to yield

<bi+1 = Abi+ BHi + Fw,

where

p p
A = ZAk 9k, B=Z

k=O k=O

[OkO

k pk0

Bk 0 k, F=F &eP+1,

... UOkp

... Upkpj

Ak and Bk are the projections of A(9) and B(9) onto the kth basis function ,0 ,

Uijk = (Pi, Wj, Wk)/(49), and e, = [1, 0,. .. , 0]T E R' is an a-dimensional vector

whose first element is one and the remaining elements are zero.

We can take advantage of the orthogonality property of the multivariate polyno-

mials to efficiently compute moments of the conditional PDF P(#t+1I{mwq}=0 ) using

the coefficients 4t+1. For example, here are the explicit expressions for the first two

moments of the ith predicted state

E [#i,t+1 , ' - ' , tl ~ ajo,t+1(W , -- , t),)

E0 [ft+1|, IWO) .wt] ~ "fO a 2 t+1 (WO, ---,Wt)(W2),
k=O

(8.15a)

(8.15b)

Similarly, we can project the state feedback control law (8.10)

Hi = gi + Libi, (8.16)'

where gi = g (3eP+1 and Li = Li0Ip+1. Since w ... , WN-1 is assumed to be Gaussian

white noise, { }{ 1 is a Gaussian process, with mean Di and covariance ri given by
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=+1 (A + BLi)di + Bgi, (8.17a)

Fi+1= (A + BLi)Fi(A + BLi)T + FEFT (8.17b)

We can initialize (Yg, Fi) using the current state 00 = x via projection, i.e., (o =

x 0 ep+ 1 and Fo = 0. Using (8.15), (8.17), and the law of iterated expectation, we

can derive tractable expressions for first two moments of f(#i,t+1)

E[0i,t+1= E [E[#i,t+ 1 wo,- ,Wt]], (8.18)

E [aio,t+l (wo, ... w t)],

= io,t+1,

iEf, 1 ] = EI E[#, t+1 Io,. - ,Wt]], (8.19)
p

k=O
= i[k,t+1 (o Wt)W2)

k=O
p

k=O
= 1 + J'ikik,t+1] (k~)

k=O

Tractable SMPC Formulation using gPC

In this section, our goal is to use gPC to write a tractable approximation of Prob-

lem (8.11). As discussed previously, Problem (8.11) is written in terms of moments

of {#j}Ko. Therefore, we can use (8.18) and (8.19) to rewrite JN and the chance

constraints in terms of (e, Ft). First, rewrite (8.6) as

N N-[1

JN = E EE[1|40| 112 , IWO'..., wi_1] + E[1|1ri12 IWO, --,. 1]

i=O QRIW-1
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and approximate the conditional moments using gPC (8.15)

JN VN:= E (8.20)

where Q = Q 0 W, R = R 0 W, and W = diag(( ), (), .. . , ((P)). Substituting

the propagated control law (8.16) and rearranging gives

VN = N1i +LTRLi+ tr ((Q + LTRLi)Fi)
i=o

+ R~~I~ + 2gi RL 14DN I'~s + tr (SFN),

(8.21)

where Q = (I.. 0 ep+i). The mean and variance can be approximated, from (8.18)

and (8.19), as

E[#i] ~0_ QT(i, (8.22)

0 1 +1) 0 (lT,)}T (I 0 W){(I)I 0 1T+1) 0 (DilT)}

+ M(In. 0 vec(Ji)),

where

vec(Ei,1 0 W)T

vec(En,, 0 W)T

... vec(E1,n. 0 W)T

- vec(En,,, 0 W)T

and Ejj E Rflxfl is a binary matrix with a value 1 in only the (i, J)h position. Note

that the covariance matrix is obtained from Var[#i] = E[#iOT] - E[#i]E[#4]T. The

tractable formulation of Problem 8.2 is then given by:

Problem 8.3 (Tractable SMPC Formulation with State Chance Constraints)
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11 bill + WIll .
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min VN(x,Lg) (8.24)
(Lm

s.t. i+1 = (A + BLi),i + Bgi, i E Z[o,N-1],

Fi+1= (A + BLi)Fi(A + BLi)T + FEF T, i EZ[O,N-1]

fe(4] , 1i) < 0, E Z[O,N-1], 1 E Z[1,nc],

6o=x9ep+1, Fo=O,

where ffcl denotes the 1t" chance constraint as a function of (4), Fi), which is straight-

forwardly derived by substituting (8.22) and (8.23) into the deterministic chance con-

straint (8.9).

8.5 Stability Analysis for the Unconstrained Case

Our initialization strategy, (4bo = x 0 e+1 , Fo = 0), uses the current state obser-

vation x, and is equivalent to having the SMPC problem optimize state predictions

conditioned on recent data x. However, the closed-loop state, is influenced by an

unbounded disturbance w so that it is impossible to assert convergence of the states

to any compact set under any control policy. In other words, there will almost surely

be excursions of the states beyond any compact set infinitely often over an infinite

time horizon [43].

The fact that x can jump anywhere in R"- also makes it difficult to guarantee feasi-

bility of chance constraints (must know there always exists some affine state feedback

control law can recover from any arbitrary initial condition). An alternative method

for guaranteeing feasibility is to switch the initialization strategy to correspond to

open-loop predictions while adding appropriate terminal constraints (discussed in

[67]). We avoid these methods here by proving stability for the unconstrained version

of the SMPC problem.

Here, we focus on discrete-time Markov processes {Xt}tEN0 where the PDF of the
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future state xt+1 is conditionally independent of the past xO, - - - , xt given the present

state Xt. We are concerned with a type of stability that concerns boundedness of

sequences of the form {E[h(xt)Ixo = XI}tENo where h is some norm-like function [43].

The theory of stability for discrete-time Markov processes entails the notion of a

negative drift condition [1701.

Theorem 8.2 (Geometric Drift) Let {Xt}tEN 0 denote a Markov process. Suppose

there exists a measurable function V : R"n -- + R>o, a compact set D C R n. such that

E[V(xi)Ixo = x], Vx V D, and sup.ED E[V(xi)Ixo = x] = b for some constants b > 0

and A E [0,1). Then, E[V(xt)Ixo = x] A'V(x) + b(1 - A)- 1 for all x E R n and

t E No. This implies the sequence {E[V(zt)|xo = X]}tENo is bounded for all x E R"-.

A "geometric drift condition" is also satisfied for states outside a compact set i.e.,

E[V(xi)Ixo = x] - V(x) 5 -(1 - A)V(x), Vx V D.

Proof. A proof of this theorem is provided in the Appendix of [431 and is repeated

here for completeness and clarity. First, E[V(xt)Ixo = x] = E[E[V(xt)I{x},j-i]Ixo =

x] = E [E[V(xt)Ixt_1]Ixo = x] from the law of iterated expectations. Next, we can

derive the bound E[V(xt)xti] < AV(Xt_1)IRn\D(t-1) + bID(xt-1) for all t-1 E

R"n from the hypothesis of the theorem. Combining these gives E[V(xt)Ixo = x]

AE[V(xt-_)Ixo = x] + bP(Ex 1 E Dlxo = x). Repeating these steps for {E[V(x,)Ixo =

x]}I- and recursively substituting into the last inequality gives

t- 1

E[V(xt)Ixo = x] AtV(x) + b ZAP(xtji E IDixo = )
i=O
t-1

" A t V(x) + b A',
i=o

SAtV(x) + b EA',
i=O

" A tV(x) + b(1 - A)-1,

where we have used the fact that P(Xt_1-i E Dixo = x) 1 and the geometric series
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expression 1 + A + A 2 + - - - = (1 - A)- 1 , which is convergent for |Al < 1 as assumed.

From this result, we see that suptro E[V(xt)Ixo = x] < V(x) + b(l - A)-' < oo is

bounded as claimed.

The main stability results for stochastic predictive control, that we extend in this

work to also handle parameter uncertainty, are presented in detail in [43]. The main

goal is to select appropriate cost functions such that a drift condition on the optimal

value function can be established.

Preliminaries

Let n := nx(p + 1) and r := n(p + 1) denote the dimension of the gPC projected

states and inputs, respectively.

We include a terminal cost 14N 12 in the objective where P = pT > 0 is the

solution to the Lyapunov equation

(A + BK)T P(A + BK) - P = -(1 + 6)M, (8.25)

J> 0, M := Q + KTRK, and K := K 0 I,1. The objective function of interest VN

is now stated as

N-1

VN(D, L,)= E | |+i Q R + N ( = 2, (8.26)
i=O

Since the pair (A(O), B(O)) is assumed to be stabilizable for all realizations of 0, there

exists at feedback gain K and P > 0 that satisfies (8.25) [73]. Note that the argument

4' E R" represents the initial condition in the PC expansion coefficient space. We

compactly denote the stage cost c : R" x Rr s R>O and final cost cf : Rn -+ R>o in

(8.26) as

c(4, 1) = 1|1'|2l + 1|H|2, (8.27)

Cf(4') = ||4|II2. (8.28)
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Problem 8.4 (Unconstrained SMPC) For any initial condition 1 G R , the

unconstrained N-horizon stochastic optimal control problem (to be solved at every

time step) can be stated as

min VN('I,L,.g), s.t. (8.14) and (8.16), Vi e Z[o,N-1]- (8.29)
(L)

Let -r* denote the optimal state feedback policy computed from Problem 8.4 with

parametrization (8.10) i.e., 7r(x) = gf(x) + L*(x)x for i E Z[,N-1- Given the state

xt at time t, implementing Problem 8.4 in receding-horizon consists of three steps:

" Solving (8.29) for ir* with 1 = 0t 3 e,.

* Giving the first element 7r* to the system (8.1).

" Shifting time to t + 1, and repeating the preceding steps.

As the true system (8.1) has fixed parameter values 9 = 0, it evolves as a Markov

process. Uner the policy { 0r7, rs,...}, (8.1) generates a state trajectory {Xt}tEN0 via

the recursion

xt+i Axt + $1r*(xt) + Fwt, xO given, t E No (8.30)

where A = A(9) and $ = B(9) are the true plant matrices.

Stability through Boundedness of the Value Function

Let (L*, *) denote the optimal control parameters, corresponding to optimal policy r*

with parametrization (8.10), obtained by solving (8.29) for a given initial condition.

Denote the optimal value function by V(@4) := VN( 4 , L*, *). The following two

lemmas form the basis for the main stability result for Problem 8.4, which is presented

in Theorem 8.3.
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Lemma 8.1 The stage cost (8.27), final cost (8.28), and controller K1P satisfy

sup {c(1, K41) - cf(<I) + E[cf ((A + BK)<P + Fwo) 1b] } < b, (8.31a)

c(<b, K4b) - c(4) + E [cf ((A + BK)< + Fwo)<b] 0, V4b D, (8.31b)

for some constant b > 0 and bounded measurable set D {z E R'IzTMz <

1tr(FTPFE) }.

Proof. Substituting in the definitions of the cost functions, we derive c(<), KP) =

21pQ+KTRK and E [cf ((A + BK)<$ + Fwo) Ib] = ||(A + BK)$i12i + tr(FTPFE).

Using the Lyapunov equation (8.25), we have

c(4, K4P) - cf (<b) + E [cf ((A + BK)> + Fwo) Ib]
=<T((A + BK)T P(A + BK) - P + M)<$ + tr(FT PFE)

=-(bTM~p + tr(FTPFE)

We know that 6inf"PED(&pTM~p) = 0 such that the supremum of this expression is

tr(FTPFE) > 0. Therefore, there exists a number b > 0 that satisfies assertion

(8.31a). For all D D, this expression will be less than or equal to zero such that

assertion (8.31b) is also satisfied. 0

Lemma 8.2 For all (D E Rn , the optimal value function satisfies the inequality

Vj(<b) cf(b) + Nb.

Proof. Define the N-length sequences Ls := {K,..., K} and j' := {0, ... , 0}. Let

{< p},I= denote the sequence obtained by applying the policy (Ls, S) to the gPC

system (8.14), i.e., V I = (A+BK)<iD+Fwj for all i E Z[o,N-1] with initial condition

0= < for any fixed <D E Rn, and Vk(4) := VN(4',Ls, '). From Lemma 8.1, we
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can derive

cj( 4 ) E [cf (4(D)@I4) = 4P] + c(4), K4) - b

Cf (4) ) E [cf(Ps) I Ps] + c(4),KM)) - b

Cf ( 4 )N-1) E [ci(4 )sV-1] + c(<b) 1, K4 1) - b

Recursively substituting these expressions into one another gives cf (<D) > Vk (4)) -Nb.

Subtracting V (4) from both sides of this inequality gives cf(4) - V ((b) Vk(4) -

V (4) - Nb. The assertion follows by noting that Vk(4) > V (4>), since (L', s) is

a suboptimal policy to (L*, j*) for arbitrary 4) E R'.

Given the optimal parameters (L*, j*), we denote the following feasible sequences

of the control parameters at the next time instant as

Lf := L*, .. . , L*-, K},

if := g*, . ,g*_, 0},

where we have taken the last N - 1 elements of the optimal policy (L*, g*) and added

to it the state feedback law designed to satisfy the Lyapunov equation (8.25). Let

V (4) VN(<b, Lf, f) and define 11* I{H*,..., IH* 1  to be the optimal propa-

gated policy of the form (8.16). We denote the "optimal" states {<)D}$L 0 , generated

by applying 11* to the gPC system (8.14), as

i+1 = A4)* + BH (<b*) + Fwj, 4* given. (8.32)

Using these definitions, we make the following assumption about how the true states,

from (8.30), relate to the "optimal" PCE coefficient states in (8.32):

E[V (xi 0 ep+1)|xo = x] <; E [Vf (<*)I<C = x 9 e+1], Vx E Rnx. (8.33)
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Theorem 8.3 Consider the system (8.1) at a fixed 0 = 0 and the stochastic optimal

control problem (8.29). Suppose that assumption (8.33) holds. Then, {E[V (xt 0

ep+1)Ixo = X]}tENo is bounded for each x G R n-.

Proof. From the definitions of the value function (8.26), the recursion (8.32), and Vf,

we know that

E [V (<C*)|o = 0 9 ep+1] - V (x 0 ep+ 1 ),

2 -j II(II) -1 2I~~i + 11 (p 11 + IIK4)* 11
=E -||<b*|| 00 -|*(b)|+|N Q6 + N|R*

+1 I(A + BK)4D* + FWNII112 _ =lb x11) 0 ( ep~i]
+|{A B )(*NN P N P 0 +

The first two terms above can be taken out of the expected value and derived to be

||X gep+1|I +jjH1(x3e,+1) 112 = IIxI2+I1ir7(x)|12. We can apply the law of iterated

expectation for Markov processes on the remaining terms above, and then use Lemma

8.1 to obtain a bound on this expression

E [11C*112 + JIK*|I1 + I(A + BK)<P* + FwN 112

- <b* 12 I f = 0 P+1

< E [b-TD(4)N) 1')* = X 0 ep+ 1 ,

= bP(<D* E D1<b* = X 0 e

<b.

We can apply these results to our starting expression to derive E[V (<*)1)<b = x O

ep+1] - V (x 0 ep+ 1) < -(|x||6 + 117r (x) 11) + b. From the optimality of (L*, g*) and

from assumption (8.33), we know that

E [Vj (xi 9 ep+) Ixo = x] - V (x ep+1) I E [Vf (x ep+1)xo = x] - V (x 0 ep+1),

< E [V! (<*)I1bo = x 0 ep+1] - V (x 0 ep+1),

S-(xI + br*(X)112) + b,
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For some constant a E [0,1), we define the set D' := {z E Rn IzTQz < a(z 0

ep+)TP(z 0 eP 1)} such that E[V (x 0 ep+1)fxo = x] - Vk(x 0 ep+1) -acf(x 0

ep+i)+b for all x 0 D'. From Lemma 8.2, we have -acf(xep+1) < -aV (x0ep+1)+

aNb for all x E R"n such that E [Vk(xi 0 ep+l)xo = x] - V (x 0 ep+1) -aVk(x 0

ep+1) + b(1 + aN), for all x 0 D'. Since limlzs+CO c(z 0 eP+1, 7r*(z) 0 ep+1) = +00,

we find, from the definition (8.26), that limIzII,+c , Vk(z 0 ep+i) = +oo. From the

definition of a limit, there must exists a closed ball D" around the origin 0 E RT
n

of a radius large enough such that VA(z 0 ep+i) > 2b(ac 1 + N) for all z 0 D" [43].

Substituting this into the previous expression gives

E[V (xi & ep+i)Ixo = x] - Vk(x 9 ep+1) - V(x 0 ep+1), Vx 0 D",

The sets D' and D" should satisfy D' C D" C R"n such that x 0 D" =- x 0 D'.

This represents a geometric drift condition outside the compact set D". The assertion

directly follows from Theorem 8.2. E

As shown in the proof of Theorem 8.3, Vk satisfies a geometric drift condition

outside of some compact set of R"-. Therefore, we can claim that the receding-

horizon controller (under the proper assumptions) results in a bounded objective for

all time such that the discrete-time Markov system is stochastically stable.

8.6 Example: Van de Vusse Reactor

The Van de Vusse series of reactions [57]

A - B - C, 2A - D,

taking place in an isothermal continuous stirred-tank reactor is considered to evaluate

the performance of the SMPC approach. The dynamic evolution of the concentration
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of A and B (denoted by CA and CB, respectively) is described by

OA -k1CA -- k3 CO - CAU, (8.34)

B k1CA - k2CB - CBU,

where k1, k2, and k3 denote reaction rate constants and u is the dilution rate (i.e.,

cpntrol action). Linearizing the system (8.34) around a desired steady state operating

point and discretizing the linearized model with a sampling time of 0.002 (see [2261)

results in a linear system of the form (8.1) with

(01 0 (-0.005

0.088 0.819 ) -0.002

where 01 is a random variable with PDF given by the four-parameter 3 distribution

O(0.923, 0.963, 2, 5). The noise matrix in (8.1) is assumed to be identity, and E =

10-4I with I being a 2 x 2 identity matrix. The states of the linearized model are

defined in terms of the deviation variables x1 and X 2. The initial states are assumed

to be random variables with Gaussian PDFs, i.e., x,(0) ~ A(0.5, 0.01) and x2 (0) ~

.A(0.1, 0.01). The control objective is to retain both states at the desired steady

state (hence x181, = 0 and x 2,, = 0) in the presence of time-invariant probabilistic

uncertainties and process noise. In addition, x2 should remain below the limit 0.17.

To formulate an SMPC problem of the form (8.24), fifth-order Jacobi polynomials

are used to propagate the time-invariant uncertainties through the system dynamics.

The weight matrix Q is set equal to identity with R = 0. The probability O3 in

the chance constraint imposed on X2 is 0.95, which indicates that at least in 95% of

occurrences the constraint x2 < 0.17 should be satisfied.

The performance of the proposed SMPC approach is evaluated based on 100

closed-loop simulations in the presence of probabilistic uncertainties and process noise,

and is compared with that of a nominal MPC approach with terminal constraints.

Figure 5-1 shows the histograms of x1 for both MPC approaches at three different

times. The SMPC approach clearly leads to smaller mean (i.e., deviation with respect
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to the steady state value) and smaller variance. This indicates that the SMPC ap-

proach can effectively deal with the system uncertainties and process noise. Figure 8-1

shows that the state approaches its steady state value (x1 approaches zero). To as-

sess the satisfaction of the state constraint, the time profiles of x 2 for the 100 runs

are shown in Figure 8-2. The state constraint is fulfilled in over 95% of simulations,

whereas it is violated in nearly 46% of closed-loop simulations of the nominal MPC

approach. Hence, the inclusion of the chance constraint into the SMPC approach

leads to effective state constraints satisfaction.

15 I I I

t=O0.576 t=0.144 t=0.048

10
C:
a)

U 5

0 0 0.1 0.2 0.3 0.4
xl

Figure 8-1: Histograms of x, at different times obtained from 100 closed-loop simu-

lations of the receding-horizon SMPC (blue) and MPC (red). The proposed SMPC
approach leads to smaller mean and variance of x1 in the presence of probabilistic

uncertainties and process noise.

8.7 Conclusions

This chapter presents an SMPC approach with state chance constraints for linear

systems subject to time-invariant probabilistic uncertainty in the model and additive

Gaussian process noise. A tractable formulation for this type of SMPC problem

is presented using deterministic surrogates to simplify the problem. Conditions for

closed-loop stability are established in the unconstrained case.
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(a) Proposed SMPC approach
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(b) Nominal MPC approach

Figure 8-2: Time profiles of x 2 obtained from 100 closed-loop simulations of the
proposed SMPC approach and nominal MPC. The red-dashed line represents the
state constraint. Nominal MPC results in violation of the constraint in 46% of the
cases.
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Chapter 9

Improved Output Feedback with

Bayesian Learning

9.1 Introduction

Mathematical models of physical systems are never exact: parameters are subject

to uncertainties and variations, states and outputs underly noise and external dis-

turbances, and not all states can be accessed directly from measurements. From a

control perspective this leads to many questions such as: How can one efficiently and

reliably obtain estimates of the parameters and states? How can one account for such

uncertainties in the controller?

In this chapter, we exploit polynomial chaos methods (see Chapter 3) to derive so-

lutions to these questions in certain cases by a incorporating a new recursive Bayesian

estimation scheme into stochastic MPC methods discussed and referenced in previ-

ous chapters of this thesis. This is first motivated by the fact that the interpretation

considered in many works in the literature [169, 199, 238, 721, in which the param-

eter distribution f(6) remains constant at every iteration of the MPC problem, is

suboptimal in most cases. When f(0) is interpreted as a frequency of occurrence

(for example, a collection of a number of batches/systems each corresponding to a

different value of 0), chance constraints may not be satisfied in the closed-loop system

even when they are satisfied in every iteration of a receding horizon control problem
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(this is rigorously proved below).

Alternatively, f(0) might be a quantitative description of our confidence in a

particular value of 0 being realized (as would be the most common case in continuous

processes). In this case, the true system is deterministic (evolving at fixed, but

unknown values of the parameters) so that chance constraints must also be interpreted

as trying to enforce a constraint with a particular confidence, even though the real

system either meets constraints or does not [198]. We explore the latter interpretation

in this chapter. It is important to realize that the online measurements are providing

new information about the process parameters that should be incorporated into the

PDF representation of our confidence. The more data/knowledge that we have, the

tighter we would expect this distribution to become. Bayes' theorem is the main tool

that we can use to recursively update our parameter PDFs.

Polynomial chaos can be used to efficiently propagate and quantify probabilistic

uncertainties by approximation of the PDFs of random variables [2711. This technique

has been exploited in many contexts within control and estimation. With respect to

estimation, in [156] for example, the location of a contamination source is obtained

solving a single Bayesian estimation problem with multiple measurements. In [28],

recursive schemes using polynomial chaos in conjunction with the Galerkin projection

method are developed to estimate PDFs of uncertain parameters. Similar to [153],

this chapter uses Bayes' theorem to generate moments that are nonlinear functions

of polynomial chaos expansion (PCE) coefficients. The solution to a nonlinear least-

squares problem then yields the updated PCE coefficients (which is directly used for

numerical approximation of the updated parameter PDF).

The use of polynomial chaos in stochastic MPC has been explored in a number

of works, e.g., [66, 110, 199, 239]. Algorithms were also developed/extended for

various situations in Chapters 6-8 of this thesis. The focus of this chapter is to use

the combination of Bayesian estimation and stochastic MPC to drive a deterministic

(but unknown) plant to a desired reference. This approach makes the most sense in

the context of continuous processes with models whose structure is accurate, but the

parameters are not exactly known and do not change much during operation.
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Organization The next section proves that chance constraints are not guaranteed

to be satisfied in receding horizon control when the parameter PDF f(0) is not up-

dated at each iteration, which motivates the exploration of Bayesian updating meth-

ods. Section 9.3 presents the proposed recursive Bayesian estimation problem and

describes a method for efficiently solving this problem numerically using polynomial

chaos. Section 9.4 briefly describes how to incorporate this estimation problem into

stochastic MPC algorithms. Lastly, the method is illustrated on an example prob-

lem composed of a series of continuously stirred tank reactors in Section 9.5 and

conclusions are drawn in Section 9.6.

Parts of this chapter were originally published in the Proceedings of the American

Control Conference [1761.

9.2 Failure of Chance Constraints in Receding Hori-

zon Control

The majority of research on stochastic MPC with probabilistic time-invariant pa-

rameter uncertainty has focused on developing practical algorithms with reduced

computational cost (so that they can be implemented in real-time) and have demon-

strated improved robustness compared to nominal MPC algorithms. The theoretical

development of these algorithms (see [169, 199, 238, 72] and Chapter 6 for examples),

however, could be significantly improved.

In the previous chapter of this thesis, an algorithm was developed that can handle

both stochastic disturbances and parameter uncertainty. Although chance constraints

are included in each step of the receding horizon implementation of the algorithm,

the stability analysis was performed in the unconstrained case due to the complexity

added by the chance constraints. In Chapter 7, we were able to guarantee satisfac-

tion of chance constraints since the uncertainty was assumed to be time-varying and

independent of all past and future values. This allows us to apply the Markov prop-

erty (and results derived for Markov systems) to the state space description of the
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system. Consideration of time-invariant uncertainty, however, is more challenging as

the current information is fully correlated with the past. This can be illustrated using

a simple example.

Example Consider the following one-state discrete time linear system

Xk+1 - OXk, (9.1

where 0 is a random gain with prior distribution f(6). The PDF of x 2 given a

particular value x, is

f(x2Ix) =Jf (6 = . (9.2)

However, the PDF of x 2 given two previous states x1 and xo is

f(x2 xI1, Xo) = J X2 - ), (9.3)

where 6 denotes the Dirac delta function. The latter equation is derived based on

the fact that the value of the parameter 6 = x1 /xo, so that the value of x 2 can be

determined with certainty.

Chance constraints have been incorporated into a number of stochastic MPC

problems that consider time-invariant parameter uncertainty. Although these chance

constraints are fulfilled in each instance of the open-loop control problem (solved at

every iteration), it has not been shown that these the desired chance constraints are

guaranteed to be fulfilled by the closed-loop system (that is, taking into effect the

recursive solution to the MPC problem). We prove that a standard formulation of

these problems do not provide chance constraint guarantees on the closed-loop system

by counterexample below.

Theorem 9.1 Consider the following discrete-time stochastic system

Xk 1 = g(xk, uk, ), (9.4)
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where Xk R" - is the state vector, uk E Rfu is the input vector, 6 E R n, is a real-

valued random vector of parameter values with PDF f(0), and g : Rn- x R'n x Rn, -

R lX is some known algebraic function. Given the observed state x E R'-, define the

stochastic optimal control problem

min J(x, u), (9.5)
U

s.t. zk+1 = g(zk,uk, 0), k = 0, ,N - 1,

uk E U, k = 0,-... N - 1,

P(zk E X) /, k=1,- ,N,

zo ~". J(X), 0 ~ f (0),

where J is the objective function, u = (uo,... ,uN-1) are the input values to be op-

timized over a prediction horizon N, Zk are the model predictions which are random

variables due to the uncertainty in 0, U are the input constraints, X are the state

constraints, and zo ~ 6(x) indicates that zo has a PDF of a Dirac delta at x (meaning

that zo is a known value equal to the measured states x).

Let u*(x) be the optimal input trajectory obtained by solving (9.5) for any x E R n,

and let rIN : R n - Rn be the receding horizon control law KN(X) =u(x) defined

as the first element of the optimal trajectory u*(x). Then, the stochastic closed-loop

system, derived by applying KN to (9.4)

Xk+1 = 9(xk, KN(Xk), 0), (9-6)

may not satisfy the state chance constraints P(xk E X) > 3 even though they are

feasible/satisfied in (9.5) at every time step.

Proof. This is shown by selecting any dynamic system of the form (9.4), parameter

distribution f(0), state constraints X, probability level 3, input constraints U, and

prediction horizon N such the states generated by (9.6) do not satisfy P(xk C X) 3

even though a feasible solution exists to (9.5) at every time step. Consider the simple
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scalar system

Xk+1 = OXk + Uk, X0 =1,

f(0) = 0.56(6 - 1) + 0.53(9 - 2),

U=R, X=f{xER:x 2}, =0.5, N=2.

From any initial condition x, the PDFs of the predicted states z, and z2 , as functions

of input values uo and u1 , can be derived to be

f (zi) = 0.53(zi - x - uo) + 0.56(zi - 2x - uo),

f(z 2 ) = 0.5J(z 2 - x - UO- ui) + 0.5J(z 2 - 4x - 2uo - u1).

For the first iteration of (9.5), we know that x = 1 since x0 = 1 ~ 3(1). A feasible

input sequence is given by u = [-1.1, 0 3]T as this results in (z1 = -0.1, z 2 = 0.2)

with 50% probability and (z= 0.9, z 2 = 2.1) with 50% probability, which satisfies

the state chance constraint over the horizon. Only the first input will be supplied to

the system as we are implementing this strategy in receding horizon.

There are two cases to explore in the second iteration of (9.5) as 6 can take on

either the value 1 or 2. Let us first consider the case that 6 = 1 in the true system.

As a result, x1 = 1 - 1.1 = -0.1 such that (9.5) should be initialized with x = -0.1.

For this problem, we can select u = [2.2, -1]T as a feasible input sequence since this

results in (zi = 2.1, z 2 = 1.1) with 50% probability and (z, = 2.0, z 2 = 3.0) with 50%

probability. Supplying the first element of this sequence ui = 2.2 to the true system,

X2 = 2.1 so the desired constraint x2 < 2 is violated when 0 = 1.

Next, consider the case that 6 = 2 in the true system. Here, the closed-loop state

is x1 = 2 - 1.1 = 0.9 such that (9.5) should be initialized with x = 0.9. For this

problem, we can select u = [1.1, 0]T as a feasible input sequence since this results

in (zi = 2.0, z 2 = 2.0) with 50% probability and (z, = 2.9, z 2 = 5.8) with 50%

probability. Supplying the first element of this sequence ui = 1.1 to the true system,

X2 = 2.9 so the desired constraint x 2 < 2 is violated when 6 = 2.
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For this particular example, the receding horizon control policy was selected to

ensure that the chance constraints were satisfied in each instance of the optimal

control problem. Under this feasible receding horizon policy, the true system reaches

X2 = 2.1 with 50% probability and X2 = 2.9 with 50% probability, meaning that

P(X2 < 2) = 0. As such, the desired state chance constraint is violated by the closed-

loop system. As these feasible input sequences may be selected by some choice of

objective J (e.g., a trivial case is when J = 0), the assertion directly follows. R

As discussed in detail in Chapter 3, uncertainty descriptions typically come from

some sort of parameter estimation algorithm combined with uncertainty quantifica-

tion techniques. Although we treat the parameter as a random variable in our models,

the PDF f(0) can be interpreted as a representation of our belief about the value of

0. It is common to assume that the true parameters are fixed, they are just now

known exactly (especially when modeling systems with time-invariant uncertainty as

the parameter does not change at all over time). In this case, the distribution of the

predicted states cannot be interpreted as a frequency of occurrence, meaning that

satisfaction of chance constraints does not provide a direct guarantee on the true

system (as it either meets the constraint or not; there is no inherent stochasticity in

the system).

The MPC formulation, posed in (9.5), could be vastly improved by updating the

prior f(0) based on measurements as opposed to reusing the same prior at every

step. In theory, this update should be performed using Bayes' rule based on all

measurements, i.e.,

f(ykjIDk- 1)

where Yk are the system measurements and Dk = {- - - , YO, Y1 , Yk } is the set of all

measurements over time. This route is explored in the rest of this chapter.
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9.3 Recursive Bayesian Estimation using Polynomial

Chaos

Problem Formulation

Consider a discrete-time linear system of the form

Xk+1 = A(6)xk + B(9)uk, (9.8a)

Yk = C(O)Xk + Vk, (9.8b)

where Xk E R"- is the state vector, Uk E Rfu is the input vector, Yk E R" is the

output/measurement vector, Vk E R"7 is the measurement noise vector, and 6 E R7'0

is the set of uncertain parameters. The inputs are assumed to be constrained to a

convex set U. The parameters 6 and noise Vk are assumed to be random variables

with PDFs f(6) and f(vk), respectively. For simplicity, the noise is assumed to be an

independent and identically distributed (i.i.d.) random process. Assume that there

exists a diffeomorphism T : RN -+ RO such that 6 = T where E R"C is composed

of standard random variables [1261.

The prior distribution f(6) (with support QO) represents our confidence in the true

system being at a particular value in Q0. It is assumed that the true plant dynamics

are described by (9.8) with parameters 6 = 6* E Q0 corresponding to some unknown

realization, meaning that the true dynamics are within the set of possible dynamics

under consideration.

Polynomial Chaos Spectral Representation

Polynomial chaos, described in Chapter 3, is a spectral approximation method for

uncertainty propagation that allows for (i) efficient sampling and approximation of

a PDF, (ii) analytic expressions for moments of a random variable, and (iii) a de-

terministic reformulation of a stochastic process. The truncated polynomial chaos
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expansion (PCE) can be used to approximate 0

L

0(0) 0 () = aj Dj( ), (9.9)
i=O

where ai are the coefficients, Vi(() are the polynomial basis functions chosen based on

the distribution f(), and L+1 = (nd! is the total number of terms in the expansion

with d being the maximum order of the polynomial basis functions retained in the

truncated expansion. This basis must satisfy the orthogonality condition

E[4bi4j] = ((Di, 4)j) = (()41j( )f ( )d = (@)i ,(.0

where Q is the support of . We define the vector of PCE coefficients in (9.9) to be

a = (ao, - - , aL). As detailed in the previous chapters of this thesis, the moments of

0 can be approximated using (9.9). A general expression for the PCE approximation

of the rth moment for the jth element of 0, denoted as Wr, is given by

L L

E[9;] ~ E[0j] = ... E a, --- ai,,j(,ii, - - - ,4i,) -., (a), (9.11)
ii=O ir=O

where ajy is the jth element of vector ai (corresponds to the ith PCE coefficient

of the jth element of 9). The orthogonality condition (9.10) greatly simplifies the

computation of the moment expressions ef7, which can be calculated as a function

of the coefficients a offline.

Approximate Bayesian Estimation using Moment Matching

We now look to use PCE as a tool for solving (9.7) approximately. The approach we

use involves approximating the prior distribution f(9IDk-1) and the posterior distri-

bution f(0ID1) with PCEs. Since the parameters are assumed to be time-invariant,

the posterior distribution at time step k - 1 is equal to the prior used at time step

k. This allows for the problem to be solved recursively while initializing the prior

as f(61D_ 1) = f(0), which could be based on past measurements and/or operator
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knowledge of the process. Since Vk is assumed to be an i.i.d. process, the likelihood

reduces to f (yk 1, Dk_1) = f(Yk 10) as the measurements {yI} are independent of one

another in this conditional space.

Denote the vector of PCE coefficients for f(9IDk_1) and f(9IDk) as ak_1 and ak,

respectively. At a given time step k, the unknowns in the approximated version of

(9.7) are then ak E Rne(L+1). One way to solve for these unknowns is to determine

ak that ensures the moments of the right-hand side (RHS) of (9.7) best match the

moments of the left-hand side (LHS) of (9.7). Analytic expressions for the moments

of the LHS are given by (9.11), which are found once offline. At least ne(L + 1)

moments .g/7(ak) need to be determined so that there are more data points than

unknowns.

The RHS is more challenging to evaluate analytically in general because of the

product of distributions. The likelihood function f(Yk 6) expresses the probability of

measuring a particular y given 6, but is utilized within Bayes' theorem by substi-

tuting the measured yA values as a function of 0. Recalling (9.8b), the likelihood can

be stated as f(Yk 9) = f(vk = yA - C(9)xk) where Xk is a function of 0, some known

initial condition xO, and input sequence uo, - - - , Uk-1. The evidence f(ykIDk_1) is a

normalizing factor that can lead to computational challenges in Bayesian estimation

problems since marginalization is involved, i.e.,

f(ykIDk-1) = jf(Yk9)f(IDk_). (9.12)

Closed-form solutions exists in special cases when the prior and likelihood are conju-

gate (for example, the Kalman filter). Monte Carlo integration methods are suitable

for approximating this integral since sampling PCEs are cheap as discussed previously.

Assuming Nsamp samples of the standard random variables - f( ) are drawn, de-

noted by (U for J = 1, - - - , Namp, we can approximate the Jth sample of 9 at time
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k, i.e., samples of 0 from the distribution f (6IDk)), using the PCE from (9.9)

L

6 ) = Zai i((), (9.13)
i=O

where ai,k is the ith PCE coefficient at time k, which make up the elements of ak.

The numerical approximation of the evidence can now be written as

1 
Nsamp

f~yl~kl) samp S ~ ki (914
j=1

Moments of the RHS of (9.7) can be evaluated using a similar Monte Carlo approach

by combining these results. The rth moment of the Jth element of 9 - f(0ID)

f(YkDk-) numerically approximated from the RHS of (9.7) is denoted by m'.

We can now write a nonlinear least-squares (NLS) optimization problem to find

the ak that ensures the LHS moments Wj best match the RHS moments M

2

min MT - /j (ak)) , s.t. Hak < k, (9.15)
3 r

where (H, k) are linear constraints that could be included to ensure physicality of the

parameter values. At least no(L + 1) terms should be included in the objective to

ensure the problem is not underdetermined. Note that joint moments (e.g., E[69A]

where 64 is the ith component of 9) can easily be incorporated into this optimization

problem. These joint moments are calculated in the same manner as (9.11). These

moments should be included when strong correlation is expected between parameters.

Also note that the number of PCE coefficients L + 1 considered can be significantly

reduced in certain situations. An example is when all the cross-terms are assumed to

be zero, for which the number of PCE coefficients in ak (and thus number of moments

that one needs to consider) is reduced from no(L + 1) to no(d + 1) where d is the

highest order of the polynomial basis functions retained in the truncated expansion

The solution to the NLS problem (9.15) is denoted by a*, which must be deter-

mined online. As mentioned previously, the state vector appears in the likelihood
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function evaluation. By assumption, the state is a random process driven only by 0.

As such, we apply the Galerkin projection method (discussed in detail in Chapters 6

and 8) to (9.8) (where the noise is negelected as it is zero-mean) [1991

Xk 1 = A(ak)Xk + B(ak)uk, (9.16a)

Yk = C(ak)Xk, (9.16b)

where Xk and Yk are the concatenated vectors of the PCE coefficients of the state

and output vectors, respectively, and A, B, and C are the projected matrices (see

Chapters 6 and 8 for derivations and explicit expressions for these matrices). The

key thing to note is that A, B, and C are functions of the PCE coefficients ak since

(9.9) is substituted for 9 in the expressions for A(9), B(O), and C(9). Note that the

recursively updated posterior distribution f(9|Dk), parametrized by coefficients ak,

is always used to update the state distribution in (9.16) so this is also always being

updated with the most recent measurements.

9.4 Output Feedback MPC with Bayesian Learning

The concept of recursive Bayesian estimation using polynomial chaos, introduced in

the previous section, can be straightforwardly incorporated into the many possible

variations of stochastic MPC algorithms introduced and referenced in Chapters 6-8.

Integral action can be attained by rewriting the model in a velocity form as discussed

in Chapter 4.

Chance constraints can be enforced using a number of different methods including

the Cantelli-Chebyshev inequality. These chance constraints do not have a physical

interpretation in terms of frequency of occurrence since the process is only run once

indefinitely (i.e., it is assumed to be a deterministic, but unknown process) and the

parameters are assumed to be time-invariant (as such the true process either satisfies

the constraint or it violates the constraint). However, using the Bayesian framework

presented in the previous section, we can impose constraints based on our confidence
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(aka subjective belief) described by a PDF. This approach is more rigorous than

many standard receding horizon control methods in the form of (9.5) as highlighted

by Theorem 9.1. An example problem illustrating some of these points is presented

next.

9.5 Example: Reactors in Series

The proposed algorithm of SMPC with Bayesian learning is applied to a reactor prob-

lem consisting of two continuously stirred rank reactors (CSTRs) and a nonadiabatic

flash [2541 as illustrated in Figure 9-1. In each CSTR the reaction A -+ B -+ C

occurs, where B is the desired product. The system is nonlinear with twelve states

(liquid level, temperature, mole fraction A, B for each subsystem), six inputs (flow

rates FI, F1 , D and cooling loads Q,, Qm, Qb) and five outputs (all temperatures,

liquid level Hb and mole fraction XB,b). The initial conditions of the system are con-

sidered to be known. The system is linearized around a steady state and discretized

using a zero-order hold with a sampling time of 0.2 s. Two valve parameters 01 = k,

and 02 = km are assumed to be unknown with 0* = 0* = 2.5. The valves are mounted

on the pipes connecting the CSTRs and the second CSTR with the flash. Lagrange

polynomials with d = 4 are used, because 01 and 02 are each distributed uniformly

between [2.0, 2.75] upon initialization.

The MPC objective function for this problem was seleced to penalize weighted

deviations between the mean value and a setpoint for each state, weighted penalties

on the variance of each state, and weighted penalties on the change in input val-

ues. The mean deviation from the setpoint and variance weights were selected to

be 1 for all states while the input flow rate deviations weights were chosen to be 1

and input cooling load weights were chosen to be 0.1. The measurement noise Vk

was selected to be a zero-mean normal distribution with covariance matrix equal to

diag(1/3 2, 1/32, 1/32, 0.0052/32,0.052/32). The prediction and control horizons were

both selected to be 10. Constraints on the input and change in input values were also

considered. Readers are referred to [1761 for further details.
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Figure 9-2 shows the PCE-approximated histograms of the estimates for each

parameter 01 and 02. No significant improvement is observed for t > 4, which is due

to measurement noise in the system. The calculated inputs are depicted in Figure

9-3 and the resulting states in Figure 9-4. In the beginning, the flow rate constraints

are enforced, leading to fast regulation of the heights. Simultaneously, the cooling

is adjusted such that the temperatures are regulated to the steady state. Because

the mole fractions are weakly coupled to the inputs and exhibit fairly large time

constants, it takes considerably longer for them to return to their steady state values.

On a Windows 7 machine with 16 GB of RAM it took less than 1 ms to solve each

NLS problem (9.15) using MEIGO [641 while each MPC problem (formulated as a

QP) was solved in on the order of 1 ms using qpOASES [69].

FJ1

HrQ

Qr

D F

Fr F1 1

F-
Hm Hb

Qr Qb Fb

Figure 9-1: Cascade of two CSTRs with reaction A
with purge and recycle, e.g., [254].

-+ B -+ C and non adiabatic flash

9.6 Conclusions

This chapter considers the design of an efficient output feedback control strategy

combining stochastic model predictive control and recursive Bayesian state and pa-

rameter estimation. This is motivated by the fact that standard receding horizon

control methods fail to give probabilistic guarantees even when chance constraints

236



600

4001

200

2 5
S 1 0 t

600

400,

200 I

0

3 2 5

92 10 t

Figure 9-2: Histograms of PDF (M = 1000) of parameters 61 and 62 for cascaded
CSTRs and flash over time t with 0* = 0* = 2.5 depicted as solid line.
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deviations from steady state) to cascaded

are satisfied in each open-loop problem. This is proven by counterexample and high-

lights viewing the parameter uncertainty as a confidence (aka quantification of sub-

jective belief). Stochastic noise, probabilistic parametric uncertainty, and hard input

constraints are considered. Uncertainties are incorporated in the form of probability

density functions. Adopting the Bayesian framework, the uncertain parameters are

treated as a realization of a random vector. Consequently, the controlled plant be-

comes a realization of a stochastic process. The efficient propagation of uncertainties

is addressed using polynomial chaos. The performance and efficiency of the approach

is underlined considering a reactor example.
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Figure 9-4: States (as deviations from steady state) of cascaded CSTRs and flash
under inputs from Figure 9-3. Measurements depicted as dots.
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Chapter 10

Multi-objective Failure Tolerant

Controller Design

10.1 Introduction

The design of the control structure, which is the specification of the interconnection

of measurements, exogenous inputs, and manipulated variables, greatly influences

the performance achievable by a control system. In practice, control systems are

usually required to fulfill multiple objectives that are poorly described using a single

performance measure as commonly proposed in the literature. This realization has

led to the development of numerous control structures that have multiple degrees-

of-freedom (e.g., see [92, 36, 144, 206, 283, 58, 256, 146] and the citations therein),

where each controller degree-of-freedom is tasked with addressing some subset of the

control objectives. As failures in system components inevitably occur in practice, an

important practical consideration is to design control structures and their associated

controllers to have graceful performance degradation during component failures [30,

112, 281].

Internal model control (IMC) is a control design method developed in the 1970s-

1980s with several useful features, including that it provides a convenient theoretical

framework for the design of two degrees-of-freedom control systems [175]. The basic

idea is to combine an optimal controller obtained from the nominal process model
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with a low-pass filter to tradeoff closed-loop performance with robustness to model

uncertainties. Another feature of the IMC structure is that it simplifies the task

of controller design by employing the Youla parameterization to write the nominal

closed-loop transfer functions as an affine function of the to-be-designed controller(s).

The IMC structure can also be implemented in the a manner that ensures internal

nominal stability of the closed-loop system in the presence of actuator constraints

[175, 331.

This chapter presents a systematic procedure for the design of multiple degrees-of-

freedom controllers based on an extension of the internal model control design method.

The cornerstone of the design procedure is a general control structure that enables

separate formulation of control objectives for each exogenous input. This leads to

independent design of multi-objective controllers with optimal failure tolerance, as

the global optimality of the control system is preserved when a controller(s) is taken

off-line (e.g., due to actuator and/or sensor failures). The control approach is shown

to alleviate most of the tradeoffs inherent in a classical feedback control structure

without compromising on the best achievable performance. The approach is extended

to multi-loop control systems by deriving the most general control structure for multi-

loop cascade and coordinated control systems. In addition, analytical expressions

are presented for the design of H2 -optimal controllers for single-input single-output

(SISO) systems that have objectives associated with tracking reference trajectories,

rejection of measured and unmeasured load and output disturbances, and suppression

of measurement noise.

Notation and Preliminaries Throughout the chapter, a finite-dimensional multi-

input multi-output process is denoted by P(s) E 7-Q where s is the Laplace variable

and 77L denotes the real rational subspace of W-,, consisting of all proper and ratio-

nal stable transfer matrices. The exogenous inputs r(t), lm(t), lM(t), dm(t), and du(t)

are bounded signals (i.e., r(t), lm(t), lu(t), dm(t), d,(t) E Lp[0, oo), where L4[0, oo) en-

compasses all signal sequences on [0, oo) which have finite p-norm). The real-valued

function 1-.11 denotes any norm defined over the linear vector space of the signals. The
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induced system norm I-I is defined as the supremum of the output signal norm over

a norm-bounded set of input signals [282].

Definition 10.1 (Internal Stability [175]) A continuous-time linear time-invariant

(LTI) closed-loop system is internally stable if the transfer functions between any

two points of the closed-loop system are stable (have all poles in the open left-half

plane).

Definition 10.2 (Robust Stability [175]) A closed-loop system is robustly stable

if the controller C ensures the internal stability of the closed-loop system for all P E P,

where P is the set of uncertain processes.

10.2 Systematic Design of Multi-objective Controllers

The fundamental questions central to the design of a control strategy can be summa-

rized as:

1. Control structure: Does the control structure limit the achievable performance?

2. Controller design: Do the closed-loop performance measures reflect the control

objectives?

3. Controller implementation: Is it feasible to realize all the control objectives

given the available degrees of freedom?

This section addresses each of these questions in order.

Control Structure

The most general control structure for a process P with manipulated variable u,

reference r, measured load disturbance 1m, unmeasured load disturbance l, measured

output disturbance din, unmeasured output disturbance d., and measurement noise n

is shown in Figure 10-11. All variables that can be measured are fed directly into the

'To simplify the analytical expressions, explicit transfer functions for the various disturbances

are not shown; the generalization of the results of this chapter to include such transfer functions is

straightforward.
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controller C that is to be designed to ensure (i) internal stability of the closed-loop

system, (ii) the output y closely tracks the reference r (i.e., small error e = y - r), and

(iii) the effects of the measurement noise and measured and unmeasured disturbances

on the closed-loop error e are suppressed. The mapping between all of the inputs to

the closed-loop system and the process output and manipulated variable is given by

Y H(P, C)
U

r

im
lu

dm

du

n

(10.1)

where the transfer matrix H(P, C) is

PCr(I + PC)-1

Cr(I + PCY)-1

PCm(I + PCY)-1 + (I + PCY)- 1P

Cim(I + PCY)- 1 - CY(I + PCY)- 1P

PCdm (I + PCy 1 + (I + PCy)- 1

Cdm(I + PCy)- 1 - Cy(I + PCy)~ 1

(I + PCY)- 1

-Cy(I + PCY)-1

(I + PCY)- 1P

-CY(I + PC,)- 1 P

-PCY(I + PCY)-1

-CY(I + PCY)-1
(10.2)

rn

dmM

Figure 10-1: General classical feedback control structure.
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A standard approach in optimal control is to formulate a single performance mea-

sure in terms of an overall norm such as a weighted H2 or H,-norm on H(P, C) [282].

However, a drawback of this approach is that a typical control problem has multiple

objectives that are independently defined in terms of relationships between specific

inputs and specific outputs. Several of the closed-loop transfer functions in (10.2)

that relate the system inputs to the output y and manipulated variable u are func-

tions of multiple controller transfer functions, so that the designs of these controller

transfer functions to satisfy multiple independently defined control objectives are not

independent. Next, an alternative control structure is presented that is provably gen-

eral while having each term in the relationship between an input and output being a

function of only one controller transfer function.

Consider the internal model control structure in Figure 10-2 for the formulation

of the control design problem where Q is the IMC controller. For the class of stable

linear time-invariant systems, Theorem 10.1 states that Figure 10-2 provides a non-

restrictive control structure for the design of multi-objective controllers.

Figure 10-2: General control structure for a stable LTI system.

Theorem 10.1 Consider a stable LTI system P with measured output y, manipulated

input u, measurement noise n, and disturbances 1m, lu, dn, and du. The IMC struc-

ture in Figure 10-2 is the most general LTI control structure for the design of multiple

degrees-of-freedom control systems that internal stabilize the closed-loop system.

Proof. Let P = NM- 1 = MR where {M, N} and {M, N} are right and left

coprime factorizations of P over 'Z17/, respectively. Define Cyo = UV- V1 U as

a stabilizing controller such that V and 0 satisfy the Bezout identity VM + UN = I.
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It is well-known that all stabilizing LTI feedback controllers are parameterized by

Cy = (V - QN)-1 (U + Q,1M) (10.3)

where Qy is any stable LTI transfer function [282]. For a stable LTI process (P E

RN7...) choose N = P, M = I, U = 0, and V = I [175]. This results in the Youla

parameterization of all stabilizing feedback controllers for a process P [274]:

CY = (I - QYP) 1QY = QY(I - PQY)- 1 . (10.4)

Insertion of this equation into (10.2) defines the set of all possible LTI closed-loop

transfer functions that are internally stable. Hence, H(P, C) takes the form

PCr(I + PC<)-1 PCm(I + PC)- 1 + (I + PCY)- 1P (I - PQY)P

Cr(I + PC)- 1  Cim(I + PC<)-1 - Cy(I + PCY)-1P -QYP

PCdm(I + PCy)- 1 + (I + PCy)-1 I - PQy -PQy

. (10.5)

Cdm(I + PCy)-1 - Cy(I + PCy)- 1  -Qy -Qy

The expression in (10.5) implies that internal stability of the overall closed-loop sys-

tem requires that the transfer functions

Cr(I + PCY)-1

Cim(I + PCY)~ 1  (10.6)

Cdm( I + PCy)-i
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are stable2 . Define

Qr = Cr(I + PCy)- 1

Qin= Cim(I + PCY)- - Cy(I + PCY)- 1P (10.7)

Qdm = Cdm(I + PCy) 1 - Cy(I + PCy)- 1.

It follows from the definition of C, (see (10.4)) that Cr, Cim, and Cdm in (10.7)

encompass the set of all stabilizing feedback controllers for any stable Qr, Qm, and

Qdm, respectively. This implies that (10.5) is internally stable.

Insertion of (10.7) into (10.5) simplifies the transfer matrix H(P, C) to

PQ, P(I + Qim) (I - PQy)P I + PQdm I - PQy -PQy I .(10.8)

Q I QYP Qdn _Qy _Qy

The block diagram in Figure 10-2 has the same closed-loop transfer matrix as in (10.8)

and, hence, is equivalent to the general classical feedback control system in Figure

10-1. The control structure in Figure 10-2 is non-restrictive for stable LTI systems

since it entails the set of all stabilizing controllers C for any stable Q. El

The control structure in Figure 10-2 can be used for IMC implementation [175]

by replacing the lower P in Figure 10-2 with a process model P. This structure is an

extension of the IMC structure to systems with four degrees of freedom. Theorem 10.1

indicates that the proposed IMC control structure does not restrict the set of closed-

loop transfer functions that ensure internal stability of the closed-loop system. A

consequence of this result is that the use of the IMC control structure does not limit

the achievable closed-loop performance, regardless of the closed-loop performance

measure(s) used to encode the control objectives. These characteristics are in contrast

to most of the control structures that have been proposed for control systems with

multiple degrees-of-freedom (e.g., see [232] and the references therein). Next, we

2The fact that (I + PCy) 1 is stable for all stable Qy indicates that the only unstable poles
allowed in C, Cin, and Cdm for internal stability must also be unstable zeros of (I + PCy) -.
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discuss how multiple control objectives can be met by independent controllers design.

Controller Design and Implementation

The control structure in Figure 10-2 provides a convenient framework for the design of

multi-objective controllers because the closed-loop transfer matrix (10.8) depends on

each of the controllers in an affine manner, and all columns depend on only one con-

troller. Hence, the optimal controllers Qr, Qim, Qdm, and Q, for multiple objectives

between the system inputs and outputs can be designed independently.

Based on the closed-loop mapping obtained from (10.8) between [e, u]T and each

of the system inputs, the following multiple control objectives can be defined:

* Reference tracking:

inf r . (10.9)
Qr

* Measured load disturbance rejection:

inf P(I+Qm) im . (10.10)[1 Qirn

" Unmeasured load disturbance rejection:

(I - PQ'Y)P
inf l . (10.11)[9 -QyPJ

" Measured output disturbance rejection:

inf I+PQd m . (10.12)
Qdm Qdm
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" Unmeasured output disturbance rejection:

inf I-PQ1 du

" Measurement noise suppression:

inf [-PQ

-Qy

In practice, a single signal

v = Pl., + d,,

is used to represent the combined effect of the

output disturbances. This implies that the two

(10.13) can be replaced with a single expression

unmeasured load and unmeasured

performance measures (10.11) and

inf I - PQY 1
Q [QY J.

(10.16)

As such, the above norm expressions are applicable to both continuous-time and

discrete-time transfer functions and for different norms used as performance measures.

For each control objective, an alternative performance measure is to replace the signal

norm with an induced system norm. For example, the measurement noise suppression

objective is often expressed in terms of its induced system norm as

inf
-PQ

-QY

1 (10.17)

The performance measures in (10.9)-(10.14) indicate that Qr, Qim, and Qdm only

influence one control objective. Hence, the latter controller transfer functions can be

designed independently of each other and independently of Q,. The only tradeoff in

each of the designs of Q,, Qim, and Qdm is that fast speed of response (the effect on y)
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will be associated with faster and larger changes in the manipulated variable u. This

tradeoff can be implemented by placing a weight on one or both of the closed-loop

error e and manipulated variable u signals. In addition, the design of Q, requires

prioritizing the multiple control objectives in view of their importance, as Qy is the

only controller to suppress the effects of unmeasured disturbances and measurement

noise (see expressions (10.14) and (10.16)).

Section 10.5 illustrates the design of H2-optimal controllers for a general class

of stable SISO systems. Next, we discuss how the control structure in Figure 10-

2 enables controllers to be implemented such that they lead to optimal achievable

performance in the presence of system failures.

10.3 Design of Failure-tolerant Controllers

A common approach to failure-tolerant control is to design a single control system

using robust control techniques to deal with all potential actuator and/or sensor

failures (e.g., see the discussion in [2831). Since this approach designs the control

system for the worst-case performance, it may lead to very conservative performance

when no actuator and/or sensor failures occur.

The special feature of the proposed control structure that the controllers Q,, Qim,

Qdm, and Qy are designed independently of each other is particularly significant for

failure-tolerant control when a system component (actuator or sensor) needs to be

taken out of service due to a failure. The design of the controllers in Section 10.2 can

be posed as the multi-objective optimization

inf {wF1(Q,) + W2F2 (Qim) + W3F3 (Qdm) + w4F4 (Qy)} (10.18)
Q

where Wk > 0 are weights and the objective functions Fk are the signal or induced

system norms of the columns of the closed-loop mapping between [e, u]T and the

system inputs (see (10.9)-(10.17)) for k = 1, 2, 3, 4. In (10.18), the vector Q consists

of the to-be-designed controllers Q,, Qim, Qdm, and Q,.
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Theorem 10.2 Consider the multi-objective optimization (10.18). The solution to

the optimization remains globally optimal as the controller(s) Q,, Qim, Qdm, and/or

Q, and the respective objective function(s) F1, F2 , F3 , and/or F4 are eliminated from

the multiple-objective function in (10.18).

Proof. Let the optimal solution to the convex optimization (10.18) be

Q arg min {WiF1(Qr) + W2 F2 (Qim) + W3F3 (Qdm) + w4F4 (Qy)}, (10.19)

where Q* = [Q*, Q* , Q*m, Q*]. Since each objective function depends on only one

decision variable (either Qr, Qim, Qdm, or Qy), the optimal solution to every objective

function is independent of the other objective functions, i.e.,

Q* = arg min Fi(Qr), Q*m = argminF2 (Qim),
Q, QiM

Qdm = arg min F3 (Qdm), Q* = arg min F4 (Qy).

Hence, when any of the objectives is eliminated from the multiple-objective function,

the optimal solution remains the same as that in (10.19) for the rest of the remaining

controllers.

Theorem 10.2 indicates that when optimal control is used to design each controller

independently, the rest of the controllers remain optimal if one or more of the other

controllers are taken out of service (set to 0) due to an actuator or sensor failure. In

other words, the overall control system remains optimal for the multiple achievable

objectives when any controller is taken out of service. This implies that the remaining

controllers need not be redesigned to realize optimal failure-tolerant control. Such an

approach to optimal failure tolerance leads to vastly superior performance under most

conditions than designing a controller to optimize the worst-case performance for all

possible failure conditions.

The proposed control structure also possesses a distinct feature for fault-tolerant

control when abnormal system operation results from a change in process dynam-

ics and/or disturbance characteristics. When a change in process dynamics can be
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characterized by model uncertainty, the lower P in Figure 10-2 is replaced with a

process model P E P. In this case, the internal stability of the closed-loop system in

Figure 10-2 for any P E P depends on only Qy.

Theorem 10.3 For stable Qr, Qim, and Qdm, robust stability of the closed-loop sys-

tem in Figure 10-2 depends on only Qy, F, and P, where P is the set of uncertain

processes. In particular, robust stability does not depend on Q,, Qim, or Qdm-

Proof. Suppose that the process dynamics are described by the model P that belongs

to the uncertainty set P. Replace the lower P in the general control structure of

Figure 10-2 with P. The closed-loop transfer matrix H(P, Q) for the mapping between

[y, u]T and the system inputs (see (10.1)) takes the form

PQS PQimS + (I - PQy)SP (I - PQy)SP PQdmS + (I - PQy)S

QTS QimS - QySP -QYSP QdmS - QYS

(I - PQY)S -PQYS

(10.20)

-QYS -QYS

where S is

S = (I + (P - P)QY). (10.21)

Robust stability of the control structure in Figure 10-2 requires that all transfer

functions in (10.20) are stable for any P E P. For stable Qr, Qjm, and Qdm, (10.20)

indicates that the robust stability of the closed-loop system is determined by the

stability of S. Hence, the robust stability of the system in Figure 10-2 depends on

only Qy, P, and P E P.

Theorem 10.3 implies that any stable Q,, Qim, and Qdm do not influence the in-

ternal stability of the closed-loop system in the presence of model uncertainties. This

observation motivates an approach similar to [283] in which Q, can be designed to be

robust to some modest fault conditions as well as to model uncertainties, while the rest
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of the controllers are designed independently of these fault conditions. The control

structure therefore alleviates the need for redesigning Q,, Qim, and Qdm when faults

occur in the closed-loop system. What distinguishes the proposed control structure

from that presented in [2831 is its ability to realize optimal failure-tolerant control for

multi-objective controllers.

10.4 Design of Multi-objective Controllers for Multi-

loop Systems

Cascade Control

Cascade control systems are commonly used in chemical industry to improve the

dynamic response of the closed-loop system by effectively reducing the impact of

process disturbances, in particular load disturbances [150, 1321. A cascade control

system is typically designed to tightly control a secondary process variable that closely

relates to the property of interest and is readily available from on-line measurements,

while scarce and delayed measurements of the primary process variable are used

to correct the control action. The majority of cascade control systems are of the

series type where the manipulated variable influences the primary output through

the secondary output (see Figure 10-3a). In general, cascade control is most effective

when the dynamics of the primary process exhibit nonminimum phase behavior (right-

half plane zeros or a time delay) and the secondary loop has a faster dynamic response

[175].

The general structure for cascade control of stable LTI systems is obtained by

replacing the plant P in the control structure of Figure 10-2 with

[P1P2] (10.22)
P2

This leads to the control structure depicted in Figure 10-3b, which possesses 7 degrees

of freedom. The closed-loop mapping between the exogenous inputs and the two
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process outputs and the manipulated variable is defined by

[Y1

Y2

U I- H(P, Q)

r

lml

1m2

t u1

1u2

d 1i

dm2

dul

du2

ni

n2

where the transfer matrix H(P, Q) is

PiP
2 

Q

P2Qr

Q.r

P1 + PiP Q1mi

I + P2Qlmi

Q1mi

P1 P2 (I + Q1.2)

P2 (I + Qzm2)

Qlm2

(I - PIP2Qyl)P

I - P2Qy1P1

-Qy1P1

P1 +P1P2Qdm 2 I-P 1 P2 Qy1 P1(I-P2 Qy 2 ) -PP 2 Qy1 -PP 2 Qy2

I + P2Qdm2 -P 2 Q 1  I - P2 Qy 2  -P 2 Qy1  -P 2Qy 2  . (10.24)

Qdy2- - 2Q2 .

Equation (10.24) indicates that each column depends on only one controller trans-

fer function, so that the optimal designs of the controllers can be performed inde-

pendently. The general cascade control structure in Figure 10-3b extends the IMC

cascade structure presented in [175] by including the effects of load disturbances and

measured output disturbances on both control loops.

Another widely used variant of cascade control is the parallel cascade structure in

which the manipulated variable affects the primary and secondary outputs through

parallel actions (see Figure 10-4) [150, 275]. In [2291, it was demonstrated (using

block diagram transformations) that the parallel cascade structure is equivalent to
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Pi(I - P2Qy2)P2

(I - P2 Qy 2)P2

-Qy 2 P2

I + P1P2Qdml

P2 Qdm1

Qdml



r 1M2 + 1U2 dm2 + dU2 1ml + lul dml + dul
dm1 

U

dm2

7n2

(a) Classical structure

r
dMi
dm2

1m2

1m2 1u2 dm2 + dU 2 
1
m1 + ul dmi + du1

P2 dM2

P2

2 dm mi

P1

(b) General structure

Figure 10-3: Cascade control system.

the series cascade structure when the primary process transfer function is replaced

with P/P 2 . Hence, the general control structure pertaining to parallel cascade control

can be obtained by defining the plant in Figure 10-2 as ]. This implies that
P2

in Figure 10-3b and the closed-loop mapping (10.24) P will be replaced with P1 /P 2 .

Note that the general structure for parallel cascade control holds only when P2 is

minimum phase.

Coordinated Control

Coordinated control typically refers to a class of control problems where two manip-

ulated variables are used to control one output [205, 99, 83, 77]. A general represen-

tation of coordinated control systems, also known as mid-ranging control, is depicted
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in Figure 10-5a. A coordinate control system is designed such that the manipulated

variable u1 , which has a more direct effect on y (faster dynamics and a smaller time

delay), rapidly regulates the process output for setpoint and disturbance changes.

However, since the manipulation of u1 is more expensive than u2 , the control system

gradually resets the fast input ui to its desired setpoint u, as the slower input u 2

begins to affect the output.

To obtain the general structure for coordinate control of stable LTI systems, the

plant P in the control structure of Figure 10-2 is replaced with

[P1 P2 . (10.25)

The resulting control structure with 6 degrees of freedom has the closed-loop mapping

y

U 1  ff(,Q[U2j

r

U'r

lml

1m2

1u2

dm

du

n

(10.26)

with H(P, Q) defined by

(P1 + P2 )Qr (Pi + P2 )Qr

Qr Qurl

, r Qur2

P1 + (P1 + P2 )QImi P2 + (P1 +

Q1.1 Q1~

QImi QI"

P2 )Qlm 2  (I - (P1 + P2 )Qy)P 1

,2 -QyPi

t2 -Qyfl

(I - (P1 + P2 )Qy)P 2

-Qy P 2

-Qy P2

I + (PI + P2)Qdm I - (P1 + P2 )Qy -(Pi + P2 )Qy

Qdm -Qy - Qy .

Qdm -QY -QY
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Equation (10.27) suggests that the optimal controllers, designed for multiple objec-

tives between the system inputs and outputs, in a coordinated control system can be

performed independently. Note that the feedforward controller

Qur = Qur (10.28)
Qur2J

is designed such that P1Quri + P2 Qur2 = 0.

10.5 H2-optimal Controllers for SISO Systems

Although the previous results primarily considered finite-dimensional continuous-time

LTI systems (that is, with all transfer functions in RR'...), the results are also ap-

plicable to infinite-dimensional systems and to discrete-time systems (the former by

defining the appropriate infinite-dimensional algebra 153] and the latter by replacing

the Laplace transform with z-transform and the location of the poles for specifying

stability of a transfer function). This section deals with single-input single-output

processes with time delays to illustrate the derivation of analytical expressions for

optimal controllers for one class of infinite-dimensional systems. The results in this

section can be generalized to other infinite-dimensional systems using the mathemat-

ical machinery in [166].

In its most general form, a stable LTI single-input single-output process p(s) can

be written as

p(s) = Pa(S)Pr(S) (10.29)

where Pa(s) and pm(s) are the all-pass and minimum-phase parts of p(s), respectively.

Pa(s) includes all the right-half plane zeros as well as time delays of p(s) and generally

takes the form

Pa(s) = e-s I s + (i (10.30)

where the superscript * denotes complex conjugate [175].

Next, optimal controllers in the control structure in Figure 10-2 are designed for
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the SISO process (10.29). The control objectives are defined in terms of minimization

of the H2-norm of the error signal (see expressions (10.9)-(10.16)). Since the deriva-

tion of analytical expressions for controllers requires partial fraction expansion, the

main result of partial fraction expansion is summarized in the following definition.

Definition 10.3 (Partial Fraction Expansion [2041) Suppose A(s)

A)ni, Ai $ A, for i 7 j, with integers ni and degB(s) < degA(s).

fraction expansion of A-1(s)B(s) is defined by

N ni

A- 1(s)B(s) = ao + E 1:
i=1 j=1

a 3
(s - Aip

where whreN ni N

B(s) = aoA(s) + EEaj J ((s -
i=1 j=1 k~i

with the coefficients of this expression given by

ao lim B(s)
s-+oo A(s)'

ABs)'
a =ni lim (s - Ai)niB() =

5-Ai A(s)

ai3  = lim B(s) j a , 
[A(s) 1 -

The partial

(10.31)

(10.32)

The following theorems give analytic expressions for H2-optimal controllers that

can be directly applied to Qr, Qim, Qdm, and Q,, which are derived using the same

mathematical approach described in [175] (interested readers are referred to this ref-

erence for explicit proofs of these theorems).

Theorem 10.4 Suppose that p(s) is the stable process (10.29). Let a proper weight

function r(s) be factored into an all-pass part and a minimum-phase part

r (s)
r (s) = ra (s) rm,(s) = ra~s (S) (10.33)
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Then the optimal solution to infI,(pQ, - 1)r11 2 is

B( s)
Qr = p ( , (10.34)

Pm (s) r.(s)

where B(s) is calculated from (10.32) for

A(s) _ rn(s) (10.35)
B(s) pa(s)rd(s)'

with Ai being the roots of rd(s).

Theorem 10.5 Suppose that p(s) is the stable process (10.29). Then the optimal

solution to inf Qi ||p(1 + Qin)1||2 is

Qim -1. (10.36)

Theorem 10.6 Suppose that p(s) is the stable process (10.29). Let the minimum-

phase part of a proper weight function d(s) be written as dn(s)/dd(s). Then the

optimal solution to inf gQd||(1 +PQdm)d||2 is

Qdm = -B(s) (10.37)
Pm(s)dn(s)'

where B(s) is calculated from (10.32) for

A(s) _ d(s) (10.38)
B(s) Pa(s)dd(s)'

with Ai being the roots of dd(s).

Theorem 10.7 Suppose that p(s) is the stable process (10.29). Let the minimum-

phase part of a proper weight function v(s) = p(s)lu(s)+du(s) be written as Vn(s)/vd(s).

Then the optimal solution to infQ,||(1 - pQ)v||2 is

Q B(s) (10.39)
Pm(S)Vn (s)
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where B(s) is calculated from (10.32) for

A(s) _ v(s)
B(s) Pa(S) ()(10.40)B(s) Pa(s)Vd(s)'

with Ai being the roots of vd(s).

The above analytical expressions obtained for the optimal controllers are stable

but may be improper and, as a result, the controllers may be physically unrealizable.

In the IMC design method [175], the optimal controllers are augmented with a low-

pass filter such as
1

J(= (S) (10.41)(Af s + 1)"n '

with nf just large enough such that the controllers Q are proper, at the expense of

suboptimality 3. In (10.41), Af is an adjustable parameter, with small values leading

to a very fast response and large values resulting in manipulated variable moves that

are slower and have smaller peak values during sharp changes in the inputs.

10.6 Example: Continuous Thin-film Dryer

Consider the thin-film composition control problem in a continuous dryer used for

manufacturing of pharmaceutical thin-film tablets [165]. In this process, the drug

formulation solution is cast as thin films that are dried to remove solvents (volatile

components) of the solution through evaporation. Among the critical quality at-

tributes of thin films are the solvent concentration remaining in the film, which heav-

ily affects the mechanical characteristics and adhesion properties of the dried films.

Hence, controlling the solvent concentration of the dried films is crucial to the overall

process of thin-film tablet formation.

In the thin-film dryer investigated here, the manipulated variables used to control

the solvent concentration in the film are flow rate of the formulation solution pumped

into the dryer and temperature of hot air exposed to the film. The on-line mea-

3 Somewhat more complicated filters are more appropriate in the presence of load disturbances

when the closed-loop dynamics are much faster than the open-loop process dynamics 11071.
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surements available for control consist of film temperature and solvent concentration

in the film. Next, we study several single-loop and multi-loop control systems for

regulating the solvent concentration in the dried thin films.

Single-loop Control

A single-loop multi-objective control system is designed to regulate the solvent con-

centration in the film by manipulating the temperature of hot air blown into the

dryer. The thin-film drying dynamics are described by the first-order-plus-dead-time

(FOPDT) model

pI(s) = -0.0003e. 5  (10.42)
50s + 1

The process is affected by measured and unmeasured disturbances such that

y(s) = p1(s) (u(s) + Piim(s)lm(s)) + Pdm(S)dm(S) + d.(s) (10.43)

where plm, = s+10s+ and Pdm = 8+0.01 are the measured load and output disturbancewhrePi =50s
2+108+1 m s-+-

transfer functions, respectively. The output measurements are corrupted by stochastic

sensor noise having a zero mean Gaussian distribution with o = 10- 4 .

The control objective is to track a desired solvent concentration setpoint r while

the process is perturbed by measured load disturbance 1m, measured output distur-

bance din, and unmeasured output disturbance d,. The control structure in Sec-

tion 10.2 was used to cast the control problem as a multi-objective controller design

problem. Four independent control objectives were formulated to realize adequate

reference tracking while rejecting the measured and unmeasured disturbances (see

expressions (10.9)-(10.16)). The optimal IMC controllers Qr, Qirn, Qdm, and Qy were

designed using Theorems 10.4 to 10.7 for a step change in r, 1in, d,, and d", respec-

tively. The IMC controllers were made proper so as to be physically realizable by

augmenting with the first-order low-pass filter (10.41) with Af = 2.0. The time-delay

term in (10.42) was approximated by a first-order Pad6 approximation [190].

The controllers are listed in Table 10.1. Figure 10-6 shows the profile of the
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measured solvent concentration remaining in the film at the exit of the dryer when a

step change is applied to the inputs r, 1m, din, and d, of the closed-loop system. The

solvent concentration should be maintained at 0.5 wt.% to achieve the desired extent

of drying. Figure 10-6 indicates that Q, enables very good reference tracking and

the controllers Qim, Qda, and Qy adequately reject the measured and unmeasured

disturbances. The suppression of the measured load disturbance l is perfect. The

closed-loop response for the measured and unmeasured output disturbance are limited

by the same nonminimum phase behavior of the process. The closed-loop speed of

response for the measured output disturbance and reference tracking is the same, as

the two inputs act through the same controller transfer function Qy.

Table 10.1: Multi-objective controllers for the single-loop control system.

_ 50S+1 _ -16.215s2+0.1757s+0.01Qr - 2.0006s+.0003 Qd - O.OOO6s2+0.0003O6s+0.000003

0.00600 0.000s+.0003

Next, we investigate the performance of the single-loop multi-objective control

system in response to failures in the sensors of the measurable variables. It is as-

sumed that the sensor failures can be detected using fault detection and diagnosis

methods (e.g., as described in [47, 791, and references therein). When a sensor fails,

its measurements can no longer be used for control and, therefore, the respective

controller is switched off. Figure 10-7 indicates the system responses in the event

of sensor failures for the measurable variables r, lm, dr, and y. The system output

(solvent concentration) measurements suggest that the closed-loop responses with re-

spect to the measurable variables with working sensors are unaffected by removal of

the failed sensors, as suggested by the analysis in Section 10.3.

Figure 10-7a shows the output response for a loss in the reference signal, which

could occur due to loss in a communication line between an upper level supervisory

control loop and a lower level regulatory control system. The comparison between

Figures 10-6 and 10-7a reveals that the output responses to the disturbances Im, dn,

and d, are completely unaffected by the loss of reference signal, as they are just
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shifted to a different baseline. On the other hand, Figure 10-7b suggests that the

output responses to the inputs r, 1i, and d, are completely unaffected by a failure in

the output sensor y. This results from the fact that the feedforward controllers Q,

Qim, and Qdm remain intact by the loss in the feedback of y. Under these conditions,

only the output response to the unmeasured disturbance is influenced by the loss of

y, as the measurement of the output is the only way by which the control system can

detect the presence of d,.

Figure 10-7c indicates that losing the controller Qlrm affects the output response

at t = 150 s while having no effects on the output responses to the reference r and

unmeasured output disturbance d,. The integrating action of Qy forces the output

response to follow the reference signal r after the measured load disturbance perturbs

the system. Figure 10-7c also suggests that the loss of measured output disturbance

dm and, consequently, the controller Qdm does not influence the output responses of

the working sensors Q, and Qy. This numerical example clearly demonstrates the

optimal failure tolerance of the proposed control structure and design method. It

illustrates that the control structure alleviates the need to redesign controllers for

optimal failure-tolerant control.

Cascade Control

The thin-film temperature is used as secondary process output to design a multi-

objective cascade control system. The dynamic effect of hot air temperature (manip-

ulated variable) on the thin-film temperature is described by the FOPDT model

0.8
p2 (s) = 0.1 (10.44)

2s +1

Equation (10.44) implies that manipulation of the hot air temperature has a much

faster influence on the film temperature dynamics than on the solvent concentration

dynamics (see (10.42)). This suggests that the film temperature, which is closely

related to the solvent concentration in the film (the primary process output) and is

readily available from on-line measurements, can be used to improve the dynamic
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response of the closed-loop system in terms of disturbance rejection. The process is

under the influence of various disturbances such that the secondary process output

(film temperature) and the primary process output (solvent concentration) are

y 2 (s) = P2(s) (u(s) + 1m2(S)) + du2 (s) (10.45)

and

y1(s) =p1(s) (y2(s) + lmi(S)) + pdml(s)dm(s) + dui(s), (10.46)

respectively, where Pdml = s+.1 (see Figure 10-3b for depiction of the closed-loop

system). Both process outputs are corrupted by stochastic sensor noise defined as

shown previously.

The control objective is to maintain the solvent concentration at a predetermined

setpoint r while the different measured and unmeasured disturbances (lm, 1m2, d,1 ,

du2 , and dmi) affect the process. The general cascade control structure in Section 10.4

was applied to formulate the multi-objective controllers design problem for series and

parallel cascade control systems. The optimal IMC controllers were designed using

Theorems 10.4 to 10.7 for a step change in the input and, subsequently, augmented

with the first-order low-pass filter (10.41) with A1 = 2.0 to be made physically realiz-

able. The controllers for the series and parallel cascade control systems are given in

Table 10.2 and Table 10.3, respectively.

Table 10.2: Multi-objective controllers for the series cascade control system.

100s2+52s+1 _ _2.5s+1.25 42.42s'+21.06s 2 -0.1s-0.01
r - 0.000953s2+0.000953s+0.000238 Q1- 2s+1 Qdml 4s 3 +4.04s 2 +1.04s+0.01

100s2 +52s+1 = 1 _ 2.5s+1.25
Y1  0.000953s2+0.000953s+0.000238 Qlm2 - y2  2s+1

Figure 10-8a shows the closed-loop response of the primary process output for

both cascade control systems. The optimal design of Qr results in perfect refer-

ence tracking while the feedforward controllers Qiml, Qlm2, and Qdmi along with the

feedback controllers Qyi and Qy2 adequately reject all the disturbances affecting the
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Table 10.3: Multi-objective controllers for the parallel cascade control system.

_ _Q50s+1 Q . _ 2.5s+1.25 _ -16.215s2+0.1757s+0.01
Qr 0.000606s+0.000303 Qlnl 2s+1 Qdml 0.0006s2+0.000306s+0.000003

=Y 50s+1~ OO3O Qlm2 = iQy2 = 2.5s+1.25
y1 0.0006060s+0.000303 Ol2 -~ y .2s+1.2

system. For the thin-film process investigated here, Figure 10-8a indicates that the

series and parallel cascade control systems exhibit comparable performance under

the nominal process operation. Note that the proposed control structure provides a

consistent framework to evaluate the performance of the cascade control systems as

the performance comparison is independent of the choice of controllers tuning.

Figure 10-8b depicts the closed-loop system response for the two cascade control

systems when the sensors used to measure the secondary load disturbance (1m2) and

the secondary process output (Y2) failed. Failure of the latter sensors rendered the

secondary control loop in the cascade structures dysfunctional, as Qlm2 and Qy2 were

switched off. Figure 10-8b suggests that the series cascade control system outperforms

the parallel cascade system in the event of sensor failures. This is because of the

longer response time of the parallel control system to restore the performance (bring

the solvent concentration to its setpoint) after the load disturbance 1m2 occurred at

350 s. Yet, the performance of the rest of the optimal controllers in both control

systems remains intact due to optimal failure tolerance of the control structure.

Coordinated Control

The solvent concentration in the film can be controlled by manipulating the hot air

temperature and feed flow rate in a coordinated manner. The effect of feed flow rate

manipulation on the solvent concentration is described by

p3(S) = 0.00-e's (10.47)
6s + 1

It is evident from the comparison between (10.42) and (10.47) that manipulation of

the feed flow rate exhibits much faster dynamics than that of the hot air temperature.

265



Hence, manipulating the feed flow rate enables obtaining a better closed-loop response

in terms of setpoint tracking and disturbance rejection. However, the feed flow rate

should be reset to a predetermined setpoint during process operation to achieve a

desired production rate.

Consider the process to be affected by various disturbances such that the process

output (solvent concentration) is defined by

y(s) = p1 (s) (u1(s) + lmi(S)) + P2 (s) (u2 (s) + Im2(S)) + Pdm(S)dm(s) + du(s) (10.48)

where u1 (s) and u2(s) are the fast input (feed flow rate) and slow input (hot air

temperature), respectively. The closed-loop control system is depicted in Figure 10-

4b. The control objective is not only to regulate the solvent concentration in the

presence of disturbances (1mi, m2, din, and du), but also to reset the feed flow rate to

its desired setpoint u, as the slow input begins to influence the output. The general

coordinated control structure in Section 10.4 was used to design the multi-objective

control system. The analytic expressions for the optimal IMC controllers were derived

for a step input. The tuning parameter of the first-order low-pass filter (10.41) was

set to Af = 2.0. The controllers are listed in Table 10.4.

Table 10.4: Multi-objective controllers for the coordinated control system.

300s2+56s+1 __ -0.05s-0.001 __ 300s2+56s+1
- 0.0964s2+0.0468s+0.0007 0 .0482s+0.0007 _dm .0964s 2 +0.0496s+0.0007

_ 300s2 +56s+1 _ 0.0018s+0.0003 _ 166.5s+3.33Q 0.0964s2+0.0468s+O.On7 lim2 
- 0.0482s 0.0007 ur1 - 6s+1

Figure 10-9 shows the closed-loop response of the system for the nominal process

operation and the case of system failures due to loss of the measured load disturbance

signal lm, and the input setpoint signal ur. Figure 10-9a suggests that the loss of 1

at 100 seconds is merely detrimental to the ability of the control system to reject

the load disturbance affecting the fast control loop, as the rest of the controllers

fulfill their objectives adequately. It is shown in Figure 10-9b that losing the input

setpoint at 300 seconds (e.g., due to a communication failure between supervisory and
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regulatory control levels) only makes the control system unable to maintain the feed

flow rate at its desired level 1550 cm 3/s. The simulation results indicate that, in the

event of sensor failures, the optimal performance of the control system is preserved

with respect to the working controllers.

10.7 Conclusions

A general control structure is presented for the design of multiple degrees-of-freedom

controllers for stable linear time-invariant multi-input multi-output processes. Through

a Youla parameterization of all stabilizing controllers, it is demonstrated that the con-

trol structure is non-restrictive in terms of the achievable performance. The proposed

control structure is an extension of the internal model control structure to systems

with four degrees of freedom. The distinct feature of the control structure is that the

multi-objective controllers can be designed independently of each other, as the con-

trol objectives are defined separately for each exogenous input. This is particularly

significant for failure-tolerant control since the global optimality of a multi-objective

control system remains intact when a controller is switched off due to actuator and/or

sensor failures.

The control structure is applied for the design of multi-objective controllers for

multi-loop control systems (cascade and coordinated control structures). Analytic

expressions are obtained for optimal controllers design for stable single-input single-

output processes with general inputs. Simulation of several single-loop and multi-loop

control systems for a thin-film dryer indicates that the proposed approach enables de-

signing optimal failure-tolerant controllers without compromising the best achievable

performance.

267



r - *

dm2 3

'ml -
Ci

U

1m2 + 1u2 dm2+ dU 2

Nf 2

n2

' m l + l1 d m + d u l

P
1

f-

Figure 10-4: Classical parallel cascade structure.

268



u2 2 1u

r lu1 dm + du
u,
lm y

Cm2 CP1

dm

n

(a) Classical structure

U2 m2 P

1 IUI dm + du

P1
dm

n

(b) General structure

Figure 10-5: Coordinated control system.

269

r
Ur 3
lm1

m2

dm

y



0.9-

.0.8--

0.6-

0.5- V

00.4-

'0.3-

oO.2

0.1

0 50 1 150 200 250 300 350 400 450 500
Time (s)

Figure 10-6: Dynamic behavior of the single-loop control system for a step change
in the reference r, the measured load disturbance 1i, the measured output distur-
bance dm, and the unmeasured output disturbance d, at t = 0, 150, 200, and 250 s,
respectively.
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Figure 10-7: Dynamic behavior of the single-loop control system during various fail-
ures in the sensors of the measurable variables for a step change in the reference
r, the measured load disturbance 1m, the measured output disturbance din, and the
unmeasured output disturbance d, at t = 0, 150, 200, and 250 s, respectively.
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Figure 10-8: Dynamic behavior of the series and parallel control systems for a step

change in the reference r, the unmeasured output disturbance in the primary loop dei,
the measured output disturbance in the primary loop dmi, the unmeasured output

disturbance in the secondary loop d. 2 , the measured load disturbance in the primary

loop l, and the measured load disturbance in the secondary loop 1 im2 at t = 0, 100,
150, 200, 300, and 350 s, respectively.
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Figure 10-9: Dynamic behavior of the coordinated control system for a step change in
the reference r, the measured load disturbance for the slow input m2, the measured
load disturbance for the fast input 11, the measured output disturbance din, the
unmeasured output disturbance de, and the input setpoint ur at t = 0, 50, 100, 150,
200, and 300 s, respectively.
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Chapter 11

Active Fault Diagnosis for Nonlinear

Systems

11.1 Introduction

Fault detection and isolation (FDI) has become increasingly important in maintaining

stable, reliable, and profitable operations in the presence of component malfunctions,

drifting parameters, and other abnormal events. Process disturbances, measurement

noise, model nonlinearities, and other sources of uncertainty make fault diagnosis a

challenging task that is further complicated by the steadily increasing complexity

of industrial systems. By now, many methods have been proposed to address these

challenges, such as residual- and observer-based methods [47, 197, 59, 301, set-based

approaches [187, 2211, and data-based methods [47]. The majority of these methods

are passive, meaning that the inputs are not actively changed and that the fault status

of the system is deduced only on the basis of measurements obtained during standard

operation, compared with model predictions or historical data. However, faults may

not be detectable or isolable at the current operating conditions, or when faults are

obscured by the corrective action of the control system itself. Then it is necessary to

inject a signal into the system to improve fault detectability and isolability, which is

an approach known as active fault diagnosis [2791. Although active fault diagnosis

can significantly improve fault isolation, the required excitations can have adverse
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effects on the process that must be minimized.

The active input design problem has been addressed using deterministic [189, 188,

40, 227, 62, 31, stochastic [168, 230, 279, 2071, and hybrid stochastic-deterministic [228]

approaches. With few exceptions, the work is restricted to linear systems whereas, in

reality, almost all systems exhibit nonlinear dynamics.

This chapter presents a deterministic model-based approach for active fault diag-

nosis of nonlinear systems with polynomial or rational dynamics subject to unknown-

but-bounded uncertainties and disturbances. This work builds on a framework for

set-based analysis of nonlinear systems (e.g., [2371) and allows for a deterministic

formulation of the fault diagnosis problems. To decide whether a fault has occurred

with certainty, the measured outputs are compared with the set of outputs from the

nominal and faulty models [2361.

The main contribution in this work is a method to determine optimal inputs for

guaranteed active fault diagnosis despite process nonlinearities and uncertainties. To

achieve this, the input design problem is formulated as a bilevel optimization problem

in which the outer program minimizes the two-norm input, while the inner program

guarantees that only inputs that separate the output sets are selected (i.e., inputs

that guarantee the output measurements are consistent with at most one model).

In order to solve this nonconvex bilevel problem, we propose a method that takes

advantage of the fact that the relaxed inner program is convex at a fixed input (e.g.,

[236]). As suboptimality of this input is directly related to the tightness of the convex

relaxation (i.e., how close the relaxation approximates the true set), different ways to

tighten the relaxation are presented and discussed. Moreover, to provide a measure

of output set separation, the inner convex program is reformulated in terms of an

optimization-based consistency measure (e.g., [2371).

Organization The considered system class, the active input design problem, and

the feasibility-based fault detection and isolation approach are presented in Sec-

tion 11.2. Section 11.3 introduces the convex relaxation techniques used to deter-

mine outer approximations of the separating inputs. Section 11.4 presents the bilevel
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optimization approach to determine the optimal separating input. The active input

design method is illustrated for a two-tank system in Section 11.5 and the conclusions

drawn in Section 11.6.

The majority of this chapter was published in the Proceedings of the European

Control Conference [2011.

11.2 Problem Formulation

Given a process subject to nf possible faults, consider discrete-time models of the

form

fi Xk+1 = 9(Xk, uk,wk, p)

Yk = h(xk, uk, Vk, p)

representing the nominal and all the possible faulty dynamics. The superscript

i E 1 := {0, 1, . .. , nj}, denotes the various fault scenarios T: {f01, f N . ... , f["fI}

considered, with f[O corresponding to the nominal model.

In (11.1), Xk E Rnx, yk E RY, Uk E R"", Wk E Rn', Vk E Rfv denote the

system states, outputs, inputs, process noise, and measurement noise at time-point k,

respectively. The possibly uncertain model parameters are denoted by p E Rnp. The

functions g and h are assumed to be polynomial or rational. Many other nonlinearities

(e.g., exponential, transcendental, quasi-polynomial) can be approximated or exactly

expressed by polynomial or rational functions (e.g., see references in [237]). In general,

each fault model f N has its own set of variables x', Wk, Vk , y, pN and functions gi

and hN with possibly different dimensions. However, to shorten and simplify the

notation, the superscript [i] is omitted for all variables and functions appearing in

(11.1).

The model parameters are assumed to be unknown-but-bounded. Furthermore,

the states as well as the process and measurement noise are assumed bounded, leading

to the overall uncertainty description:

p E P, Xk E Xk, Wk E Wk, Vk E Vk, Vk E T (11.2)
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where T = {0, 1 ... , nt} is the collection of time instances considered. To simplify

the presentation, only one model is assumed to be active during T. The framework

can easily be extended to include fault sequences.

Set-based Fault Diagnosis

This work employs the notion of consistency for the design of separating inputs.

The core idea is to check consistency by means of a feasibility problem that takes

into account the model and the uncertainty description. The feasibility problem is

derived next.

Denote sequences on T by a := [0, o-1 ,. . . , -]T. Then, given a sequence of inputs

and measured outputs, (ii, y), combining (11.1) with the uncertainty description in

(11.2) into a single feasibility problem (FP) for each model i E J gives

find FP

s.t. Xk+1=9(Xk,Uk,Wk,p), Vk E T\nt

FPI](i) yk=h(Xk, Uk, Vk, p), Vk E T

Xk E Xk,Wk G WkVk E Vk, Vk E T-

where FP = ,. . -nt, W, 7 - ,wnt, yo, .. . ,ynt, V, ... -VntP]T lumps all the vari-

ables except the input into a single vector. The superscript [iJ on the variables in

FPN'(i) has been omitted to simplify notation.

Definition 11.1 (Consistency) Input and output sequences (U, y) are said to be

consistent with a fault candidate f [M if the problem FPI'] (U-) admits a solution (meaning

that there exists a set of states, process noise, measurement noise, and parameters

such that the input sequence i leads to that particular output sequence ). Otherwise,

the sequence (U, y) is called inconsistent.
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Optimal Input Design for Active Fault Diagnosis

Passive set-based fault detection and isolation based on FP I] (ii) has been proposed

in [221] considering fixed or unknown-but-bounded inputs. The main focus of this

work is the design of separating inputs for active fault detection and isolation in the

presence of uncertainties, which is formally stated below.

Definition 11.2 (Robust Separating Input) An input U separates models f[i and

f [i] at time t,,, if y such that (ii, y) is consistent with both f [] and f 1. If ii separates

all model output sets subject to output, process, and parametric uncertainties, then u

is a robust separating input.

The following combined feasibility problem (e.g., [2361) is defined as

find FP, "FP

FPi'i](U) :s.t. constraints in FPl1 (U)

constraints in FPLI (i)

[i] [U]
Y'nt ynt

which checks if there exists ((4h,(F4) such that the outputs of models f[i], f i] E F

intersect at time step nt. Both models have their own distinct set of states, process

and measurement noise, parameters, and outputs that appear as free variables in

the program. This problem provides a robustness certificate when the problem is

shown to be infeasible for all possible model combinations [236]. The set of all robust

separating inputs is defined as U* := {i : FPI'l (U) is infeasible V(i, j) E J, i > j}.

Note that FPl'J] (U) is defined using only the output at the final time meaning

any U E U* applied to the system guarantees that the output sets at the final time

do not intersect. This can be replaced with requirements in which the output sets

either do not intersect either at all, or at least at one time instance of T. The first

requirement can be straightforwardly obtained by replacing the condition yd = y1

with yll = yj, Vk E T, and the second requirement is considered in [237].

Note that for unique fault diagnosis, every possible pairwise comparison of the
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models of interest must have separated output sets [236], which requires a check of

(nf +1) distinct combinations. This number can be reduced by applying a hierarchical

approach that first selects inputs that separate a number of the models and then

refines the input to improve separability for closely related models. An alternative is

a hierarchical approach that first selects inputs that separate a number of the models

and then refines the input in a second step to improve separability for closely related

models. The hierarchical approach can significantly improve separability, since one

input sequence is not required to separate all models, but only a smaller number of

the models, which can be used to limit the performance loss resulting from the input

used for separation.

In this work, we not only want to separate the models, we also want to derive

an input that is optimal with respect to a certain performance index. Below it is

assumed that the performance loss can be classified in terms of a quadratic penalty

of the separating input . The overall problem considered in this chapter is stated

as:

Problem 11.1 (Optimal Separating Input) Find a separating input U that solves

inf iiTRii
(11.3)

s.t. UEUAU*

where R is a positive-semidefinite weighting matrix and U is a convex set that repre-

sents the input constraints.

The solution U, assuming that it exists, is guaranteed to provide robust fault

diagnosis within nt time steps. However, due to the nonlinearities and uncertainties,

the combined feasibility problem FPVJI(U) is generally nonconvex, making U* very

difficult to characterize exactly. Next these problems are efficiently tackled using

convex relaxations and bilevel optimization.
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11.3 Convex Relaxations

Providing a robustness certificate is not a trivial task for nonlinear and uncertain

systems due to the general nonconvexity of FP1'zj(ii). Although difficult, this is a

necessary task for characterizing the set of robust separating inputs U* that appears

in the optimization (11.3).

For polynomial systems, we can convexly relax the single feasibility problems,

FPH (i), into a semidefinite or linear program that provides provable inconsistency

certificates for the existence of solutions. These convex outer approximations of the

original, generally nonconvex, feasible sets can be used in FP[i'il(ii) so that solutions

can efficiently be computed [2361. The drawback of such an approach is that the

outer approximations introduce conservatism into the problem, so they only charac-

terize a subset of U*. Nevertheless, robustness certificates derived from these convex

relaxations allow the computation of an optimal and robust separating input where

the tightness of the relaxation controls the degree of conservatism in the solution.

Relaxation Methodology

The first step is to transform the FPI'I(ii) into a quadratically constrained program

(QCP) by expressing all the dynamic and output equations as 'A , where E RNC

is a minimal basis of monomials for the equations of model f[i] and A E R"C XC is a

symmetric matrix. The vector contains the elements of FP, the constant term 1, and

any additional monomials greater than degree two necessary to represent all equations.

Such a quadratic decomposition can always be found; however, it is in general not

convex. By introducing a symmetric matrix X = T and replacing the resulting

trace(X) > 1 and rank(X) = 1 constraints with the weaker positive-semidefinite

constraint X >- 0, the FPH(ii) is relaxed into a semidefinite program (SDP) denoted

by SDPM(ii). It is important to note that this relaxation only increases the solution

set. See [2371 for further details and references regarding this relaxation method.

Using the index set L = {1,... , neq} where neq represents the total number of

equality constraints in model f i and assuming that (11.2) can be written as nineq
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linear inequality constraints in terms of the uncertain variables (i.e., B 0 where

B E R"hneqxn ) results in

find X

s.t. trace (Aj(1 )X) = 0, V1 E L

SDP]il() trace(ee TX) = 1

B(u-)Xe < 0

X >_ 0

where e = [1,0,..., 0]T E R" . Note that the matrices B(ii) and A(U) depend on

the input ii; however, at this level, the input is treated as a constant (the input is

minimized in an outer loop optimization explained below).

To deal with larger problems that involve many constraints and variables, the

SDPH (ii) can be relaxed to a linear program (LP) denoted by LP i] (u-), which is done

by simply dropping the constraint X >- 0.

Solving SDP'I(ii) instead of the original FPH(ii) usually leads to the inclusion of

false solutions. As a result, the input set Z,* for which separation is guaranteed gets

overly restricted. To alleviate this effect, constraints can be added that are redundant

in the FP basis, but are not necessarily redundant in the higher dimensional basis

X. Such redundant constraints can be constructed by [2371:

trace(B (U)T B(ii)jX) ! 0, V (2, J) E 1,) . .. , nineq} Z > j (11.4)

where B(U)i E R1Xn represents the ith row of B(i). Eq. (11.4) includes the Mc-

Cormick relaxations for bilinear monomials. Including these redundant constraints

in the SDPIz](ii) adds nineq(nineq - 1)/2 constraints that make the solution more de-

manding to compute but can significantly tighten the solution set [2371. The tradeoff

between speed and conservatism is discussed below in the context of a numerical

example.
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Robustness Certificates Using Convex Relaxations

This section shows how to efficiently determine robustness certificates, i.e., guaranteed

output set separation, using the convexly relaxed feasibility problems.

Define the problems SDP1l',(ii) and LPI'J(ii) similarly as FP'JI(ii) (see Sec-

tion 11.2). Since the convexly relaxed problems must contain the original out-

put sets (i.e., provide infeasibility certificates for FPM(ii)), they can also be used

to check if a given ii is a robust separating input (see [2361). We can now simi-

larly define the sets Us*DP := {i : SDPI'il(i) is infeasible, V(i,j) E J, i > j} and

U*p {ii : LPI'2j] (ii) is infeasible, V(i, j) E J, i > j}. Since the relaxed out-

put sets must contain the actual set, but not vice versa, it directly follows that

ULP 9 US*DP 9 U*. Note that ULp C UsDP holds only when the same set of constraints

are included in both relaxations.

11.4 Optimal Robust Separating Input

In this section, Problem 11.1 is tackled by employing robustness certificates and

bilevel optimization. The inner program of the bilevel optimization certifies, for a

given input, that the output sets do not overlap and are therefore consistent with at

most one model, while the outer program determines the minimally harmful input.

FPI'A (ii) could be directly solved to determine if the sets overlap at a given input.

However, the result from the feasibility test provides no suitable measure for the outer

program to determine a direction that will improve the objective function value. This

situation can be avoided by reformulating the FP i'J] (ii) in terms of an optimization-

based consistency measure 6 whose value provides a direct measure of output set

separation for a fixed input. This measure provides useful information for the outer

solver to guide the input toward a minimum, as discussed below.

Below, the mathematical definition of 5 is provided along with an explanation of

how this can interpreted as a measure of output set separation. Then, the bilevel

optimization strategy for minimizing the distance between output sets is provided.

The presented approach to determine output set separation does not require the
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explicit computation of reachable sets as, for example, done in [2221.

Measure of Output Set Separation

The determination of the output set separation requires a reformulation of FP'j](ii)

in terms of a scaling parameter 6. Depending on 6, the bounds will be either inflated

(6 > 0) or shrank (6 < 0) until the output sets intersect. Intersection of the output

sets is checked by solving FPk'il(ii) for a given 6 and input . Since many 6 values

will satisfy this relationship, 6 is minimized under the constraints that the output sets

still overlap. 6 then provides a measure of separation in the sense that the larger the

distance between the output sets, the larger the minimum value of 6. If an inflation

of the bounds, i.e. 6 > 0, was required for output set separation, then the provided

input separates the output sets despite all bounded uncertainties.

The inflated bounds (i.e., inequality constraints) can be written as Bin FP

bin(i) + 6, where Bin is a sparse matrix that relates each of the variables in FP

to their lower and upper bounds in the vector bin(ii), which might depend on the

input. Using this definition, FPI'A(ii) can be reformulated in terms of the minimum

inflation parameter 6:

oJ ii) := min J

s.t. equality constraints in FPI(ii)

equality constraints in FPL7](ii) (11.5)

B j bf (i) + 6
B b$(i) +6

[i] UI]
Y'nt -Yrit

Theorem 11.1 FP 1'J (i) is infeasible if and only if iiP (i) > 0.

Proof. Choose any i, j E J and any i! E U. If Pil(ii) > 0, then (11.5) does not have

a feasible point with 6 < 0. Therefore, (, 4) such that the constraints stated

in FP,il(i) hold. Thus, FPiI(i) is infeasible. Conversely, assume that FPzI](ii) is
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infeasible. Then 4( P, 44) such that the constraints in FP'il(i) hold, which implies

that (11.5) does not have a feasible solution with 6 < 0. Thus, 6Ji'(i) > 0. L

From Theorem 11.1, we can express the set of separating inputs as U* =

[i'i](ii) > 0, V(i, j) E , i > j}. It directly follows from Section 11.3 that:

US*DP : SDP (i) > 0, V(i, j) E J, i > j}
(11.6)

UlP ={ E > 0, V(i, j) E J, i > j}

and 6j (ii) < 6P (ii) '(ii) at a fixed ii where 6s"(j ) and I(i() are defined

in the same manner as (11.5) with the convexly relaxed constraints used in place of

the actual constraints.

Determining the Optimal Input

The previous section derived a method for characterizing the set of separating inputs

with the measure of output set separation 6Th'a](ii). Using this framework, Problem

11.1 can be redefined as:

inf iiT Ri
iiEU (11.7)
s.t. 316j ii) > 0, V(i, j) E J, Z > 3.

i'j](ii) is defined as the solution to a nonconvex optimization which clearly makes

(11.7) a nonlinear nonconvex bilevel program (BLP). Only very few results for BLPs

with nonconvex inner programs exist [172]. The computational complexity can be

reduced by convexly relaxing the Li]ii) constraint in (11.7), using the relaxations

in Section 11.3 for example, to form a convex BLP that can be solved using existing

algorithms [9]. However, we solve this problem differently as explained below.
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The resulting convexly relaxed problem is

min U'Rii
mEU (11.8)

st. (ij) ;> E, V(i, j) E 1,

where the subscript CR stands for convex relaxation (e.g., SDP or LP). In (11.8), a

minimum separation threshold c > 0 is introduced to ensure that there exists a U*

that attains the minimum. The program for :Iw has the same structure as (11.5)

with the constraints defined in terms of the particular relaxation. Note that 6-(ii)

(i.e., the inner program) is now convex for a fixed U.

Replacing 'jQ (U-) with its equivalent Karush-Kuhn-Tucker (KKT) conditions leads

to a single program with, first, a large number of nonconvex complementary con-

straints equal to the number of inequalities in VC(i) and, second, variable bounds

that are generally complicated and highly nonlinear functions of the input due to its

propagation through the system dynamics. As this procedure is used by many of

the aforementioned algorithms to solve BLPs, computing the solution can be very

computationally expensive, which is compounded by a combinatorial growth in the

number of inner programs with the number of models to be separated and a polyno-

mial growth in the size of each inner program with the number of time points.

Although standard algorithms can be used to solve (11.8), we propose a simple

alternative that is easy to implement regardless of model complexity. The idea is

to use a deterministic local nonlinear solver to supply input values to the convex

inner program, Xfi(U), that can be efficiently solved using a variety of solvers, such

as CPLEX [11 or SeDuMi 1240]. Because X (ii) provides a measure of distance

between the set of outputs, the outer solver can easily compute a gradient of this

constraint with respect to the input using finite differencing. Combined with the

gradient/subgradients of the outer objective function, a feasible descent direction can

be estimated to update U. This process can be repeated until optimality is achieved.

This approach is used for the example of a two-tank system in the next section.
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11.5 Example: Two-tank Benchmark Problem

The previously described active FDI algorithm is applied to a variant of the two-tank

problem that is a common problem in the fault diagnosis literature. An illustration

of the two-tank system is provided in Figure 11-1.

q01

Tank 1 Tank 2

Ih

Figure 11-1: Sequential two-tank system.

System Description

Both tanks have the same cross-sectional area A and are connected in series by a

valve V12 with inflow q01 and outflow q2 3 . The inflow to the first tank q01 represents

the system input and can vary with time. The states (outputs) of the system are the

true (measured) heights of the tanks, which are denoted by x1 (yi) and x2 (Y2) for

tanks 1 and 2, respectively. This example considers operating conditions in which the

system satisfies x1 > x2 under all fault scenarios.

Three fault scenarios are considered. First (f N), a leakage in tank 1 represented

by the flow q'. Second (f[2]), the valve V12 becomes clogged and its throughput is

reduced by 50%. Third (f ), a large leak occurs in tank 2 that increases the outflow

to 5 times its nominal value. These scenarios can all be represented with the same

model structure. Therefore, we will first derive a general description of the system

and then present the different sets of parameters in the nominal and faulty models.

287



Under the aforementioned assumptions, the nonlinear discrete-time model is given

by the following set of difference equations

X1,k+1 - X1,k + t(qo1,k - qk - q12,k)A k 
1,k(11.9)

X2,k+1 = X2,k + 2,k - q23,k)

where At is the sampling time and the flowrates are

L L

qol,k = Uk, ql,k C 1

q12,k = C1 2 X1,k - X2,k (11.10)

q23,k = 23V/.-

The parameters cl, c12 , and c 2 3 are valve coefficients. The measured heights are

corrupted with measurement noise:

Y1,k = X1,k V1,k

Y2,k = X2,k + V2,k-

The non-polynomial parts of (11.9) can be reformulated by introducing additional

variables and constraints [2211:

(dw12,k) 2 = X1,k - X2,k

(Sqhl,k) 2 = X1,k (11.12)

(Sqh2,k) 2 = X2,k.

Placing dwl 2 ,k, Sqhi,k, and Sqh2 ,k in (11.9) instead of the appropriate square root

terms results in a polynomial model. Defining the parameter vector p = [A, cf, c 1 2, C23 I,
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the fault models can be classified as

flO:={(11.9)-(11.12), Po] - [A, 0, C12, c23 IT}

f[1i:=.(11.9)-(11.12), p[1] - [A, ci, c 12, c 2 3 ]T (11.13)

f[2]:= (11.9)-(11.12), p[ 2] = [A, 0, 0.5c 12 , c23 ]T

f [3]:= (11.9)-(11.12), P[3 1 = [A,0,c 12, 5c 23 ]T

Simulation Details

The bilevel optimization problem derived in this chapter (11.8) was solved to compute

the optimal separating input ii* for the nominal and three fault models summarized

in (11.13) using the method in Section 11.4. The convex relaxations in Section 11.3

were used. The implementation was done in Matlab using fmincon as the outer solver

and CPLEX [11 (respectively, CVX [91] with SeDuMi [240]) as the inner solver for

the linear (respectively, semidefinite) relaxations.

All simulations used the parameter values At = 5 s, A = 1.54e-2 m2 , cL =

C12 = c 2 3 = 1.2e-4 m5 /2/s, R = I and nt = 4. The uncertain initial tank

levels were chosen to be x1 ,o E [0.95,1.05] and X2,0 E [0.475, 0.525] with bounded

measurement noise V1,k, V2,k E [-0.05, 0.05], Vk E T all in units of meters. Bounds

on the remaining states and outputs were calculated using the model equations, the

uncertain initial condition interval, and the bounded measurement noise using the

Matlab Intlab toolbox [2201. The initial guess for il in the outer program was chosen

to be 0.1 for all time points in all simulations. Different initial guess values resulted

in the exact same optimal solution for this example. Note that our proposed method

easily handles process noise and parametric uncertainty; however, they were excluded

from this particular example for simplicity.

Main Results

Table 11.1 compares our method for different levels of convex relaxations. The linear

(respectively, semidefinite) relaxation without (11.4) is denoted as LP (respectively,

SDP). The letter "t" stands for "tight" and precedes the abbreviation when the addi-
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tional constraints in (11.4) are included in the relaxation. The LP relaxation is the

fastest method by far, but is also the most conservative (i.e., requires a larger input

to separate the fault models). The LP relaxation found a separating input 40 to 50

times faster than the t-LP relaxation, but with a norm that is 35 to 50% larger.

Another interesting observation is that the SDP relaxation was more conserva-

tive than the t-LP case. This example highlights the importance of the additional

constraints (11.4), which include the McCormick relaxations, in directly affecting the

tightness of the relaxation. Furthermore, optimization time for the t-LP relaxation

scaled much more favorably with the number of models in the simulation than for the

SDP relaxation. Note that, in order to reduce the online computational burden, it is

always possible to compute an approximate explicit solution to the input separation

problem in the same way as described in [212].

Figure 11-2 shows Monte Carlo samples of the outputs for each of the four mod-

els when the optimal separating input ii*, computed using the t-LP relaxation, is

injected. In the lower right panel, we can clearly see that all output sets are com-

pletely separated at the chosen final time point k = nt = 4, which indicates that any

sequence of these measurements taken on the interval T are consistent with at most

one model. Thus, a complete fault diagnosis of the system has been achieved.

Another point of interest is that only the blue and green output sets are very close

together, meaning these models are the most difficult to separate out of the set of

four models. Since there is only a single input to the system, we are limited in the

ways that we can shift the position of the output sets. This implies that removing

the red or yellow models will not change the optimal separating input. This agrees

with the results in Table 11.1, which shows that the input norm is the same for the

three and four model cases. The input changes in the two model case because the

green set was removed allowing the blue and red sets to be brought closer together

with a smaller norm input.
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Figure 11-2: 1000 sampled outputs are shown by circles from the nominal and faulty
models when the optimal separating input, calculated from the t-LP relaxation, is
injected. f[ 01, f[], f [ 2 1, and f [3] are represented by the blue, red, green, and yellow
circles, respectively. The convex hulls (black lines) in the lower-right panel were drawn
for clearer illustration.
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Table 11.1: Comparison of the proposed method at different levels of convex relax-
ation. By including the additional constraints in (11.4), t-LP is a tighter relaxation
than LP. Computations performed on a Desktop PC (Intel i7, 2.7GHz, 8 GB RAM)
running Windows 7 (64-bit) using a single core.

Models, fRi Relaxation IIE*II x 104 CPU time [s]

={0, 1} LP 39 8
t-LP 26 468
SDP 34 270

i ={0, 1, 2} LP 166 16
t-LP 123 882
SDP 147 834

1={0,1,2,3} LP 166 25
t-LP 123 1014
SDP 147 1710

11.6 Conclusions

A deterministic method is proposed for computing a guaranteed separating input

for fault isolation of nonlinear polynomial and rational uncertain systems based on

convex relaxations and bilevel optimization. The derived bilevel program has a convex

inner program and could be solved to global optimality using standard methods, e.g.,

branch and bound. An alternative solution method is proposed that uses a nonlinear

outer solver to supply inputs to the convex inner program and iteratively step towards

a minimum. Although global optimality is not guaranteed a priori, the proposed

method is much more computationally efficient and showed promising results when

applied to an example problem. Furthermore, the general formulation is flexible with

respect to the solution method and choice of objective, constraints, and number of

possible fault models.

Further work in analyzing the degree of conservatism added to the solution from

the convex relaxation methods is recommended. Of particular interest would be an

adaptive approach that heuristically adds constraints that are most likely to tighten

the relaxation while warm starting the algorithm with the previously computed solu-

tion.
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Chapter 12

Conclusions and Future Outlook

12.1 Summary of Contributions

Model predictive control (MPC) is the most advanced control technology widely

practiced in industry today. Its strengths are that it is able to handle constraints,

large-scale interactive dynamics, and competing performance objectives in a unified

manner. However, the MPC framework does not adequately address other practi-

cal process control considerations including uncertainty, sensor/actuator failures, and

faults. Explicitly accounting for model uncertainty and disturbances in MPC has

been an active area of research for the past few decades. This thesis explores stochas-

tic MPC as a method for handling probabilistic uncertainty descriptions. A batch

crystallization example is presented in Chapter 2 to motivate the need for distribu-

tional uncertainty quantification and propagation. The polynomial chaos framework,

which is overviewed in Chapter 3, is utilized for efficient propagation of rigorously

quantified uncertainty distributions through the dynamic model equations.

State-of-the-art optimization tools for MPC are first reviewed in Chapter 4. Dif-

ferences between various formulations of the optimal control problem to be solved at

each time instant are also discussed. In particular, we elaborate on how the quadratic

dynamic matrix control (QDMC) algorithm (developed at Shell Oil in the early 1970s)

relates to modern MPC formulations, while highlighting QDMC's computational ad-

vantages in large-scale systems. A demonstration of the effectiveness of the QDMC

295



algorithm for plant-wide control of an end-to-end continuous pharmaceutical manu-

facturing pilot plant immediately follows.

Methods for incorporating both parameter uncertainty and disturbances using the

stochastic MPC framework are then addressed. The focus of Chapter 6 is plant-wide

control of uncertain large-scale systems in which we develop an algorithm whose online

cost is independent of the state dimension while being able to shape the distribution

of the key outputs of the system. This approach showed promising results for a pro-

cess with over 7000 states. Next, a framework for rejecting disturbances (modeled

as random events) with unknown probability distributions is explored. Joint chance

constraints (which are inherently non-convex) were handled using convex relaxations

combined with an optimal risk allocation to reduce conservatism. Concepts from these

two approaches are then combined to handle parameter uncertainty and stochastic

disturbances in a unified manner. Stability is explored in the unconstrained case us-

ing theory for Markov processes. Then we prove that chance constraints may not be

satisfied by the closed-loop system even when they are satisfied during each iteration

of a receding horizon controller (such as MPC) when applied to systems with uncer-

tain time-invariant parameters. This motivates the exploration of Bayesian learning

methods for improved feedback within stochastic MPC. We propose efficiently ap-

proximating the solution to this Bayesian estimation problem using polynomial chaos

methods. This approach uses online process measurements to reduce the amount of

uncertainty in the parameters, and it showed promising results on a process consisting

of a series of stirred tank reactors.

The next part of this thesis focuses on the development of failure/fault-tolerant

process control methods. Two key additions to the MPC supervisory layer are de-

veloped. First, an internal model control (IMC) control structure is introduced that

enables the independent design of multi-objective controllers with optimal failure

tolerance, meaning that the control structure remains optimal when one or more

controllers is taken offline due to sensor or actuator failures. This approach is best-

suited for the design of regulatory control layers as they directly communicate with

process equipment. We finish by developing one of the first approaches for active
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fault diagnosis of nonlinear uncertain systems, which can be used for early diagnosis

of non-obvious faults before these faults can lead to catastrophic failure of the process.

12.2 Suggestions for Future Work

The MPC framework was developed to handle many practical process control consid-

erations in a flexible and unified manner. Extensions to account for general parameter

uncertainty and disturbances (described by probability distributions) were explored

in this thesis. Additionally, methods for handling equipment failures and faults were

explored. Work in the following areas are needed for these advanced process control

methods to be widely accepted and applied in industry.

Modeling for Control Purposes The most expensive and time-consuming step in

the design of any model-based control system is the development of a process model.

Modeling a process as an uncertain system requires both a nominal model and an

uncertainty description. In this thesis, a probabilistic description of the uncertainty

is assumed which further involves the determination of a prior distribution and the

likelihood of the uncertainty given data as discussed in Chapter 3. Too narrow of an

uncertainty distribution may lead to aggressive control actions that lead to overshoot

and possibly instability while too broad of an uncertainty distribution leads to sluggish

performance. The iterative framework described in Figure 1-2 is a systematic way

to combine physics-based process models with data to obtain a nominal model with

an uncertainty description. Applications of this method to real processes will suggest

how it can be best utilized and improved upon. A clear understanding of the tradeoff

between model accuracy and control quality is needed to determine when to stop

iterating around this loop to attempt to improve the model quality.

Chemical processes typically have many inputs and outputs, have high-dimensional

distributed dynamics, and are strongly interacting. Techniques must be developed

for reducing the dimensionality and complexity of these models so that they are still

able to capture the essential behavior of the plant. Since many chemical processes
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are inherently nonlinear, these techniques must be able to handle a wide-range of

dynamic behavior and should require minimal modeling effort as it is expensive. Effi-

cient uncertainty quantification techniques, such as power series and polynomial chaos

methods, should be exploited to reduce computational burden.

Nonlinear Optimization Methods The MPC methods explored in this thesis

focus on linear models as they usually yield good results in the neighborhood of a

specific operating point. This local operating point is typically decided by a higher

layer in the control hierarchy (such as the real-time optimizer) that optimizes profit

using steady-state nonlinear process models. Linear models can be identified from

data or obtained by linearization of a first-principles model. The incorporation of

uncertainty into these models also help9 mitigate some of the errors due to model

identification/linearization. However, demand for higher product quality, tighter

specifications, and tougher environmental regulations necessitate good closed-loop

performance over a wider range of operating conditions including startup and shut-

down. This fact, combined with the inherent nonlinearity in most real chemical and

biological processes, motivates the development of so-called nonlinear MPC (NMPC).

NMPC refers to MPC schemes involving a nonlinear objective function and/or non-

linear constraints that typically arise due to the use of nonlinear models.

A key advantage of linear MPC is that it can be directly formulated as a convex

optimization problem, which can efficiently be solved to global optimality (since any

local minimum detected must also be a global minimum). However, NMPC methods

are generally nonconvex optimization problems that are very expensive to solve to

global optimality. Development of practical algorithms for NMPC is needed so that

they can be successfully applied to real problems. Advances in nonlinear optimization

methods are also needed to provide fast solutions with guaranteed convergence.

One promising route is polynomial optimization as many nonlinear systems can

be approximated as polynomial systems by expanding all nonlinear functions using a

Taylor series that is truncated to a finite number of terms. Taylor's theorem can then

be used to rigirously bound the approximation error to provide guaranteed accuracy
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(see [97] for a perspective on polynomial optimization within the context of MPC).

Unmodeled Dynamics Models of chemical processes are never perfect (commonly

referred to as plant/model mismatch). The two most common sources of plant/model

mismatch are parameter uncertainty and unmodeled dynamics. In this general setting,

the model may be of the form Xk 1 = fmodel(Xk, Uk) while the true plant dynamics

evolve as zk+1 = Plant (zk, Uk) where the structure and parameter values of f model

differs from that of fPlant and the number of states are different in the model and

plant. Not much can be done to cope with this broad form of uncertainty unless

further assumptions are made. An example is given in [241], which assumes that the

bounds on the plant/model mismatch can be adequately characterized from data.

All of the methods introduced in this thesis assume that the structure of the

model is correct such that only the parameters are unknown. This effectively lumps

the effect of parameter and structural uncertainty when estimating the distribution

of the parameters. If possible, methods for quantifying structural uncertainty and

parameter uncertainty simultaneously should be developed. For certain processes,

it is known that the model structure is incorrect (for example, not every reaction is

known or can be modeled in many bioreactors) and this may result in significant errors

when identifying the model. As such, future research should explore ways to handle

structural uncertainty within the proposed control framework. The main difficulties

are that this error is not an inherently probabilistic quantity (it is simply unknown)

and it is likely to vary with time.

Time-varying Parameters Certain chemical processes involve unknown param-

eters that vary with time. Some examples are catalyst degradation in a reactor,

denaturation of enzymes in a bioreactor, and heat exchanger fouling. When these

parameters vary slowly with respect to the time window of interest, then they can

assumed to be approximately time-invariant meaning polynomial chaos propagation

tools can be applied. If this is not the case, other methods must be explored for

handling uncertainty that varies with time. When the parameters are modeled as a
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stochastic process, the correlation of the parameters in time must be captured with a

joint distribution function f (Ok, _k-1, 6 k-2, -- - ). This joint distribution greatly simpli-

fies when the parameters are assumed to be independent and identically distributed,

however, this may not be a realistic assumption since it is unlikely that the parameter

can take on any possible value at every time step. Future work is needed to find ways

to estimate this joint distribution efficiently from data and to develop techniques for

propagating this joint distribution through the dynamic system model. One route

may be to apply Bayesian learning (see Chapter 9) with a forgetting factor for the

prior distribution chosen based on the rate at which the parameter changes.

Fault-tolerant Control The methods described in this thesis tackle robust con-

trol, tolerance to equipment failure, and active diagnosis of critical system faults,

which can be combined to produce a fault-tolerant control method. Although the

methods were developed with simplicity of integration in mind, some open questions

remain regarding how best to intertwine these various methods. Since control and

fault diagnosis typically have opposing objectives, it remains an open question how

best to integrate these tools. The current standard is to wait to apply active fault

diagnosis (aka input design) methods until a process monitoring method (usually

purely based on data and statistics) detects faulty behavior. Future research might

explore embedding fault diagnosis within the MPC framework (using constraints for

example) so as to better tradeoff performance with fault diagnosability. In addition,

closed-loop input design methods should be explored as a way to reduce conservatism

of the proposed method of computing a single input sequence offline.
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