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Abstract

Coherent control has been at the heart of the study of physical chemistry. Great ad-
vancement has been achieved in the past few decades in coherent control of classical
systems by using spatially and temporally shaped electromagnetic waves. In this dis-
sertation, we extend the concept of coherent control to a purely quantum mechanical
collective system, namely, microcavity exciton-polariton Bose-Einstein condensates.

Microcavity exciton-polaritons, hereafter simply polaritons, are bosonic quasipar-
ticles formed in a resonant semiconductor microcavity by coupling the excitonic polar-
izabilities in quantum wells to the transverse mode of the confined optical field in the
cavity. The light-matter dual nature allows direct control of polaritons through either
their excitonic or photonic components. By utilizing the fact that polariton-exciton
and polariton-polariton interactions are repulsive, all-optical control of polaritons was
realized. By shaping the intensity fronts of the optical beam incident on a microcav-
ity, the potential landscape felt by polaritons can be easily tailored. This is the key
ingredient of this dissertation work.

The light-matter dual nature endows polaritons a very small effective mass that
is one hundred million times less than that of a hydrogen atom, leading to the ob-
servation of quantum phenomena such as condensation, superfluidity and quantized
vortices at temperatures ranging from tens of Kelvin up to room temperatures. How-
ever, debates persist over whether the observed phenomena can be related to Bose-
Einstein condensation because polaritons are not in thermal equilibrium. By applying
all-optical trapping to a high-quality microcavity structure, polaritons at both spa-
tial and thermal equilibrium were achieved across a broad range of densities and bath
temperatures, as evidenced by the observed equilibrium Bose-Einstein distributions.
A phase diagram for Bose-Einstein condensation of polaritons was produced for the
first time, which agrees with the predictions of basic quantum gas theory.

The thermalization behavior depends crucially on the interactions among polari-
tons. By changing the underlying excitonic/photonic fractions in polaritons, the
interaction strength of polaritons can be varied, leading to control between nonequi-
librium and equilibrium behavior of the polariton gas. The interactions also play
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a crucial role in polaritonic device operations. However, an accurate measurement
of the polariton-polariton interaction strength has been not possible because of the
difficulty in separating polaritons and excitons that are created by the same optical
excitation. After propagating to the center of a sufficiently large optically induced an-
nular trap, polaritons were separated from the incoherent populations of free carriers
and hot excitons. The polariton interaction strength was then extracted from energies
measured as a function of the polariton density. The measured interaction strength
was about two orders of magnitude larger than previous theoretical estimates, putting
polaritons squarely into the strongly interacting regime.

Optical control can also be utilized to directly manipulate polariton condensates.
By tailoring the size and pumping intensity of the optical trap, polariton condensates
can be switched among different high-order modes and the homogeneous condensate
mode. The redistribution of spatial densities is accompanied by a superlinear increase
in the emission intensity as a function of excitation power, implying that polariton
condensates in this geometry could be exploited as a multistate switch. The parame-
ters for reproducible switching between the high-order states in the optical trap have
been measured experimentally, giving us a phase diagram for the mode switching. It
will serve well to calibrate the implementation of an exciton-polaritonic multistate
switch.

Thesis Supervisor: Keith A. Nelson
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

1.1 Motivation and Background

The evolution of semiconductor electronics in the past few decades has signicantly ad-

vanced information processing and communication technologies, leading to increases

in the CPU clock speed by more than five orders of magnitude. While higher speed of

information processing is still in demand, the performance of conventional electronics

has reached a fundamental bottleneck because of the ineffciency in the heat transfer

and electronic resistive-capacitive delays in the subsystems [1]. Photonics have been

demonstrated as a possible alternative, and great efforts have been devoted to the re-

search of photonic circuits [2, 3, 41. Recently, excitonics that utilizes electrostatically

bound electron-hole pairs in solids is emerging as an interconnect between photonics

and electronics. In excitonics, signal processing and communication can possibly be

implemented with no need to undergo the conversion process in the information re-

ception and processing. Moreover, the zero net charge of excitons could possibly incur

no signal delays. Excitonic switches at high speeds have already been demonstrated

with AlAs/GaAs coupled quantum wells [5, 61. However, due to their heavy effective

masses, which are typically about a tenth of the electron mass in vacuum, and limited

lifetime, which is typically in the range of picoseconds to a few nanoseconds, excitons

can only propagate about 1 nm up to 100 nm. This places significant challenges in

device fabrication. Longer-lifetime indirect excitons have been proposed and demon-
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strated as a way to solve this problem[7, 8]. However, the dark nature of indirect

excitons does not allow direct control through optical means.

Exciton-polaritonics based on microcavity polaritons is emerging as a new candi-

date [9]. Microcavity polaritons are bosonic quasiparticles in resonant planar semi-

conductor microcavities: by placing quantum wells (QWs) at the antinodes of the

confined modes in an optical microcavity, excitons in the QWs strongly couple to

the confined photonic fields, leading to normal mode splitting into upper and lower

branches of polaritons. The resulting polaritons have a combination of properties of

both light and matter: they have a very light effective mass, on the order of 10-4 that

of excitons, and can propagate over macroscopic distances up to millimeter length

scale; their photonic components permit an easy access and manipulation of their

properties; their excitonic fractions govern the interactions among polaritons, and

by using a wedged cavity where the cavity width varies across the sample, we can

tune the photon energy across the exciton resonance, thus leading to control of the

interaction strength among polaritons.

The information content of polaritonics largely relies on the independent degrees

of freedom of polaritons. Polaritons carry two spins from their photonic components,

and can be directly accessed by controlling the polarization states (W+ and o--) of

a resonant excitation beam. This opens up the way for the development of spin-

based logic devices [10]. The angular momenta of polariton states can also be readily

manipulated by using an incident field with spatially engineered Laguerre-Gaussian

modes. Based on this, high-order vortices in microcavities have been reported [11,

12, 13].

This dissertation is focused on the development of optical trapping of polaritons,

and the study of thermodynamic properties of the optically trapped polaritons. Po-

lariton condensates at both spatial and thermal equilibrium were realized to study the

phase boundary of the Bose-Einstein transition. The trapped condensates at different

trapping geometries and powers are found to enable a possible all-optical multistate

switch. By taking advantange of spatial separation between trapped polaritons and

pump light, the interaction strength between polaritons is experimentally measured
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for the first time. The result suggests the efficiency of the polaritonic devices could

be much greater than anticipated.

In the remainder of this section, we summarize key results in this dissertation

work. The significance of the results will also be presented.

1.1.1 Polariton condensates at thermal equilibrium

Exciton-polariton systems offer unique advantages for fundamental studies and appli-

cations based on their high-temperature condensation and on facile control and study

of their properties through optical excitation and emission, but all previous experi-

ments on polariton condensates have observed them quite far from equilibrium. This

has lead to debate about whether polariton condensation is intrinsically a nonequi-

librium effect, and it has limited the application of extensive theoretical results that

describe atom condensates in equilibrium. By using very high-Q microcavities which

yield long (almost 300 ps) polariton lifetimes, greatly exceeding the thermalization

time of around 50 ps, we have directly observed equilibrium Bose-Einstein distribu-

tions of polaritons all the way up the condensate threshold density across a wide range

of bath temperatures. From these distributions we extracted meaningful values of the

chemical potential which yielded reliable values of the absolute polariton density. We

were also able to verify the temperature-density phase diagram for the condensation

transition.

Our results open up exciting new possibilities for studying and understanding

condensates. Given that much of the theory of condensates has been done for a

thermalized Bose gas, our results mean that all of this equilibrium theory can now be

applied to polariton condensates. This is especially important in understanding inter-

actions and many-body effects within the condensate. The spectrum of light emission

from polaritons directly reveals the occupation numbers of the excited states at dif-

ferent energies, something that is not possible for atom condensates. At densities well

above the condensation threshold, we see deviations from the Bose-Einstein distribu-

tion that clearly indicate many-body effects on the occupation numbers. Since we can

assume equilibrium, the forms of the distributions we measure can be directly com-
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pared to equilibrium many-body theories. That is a nontrivial task for theorists, but

it is a hopeless task if the system is out of equilibrium, in which case there is no way to

know whether the spectral features observed are due to many-body renormalization

or nonequilibrium. The fact that we can vary the interaction strength and move the

gas from equilibrium to out of equilibrium means that it is now possible to study the

transition from nonequilibrium to equilibrium by varying the interaction strength.

In atom gas experiments, while some nonequilibrium effects have been studied, the

effect of nonequilibrium on the excitation spectrum has not been possible to study.

Furthermore, given the flexibility in tailoring the potential landscape polaritons feel

by shaping the geometry of an incident optical beam, quantum simulations of equi-

librium many-body problems [14] such as quasi-Nambu-Goldstone modes [15, 16] and

quantum phase transitions [17] are now also encouraging. The equilibrium polariton

condensates also enable studies of the Higgs boson [18, 19] and evolution of early

universe [20, 21, 22, 23] on the tabletop that can usually only be tested using particle

accelerators.

1.1.2 Interaction strength among polaritons

It is no overstatement to say that the measurement of polariton-polariton interaction

strengths has the potential to revolutionize all of polariton physics. For well over a

decade, all of the theory of polaritons has assumed that they are weakly interacting

in the low-density limit, based on theoretical calculations of the exciton-exciton in-

teraction strength. By allowing polaritons to propagate over 20 Prm to the center of a

laser-generated annular trap, we were able to separate the polariton-polariton inter-

actions from polariton-exciton interactions. By studying the energy renormalization

of the polariton dispersions as the polariton density is increased, we experimentally

obtained the first rigorous, quantitative measurement of the absolute value of the

polariton-polariton interaction strength, and found it to be two orders of magnitude

stronger than the theoretical prediction [24]. This will force a reanalysis of all pre-

vious results. It also promises to have great impact on the nonlinear optics field in

general, as the nonlinearity which we report here is several orders of magnitude larger
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than previous reported optical X(3) values in optical materials, albeit over a narrow

wavelength range.

1.1.3 High-order modes in annular traps

Trapped polariton condensates from OD to 1D and 2D in various geometries have been

studied, and polaritonic switching and transistor behaviors have also been demon-

strated. However, a complete study of the interactions among trapped states is miss-

ing, and the understanding of their formation mechanisms is mostly qualitative. We

studied the entire family of trapped condensate modes in an annular optical trap. By

varying the pump ring size and intensity, we observed that the trapped modes can be

switched on successively. On the other hand, these modes are very stable as long as

the pump conditions do not change. This indicates the trapped polariton condensates

can be exploited for multistate switches, potentially enabling highly sensitive control

over very large optical responses. We have also measured the mode boundaries,

knowledge of which could serve well for device applications. Our theoretical study

based on the generalized Gross-Pitaevskii equation suggests the switching between

modes is determined by the balance between the outward flux loss of the polariton

wavefunction and the overlap with pump-generated excitons which determines the

amplification. The simulated phase boundary for the lowest-threshold mode agreed

well with our experiments. We believe our results will open up exciting new possibil-

ities for studying optically trapped polaritons and implementing polaritons in optical

traps for device applications.

1.2 Outline of Dissertation

This dissertation is organized as follows. In Chapter 2, collective quantum phe-

nomena including Bose-Einstein condensation (BEC) and superfluidity are reviewed.

Chapter 2 focuses on BEC by first introducing BEC in the ideal non-interacting gas,

followed by the Bogoliubov theory of BEC in the interacting gas. The semiclassical

approach, the Grosso-Pitaevskii equation, is also presented. The chapter is concluded
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by a review of observations of BEC of different particles in various systems. Chap-

ter 3, the optical properties of quantum-well excitons and microcavity structures

are reviewed in detail, followed by discussions of classical and quantum-mechanical

treatments of exciton-polaritons in semiconductor microcavities. A comparison to

phonon-polaritons is included in the end of the chapter. In Chapter 4, the details of

experimental methodologies are described, including spatial shaping of the excitation

beam, and the near-field and far-field photoluminescence imaging technique. In the

same chapter, the experimental development of all-optical trapping of polaritons is

presented. In Chapter 5, the thermodynamics and kinetics of polaritons and their

condensates are discussed, followed by the observation of polariton condensates at

both thermal and spatial equilibrium in a long-lifetime microcavity structure, and a

discussion of the phase boundary of BEC. In Chapter 6, direct measurement of the

polariton-polariton interaction strength is presented. Possible mechanisms that could

explain the large value of the interaction strength observed in our experiments are

also discussed. In Chapter 7, coherent control of polariton condensates with shaped

optical beams and the possibility of using polariton condensates in the optical trap

as a multistate switch are discussed. The dissertation is concluded by an outlook of

future directions presented in Chapter 8.
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Chapter 2

Bose-Einstein Condensation:

Theory and Experiments

In a system of bosons in thermal equilibrium, when the interparticle spacing be-

comes comparable to their thermal de Broglie wavelength, the system undergoes

Bose-Einstein condensation (BEC). Analogous to classical condensation where water

vapor condenses on a cold surface and the motion of water molecules becomes highly

restricted, the individual bosons in a Bose-Einstein condensate become completely

correlated, and the system can be described as a single-particle wavefunction with a

definitive phase factor. BEC is also accompanied by spontaneous emergence of long-

range off-diagonal order, i.e., coherence. When interactions among the underlying

particles are turned on, more peculiar properties such as dissipationless propagation

and quantum depletion show up. Although BEC was predicted by Satyendra Nath

Bose and Albert Einstein back 1924 [25, 26], experimental realization was hindered

largely due to the fact that BEC phase only exists at extremely low temperatures,

on the order of 10- K in atomic systems. With the advent of laser cooling and

magneto-optical trapping, BEC of a very dilute and cold rubidium atomic gas was

first realized in 1995 [27, 28, 29] at a temperature of 170 nK by Eric Cornell and

Carl Wieman in Joint Institute for Laboratory Astrophysics (JILA), and later the

same year by Wolfgang Ketterle here at MIT with sodium atoms cooled to 2 1pK. For

their pioneering work in the achievement of BEC in dilute gases of alkali atoms, and
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early fundamental studies of the properties of the condensates, Eric Cornell, Wolfgang

Ketterle and Carl Wieman were awarded the Nobel Prize in Physics in 2001. Since

then, BEC has become an incredibly rapidly growing field of research, and has been

observed with various atomic species [30] as well as quasiparticles in solids, including

magnons in thin-film magnetic materials [31] and exciton-polaritons in semiconductor

microcavities [32, 33, 34, 35]. Beyond being of fundamental interest, some effects of

BEC have been exploited in applications. Because of their unique coherence prop-

erties, atomic condensates have been widely used in quantum optics and recently

in quantum information processing for high-precision measurements [36]. The rising

research in exciton-polariton condensates has also proved them to be an important

complement to atomic condensates, and could be implemented in all-optical devices

with better performance compared to contemporary electronic and photonic devices

due to their light-matter dual nature [37].

The topic of Bose-Einstein condensation is treated in most textbooks on statisti-

cal mechanics and specialized journals on Bose-Einstein condensation itself, such as

Refs. [38, 39, 40, 41]. In this chapter, only key physics of BEC that is relevant to

this dissertation work will be presented. We start with a review of a simple model of

non-interacting gas in Section 2.1. Despite its simplicity, the model is able to capture

several important properties of BEC such as critical temperature and density, and

condensation fraction. A discussion of trapped BEC in different dimensions will also

be included. Section 2.3 describes the Bogoliubov theory of weakly interacting Bose

gases. The effects of interactions on the ground state energy and excitation spectrum

will also be discussed. We introduce the microscopic and macroscopic descriptions

of BEC in Section 2.4. The spatial coherence and long-range off-diagonal order are

derived based on field theories. The Gross-Pitaevskii equation, which is of a nonlin-

ear Schrddinger equation form, is also covered. Lastly, the experimental realization

of atomic BEC is reviewed, and some other systems in which condensation has been

observed are briefly discussed.
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2.1 Bose-Einstein Condensation of An Ideal Gas

For a system composed of non-interacting bosons in thermal equilibrium at a tem-

perature T, the average occupation number of a single-particle state with an energy

of E is given by the Bose-Einstein distribution

1
f(E) e(E- )/kT 1 (2.1)

where kB is the Boltzmann constant, and p is the chemical potential which is the

amount of free energy incurred when adding or removing a particle from the system.

In the high-temperature or low-density regime, quantum statistics becomes insignifi-

cant, and the quantum Bose-Einstein distribution in Eq. (2.1) becomes the classical

Maxwell-Boltzmann distribution given by

f(E) = e-(E-p)/k3T

Figure 2-1(a) plots f(E) for three different values of chemical potential when the

temperature of the system is chosen to be 10 K. When p is comparable to or less

than -kBT, the energy distribution is approximately a single exponential function,

which is a straight line in the semi-log plot shown as the red curve in the figure.

When p -* 0-, there is a clear upturn around E = 0. As p is further increased

to a value of -0.001kBT, the particle occupancy at E = 0 is increased by more

than three orders of magnitude, while it increases by less than a factor of 10 in

the range of E > 0.5 meV. The nonlinear increase can be naively argued as a fact

of decreasing cost incurred when adding particles to the ground state. Therefore,

by changing the chemical potential, which is typically adjusted through the total

number of particles in the system, the probability that particles occupy the ground

state can be significantly increased. Fig. 2-1(b) plots the fraction of bosons occupying

the energy of E - E + dE in a uniform 3D system. Because the density of states

for a uniform 3D system decays to zero as E -* 0 while the energy distribution

f (E) reaches its minimum when E -+ oc, particles are more likely to be found at
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Figure 2-1: Particle occupancy for different values of chemical potential at 10 K. (a) The
probability of bosons occupying different energy states. (b) The fraction of bosons occupying
different energy states for a uniform 3D ideal gas.

a state with nonzero energy. However, when the chemical potential of the system is

increased from -kBT to -0.001 kBT, the curve becomes monotonically decreasing as

the energy increases, and the fraction of ground state populations increases by more

than an order of magnitude and becomes dominant, indicating the possibility of a

phase transition.

2.1.1 Onset of Bose-Einstein condensation

When bosons are in thermal equilibrium, we define the thermal de Broglie wavelength

h
AT = h

N/-2-rmkBT
(2.3)

where mr is the mass of the boson and T is the temperature of the system. It is an

ensemble average of the de Broglie wavelength of the individual boson, characterizing

the furthest distance two particles can see each other. The length scale of AT at room
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Figure 2-2: (a)-(f) Schematic illustration of the onset of condensation. The growing red-blue
pillars indicate the thermal wavepackets of individual particles. Condensation occurs when
the interparticle spacing d becomes comparable to the thermal de Broglie wavelength (AT).
The condensate is a single-particle state, as shown in (f), where the individual constituents
lose their identities.

temperature is shown in Table 2.1 for three different systems [42]. As can be seen,

because AT is inversely related to the effective mass of the particle, it increases from

sub-angstrom scale in atomic systems to macroscopic scale in polariton systems.

Quantum condensation occurs when the interparticle distance d is comparable to

the thermal de Broglie wavelength AT, i.e., AT ~ d such that individual particle wave-

functions constructively interfere and become a macroscopic coherent wavepacket,

forming the Bose-Einstein condensate. This condition is not satisfied under normal

conditions, as indicated in Fig. 2-2. In order to achieve condensation, we could either
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Systems Atomic Gases Excitons Polaritons
Effective mass m*/me 04 10-1 10-5
Interparticle spacing d 1000 100 A 10 pm

de Broglie wavelength AT( 3 00 K) 0.01 A 1iA 1 pm
Critical temperature Tc (K) 10 nK 100 mK 100 K

Table 2.1: Comparison of condensation conditions in different systems. Here m, is the
electron mass in vacuum.

increase the particle density or decrease the temperature of the system so that the

thermal de Broglie wavelength is increased. In Fig. 2-2, the red-blue pillars indicate

the wavepackets of single particles withcharacteristic length scales of AT. As can be

seen from Figs. 2-2(a)-(f), the size of wavepackets grows as temperature T decreases.

When T reaches a critical value Tc, condensation occurs because there is a significant

amount of overlap among the wavefunctions of individual particles. As the system is

further cooled down, it turns into a single-particle state with a coherent wavefunc-

tion spanning across a macroscopic length scale. The individual constituents in the

condensate lose their separate identities, as illustrated in Fig. 2-2(f).

The onset of BEC can also be argued qualitatively based on basic thermodynamics.

The total free energy of the system is given by

G=U-TS (2.4)

that is, the sum of internal energy U and the contribution from randomization de-

termined by the entropy S. Under normal conditions when the temperature of the

system is high, particles in the system tend to distribute broadly across different

quantum states in order to maximize the entropy part. However, when the temper-

ature is close to zero, e.g., on the order of 10 7 K in ultracold atomic BEC systems,

the decrease in the total free energy from randomization is negligible. The total free

energy of the system could be significantly decreased if the internal energy could

be reduced, which is realized by occupying a common lowest-energy state, i.e., the

ground state, when condensation takes place.
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Formal definition of the criticality of BEC. Although the thermodynamic

argument is intuitive, it is difficult to be used to quantify the phase transition. A

more formal definition of the critical BEC is given by Einstein and Yang [43] as

follows. The total number of bosons in the system can be computed as

N(T, p) = No(T, p) + Nth(T, pt) (2.5)

where N(T, p) is the total number of bosons in the system, and No(T, b-) and Nth(T, p)

are the number of particles in the ground state and the excited states. The T and

p dependence are explicitly expressed in N, No and Nth. Bose-Einstein condensation

happens when p -+ 0 so that No(T, g) N(T, [). Here we use ~ to indicate that the

ground state population is comparable to the total number of bosons. Based on this,

we could define the critical temperature and density as

Nth(Tc, A 0) = N (2.6)

This definition leads to the famous statement that BEC is a saturation of excited-state

populations. Equation (2.6) can be used to find out the critical temperature given the

total number of particles N, or to find out the critical density given the temperature

of the system. We will calculate the critical conditions for various systems based on

this in the following section.

Critical temperature and critical density in uniform 3D systems. The en-

ergy density of states for a free particle with mass m in a uniform 3D system with

volume V is

g(E) = 4r3 ( 2 '/E (2.7)

where h is the reduced Planck constant. The threshold of BEC can be found out as

/ fg(E)Nth(T, A-t =0) g(E)f(E)dE = 0 e/E) - 1 (2.8)
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Substituting Eq. (2.7) into Eq. (2.8), and working out the algebra, we obtain

V 2m 2

Nc = -(2.9)
472 ph2 2 2

where (() and F(.) are ( and r functions, defined as

1(x) = j txle-dt (2.10)

and

((x) = f 0 1 dt (2.11)
r(x) 0 el -

By defining the critical density as

nc = (2.12)
V

and using the definition of the thermal de Broglie wavelength in Eq. (2.3), the criti-

cality in Eq. (2.9) can be rewritten as

2.612 (2.13)
A3

Te

or

nc AC ~4 2.612 (2.14)

This equation clearly suggests that Bose-Einstein condensation happens when the

phase space-density is about 2.6, consistent with the dimensionless analysis of the

onset of quantum effects, that is, condensation occurs when the thermal de Broglie

wavelength is comparable to the average interparticle distance.
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2.1.2 BEC in 3D as a thermodynamic phase transition

Bose-Einstein condensation in 3D is a second-order phase transition with the specific

heat experiencing a singularity in its first-order derivative with respective to tempera-

ture. Following the treatment in Ref. [44], the total energy of the system is calculated

as

U I Eg(E)f(E)dE = kBT (Zg3 (2.15)/ 3 (Z

where Z =eOP and

4f0 0 1
g (Z) 1 dxX3/2 (2.16)

2 3 /7r o Z-1ex -1

For T < Tc, p 0 and Z = 1. The specific heat Cv = aU/T is obtained as

Cv _15 vkBN 4 15 vg (1) (2.17)
kBN 4 AT2

and for T > T,

CV 15 v 9 9g(Z)
_ -( - 4(Z) (2.18)
kBN 4 3 2 g1(Z)

where v = V/N is the specific volume. The specific heat has a characteristic cusp

at T = Tc, and approaches to the classical value 3kBT/2 when T -+ oc, as shown

in Fig. 2-3. This indicates that BEC in 3D is a second-order thermodynamic phase

transition [40].

2.1.3 Condensation in low dimensions

Bose-Einstein condensation does not occur in uniform, infinite ID and 2D systems

since the energy density of states g(E) does not vanish in the limit of E -+ 0. However,

it can be restored when an appropriate confining potential is applied.
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Figure 2-3: Figure taken from Ref. [44]. The specific heat of an ideal uniform gas in 3D in
unit of kBN as a function of temperature T/T. At high temperatures, the curve approaches
the classical limit 3/2.

An ideal Bose gas in 1D systems. We consider a symmetric confining potential

of the form

V(x) = V (2.19)

where L is the length scale of the confinement, and V is the height of the potential

barrier. q can be regarded as a measure of the strength of confinement. The energy

density of states becomes [45]

g(E) = h,7 L E F(r) (2.20)

with

F~g = dy (2.21)

Figure 2-4(a) plots the 1D energy density of states for four different values of q. In

the case of 77 < 2, the confinement allows the energy density of states to go to 0 when

E -+ 0. However, when q = 2, the energy density of states is energy-independent.

When 77 > 2, the confinement is so strong that only the ground state is favored and

g(E) diverges as E -+ 0. This will not support BEC any more.
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Substituting Eq. (2.20) into Eq. (2.6), we get the criticality [44]

1 ~- 277/(2+77)

kBT = [ ol0 N (2.22)
c2mL F(77) gi(,q, 0)

for 1D Bose-Einstein condensation when 0 < 7 < 2, where gi(r, x) is the one-

dimensional Bose function defined as

g1 (0,0) j dy (2.23)
fo ey -

An ideal Bose gas in 2D systems. Similar to the 1D case, infinite uniform 2D

systems do not allow BEC because the energy density of states is energy-independent.

We assume an isotropic two-dimensional confining potential

V(r) = Vo (2.24)
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where a is the size of the trap, and Tj and Vo are the strength and height of the

confining potential, respectively. This leads to a power-law-like energy density of

states [45]

g(E) = 2r2a2 y (2.25)

Figure 2-4(b) shows g(E) for different values of q. As can be seen, for all values of q,

the energy density of states readily converges to 0 when E -+ 0, suggesting BEC is

possible for any form of finite-size confinement in 2D systems. The criticality of BEC

can be found to be [44]

2

F h2V0
2 N 1 (

T 27r2ma2g2 (7, 0)]

where g2 (7, x) is the two-dimensional Bose function defined as

92(X) j 00 2 (2.27)

2.2 Off-Diagonal Long-Range Order in the Con-

densates

An intriguing feature of BEC is its extended coherence length well beyond the size of

the underlying particle wavefunction, also known as the long-range off-diagonal order.

This can be understood from the following derivation. Consider a system consisting

of N bosons which can be described by a many-body wavefunction O(ri, r 2 , .... , rN)-

Here ri is the position vector of the i-th particle, and V' is symmetric under exchange

of any pair of indices. In the general case, the system is a statistical mixture of

mutually orthogonal states m with weights pm. We then define the one-body density
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matrix, better known as the first-order spatial correlation function, as

nr()(r, r') N EPM dr2 dr3 ... rNOb (r,r2, ,rN m(r ,r 2 ,... , rN)

= K(tr)x (r')) (2.28)

where x1t(r) and (r) are the field operators creating and annihilating a particle at

position r. The diagonal part (r = r') of the one-body density matrix gives the

particle density. The off-diagonal part (r # r') describes the coherence established

between distant points at r and r'. To understand its behavior, consider the momen-

tum distribution

n(p) = X~p)x(p)) (2.29)

where '(p) = (27rh)- 3 / 2 f dr exp(ip -r/h)'I'(r) is the field operator in the momentum

representation. In a homogeneous system, nu()(r, r') only depends on the relative

distance s = r -r', and nr()(s) is the Fourier transform of the momentum distribution

nJ1l (a) = 1 dp n(p)e-ip/h (2.30)

where V is the volume of the system. In a non-interacting BEC state, the lowest-

energy state with momentum zero(p = 0) is macroscopically occupied, exhibiting a

singular behavior

n(p) = NoJ(p) + ii(p) (2.31)

where 3(p) is the delta function, and h(p) is a smooth function approximating the

excited-state distribution. By taking the Fourier transform of Eq. (2.31), we can

show that, in the presence of BEC, the one-body density matrix n(l)(s) approaches

41



a non-zero value as Is1 -4 oo

N0Ns +(2.32)

This behavior was pointed out by Landau, Penrose and Onsager and is often referred

to as off-diagonal long-range order [46, 47, 48], which was proposed by Yang et al. to

identify Bose-Einstein condensation.

Following the discussion above, we can find out the scaling law of the first-order

spatial correlation functions in different regimes. Below the condensation thresh-

old, for a non-degenerate gas, the momentum distribution approaches the Maxwell-

Boltzmann distribution [41]

n(p) = exp(-#E(p)) = exp(-p2 /2mkBT) (2.33)

Substituting this into Eq. (2.30), we find that there are only short-range correlations

and n(1 )(s) has a Gaussian form

no) (S) = ne-"2/AT (2.34)

The above result explicitly shows that the one-body density tends to zero within a

microscopic distance determined by the thermal de Broglie wavelength AT. On the

other hand, when BEC forms, the low-energy states are strongly occupied and follow

the Bose-Einstein distribution

n(p) 2mkBT (2.35)
e 3 E1 p2

Following the same calculations yields

1 1
n a + (2r)3  , (2.36)

The first-order spatial correlation decays in a power-law fashion and remains finite in

the long range. In the high-energy tail, the distribution still resembles the Maxwell-
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Boltzmann distribution, and n(l)(s) falls as Gaussian. The change in the scaling

law of the first-order spatial correlation function across BEC transition can thus be

used to map out the phase boundary of the BEC transition. However, note that the

off-diagonal long-range order will always decay to zero in confined systems, so this

criterion is only suitable for infinite systems.

2.3 Effects of Interactions on Bose Einstein Con-

densates

When interactions are introduced among the bosons that form BEC, remarkable prop-

erties such as phase locking and superfluidity become possible. In this section, we

discuss the Bogoliubov theory of weakly interacting Bose gases, and the effects of in-

teractions on condensates, including renormalization of excitation spectrum, quantum

and thermal depletion, and the mechanism of phase locking in BEC.

2.3.1 Hamiltonian of weakly interacting Bose gases and the

lowest-order approximation

The Hamiltonian of the weakly interacting Bose gas in terms of the field operator

has the form [41, 44]

J= (~vgt (r)V'(r)) dr + J (r)b(r')V(r' - r)'(r)4(r')drdr' (2.37)

where V(r' - r) is the two-body scattering potential. For a uniform gas occupying a

volume V, the field operator can be expanded in the plane-wave basis

4(r)= &peiPr/h (2.38)
p
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where ap is the annihilation operator for a single-particle state of a plane wave with

momentum p. Substituting Eq. (2.38) into Eq. (2.37) yields

2 1
N = 5 2aPap + t Vq_,qapa2  (2.39)

2 Pp 1,p2 ,

Here V = f V(r) exp(-iq.r/h)dr is the Fourier transform of the two-body scattering

potential. In a dilute system with low-density bosons, the scattering events that

involve exchanges of large values of momenta are rare. Hence we could limit ourselves

to small-momentum scattering events and approximate the actual scattering potential

V(q) with V(q = 0) = g, and rewrite the Hamiltonian in the form

2

2m a= pp + 2t ai+qapalaiP2  (2.40)
p P1,P2,q

2.3.2 Bogoliubov transformation and excitation spectrum

Since the ground state is occupied by a macroscopic number of particles in BEC,

i.e., No ~ N, one can neglect the quantum fluctuation of the system and replace the

operator ao with a c-number

& = N (2.41)

First-order approximation. To a first-order approximation, we can neglect all

the terms in Eq. (2.40) containing p 4 0. The ground-state energy then takes the

form

NoVo N2 g 1
E = ~ = -gnN (2.42)

2V 2V 2

where n = N/V is the particle density of the system. The sign ~ comes from the

fact that No ~ N in BEC. This explains the fact that repulsive interactions lead to

blueshifts in the energy spectrum as density increases.
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Second-order approximation. Retaining all the quadratic terms in the particle

operators with p , 0, we obtain the decomposition of the Hamiltonian

,e oo + e e, + , 4 &t oap + a ht a_,od + da ata&_,I
=2V L S 2m P' 2V' 0P pp /

P P:A0

(2.43)

We replace ht and &o with vWN as we have done previously, and take into account

that the particle number must be conserved in the sense

ao + Ea&p = N (2.44)

Neglecting all higher orders, the Hamiltonian is reduced to the form

i gIP P &p + gn (2&thp + p -tp + &,&_p) (2.45)
P Ps0W

The third term in Eq. (2.45) presents the self-energy of the excited states due to the

interaction, simultaneous creation of the excited states at momentum at p and -p,

and simultaneous annihilation of the excited states, respectively. By introducing the

well known Bogoliubov transformation [49]

& =U b + v*,

-t u*1 + v_,b_ (2.46)

where uP and v, are the transformation coefficients, and by imposing the bosonic

commutativity between b and bp, the explicit forms of u, and v, can be found as

p2 /2m +gn 1
UP, V_ - (2.47)2e(p) 2
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with

r) p2 + (2.48)

In this picture, a real particle &P is described as the superposition of the forward

propagating many quasi-particles up6b and the backward propagating many quasi-

particles vP bt. This suggests that a system of weakly interacting particles can be

regarded as a system with collective excitations defined by bp, which are sometimes

referred to as bogolons. Bogolons in a uniform BEC are similar to acoustic phonons

in a solid, which will be discussed further in the following section. Substituting

the Bogoliubov transformation Eq. (2.46) into Eq. (2.45), the Hamiltonian can be

simplified to the diagonal form

'$ = Eo + E> (p) bp (2.49)
p o

where

Eo gnN + [(p) - gn - 2 + 2 (2.50)
p540

This suggests that we can treat the origina weaklyl interacting system defined by ap

as an effective non-interacting system defined by bP.

2.3.3 Normalized ground state energy

A direct consequence of interaction leads to the correction of the ground state. By

replacing the sum in Eq. (2.50) with an integral in momentum space, the ground state

energy is found to be [43, 50]

Eo = 1gnN 1 + 128 (na3)1/2 (2.51)
2 1 15 V-F
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where a is the s-wave scattering length defined as

a = (2.52)
47rh2

The second part in the sum is a perturbative correction to Eq. (2.42) since the Bo-

goliubov theory assumes lain3 « 1 [49].

2.3.4 Excitation spectrum

The interaction renormalizes the excitations of the system of bosons profoundly.

Within the framework of the Bogoliubov theory, the original system of interacting

particles can now be described by the Hamiltonian for non-interacting quasi-particles

given by b in Eq. (2.46) with a dispersion relation c(p). In Fig. 2-5(a), we plot the ex-

citation spectra for three different values of gn. As the interaction strength increases,

the excitation spectrum renormalizes to a linear dispersion which is reminiscent of

sound-wave dispersion. Mathematically, by letting gn - oo or p -4 0 in Eq. (2.48),

we obtain

6(p) = cp (2.53)

where we define the sound velocity as c = V/gn/m. This linearized dispersion relation

at low p is responsible for superfluidity, a flow with zero friction. Physically, the

Bogoliubov theory suggests that the long-wavelength excitations of an interacting gas

are sound-like waves. This can also be understood by examining the amplitudes of the

new quasiparticles bp. The solid and dashed lines in Fig. 2-5(b) show Jup12 and jv_I 2

for three different values of interaction strength. As can be seen, in the low momentum

limit, upI2 ~v~pI 2  1, indicating that the long-wavelength excitations of the

system are no longer single-particle like. Based on the Bogoliubov transformation in

Eq. (2.46), the excitation bp is a superposition of many real particles with opposite

momentum values. As p increases, both amplitude values decrease, with Iupl -4 1

and |vP| 2 -+ 0, and they deceases faster for systems with weaker interactions. This
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Figure 2-5: Spectra and amplitudes of collective excitations in an interacting Bose gas.
The mass of the bosons is set to be m = 9 x 10- 5 me, with me being the electron mass in
vacuum. (a) Spectra and (b) amplitudes of collective oscillations in an interacting Bose gas
for different values of interaction strength. The solid and dashed lines in (b) are ju,12 and
Iv-p12, respectively.

leads to &, ~ b,, indicating that the single-particle excitation recovers in the short-

wavelength and weak-interaction limit, which is also manifested in the excitation

spectrum as it recovers the parabolic shape given by

p2
e(p) = + gn (2.54)

2m

The transition between the collective excitation and the single-particle excitation

takes place when p2 /2m ~ gn. Based on this, we define a characteristic length, called

the healing length, as

h "2

p 2 2mgn(255)

for an interacting bosonic system. In the range of r > , the system is classical,

whereas it has to be described in the language of quantum mechanics when r < .
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2.3.5 Quantum and thermal depletion

The average number of quasi-particles Np carrying momentum p must obey the Bose-

Einstein distribution with the chemical potential [ = 0, that is,

N/ = &(pkB -1 (2.56)

Using the Bogoliubov transformation Eq. (2.46), we obtain

N,= ) vet|2 + uII2 Kib) +7Lv1_12 ,_ (2.57)

Thus, the number of particles in the condensate can be calculated by

No = N - Z N = N - (2 f)dp fd |[v_ 2 + IU2 +|Iv_2 (2.58)
p540(27rh3)3 exp(04~)) - 11P+0

At absolute zero temperature T = 0, there is a finite leakage of particles into the exci-

tation spectrum given by Iv_1 2 even though the population of quasiparticles is zero,

(iti) = 0. This fundamental leakage of particles from the condensate is referred to

as quantum depletion, plotted as green lines in Fig. 2-6. At higher temperatures, the

thermal population of quasiparticles, the second term in the integration, dominates.

This extra leakage of particles from the condensate is called thermal depletion, shown

as red lines in Fig. 2-6. Note that both quantum depletion and thermal depletion at

low momentum are straight lines in the log-log plot, given by the power law scaling

relationships. The explicit relations can be found by letting p -> 0 as

lim Nquantum) - gn (2.59)
P--+O P 2p

and

lim N(thermal) - mkBT (2.60)
p--+o p2
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Figure 2-6: Quantum depletion (green) and thermal depletion (red) at different tempera-
tures for a weakly interacting system with gn = 0.1. (a) T = 0.001 K, (b) T = 1 K (c),
T = 10 K, and (d) T = 300 K.

As can be seen, quantum depletion is determined by the interaction strength gn, while

thermal depletion depends on the temperature of the system. On the other hand,

quantum depletion decays according to the power law - 1/p4 when the momentum

becomes large, while thermal depletion disappears according to ~ e-). The scaling

laws of quantum depletion versus thermal depletion can often be used to determine if

the system is weakly interacting in which case thermal depletion typically dominates.
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2.3.6 Spatial coherence

Following the treatment in Ref. [44], when quantum depletion dominates, i.e., NP =

Iv-PI 2 , the first-order spatial coherence function can be evaluated as

n() = + N(2r) 3 f dpN(p)e-ip-s/h

N N(2rh)3 JdpvpI2iPs/h

No V+ V( 8) (2.61)
N N 3 \~

where we have defined the dimensionless function

D dk ( ) e-(/C)'k (2.62)
S 16r f v/-ka + 2k2

Here k = pa/h. For s/ > 1, the function D(s/) behaves like 2 /V/37r 2S2, then we

have [44]

n()(s) = - + NV 1 (2.63)

for an interacting Bose gas at T = 0. As can be seen, the interaction leads to the

change of decay from Gaussian to power law. When thermal depletion dominates,

the decay law of nu()(s) is typically numerically evaluated due to its complexity.

2.3.7 Population fluctuations and phase locking

The interaction forces the condensate to acquire a particular phase as a coherent state

rather than to have a random phase as a particle number eigenstate or statistical mix-

ture of them [51]. This can be understood as the following. Consider the interaction

part of the Hamiltonian

'NB + E S + h. c. (2.64)

q
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which allows virtual excitations of two particles out of the condensate. Here h.c.

stands for Hermitian conjugate. In order to take such a quantum depletion into

account, we consider a variational state [52]

10o) = e 0a qA - 1 0 )

= '0)o g E [IO)qlO)-q + Aql1)qll)_q + - (2.65)
q

where Aq is the variational parameter that needs to be minimized, and 10) is the

condensate state at T = 0 with no thermal excitation. The Bogoliubov interaction

energy is given by

EB o 1B 0 02q + C.C.) (2.66)
q

If we express the complex excitation amplitudes as # = k10ecio and Aq = AqJeioq, the

expression above becomes

EB ' 1012 1 AqJ cos(200  Oq) (2.67)
q

Equation (2.67) is minimized when 20 - Oq = 7r, thus it is energetically favorable

that the condensate has a well defined phase and the excitations are phase-locked to

the condensate with a 7r phase difference. The reduced energy is macroscopic with

AE = V1012|AqJ/V~ gno Nq, where no = 1 2/V is the condensate density and N

is the average population in excited states in Eq. (2.57).

2.4 Theoretical Description of Condensates

Given the high density in a BEC, collisions between particles become important

and must be taken into account in the description of condensed states. Our main

goal in this section is to present the Gross-Pitaevskii equation, the analogue of the

Schrddinger equation for the condensed state that has an additional nonlinear term
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that describes the effects of collisions between underlying particles in the mean-field

level. With this equation, we obtain the density distribution of the condensed state

that differs from that obtained in the non-interacting case. However, we first sketch

how the Gross-Pitaevskii equation is obtained and the conditions under which it is

valid.

2.4.1 Field theoretic description of the condensed state

Taking into account the external potential U(r), the many-body Hamiltonian in

Eq. (2.37) can be cast into

Sh2t(r) h2 V2 + U(r) $(r) + 1 J ' t (r)'(r')V(r' - r) (r)e(r')drdr'

(2.68)

Since Bose-Einstein condensation occurs when the occupation number of the ground

state becomes commensurate with the number of particles in the system, we may

express the field operators in the Heisenberg representation as

0(r, t) = 4(r, t) + 60(r, t) (2.69)

where 0(r, t) = ((r, t)) is the mean value of the field operator representing the

condensate wavefunction subject to the normalization condition

J I /b(r, t) 2dr = No (2.70)

and &i(r, t) represents a perturbative deviation from the mean. The dynamics of the

condensate is obtained from the Heisenberg equation of motion for the field operator

j8&(rt)
i = a [U(r, t), UV(

= _VA 2 + U(r) + dr 't(r, t) V(r - r') (r', t) (,t) (2.71)
.2mn f
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Substituting Eq. (2.69) back into Eq. (2.68) and retaining the mean-field components,

we obtain the Gross-Pitaveskii equation for the condensate wavefunction

ih t) = V + U(r) + drO(r, t)V(r - r')O(r', t) V)(r, t) (2.72)at 2m

The Gross-Pitaveskii equation is typically used to simulate the dynamics of the con-

densates in external confining potentials. It can also be used to simulate the spatial

density distributions of stationary state.

2.4.2 Interactions in a dilute gas

It is an important feature of most experimentally produced BECs that while their

density is very high, they are still dilute gases in the sense that the length a that char-

acterizes collisions between particles is much smaller than the average interparticle

spacing. Hence, two-body collisions dominate, and we may replace the true potential

V(r - r') with an effective interaction between bosons that is exact in the limit of

large separations given by

V(r - r') = g6(r - r') (2.73)

Substituting Eq. (2.73) into Eq. (2.72), we find

ih(' = V2 + U(r) + gI4(r, t)12 4'(r, t) (2.74)
at 2m

which is the typical form of Gross-Pitaevskii equation used in atomic physics. By

assuming that the stationary solution of Eq. (2.74) takes the form

,0(r, t) = 4(r)e-it/h (2.75)
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with p being the chemical potential, the time-independent Gross-Pitaevskii equation

may be expressed as

hV2 + U(r) - p + glb(r, t)1)2 ?/(r, t) = 0 (2.76)
2m

which can be used to study the eigen-spectra of condensate systems.

2.4.3 The Bogoliubov equations

An alternative route to calculating the excitation spectrum of the condensate is to

start from the Gross-Pitaevskii equation directly. We search for a perturbative solu-

tion that takes the form

0 (r, t) = r) e { + E (kei(k-r-wt) + kei(k-r--wt)

k

= o(r)e Ukei(k-r-(M+w)t) + Vke-i(k-r+(p-w)t) (2.77)
k

where pk(r) = 4o(r)ak and vk(r) = o(r)ok are the excitation amplitudes of the for-

ward propagating and backward propagating excitation waves with wavenumbers k.

i = gjio(r)j2 is the chemical potential. Substituting Eq. (2.77) into Eq. (2.74) and

collecting terms for ei(k-r- (+w)t) and e-i(kr+(-w)t), we obtain the following eigenvalue

equation for the two excitation waves

(hk2 )78)
- P 2m -) ( Vk Vk

It is straightforward to find the eigenvalues given by

W = /W1 (Wk + 2,) (2.79)

where hwk = h2k2 /2m is the kinetic energy of a non-interacting free particle. Equation

(2.79) has the same form as the excitation spectrum we obtained in Eq. (2.48) based

on the Bogoliubov theory.
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2.5 Realization of Bose-Einstein Condensation

Bose-Einstein condensation was considered for a long time as a somewhat unrealistic

peculiarity of the Bose gas. For many years the only example of a Bose condensed

system was superfluid helium 4 He [53, 54]. However, due to strong interactions in 4 He,

many salient features of BEC were not observed; for instance the condensate fraction

does not exceed 10%. The first unambiguous proof for a BEC in a weakly interacting

system came from atomic physics in 1995 where a dilute cloud of rubidium atoms [27]

was cooled down to nanokelvin temperatures. A sharp distribution in velocity space

appeared, as shown in Fig. 2-7, which is probably the most widely used example when

demonstrating the idea of BEC. As shown in the figure, just before the appearance of

a Bose-Einstein condensation, atoms follow the Maxwell-Boltzmann distribution and

spread out in the velocity map. Upon the formation of the condensate, a significant

population at zero velocity is observed, accompanied with a thermal tail. After further

evaporation, as is called for the final step in BEC preparation, the thermal tail is

significantly compressed, leaving a population of nearly pure condensate. Since 1995,

BEC has been observed in various atomic systems, such as alkali atoms 8 5Rb [55],
2 3 Na [28], 7 Li [29], 39 K [56], 41K [57], and 13 3 Cs [58], and two-electron atoms such

as 4He [59, 60], 170Yb [61], '74Yb [62], ' 76Yb [63], 40Ca [64], 84Sr [65], 86Sr [66, 67],
8 Sr [68], and also 1H [69] and 5 2Cr [70]. Extension to atomic species beyond these

relatively abundant atomic species is still an active field of research [71, 72, 73].

For realization of BEC, the most challenging part is to cool the system down to

sub-micro Kelvin, a temperature that is more than six orders of magnitude lower

than that in the deep universe. The most important condition in the quest for such

low temperatures is total isolation from the outside world. This is achieved by spatial

trapping of atomic gases in a magneto-optical trap, when temperatures of order of 10

4K are attained by laser cooling [74]. In the decisive step of evaporative cooling, the

most energetic atoms escape the trap when the confining potential is lowered [75],

and hence the temperature of the remaining gas falls below the critical temperature

to undergo BEC. More experimental details about these techniques can be found in
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Figure 2-7: Figure courtesy of the Nobel prize committee. Velocity distributions for a gas

of rubidium atoms at different temperatures. Left: above the critical temperature. Middle:

at the critical temperature. and Right: below the critical temperature, confirming the

discovery of a new phase of matter.

textbooks [40, 51].

Following the success in the realization of condensation in atomic systems, a pro-

posal was made in 1996 with regard to the BEC of exciton-polaritons. Exciton-

polaritons are hybrid quasi-particles consisting of quantum-well (QW) excitons and

microcavity photons in semiconductor planar microcavities [76] . By dressing QW ex-

citons with microcavity photons, new bosonic quasiparticles called exciton-polaritons

with extremely light effective masses are produced. Exciton-polaritons can overcome

the localization and inhomogeneous broadening problem via their spatially extended

wavefunctions compared to atomic systems, leading to a 10-fold increase in the criti-

cal temperature when quantum phenomena become important. Indeed, condensation

of polaritons with some signatures of BEC has been realized ranging from liquid he-

lium temperature all the way up to room temperature [32, 33, 34, 35, 77, 78, 79].

Figure 2-8 shows the condensation of polaritons in a CdTe-based microcavity at 5

K. Similar features such as spectral and momentum narrowing were observed upon

the formation of condensation. However, compared to atomic BEC, condensation of

polaritons is still much less explored mainly due to slow progress in the fabrication
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Figure 2-8: Figure taken from Ref. [33]. Far-field emission measured at 5 K for three
excitation intensities. (a) Pseudo-3D images of the far-field emission within the angular
cone of 230, with the emission intensity displayed on the vertical axis in arbitrary units.
With increasing excitation power, a sharp and intense peak is formed in the center of the
emission distribution, OOY y= 0 , corresponding to the lowest momentum state kii = 0.
(b) Same data as in (a) but resolved in energy.

of high-quality samples.

The concept of Bose-Einstein condensation finds applications in many systems

other than ultracold atoms and exciton-polaritons. Historically, the first of these

were superconducting metals where the bosons are pairs of electrons with opposite

spin. Collective magnetic excitations in magnetic materials such as magnons have

also been shown to undergo condensation under appropriate conditions [31]. On the

other hand, the search of exciton condensation is still an ongoing effort due to various

experimental challenges, although it has been proposed by Moskalenko et al. dated

back to 1962 [80, 811. Table 2.1 compares the conditions of condensation with atomics,

excitons and polaritons. Because the effective masses of the quasiparticles can be

engineered to be much less than the atomic masses, the critical temperature of the
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condensation is significantly increased all the way up to room temperature.

Fermions can also undergo Bose-Einstein condensation when they pair up by

neutron-neutron interactions and proton-proton interactions [82, 83]. The most cel-

ebrated example is conventional superconductivity in metals [84] where a pair of

electrons at the Fermi surface are bound together by phonons to allow condensation

of the charged pair, that is, superconductivity. The possibility of mesons, either pions

or kaons, forming a Bose-Einstein condensate in the cores of neutron stars has been

widely discussed [85, 86, 87, 88]. It is a wonder of nature that Bose-Einstein con-

densation of atoms is analogous to neutron stars, whose temperatures are 20 orders

of magnitude different. This equivalence has been exploited to simulate the evolu-

tion of early universe [89]. In the fields of nuclear and particle physics, the idea of

Bose-Einstein condensation also helps in understanding the vacuum as a condensate

of quark-antiquark pairs, the so-called chiral condensates [90, 91].

2.6 Conclusion

Condensation is a purely quantum mechanical phenomenon manifested by macro-

scopic occupation of the ground state when the thermal de Broglie wavelength of

the bosonic particle is comparable to the interparticle spacing in the system. Some

salient features of condensates can be understood based on thermodynamic treatment

of the non-interacting ideal gas. When the underlying particles are interacting, more

peculiar features such as quantum depletion and phase-locking emerge, which can

be understood in light of the Bogoliubov theory. BEC has been realized in various

systems from ultracold atomic gases to elementary excitations in solids, in particular

exciton-polaritons in microcavities, which will be the focus of this dissertation.
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Chapter 3

Excitons and Exciton-Polaritons in

Microcavities

An exciton is a hydrogen-like quasiparticle in solids that is formed when an electron

and a hole are bound together by Coulomb interaction after a photoexcitation above

the bandgap. Excitons play a central role in energy transport in solid-state materials

ranging from light harvesting antennas in bacteria and green plants to the excitonic

switches and other optical logical units. Instead of describing the change in the mo-

tion of 1023 atoms and their constituents in full detail, by using the exciton formalism,

light-matter interactions in solids are understood as the creation and annihilation of

excitons as well as scattering events involving excitons. Depending on their size com-

pared to the unit cell of their host lattice, excitons can be categorized as either Frenkel

excitons [92] or Wannier-Mott excitons [93, 94]. Frenkel excitons are typically tightly

bound to host molecules, while Wannier-Mott excitons can delocalize over tens of

lattice sites. By reducing the dimension of the hosting lattice, quantum confinement

will lead to an increase in the overlap between the electron and hole wavefunctions

and to quantization of the electron and hole energy levels, thereby changing the be-

havior of excitons dramatically. Exciton levels in zero-dimension quantum dots have

similar characteristics to atomic energy levels, with fully quantized sharp emission

peaks. When separating the electron and hole in real space, typically by introducing

a heterostructure, the dipole moments of the excitons can be significantly increased.

61



The lifetime of this type of excitons is also increased because the spatial separation

reduces the rate of electron-hole recombination.

The properties of excitons can be further altered by dressing it with confined pho-

tons. By placing an exciton medium, typically a two-dimensional quantum well (QW),

at the antinodes of an optical cavity that is resonant with the excitonic transitions

in the QW, strong coupling between the confined light mode and excitonic polar-

izabilities in the QW leads to the formation of exciton-polaritons [95, 96]. Exciton-

polaritons in a microcavity are composite two-dimensional bosonic quasiparticles with

an extremely low effective mass that is typically about 10- of the free electron mass.

One can view the polaritons as photons with nonlinear interactions many orders of

magnitude higher than those in typical optical materials due to their excitonic com-

ponents. Alternatively, they can be viewed as dressed excitons which are given much

longer diffusion length, with propagation distances up to millimeters [97, 98]. The

light effective mass inherited from the cavity photon also allows for quantum phe-

nomena, such as Bose-Einstein condensation [33, 34], superfluidity [99], quantized

vortices [100, 11, 12, 101, 102], and macroscopic quantum states [103, 104], to be

observed at temperatures from tens of Kelvin up to room temperatures [77, 78, 79].

More importantly, the light-matter dual nature of polaritons permits probing in a

direct way by examining the properties of those photons that couple out the cavity

due to finite cavity reflectivity. Additionally, the repulsive interaction from excitonic

constituents can be exploited for the manipulation of polaritons to realize all-optical

transistors [105] and switches [10].

In this chapter, excitons and exciton-polaritons are discussed. We start with a

fully quantum description of excitons, and derive the binding energy as well as the

Bohr radius of excitons in Section 3.1. Excitons in quantum wells are discussed in

Section 3.2, including the modification of the wavefunction and binding energy due

to quantum confinement. Section 3.3 presents an overview of optical microcavities.

Several characteristic measures of the quality of microcavities such as Q-factor and

finesse are introduced. The Purcell enhancement of spontaneous emission is also

discussed. In Section 3.4, we present a detailed review of microcavity polaritons. Both
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semiclassical and fully quantum approaches are used to compute optical reflectance

and exciton-photon coupling. A comparison between exciton-polaritons and phonon-

polaritons concludes the chapter.

3.1 Excitons as Bosons

At low excitation densities, typically in a range where the interparticle spacing is

much larger than the excitonic radius aB, i.e, naB « 1, excitons can be regarded as

bosons. When excitation densities increas, electrostatic screening becomes so strong

that electrons and holes cannot effectively bind any longer. At sufficiently high den-

sities, the fermionic characteristics of electrons and holes cannot be neglected, and

the system forms an electron-hole liquid [106, 107]. Such a liquid cannot be solidified

but remains a liquid even down to T = 0 K.

3.1.1 Quantum description of excitons

Following Hanamura and Haug [108, 109], the Hamiltonian of electronic systems has

the form

= J dr Jft(r)1 1o(r)'14(r) + -J drdr'Vt(r)J(r')V(r - r')1(r)(r') (3.1)

where Ro(r) is the Hamiltonian of the single electron that takes into account the

band structure of the solid, and V(r) is the Coulomb interaction in the solid. The

field operator for electrons $i can be expanded in terms of the Bloch waves

'I(r) = >3 aukjU (r )eik (3.2)
v'Nk;j=c,v

Here j = c, v denote the conduction and valence band, Ukj (r) is the Bloch wave-

function, N is the number of unit cells of the lattice, and e and akj are fermionic

creation and annihilation operators for an electron, respectively. For the valence

band, we introduce the hole creation operator b-k to replace the electron annihilation
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operator

S =-- bke (3.3)

because annihilation of a valence band electron in a state with a wavevector k, spin

o- and charge -e can be equivalently treated as the creation of a hole in a state with

the opposite wavevector -k, flipped spin 0 and charge +e. For the conduction band,

we simplify the notation as

akc = ak (3.4)

Substituting Eq. (3.2) and Eq. (3.4) into Eq. (3.1), and neglecting number non-

conserving terms, we obtain the Hamiltonian for a direct two-band semiconductor

in the form of [109]

'=S Ee(k)h&k + E(k)btbk
k k

1 1 1 t+ 2 Vkk ka,kkA4 k 4 'k k + 2 Vkj,-k 2,-k 3,--k4 102bk3bk4

ki,k2,k 1,k4 ki,k2,k3,k4

- (k"s 4- VkIk3,k 4 ,k2 ) &tk 2bk3 &k 4  (3.5)
ki1 ,k2 ,k3 ,k 4

where hk and bk are the annihilation operators for electrons and holes in the conduc-

tion and valence band, respectively, and

Vki'k2,k3,k4 = (kii, k2jI Vjk 3 l, k4 m) (3.6)

is the direct and exchange interactions between electrons and holes due to the Coulomb

potential V. In the effective-mass approximation, E,(k) and Eh(k) are the kinetic
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energies of an electron or a hole with effective masses me and mh, respectively

Ee(k) = Eq + h2 k 2 /2me (3.7)

Eh(k) = h2k 2 /2mh (3.8)

where Eg is the bandgap energy. Now consider the eigenvalue equation for a general

electron-hole pair state,

'=ix) = Ex) (3.9)

with

Ix) = Ak,k'%,k >1|0) (3.10)
k,k'

Substituting Eq. (3.16) into Eq. (3.9), we obtain

[Ee(k) + Eh(k') - E) Ak,k - > (Vkv-,,_k,, V - 1_"i",, k') Ak,k' 0 (3.11)
k,k'

For Wannier excitons, the plane-wave factors in Eq. (3.2) and the Coulomb potential

V are slowly varying functions which change very little in one unit cell, hence Eq. (3.6)

can be computed by first integrating the Bloch functions in one unit cell, and then

summing over all unit cells weighted by the plane-wave factors. The slow-varying

envelope also leads to quasi-orthogonality of the periodic function u in the long-

wavelength limit

- Jtel uzOc(r)ukao,(r)dr ~ 1 (3.12)
VO unit cell

-f u;zO'c(r)ukao,v(r)dr ~ 0 (3.13)
V0 unit cell
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where vo is the volume of the unit cell. In this case, the exchange integral can be

neglected, and the Coulomb interaction can be greatly simplified as

_/,I- 1 f drdr' e2 ei(I-k).r+i(I'-k')-r' (3.14)
ce .Na el fr - r|

Taking the Fourier transform of (3.11) with the approximated Coulomb interaction,

we obtain the Wannier equation for an exciton [93]

Jex(re, rh) = E(re, rh) (3.15)

with

~e h 2 V h2 V2+g 27Nex = V __ h 2 + Eg - e(3.16)
2me 2 mh Ecr - r(3

where the two-particle wavefunction can be expressed in terms of the amplitudes Ck,k'

as

(D(r,, rh) ZCk, k'ikr,ik'rh (3.17)
k,k'

By introducing the relative coordinate r = r, - rh and the center-of-mass coordinate

R = (mere + mhrh)/(me + mh), the center-of-mass motion and the relative motion

can be separated by means of

1 K
(re, rh) -- (r) eiKR (318)

where K corresponds to the center-of-mass momentum. The resulting equation of

the relative motion is

h2 v2
- + Ebn bn(r) = 0 (3.19)

2mr, + coer

where m. = memh/(me + mh) is the reduced mass. Equation (3.19) has the form of

the standard Schr6dinger equation for a hydrogen atom. The total energy of the pair
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is then given by

E~K~- -E + h2 K2

E(K, n) = Eg - Eb,n + hK(3.20)
2(me + mh)

with the binding energy of the pair being

EB = (3.21)
2a 2mr

and EB,n= Eb/n2 . Here aB is the exciton Bohr radius, defined as,

4ircoch2
aB = (3.22)

e2 mr

As can be seen, the exciton Bohr radius is an intrinsic material property determined

by the electrostatic permittivity c and the reduced mass of the exciton mr. Excitons

in inorganic semiconductors are typically much more delocalized than those in organic

materials and molecules. Now the light-matter interaction in the two-band model can

be defined as

Ix) = 8',n0) (3.23)

with the exciton creation operator

dK, Z E 6K,k+k'On(1) (3.24)
k,k'

Here 10) is the ground state of the system, 1 = (mhk - mek')/(me + mh), and n(1)

is the Fourier transform of On(r). Working out the algebra, we find the commutation

relations of the exciton operators are

[ K',n', 6K,n] = 0 (3.25)

[df,,, 8Kfl] = 0 (3.26)

[6K',n', 6 = 6KK' 6 nn' - O(nexcaB) (3.27)
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Therefore, excitons can be considered approximately bosonic particles in the low-

density regime when nec < 1/aB, i.e., the interparticle spacing of excitons is much

larger than their Bohr radius. At high densities, when an electron-hole liquid forms,

the light-matter interaction cannot be fully described by uncorrelated excitons any

longer.

3.1.2 Properties of excitons in different materials

Depending on the dielectric screening c of the system, the exciton Bohr radius can

vary from a few angstroms to tens of nanometers. Frenkel excitons are those excitons

that are typically bound tightly to their host lattice, with binding energies on the

order of 100 meV. At present they are widely studied in organic materials where

they dominate the optical absorption and emission spectra. Unlike Frenkel excitons,

Wannier-Mott excitons have relatively small binding energies on the order of a few

meV. Between Frenkel and Wannier-Mott excitons, there are so-called charge-transfer

excitons which are spatially separated electron-hole pairs having a spatial extension

on the order of the crystal lattice constant. The lowest-energy charge-transfer exciton

usually extends over two nearest-neighbor molecules in a molecular crystal and creates

a donor-acceptor complex. In table 3.1 we list the binding energies EB and Bohr radii

crystal Eg (eV) m,/mo EB (meV) aB (A)
GaAs 1.519 0.066 4.1 150
CdTe 1.606 0.089 5.0 80
GaN 3.426 0.770 26.4 28
InSb 0.237 0.014 0.5 860

MoS 2 (monolayer) 3.4 ~ 1 480 8

Table 3.1: Exciton properties in different systems

aB for different materials. Here E. is the band gap of the material, and m,/mo is the

ratio of the exciton mass to the electron mass in vacuum.
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3.2 Quantum Well Excitons

When spatial confinement is introduced in the host lattice, the properties of excitons

can be altered significantly. Depending on the relative values of layer thickness L

and exciton Bohr radius aB, excitons behave differently. In the limit of L > aB,

called the thin-film regime, the excitonic Rydberg energy RY is much bigger than the

quantization energy h2 /meL, and thus the excitons are only weakly perturbed by the

confinement. The internal electron-hole wavefunction is undistorted, but the exciton

center-of-mass motion is quantized. In the limit of L - aB, called the quantum well

regime, the excitonic Rydberg energy is comparable to or smaller than the quantiza-

tion energy of the subbands, and thus quantization of both electron and hole subbands

occurs. The distortion of the internal exciton wavefunction due to a decrease of the

average electron-hole separation leads to an increase in the binding energy. In the

limit of L < aB, tunneling of electrons and holes becomes innegligible, thus leading

to a reduction in the electron-hole wavefunction overlap and a decrease in the binding

energy.

3.2.1 Quantum confinement

With the advance of epitaxial growth techniques of molecular beam epitaxy, semi-

conductor materials can be fabricated with atomic monolayer precision, giving rise

to novel structures such as two-dimensional (2D) quantum wells, ID quantum wires

and OD quantum dots. A QW is a thin-layer narrow-bandgap semiconductor mate-

rial sandwiched between two barrier layers of wider bandgap materials, as shown in

Fig. 3-1. The emission wavelength depends on the QW dimensions and is different

from the bandgap energy of either semiconductor. The QW thickness is comparable

to the exciton Bohr radius, hence the motions of the electrons and holes are confined

perpendicular to the QW plane, which is referred to as the z direction by convention.

The wavefunctions along this direction are reminiscent of particle-in-a-box states, as

shown in Fig. 3-2, and their energy levels are quantized, leading to the formation

of multiple energy bands in the in-plane energy dispersion relations, with a typical
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Figure 3-1: A schematic illustration of the band edge alignment of a quantum well.
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Figure 3-2: The wavefunctions of bound states within a quantum well (left) and correspond-
ing in-plane energy dispersions of those states (right).

energy separation on the order of 10 meV in GaAs QWs. Due to the quantization,

the energy dependence of the density of states (DOS) changes from oc V'E in 3D (blue

dashed line) to step functions in 2D (red solid line), as shown in Fig. 3-3.

3.2.2 QW exciton binding energy

To take into account the confining potential of the QW, we rewrite Eq. (3.16)

h2 -hv2 e2
Me2 e2- + Ue(Ze) + Uh(eh) -47roclre - rhl) 'I(re, rh) = E1(re, rh)

(3.28)
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Figure 3-3: Energy density of states (DOS) of excitons in a quantum well (red solid line)
and in the bulk (dashed blue line).

with Ue,h(Ze,h) being the confining potentials for electrons and holes in the z direc-

tion, which are assumed to be step functions at the well boundaries for simplicity.

Therefore, we decompose the wavefunction of exciton's motion as

(D (re, rh) = F(R)f(p)Ue(e)Uh(Zh) (3.29)

where R is the center-of-mass coordinate and p = pe - Ph is the in-plane electron-hole

relative motion. The four components in Eq. (3.29) describes the exciton center-of-

mass motion, the relative electron-hole motion in the plane of the QW, and the

electron and hole motion normal to the plane, in order. They satisfy

a h 4 ) e2 ffr I U (Ze) 12 1U (Z) 12 df( ) = - QW
__ __d-ZedZh B~p - -E Wfpp ap 2m, cop 47rcoF- Vp 2 + (Ze - Zh) 2

(3.30)

and

{_2m , + Ue,h - 22 (I2IUe(zeJ1)r2 2xpdpdZe,h Ue,h(Ze,h) = Ee,hUe,h(Ze,h)

(3.31)
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Figure 3-4: Exciton binding energy as a function of the QW width. The insets are schematic
illustrations of the QW potential and wavefunctions of electron and hole for different QW
widths.

where Ee,h are the electron and hole confining energies, and EQW is the exciton

binding energy in the QW, which can be expressed explicitly as [9]

QW (2 2 f(p)1 2 |Ue(Ze) 2 1Uh ()1 2
EB 22-a) H 2 + ( ) 21rpdpdzedzh (3.32)

B 2mra 2 47rEoc V/p2 + (Ze - Zh )2

where a is the width of the QW. Figure 3-4 plots the exciton binding energy as a

function of the well width computed from Eq. (3.32) with a finite barrier. As is seen,

the binding energy increases if the exciton confinement strengthens, but as the width

is further decreased, the spatial overlap across the confinement direction between

the electron and hole wavefunctions decreases significantly, eventually leading to a

decrease in the binding energy. On the other hand, in an ideal 2D QW with an

infinite barrier height, i.e., IUe,h(Ze,h)1 2 = 6(Ze, Zh), one can find the binding energy of

the two-dimensional exciton exceeds by a factor of four compared to the bulk exciton

binding energy

EQW = 4EB (3.33)
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where EB is given by Eq. (3.21).

3.2.3 Optical transition in quantum wells

The oscillator strength of bulk excitons is defined as

2mpw V
h ,(A) luvle -rcv)1 2  V (3.34)h 7 ra 3

where e is the polarization vector of the incident field, and Iu,) , Ic) are the valence

band and conduction band wavefunctions, respectively. In quantum wells, in order

to account for the quantum confinement, the oscillator strength is averaged over the

growth direction

2mp 2
f = I(viI)e -rlc,)12 S2 fU(z)U(z)dz 2 (3.35)h WraB

More importantly, the lack of full translational invariance relaxes the requirement

of momentum conservation in the growth direction. In contrast to bulk excitons,

QW excitons with in-plane momenta hkil interact with a continuum of photon modes

with the same in-plane momentum but arbitrary longitudinal momentum hkz. This

is referred to as mesoscopic enhancement.

3.3 Optical microcavities

A resonator is a device or system that exhibits resonant behavior, that is, it naturally

oscillates at some frequencies, called resonant frequencies. A guitar is an example of

mechanical resonators. Similarly, an optical microcavity is an optical resonator in the

sense that it is in resonance with optical light frequencies. An optical resonator has a

dimension close to the wavelength of optical light, typically on the order of microns,

leading to the term "microcavity". By utilizing either total internal reflection at the

boundary between two dielectrics or destructive interference from distributed Bragg

reflectors (DBRs), light modes are confined as standing waves inside microcavities.
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In this section, we discuss some key characteristics and experimental fabrication of

optical microcavities.

3.3.1 Planar microcavities based on DBRs

One example of optical microcavities is the planar microcavity in which two flat mir-

rors are brought into close proximity so that only a few multiples of half wavelengths

of optical light can fit in between them. Metal mirrors and dielectric mirrors can be
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top DBR (a) and a 3A/2 micro-

employed in the construction of the cavity. A more popular choice is a DBR, which is

made of layers of alternating high and low refractive indices, each layer with an optical

thickness of A/4, where A is the resonant wavelength of the cavity. Light reflections

from each interface destructively interfere, creating a stop band for transmission. In

Fig. 3-5(a), we plot the simulated white light reflection spectrum of a DBR consisting

of 14 pairs of AlAs/AlGaAs alternating layers. The reflectivity of the DBR in the

range of 760 nm and 800 nm reaches > 99%, forming the stop band. Away from the
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stop band, the reflectivity decreases dramatically. Therefore, the DBR can be utilized

as a high-reflectance mirror when the wavelength of the incident light is within the

stop band.

(a)

(b) 1

0.8

0.6

0.4

0.2

;0

Figure 3-6: (a) A schematic illustration of the planar microcavity structure. The dark and
light gray alternative layers indicate the distributed Bragg reflectors (DBRs) that are used
to confine the light in the cavity. Sets of quantum wells (QWs) are shown as the black lines.
(b) The calculated electric field energy distribution in the cavity.

When two such high-reflectance DBRs are separated with an optical thickness

equal to an integer multiples of A/2, an optical resonator with a resonance wavelength

of A is formed. Figure 3-6(a) shows a typical structure of such a microcavity. The

light and dark gray layers indicate the alternating A/4 DBRs, and the center region is

the cavity where resonant photons are confined. The simulated white light reflection

spectrum is shown in Fig. 3-5(b). The reflection dip at A = 780 nm in the stop

band gives the cavity resonance wavelength. We also show the stationary energy

distributions of the electric field inside the cavity in Fig. 3-6(b). The peak-node

structure indicates that the photon field inside the cavity is a standing wave. Some

energy of the fields leaks into the DBRs, but most of the energy remains inside

the cavity. In the next section, we will review some key physical measures that
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characterize the cavity quality.

3.3.2 Characteristics of microcavities

Q-factor and finesse. The quality factor, better known as Q-factor, is simply

defined as the ratio of a resonance cavity wavelength A and the full width at half

maximum (FWHM) bandwidth (SA) of the resonance:

Q = A (3.36)

If the thickness of the cavity is half of the resonance wavelength A, Q is the average

number of round trips that a photon travels inside the cavity before it couples out.

Hence it is proportional to the confinement time in the unit of the optical period.

The finesse of a cavity is defined as the ratio of the free spectral range AA, which is

the frequency spacing between two successive reflected intensity maxima or minima,

to the FWHM of a resonance 6A, that is,

Y = (3.37)6A

Provided that the pair of mirrors that form the cavity have reflectivities of R1 and

(a) AX (b)
100% 10

4

10

E 10

10.............

0% Waeent 10
Wavelength () 5 0.6 0.7 0.8 0.9

Reflectivity

Figure 3-7: (a) The mode spectra of a cavity with a finesse of -7 = 18 (red) and F = 3.6
(blue). (b) The finesse as a function of reflectivity. Very high finesse factors require highly
reflective mirrors.
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R 2 , the finesse can be directly computed as

7r(R1R2) 1/ 3.81 -(3.38)1 - (R1R2) 1/2

It is an intrinsic measure of the ability of the cavity to confine optical fields excluding

propagation effects within the cavity as does the Q factor, and is related to the Q
factor as

Q = nef Lcav 7 (3.39)

where neff is the effective index of refraction of the cavity, and Lcav is the length of the

cavity. In typical microcavities, we have A - Lcav, and the Q factor is approximately

the same as the finesse.

Figure 3-7(a) shows the mode spectra of two optical cavities with different Q
factors. The resonance linewidth is much narrower in a high-finesse cavity, indicating

the time the photons spend in the cavity is longer. High finesse is achieved by using

high-reflectivity mirrors for the cavity. However, the increase in finesse is marginal

until a reflectivity of R > 95% is realized, as shown in Fig. 3-7(b).

Intracavity field enhancement. The electric field is confined to standing waves

inside the cavity, and the peak field strength is significantly enhanced compared to

that in free space by a factor of

Ecavity 1

Efree 1 - R (3.40)

where R is the total power reflectivity off the DBRs in a round trip. In a typical

planar microcavity, this quantity ranges from 20 to 1000.

Angular dispersion of a cavity field. The dispersion of the photons is modified

in the presence of the cavity. The total energy of the confined photons is calculated
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as

hc
Ecav (3.41)

neff

where k = 27rnffe/A is the longitudinal wave number given by the cavity confinement,

and kl is the in-plane wave number. There is a one-to-one correspondence between

the incident angle 6 and each resonance with in-plane wave number kl

kg = nef -- tan arcsin 2 - (3.42)Ai flf~ I L \ neff/ A

Because there is no confinement in the plane, we have k < k, and then

hc kk h2k2
nef 2k 1  0)+ 2mca

with the cavity photon effective mass defined as

mcav - Ecav(k 0) (3.44)
C2 /n 2

where c is the light speed in vacuum. The cavity effective mass is typically on the

order of 10- of the electron mass in vacuum. Rearranging Eq. (3.44), we would get

the "energy-mass relation" as

Ecav(kj = 0) = mcavv 2  (3.45)

where v is the group velocity of the light in the cavity given by c/neff.

Purcell effect. By placing an emitter inside the cavity, the spontaneous emission

rate can be significantly enhanced [110, 111, 112] due to the change of the photon

density of states (DOS). Figure 3-8 illustrates the photon DOS in vacuum and in a

single-mode cavity. The vacuum DOS has a typical parabolic shape, while the cavity

DOS becomes Lorentzian. The spontaneous emission rate ' for an emitter-vacuum,
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Figure 3-8: Density of states of the vacuum pv, a single-mode cavity pc and an emitter pe
as a function of w.

or emitter-cavity, system is dictated by Fermi's golden rule

F = 1Id- E(r, t) 2 p(w) (3.46)h2

for the case of an electric dipole d interacting at position r and time t with the light

field E(r, t). As a result, the ratio of the spontaneous emission rate in the cavity F,

to that in vacuum F, is [112]

Pc _ 3Q(A/neff) 3  6 2  1E(r)1 2  d -E(r) + f (3.47)
Fv 47r2Veff 4(we, - W) 2 + Jw2 IEmaxI 2  dE

where we and w are the frequencies of the emitter and cavity resonance, respectively,

3w is the linewidth of the cavity resonance, E(r) is the electric field amplitude in the

cavity, and IEma 2 is the maximum intensity. This ratio allows the emitter in the

cavity emit much faster than that in the bulk. The term

3Q(A/neff) 3  (3.48)
47r ey

depends only on parameters of the cavity, and is known as the Purcell factor. It

determines the upper limit of such an enhancement. The second part in Eq. (3.47)
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shows the effect of detuning on the efficiency of enhancement. The lifetime of the

emitter can be made arbitrarily long by detuning it away from the cavity resonance,

until it is limited by other nonradiative losses given by f. The last two terms underline

the effect of the cavity field distribution and the alignment of the dipole with the

electric field. In order to achieve a greater enhancement, the emitter is typically

placed at the antinode of the cavity field.

Purcell enhancement of spontaneous emission [112] is neatly demonstrated in

_j
a.

0 500 1000 1500 2000 2500

time (ps)

Figure 3-9: Figure taken from Ref. [112]. Time-resolved photoluminescence for a quantum
dot when placed in a bulk material (a) or inside a pillar microcavity (b) and (c). In case
(b) the dot is in resonance with the single mode of the cavity and decays about five times
quicker than when it is coupled to a continuum of modes in the bulk. In case (c) the dot
is detuned from the cavity mode and as a result displays only a small enhancement of its
lifetime as compared to the bulk case.

Fig. 3-9 where the photoluminescence decays were recorded for a quantum dot placed

in a bulk material or inside a cavity. Comparing (a) and (b), a factor of 5 enhancement

was achieved. When detuning the cavity away from the frequency of the quantum dot

emission, only a small enhancement of its lifetime is achieved, as seen in Fig. 3-9(c).

3.3.3 Other realizations of microcavities

The confinement methods employed in the fabrication of microcavities fall into three

categories, as shown in Fig. 3-10. While the DBR-based planar microcavities usually
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provide ultrahigh finesse, the whispering-gallery modes of silica and quartz micro-

spheres have received considerable attention [113, 114,115, 116, 117, 118]. Whispering-

Fabry-Perot Whispering gallery Photonic crystal

Q 12.000 QOv: 7,000 Q 13.000
V: 5 (Jn)3 V 6 Qjn)3 Op13x10 5  V: 1.2 (Jn)3

F 4.8x105  Q 8x109  Q108

V. 1,690 prn3  V. 3,000 pm 3

Figure 3-10: Figures taken from Ref. [118]. The microcavities are organized by column

according to the confinement method used and by row according to high Q and ultrahigh Q.
Small mode volume and ultrasmall mode volume are other possible classifications that are

somewhat complementary to this scheme. Upper row: micropost [112], microdisk [119, 120],

semiconductor [95], polymer add/drop filter [121], photonic crystal cavity [122]. Lower row:

Fabry-Perot bulk optical cavity [123, 124], microsphere [116], microtoroid [125]. n is the

material refractive index, and V, if not indicated, was not available. Microsphere volume V

was inferred using the diameter noted in the cited reference and finesse (F) is given for the

ultrahigh-Q Fabry-Perot as opposed to Q. Two Q values are cited for the add/drop filter:

one for a polymer design, Qp.iy, and the second for a III-V semiconductor design, QII-v.

gallery resonators are typically dielectric spherical structures in which waves are con-

fined by continuous total internal reflection. Excellent surface finish is crucial for

maximizing Q, and the formation of spheres through surface tension provides a near

atomically smooth surface, with only a few nanometers or less of surface roughness.

The bulk optical loss from silica is also exceptionally low and record-high Q factors

of 8 x 10' and finesses of 2.3 x 106 have been obtained [115, 116]. Nevertheless, one of

the remaining issues is the difficulty of tuning the wavelengths of the cavity modes,

and efficiently coupling light into and out of the whispering-gallery mode.

Microcavities based on photonic crystals can provide extremely small mode vol-

umes with even higher Q-factors [126], shown in the right column of Fig. 3-10, which

are advantageous for many applications. The main issues for such microcavities are
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the difficulty of their fabrication, the large surface area in proximity to the active area

which produces non-radiative recombination centers and traps diffusing electron-hole

pairs, and the difficulty in tuning their cavity resonances. Furthermore, Q values in

fabricated structures are well below theoretical optima [127].

3.4 Microcavity Polaritons

When placing a QW in an optical microcavity, strong coupling between excitons in

QWs and confined photons in the cavity leads to the normal-mode splitting into mi-

crocavity polaritons. Different theoretical schemes have been proposed to describe

the exciton-photon coupled system in a planar microcavity. The semiclassical ap-

proach models the active medium as a Lorentz oscillator, and is convenient for the

computation of the reflectivity, transmission and absorption. On the other hand, the

quantum theory treats the light-matter interaction as the vacuum Rabi coupling, and

is more advantageous for the computation of photoluminescence. It also plays a cru-

cial role in understanding quantum phenomena such as Bose-Einstein condensation,

superfluidity and quantized circulation with microcavity polaritons.

3.4.1 Semiclassical description

In the semiclassical theory of microcavity polaritons, Maxwell's equations are solved

together with a constitutive relation between the electric field and displacement field.

In calculating the optical response of a semiconductor microcavity, each layer ex-

cept the active medium, typically semiconductor QWs, can be modeled by a local,

frequency-independent dielectric constant n(z). The QWs contain the additional ex-

citonic contribution, which depends on frequency with a resonant form and gives an

intrinsically nonlocal dielectric response. We take the z axis along the growth di-

rection, and the electric field satisfies the following wave equation in the frequency

82



domain in each layer of the microcavity

n2(Z)_ + E(z,w) = -47r 2P(zW) (3.49)

The resonant polarization density P is zero in the DBRs and spacers. In the QW, to

the lowest order, the polarization can be modeled as a Lorentzian oscillator,

X(w) - .CV (3.50)

where pcv is the transition dipole momentum matrix element, wO is the resonance of

the exciton Is state, and -y is the dephasing rate of the is exciton state. A solution to

Eq. (3.49), the electric field in each dielectric layer, with refractive index n, is written

as the sum of right E+ (z, w) and left E- (z, w) propagating waves:

E(z, w) = E+(z, w) + E~(z, w) (3.51)

Given an arbitrarily defined initial field of a form given by Eq. (3.51), E(0, w) =

E+(0, w)+E-(0, w), the propagation of the electric field through DBRs and spacer lay-

ers is treated by the standard transfer matrix formalism. In transfer matrix method,

the optical field after traveling a distance L can be found by multiplying a vector of

the right and left going fields with a propagation matrix M:

E+(L, w) E+ (3.52)

E-(L, w) E-(0, w)

For the propagation of optical fields through a layer of material with a refractive

index n, the change in the optical fields is given by a phase factor acquired from the

propagation over the length of the material. In this case, the transfer matrix M is

given by:

eikL 0
M = (3.53)

0 e-ikL
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where k = nw/c is the wave number in the material. When the optical field crosses

an interface from left to right, where materials of refractive indices ni and n2 are

on the left and right side of the interface, the transfer matrix that relates the field

amplitudes on the right to those on the left of the interface is

E+ ER = Ml 2 (R (3.54)
E- ER)

with

M1-2 = (3.55)
2n2  nl-n2 ni+n2

The propagation through the QW has the added complication of the resonant polar-

ization. Denoted by MQW, the transfer matrix that propagates the first-order field

amplitudes through the QW in the thin well limit, i.e., L -+ 0, is [128]

MQW = 1 + iX) (3.56)
Or 13 )

with

2irw
Or = -- X(w) (3.57)

nc

where n, is the refractive index of the QW. Eventually, the propagation of the optical

fields through the entire structure can be calculated by transforming the incident field

using the total transfer matrix

M =H M (3.58)

where the product is over all the layers of the semiconductor microcavity structure.

The reflectivity and transmission are related to the matrix elements of M as
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Figure 3-11: Simulated white light reflection spectrum of a 3A/2 microcavity structure with
a QW embedded at the antinodes. The red line is the white light reflection spectrum from
the same cavity without the QW.

M21R = M(3.59)
M22

A412A12 1 2
T = Ml - (3.60)

M22

A = 1 - R - T (3.61)

In Fig. 3-11, we plot the simulated white light reflectance from a 3A/2 microcavity

structure consisting of 20 and 24 pairs DBRs at the top and bottom, respectively.

The DBRs are GaAs and AlAs alternating layers. The refractive indices are chosen

to be nGaAs = 3.43 and nA1As = 2.97. The is exciton has a resonance at 780 nm and

a dephasing rate of 0.05 THz. As can be seen, due to the presence of the exciton

medium, the reflectance shows two dips around the original dip at 780 nm, which can

be attributed to upper and lower polariton emissions. The upper and lower polariton

states can be obtained easily using the quantum description in the following section.

3.4.2 Quantum description

The quantum description of microcavity polaritons is most commonly used when

studying Bose-Einstein condensation. It starts with the exciton-photon coupling

Hamiltonian under the rotating-wave approximation

'W = Ex (k)a ak + Ec(kll)bt bkjj + E hQ(kjj)(at b11 + aklb) (3.62)
ki, k i k k
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where ak and bkl are the exciton and cavity photon annihilation operators, Ec(ki)

is the energy of the cavity mode given by Eq. (3.43), and Ex(k i) is the energy of the

exciton transition which typically varies by less than 10 peV in the range of relevant

k1j. Q is the coupling strength between the cavity photon and excitonic transitions,

which is usually referred to as the Rabi energy. For a QW exciton, the coupling

strength is [129]

Q = e 8 e Lm S Jd2rlldzFk, ,,(rl1 , z)v , (r|1, z) (3.63)

where f/S is the excitonic oscillator strength per unit area, and F(.) and v(.) are the

center-of-mass wavefunctions of the two-dimensional excitons and the longitudinal

mode of the cavity photons

2.( rn(z - zo) eikll rI
Fkjn(r 1, z) = sin L ) V (3.64)

_2 irn'z )ei 11'
Vk' n/ - sin (3-65)

( Leff V3

where n and n' are integers indicating the parity of the wavefunctions. As can be seen,

Q does not depend on the incident field, but only on the cavity volume through f.

In fact, it is the dipole interaction between the cavity vacuum field and the excitonic

transition.

In order to achieve strong coupling, the coupling strength must be stronger com-

pared to the cavity photon decay rate Yc and exciton decay rate -,. If Q < yr, Yc, the

system is in the weak-coupling regime, and the spontaneous emission is irreversible.

It is not appropriate to describe the system using the Hamiltonian in Eq. (3.62).

In reality, the limiting factor is typically the radiative decay of the cavity Y,, and

tremendous of efforts have been devoted to the development of high-Q cavities to

allow the study of strong light-matter coupling.

In the limit of strong coupling, the Hamiltonian in Eq. (3.62) can be diagonalized
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with the Hopfield transformation

Pki X(kll)&k 1 + C(kll)b 1  (3.66)

Qk= -C(kjj)&kjj + X(k||)bll (3.67)

The coefficients, X(k||) and C(k), are called the exciton and cavity Hopfield coeffi-

cients and are given by [130]

-1 (1 (k )
|X(k)|2 - 1 + J(k) ) (3.68)

1 (kii)

jC(k ) 12=- 1 (- 6(k1)(369)
2 32(kj)+ 2)(

with cavity detuning defined as

6(k 1j) = Ec(kii) - Ex(kll) (3.70)

Substituting Eq. (3.67) into Eq. (3.62) yields

N = ( ELP(k|)PI PkII + E Eup(kj)QtQk,1  (3.71)
k 1 1 Qkj

kjj kgl

which is a Hamiltonian with no interaction terms. The new operators Pi and Qk11

give the excitations of the resulting system, and are typically referred to as the lower

and upper polariton annihilation operators, respectively. The energies of the new

states are given by:

ELp/up(kI) = [Ex(kj) + Ec(k1) F Q 2 + J2(k )1 (3.72)

Figure 3-12 plots the energies Ex(kii), Ec(kii), ELp(kIl), and Eup(kji) as a function of

ki1 for three different values of 6(ki = 0). The energies are calculated using Eq. (3.72)

and parameters: Q = 10.84 meV and Ex(0) = 1604.6 meV. Because the effective

mass of cavity photons is typically 105 times lighter than the vacuum electron mass,
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Figure 3-12: Dispersion curves of polariton modes at three representative cavity detunings
(a) 6 = -5 meV, (b) J = 0 meV, and (c) 6 = 5 meV. The dotted lines show the confined
cavity modes, and the dashed lines show the bare exciton modes. The blue and red solid
lines indicate the upper polariton (UP) and lower polariton (LP) branches, respectively,
arising from the strong coupling between cavity modes and exciton modes. Our sample
parameters were used in the calculations.

and about 103 times less than that of excitons in a GaAs quantum well structure,

Ex(kF) is essentially constant with k1i. As the cavity detuning 6(k1) is varied, the

excitonic fractions in the lower polariton states are also varying. As seen in Fig. 3-12,

the energies and shapes of the polariton dispersion curves depend strongly on the

cavity detuning: positive detunings result in lower polaritons that are more exciton-

like, with heavier effective masses and stronger interactions with phonons and other

carriers, while negative detunings result in lower polaritons that are more photon-

like, with smaller effective masses and weaker interactions with phonons and other

carriers.

In practice, the cavity detuning can be changed by using a wedged microcavity,

shown in Fig. 3-13. The length of the cavity increases monotonically along one direc-

tion of the QW plane so that the energy of the cavity mode can be tuned relative to

the exciton resonance energy, allowing us to experimentally tune 6(k1 = 0). We show

the lower and upper polariton energies at different positions in such a wedged struc-
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Figure 3-13: A schematic illustration of a wedged 3A/2 microcavity. The dark and light
gray alternative layers indicate the distributed Bragg reflectors (DBRs) that are used to
confine the light in the cavity. The red layers indicate the QWs that are placed at the
antinodes of the confined electric fields.

ture in Fig. 3-14(a). The dashed lines are energies of cavity photons and excitons. A

small slope is also included in the exciton energies to account for the change of QW

width across the sample. When we move away from the resonance of cavity photons

and excitons indicated by the intersection of the two dashed lines, the lower and

upper polariton energies are asymptotic to the cavity photon and exciton energies,

respectively, suggesting the change in the characteristics of polaritons. This depen-

dence can be clearly seen in Fig. 3-14(b), where the exciton fractions IX(kii = 0)12

for lower and upper polaritons are plotted.

3.4.3 Comparison to bulk polaritons

In general, polaritons are bosonic quasiparticles resulting from strong coupling of

electromagnetic waves with electric or magnetic dipole-carrying excitations. When-

ever the polariton picture is valid, the model of photons propagating freely in crystals

is not sufficient. For example, the coupling of an infrared photon with an optical

phonon gives rise to phonon-polaritons, and the coupling of surface plasmons with

light results in surface plasmon-polaritons. A cavity is not indispensable to realize

strong coupling although it could enhance the coupling. In Fig. 3-15, we show the

dispersions for both phonon-polaritons in a bulk crystal and exciton-polaritons in

the cavity. The red and blue lines give lower and upper polaritons, the green lines
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Figure 3-14: (a) The calculated upper polariton (blue line) and lower polariton (red line)
ground state (kj1 = 0) energies at different positions in a wedged microcavity structure. The
dashed line indicates the exciton energies, and the dotted line shows the cavity energies.
(b) Excitonic fractions of upper polaritons (blue line) and lower polaritons (red line) at
different sample positions.

represent the light modes, and the black lines stand for the phonons and excitons

in Fig. 3-15(a) and (c), respectively. As can be seen, both phonon-polaritons in the

bulk crystal and exciton-polaritons in the microcavity show the signatures of avoid

crossing, which is a manifestation of strong coupling. The dispersions have simi-

lar asymptotic behavior as k increases. However, due to the coupling to an optical

cavity, the lower exciton-polaritons have an effective mass with finite value. On the

other hand, the bulk lower phonon-polaritons have an infinite mass due to the linear

dispersion relation. This clearly demonstrates the importance of the cavity for the

observation of quantum condensation in exciton-polariton systems.

The density of states is evaluated using [131]

D 2 (E) = 2 f l (3.73)
27r2 E IVEI

for 2D exciton-polaritons, and using

D3(E) = 1 3Lf dI (3.74)
47r3 E IVEI
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Figure 3-15: (a) Phonon-polariton dispersions in a bulk crystal. (b) Density of states of
phonon-polaritons in the bulk crystal. (c) Exciton-polariton dispersions in a microcavity.

(d) Density of states of exciton-polaritons in a cavity. Red and blue lines give lower and

upper polaritons, green lines represent photon modes, and black lines stand for the material
modes.

for 3D phonon-polaritons. The results are plotted in Fig. 3-15(b) and (d). For

microcavity exciton-polaritons, the density of states is quasi-constant given its two

dimensionality, and is never zero because of the confinement of the cavity, while the

density of states approaches zero as k -+ 0 for lower phonon-polaritons.

3.4.4 Going beyond the strong coupling regime

When the coupling energy is comparable to the energy levels, i.e., Q - E, the rotating-

wave approximation is not valid any more. The electrons, holes and photons need to

be treated on the same footing [32]. It is a consequence of subband mixing of higher-

orbital excitons, and is typical in confined intersubband transitions. This is called
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the ultrastrong-coupling regime. In this regime, lower polaritons consist of excitons

with even smaller effective Bohr radii and larger binding energies, while the opposite

holds for upper polaritons.
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Chapter 4

Experimental Methodologies

In this chapter, experimental methodologies involved in this dissertation work are

discussed in detail. We start with an overview of the experimental setup for photo-

luminescence imaging in Section 4.1. In Section 4.2, the principle of spatial shaping

based on a spatial light modulator is presented. Included is the calibration of spa-

tial light modulator and the Gerchberg-Saxton algorithm that can be exploited to

improve the quality of spatial shaping. The principles of near-field imaging and far-

field imaging are explained in Section 4.3. We also discuss the implementation and

calibration of the imaging setup in this section. The density of k states on the CCD,

which is an important quantity in converting the CCD counts to the polariton num-

ber, is also covered in the same section. In Section 4.4, we discuss initial experiments

performed with our sample in order to characterize its properties and estimate im-

portant parameters. These are the basic experiments that should be performed on

any new sample, to make sure that the observed effects are consistent with previous

knowledge. In Section 4.5, the mechanisms for the formation of polaritons and their

condensates through optical excitation are reviewed in detail, followed by a review of

tools to control polaritons and their condensates in Section 4.6, including fabrication

methods and optical trapping. Given the quantitative results involved in this disser-

tation work, we conclude this chapter by a discussion of the weighted least-squares

approach that is used in the data analysis, as well as the numerical algorithm used

to extract the excitation profile.
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4.1 Experimental Setup

A schematic illustration of the experimental setup used in this dissertation is shown

in Fig. 4-1. The following notations are used. L: lens, AOM: acousto-optic modulator,

M: mirror, PH: pinhole, IM: imaging plane, SLM: spatial light modulator, S: sample,
OL: objective lens, NPBS: non-polarizing beam splitter. The output of a continuous-

wave (c.w.) laser is first modulated by an AOM with a duty cycle of 0.5% at 1 kHz,

and then magnified by a telescope formed by L2 and L3. A pinhole PH1 is placed

at the focal point of L2 to clean up the spatial mode of the beam after the AOM.

The beam is then shaped into an annular pattern by the SLM. The annular pattern

is transformed to the right size on the sample by two pairs of telescopes L5/L6 and

L7/OL. A 90R/10T non-polarizing beam splitter (NPBS) is used to reflect 90% of

the excitation beam intensity and 10% of the resulting photoluminescence intensity.

Ideally, a dichroic mirror should be in the place of the NPBS. However, since the

excitation beam and photoluminescence are separated by 50 nm in wavelength, it is

not trivial to fabricate such a dichroic mirror with good optical efficiency and small

wavefront distortion. The photoluminescence after the photoexcitation is collected

by the same objective lens, and then imaged downstream in either the far-field or

thenear-field geometry. A longpass filter is placed at the entrance of the spectrometer

CCD to allow only PL to pass through. The details of the major equipment involved

in the optical setup are described below.

L1 MI
"720nm 

L2

PHI M3
M2 L2 M

M, PH2 PM1 L10 PM2
SLM

IM1 SpetromeM4
L IM 3 L 2M s L B M 8 L l I M 9 w t e e

S OL NPBS MG

Figure 4-1: A schematic illustration of the experimental setup. The following notations
are used in the figure. L: lens, AOM: acousto-optic modulator, M: mirror, PH: pinhole,
IM: imaging plane, SLM: spatial light modulator, S: sample, OL: objective lens, NPBS:
non-polarizing beam splitter.
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Excitation laser. The excitation laser is a SolsTiS 1000 model from MSquared

Lasers. It is a c.w. Ti:Sapphire laser with a spectral linewidth of <50kHz when

the reference cavity lock is applied. The output beam has a diameter of <0.4mm

and a divergence of <1.5mrad with horizontal polarization. It also offers a wide

range of tuning in wavelength from 700 nm to 950 nm, with a peak power of 2.6 W at

780 nm. The output power at 720 nm, which is the excitation wavelength that is used

in most experiments in this dissertation, is -1.2 W. The laser power is controlled by

a A/2-waveplate and a polarizer. The orientation of the polarizer is fixed so that the

output polarization is horizontal, and the rotation of the waveplate is controlled by

a motorized precision rotation stage from Thorlabs (Model PRM1Z8).

Acousto-optic modulator. The AOM is an MT250-0.5-800 model from AAOpto-

Electronics. It shapes the incident c.w. beam into a pulsed output with a specific

duty cycle and frequency controlled by the driving radio frequency (RF) wave based

on the acousto-optic effect. The RF input of the AOM is provided by a four-channel

digital delay and pulse generator, model DG535, from Stanford Research Systems.

The clear aperture of the AOM is 0.5 mm x 2 mm. The input polarization has to

be horizontal in order to achieve the maximum diffraction efficiency. A diffraction

efficiency of 92% at 720 nm is obtained in the lab. Slight adjustment of the RF power

and the orientation of AOM are needed when a different wavelength is used. The

rise and fall times are 160 ns, but is not significant compared to the 5 ps on-time of

the AOM. To avoid unwanted damages, the optical excitation density has to remain

below 5 W/mm2

Spatial light modulator. The SLM used in the setup is a phase-only model from

Holoeye with an addressing level of 8-bit and a full HD resolution of 1920 x 1080.

This high resolution does come at a cost: the fill factor is only 87%. While this is

good for pixelated devices, it leads to a 40% power loss. The best realized efficiency

at 720 nm is typically 30%. In order to achieve the best diffraction efficiency, the

input polarization has to be aligned with the long axis of the surface of the SLM.
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The SLM communicates with the computer via a DVI port. To avoid unwanted

damages, the optical excitation density has to remain below 2 W/cm 2 . Note that

the optical flatness of this SLM is not ideal for temporal shaping but an appropriate

compensation function is applied.

Objective lens. The objective lens is a 46-144 model from Edmund Optics with a

10 x magnification. It has a working distance of 33.5 mm and an effective focal length

of 20 mm. Its numerical aperture (N.A.) is 0.28, which corresponds to a spatial

resolution of ~ 1.3 pim in the range of wavelengths used in the experiments.

Cryostat. The microcavity structure is kept in an open-loop ST-300MS cryostat

from Janis Research Company Inc. The design of the cryostat allows a wide accep-

tance angle of the optical excitation beam up to 75'. The rectangular window block is

made of sapphire to give the best optical transmission in the near infrared range. The

chamber is kept in a vacuum of 3 x 10- torr via mechanical pumping. Temperatures

between 5 K and 325 K can be achieved through the combination of liquid helium

cooling and a thermocouple controlled by a temperature controller from LakeShore

(model 331). In order to save helium and avoid sudden temperature changes in the

sample which produces mechanical strain and can cause sample cracking, the sample

is cooled down to 10 K from room temperature in 3 to 4 hours. Apiezon N Grease is

applied on the substrate of the microcavity structure in order to obtain good ther-

mal contact with the cold finger. This vacuum grease exhibits extremely low vapor

pressure at ambient temperatures, 6 x 10-10 torr at 20 C, which is further lowered

at cryogenic temperatures. However, it needs to be replaced after a few experimental

cycles since frequent thermal contraction and expansion degrade the contact. Note

that although the silver paste from SPI Supplies can give better thermal contact, it is

not used in the lab because silver paste leads to a permanent mounting of the sample

on the cold finger. If not healed properly, it could result in sample cracking during

cooling.
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Spectrometer CCD. The spectrometer is a 300i model and the CCD is a Pixis 100

model, both from Princeton Instruments. The grating installed in the spectrometer

has a groove spacing of 1200 /mm, and should be calibrated using an atomic gas-

discharge lamp before any spectrally resolved measurements. The calibration can be

performed with WinSpec which is software that is provided by Princeton Instruments.

The CCD has a dimension of 100 x 1340 with an individual pixel size of 20 Pm. Both

spectrometer grating and CCD can be controlled by WinSpec or a home-built Lab-

View program. The LabView program allows a fully automated continuous recording

of images on the CCD.

4.2 Shaping Excitation Beam based on SLM

The easiest setup imaginable with a two-dimensional SLM is to aim a monochromatic

laser at it, and observe the far-field diffraction when different phase patterns are

applied. Using simple variations on this basic recipe, the Holoeye HE01080P SLM is

calibrated and implemented for spatial beam shaping. We will discuss the calibration

of the SLM, the principle of spatial shaping, and the Gerchberg-Saxton algorithm

that could be exploited to improve the quality of spatial shaping in this section.

4.2.1 Implementation

The Holoeye HE01080P Phase Only Modulator is connected to a computer through

a DVI cable and is set up as a second monitor. The Windows desktop can then be

extended to the second monitor, and anything that is displayed on the extended desk-

top will be displayed on the SLM. In practice, displaying phase masks is done either

by manually selecting a 2944x1080 (monitor size + SLM size) pixel wallpaper (set

to tile) in Windows, or automatically through a user interface provided by Holoeye.

While the device only uses the green color channel, it is often easier to use a greyscale

image which of course works equally well. The SLM has an 8-bit addressing depth,

meaning that each pixel can be given a green or gray color level from 0 to 255. The

device can be connected with a serial cable, after which new calibration data can be
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loaded. The procedures for data loading, gamma curve correction and potentiometer

adjustment are well explained in manuals on the CD-ROM that is delivered with the

SLM.

4.2.2 Calibration of the SLM

Once powered up, the SLM converts a driving electric signal into an optical phase

shift for every one of the 2 million pixels in the liquid-crystal display. The relation

between the SLM input (256 levels as set on the computer) and the output optical

phase shift (up to 27r) has to be determined by careful calibration. We followed the

method that is suggested by Holoeye in the manual of the SLM. Using an opaque

plate, usually a paper block made of blackout material, with two slits, a collimated

input beam is split into two distinct beams as shown in Fig. 4-2. These two beams

reflect off the SLM and are focused to one spot on a camera where an interference

pattern can be observed. Since the two beams are incident on different halves of the

SLM, the phase difference between the two beams can be independently controlled

with a binary phase mask provided by the user interface of the SLM. If a varying

phase delay is applied to one of the beams, the interference fringes will shift on the

camera. This shift is a good measure of the phase delay and is directly related to

the driving voltage. By constructing a grayscale-to-phase-shift plot and numerically

fitting it to a 14th-order polynomial [132], we obtain a lookup table, streamlining

the process of calculating the grayscale mask pattern from the desired phase pattern.

The grayscale-to-phase information should be loaded to the SLM through the serial

port after calibration. Note that the calibration is crucial for shaping efficiency if a

very different wavelength is used.

4.2.3 Principle of spatial shaping

The general principle of spatial shaping is illustrated in Fig. 4-3. The input plane

indicates the surface of the SLM which is placed at the Fourier plane of the lens, and

the output plane indicates the conjugate Fourier plane. To quantitatively describe
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double slits

lens

Figure 4-2: A schematic illustration of the experimental setup used for the calibration of
an SLM. The input beam is split by two slits, and then incident on two different sides of
the SLM. The reflected light off the SLM is recombined by a lens before the CCD.

the beam shaping process, we assume the input field as a coherent plane wave

Input

r

Lens

____)

f

Output

f
Figure 4-3: A schematic illustration of the spatial shaping highlighting the relationship
between the beam geometry in the input and output planes. A lens of focal length f
projects the Fourier transform of the input field onto the output plane.

Eo(r) = Ao(r) exp(iDo) (4.1)

where the r independence in the phase (o is a result of the plane-wave assumption.

The SLM provides a phase modulation 4SLM(r), and the electric field after the input

plane has a modified wavefront

E" (r) = Eo(r) exp(iSLM)) (4.2)
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In a typical spatial shaping setting, we know the distribution of the field at the output

plane, denoted as If(p) = IEf(p) 2 . Based on Fourier optics, Ef(p) and Ei"(r) are

Fourier transform pairs. Putting everything together, we have

F Ao(r)esLM(r)i 2 (SLM(r) 2 (P) (4

where F indicates the Fourier transform. It can be solved nominally as

exp [ibi" (r)] = A- 1(r)F-1  (p) exp(i4(p)) (4.4)

where 4(p) is the phase front at the output plane, and for simplicity we assume the

electric field at this plane is also a plane wave, and therefore it is not dependent on

p. In practice, we also assume a uniform distribution for the beam incident on the

SLM when calculating the phase distribution applied to the SLM, yielding

exp [i4)i"(r)] = T~-' II(p)l (4.5)

4.2.4 Examples of spatial shaping

In the work of this dissertation, the excitation beam is typically shaped into an

annular pattern. In order to achieve this, the axicon phases as shown in Figs. 4-4(a)-

(c) are applied to the surface of the SLM. The resulting beam profiles at the output

plane calculated from 2D fast Fourier transformation are shown in Figs. 4-4(d)-(f),

respectively. As can be seen, the radius of the annular pattern can be controlled

by changing the spatial periodicity of the phase pattern, with a smaller periodicity

corresponding to a larger annulus. By deliberately changing the gamma value, which

is a nonlinear map from grayscale to grayscale and is used to tune the contrast of

the pattern applied on the SLM, the light intensity distribution can be adjusted.

This principle is illustrated in Fig. 4-5, where a binary axicon phase is applied. The

even orders of the annular pattern are significantly suppressed by applying such a

0-1 binary transformation of the original 8-bit phase pattern. In practice, nonlinear
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Figure 4-4: (a)-(c) Axicon phases on the SLM for different spatial distributions. (d)-(f)
The resulting intensity profiles at the output plane calculated from the 2D fast Fourier
transformation corresponding to the modulations of (a)-(c), respectively. The colorbar

represents relative intensities for (d)-(f) and relative phases (0 - 27r) for (a)-(c).

gamma corrections have to be applied in order to suppress all high-order annuli.

4.2.5 Gerchberg-Saxton algorithm

The Gerchberg-Saxton (GS) algorithm can be applied to solve Eq. (4.4) to improve

the spatial shaping quality. It was originally proposed in 1972 by R. W. Gerchberg

and W. 0. Saxton to solve the problem of phase retrieval of a field at two different

planes [133]. At those two planes, only the field amplitudes are known and given

that the fields are related by the Fourier transform. Nowadays, this algorithm has

also been extensively used to calculate phase-only diffractive optical elements to be

used as beam shapers. The steps for the implementation of the GS algorithm are

summarized in the following [134, 135, 136]:

1. A field with an amplitude given by the square root of the target profile and a

constant phase is taken.
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Figure 4-5: (a)-(c) Binary axicon phases on the SLM for different spatial distributions. (d)-
(f) The resulting intensity profiles at the output plane calculated from the 2D fast Fourier
transformation corresponding to the modulations of (a)-(c), respectively. The colorbar
represents relative intensities for (d)-(f) and relative phases (0 and 27r) for (a)-(c).

2. The field is propagated from the image plane to the object plane.

3. The amplitude information is discarded, leaving only the phase information for

the phase mask.

4. The amplitude and phase of the illumination field are added to the phase infor-

mation to obtain the resulting object field.

5. The field is propagated from the object plane to the image plane.

6. The resulting reconstructed image (square of the field amplitude) is compared

with the target profile. By using the correlation between both images defined

in Eq. (4.6) as a criterion, a decision is taken to step out of or continue the

iterations.

7. The phase from the reconstructed image is combined with the field amplitude

obtained from the target profile, and the process is repeated from step 1.
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(a)

(c) (d)

Figure 4-6: (a) The target profile. (b)-(d) The calculated profiles based on the Gerchberg-

Saxton algorithm for 3 (b), 64 (c) and 128 (d) iterations, respectively.

The correlation between two matrices of the same dimension is defined as

E,(Tmn - )(Cmn - )(4.6)

'= (Zmn(Tmn - )2 (Zmn(Cmn - 0)2

where T and C are the target profile and calculated profile, and T and C are the

average values of T and C, respectively. In Fig. 4-6, we plot the calculated profile

at the image plane for 3 different iterations starting from a Gaussian profile. The

target profile is shown in Fig. 4-6(a), and Fig. 4-6(b) shows the calculated profile

after 3 iterations. It has already had some signatures similar to the target profile.

When iterations of 64 and 128 are used, the difference between the calculated images

is negligible, as shown in Figs. 4-6(c) and (d).

The convergence of the GS algorithm can be quantitatively measured by the sta-

tistical correlation p between the target profile and the calculated profile defined in
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Eq. (4.6). Figure 4-7 plots p between the target profile in Fig. 4-6(a) and the cal-

culated profiles with different number of iterations. As can be seen, p approaches

to unity in ~20 iterations, indicating the GS algorithm converges in a fairly quick

manner.
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Figure 4-7: The correlation between the target profile and the calculated profiles in Fig. 4-6
as a function of number of iterations in the Gerchberg-Saxton algorithm.

4.3 Measuring Photoluminescence

In this section, we describe the photoluminescence imaging setup, as was first imple-

mented in the Nelson group in 2011 [137]. With this setup, we can measure energy-

resolved photoluminescence in both real and k space. The real space is also referred to

as near field, while the k space is called far field in the exciton-polariton community.

Lowpass filtering in both real space and k space is also possible by placing a pinhole

at either the image plane or the Fourier plane.

4.3.1 Near-field imaging

The setup for near-field imaging is schematically shown in Fig. 4-8. The combination

of two pairs of a 4f-imaging system allows a relay imaging of the object plane (the

sample plane in photoluminescence measurements) to the image plane (the entrance

slit of the spectrometer in photoluminescence measurements) in the near-field geom-
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Figure 4-8: The four-lens combination forms two 4f imaging systems to relay image the

object (the yellow arrow) from the object plane to the final image plane. In k-space imaging,

the last lens is removed, and the object is imaged to the Fourier plane after f3. The

intermediate image plane and Fourier plane can be used to perform lowpass filtering in

either real or k space.

etry. The resulting image at the image plane is a real-space image of the object plane

with a magnification given by

f= (4.7)
f3 fl

In the current setup implemented in the lab, we have fi = 2 cm, f2 = 80 cm, and

f3 = f4 = 10 cm, so a magnification of y = 40 is realized. A flip mirror in front of

the spectrometer allows us to direct light to a charged-coupled device (CCD) camera

for imaging purposes (not shown in Fig. 4-8). Figure 4-9(a) and (b) show represen-

tative real-space images of density distributions of polaritons when an annulus with

a diameter of 42 pm is used to excite the microcavity structure.

The same setup can also be used for making a position- (x-) and energy- (E-)

resolved measurement. In this case, the entrance slit of the spectrometer is nearly

completely closed, so that only the part of the light with y ~ 0 enters the spectrom-

eter. In addition, the grating is aligned in such a way that it directs the first-order

diffraction to the spectrometer CCD, allowing the transformation of a one-dimensional

position-resolved image into a position- and energy-resolved image. By spatially and

spectrally resolving the horizontal slice indicated by the dashed white line, the energy

profile along the horizontal axis is obtained as shown in Fig. 4-9(b). This potential

landscape will be discussed in detail in Section 4.6.

In order to eliminate the propagation effect of polaritons when resolving the po-
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tential landscape, it is crucial to apply k-space filtering before imaging the photolumi-

nescence to the spectrometer CCD. In this case, an iris is placed at the intermediate

Fourier plane to allow only k ~ 0 components of the photoluminescence to pass
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Figure 4-9: (a) Spatial distributions of polaritons without k-space filtering. (b) Spatial
distributions of polaritons with k-space filtering. (c) Energy-resolved spatial distributions of
polaritons without k-space filtering. (d) Energy-resolved spatial distributions of polaritons
with k-space filtering.

through. The resulting image is shown in Fig. 4-9(d). Because we eliminate the

high-k components, the total signal is weaker compared to Fig. 4-9. Spatial distribu-

tions of polaritons become narrow as expected, since polaritons convert the potential

energy to their kinetic energies as they accelerate away from the pump region, and

the k-space filter eliminates the high-k components. On the other hand, the reduc-

tion in the barrier height at the pump region when k-space filtering is applied is a

result of elimination of exciton photoluminescence, since excitons are formed from

phonon-carrier scattering and typically occupy high-k states.

106

IINRL __ - - - -



4.3.2 Far-field imaging

A traditional way to acquire a far-field image is to place a screen at infinity. The

k coordinates of this image would then correspond to the angles incident on the

screen. A more compact setup is composed of three lenses by taking out the last lens

in Fig. 4-8. As can be seen, the exiting rays with the same azimuthal angle on the

object plane are imaged to the same position on the Fourier plane of f3, but rays with

different angles do not overlap on the Fourier plane. In this way, a far-field image

of the original object is created, and the coordinates of the generated image on the

Fourier plane have one-to-one correspondence to the emission angles on the object

plane, which can then be translated to the transverse momentum, better known as

in-plane momentum kl in the polariton community, defined as

2wr
k = sin0 (4.8)

A

where we implicitly assume that the emission wavelength A is not angle-dependent.

This is a reasonable assumption for this dissertation work because the energies of

polariton states within the numerical aperture of the current setup vary by less than

0.3%, as seen in Figs. 4-10(c) and (d). Similarly, by nearly closing the slit so that

only the signal corresponding to k 0 passes through, and aligning the grating to

send a spectrally resolved image to the CCD camera, one can record the momentum-

(kr-) and energy- (E-) resolved image. In this case, the resolved momentum k. is

essentially the same as the total in-plane momentum kl since only photons with

ky ~0 are detected.

Figure 4-10(a) shows the momentum distributions of polaritons when an annulus

with a diameter of 42 pim is used to excite the microcavity structure. The accumu-

lation of polaritons at a nonzero momentum is merely a result of the cavity gradient

which provides a potential for polaritons to accelerate away. By spatially selecting

the vertical slice indicated by the dashed white line using the spectrometer slit, and

spectrally resolving the photoluminescence that passes through the slit, the energy

profile along the vertical axis can be obtained, shown in Fig. 4-9(c). The resulting
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image is referred to as the energy dispersion E(k) of polaritons. As can be seen,

because we integrate over the entire sample area in this plot, the energy distribution

is smeared out since polaritons at different sample positions have different energy

dispersions in this wedged microcavity.
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Figure 4-10: (a) Momentum distributions of polaritons without real-space filtering. (b) Mo-
mentum distributions of polaritons with real-space filtering. (c) Energy-resolved momentum
distributions of polaritons without real-space filtering. (d) Energy-resolved momentum dis-
tributions of polaritons with real-space filtering.

In order to eliminate the spatial inhomogeneity, we place a spatial filter with a

diameter of 500 pm in the reconstructed real-space image plane downstream after

f2 in Fig. 4-8. This corresponds to an integration of a region that is 5.5 pm away

from the optical axis on the sample. The resulting filtered emissions are displayed

in Figs. 4-10(b) and (d). As expected, the emissions have more localized momen-

tum distributions than the previous case. Note that spatial filtering is crucial in

order to obtain a dispersion relation if it is subsequently used to extract the energy

distributions N(E) of polaritons. This will be heavily discussed in Chapter 5.
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4.3.3 White light reflection

In order to characterize the reflection dip of the microcavity structure, the sample is

illuminated by white light. A flashlight is typically used to produce the white light

and is aligned with the excitation path before the non-polarizing beam splitter, as

indicated in Fig. 4-1. The reflected white light is imaged to the far-field geometry

and spectrally resolved. The orientation of the flashlight and diameter of the iris are

adjusted so that a reflection spectrum with high signal-to-noise ratio is obtained on

the spectrometer CCD.

4.3.4 Implementation of the imaging setup

The near-field and far-field imaging setups implemented in the lab are shown in Fig. 4-

11 and Fig. 4-12, respectively. As can be seen, the emission shares common path until

the reconstructed image plane, indicated by the black dashed line, and near-field and

far-field imaging paths differ afterwards. The near-field imaging is implemented with

a one-lens imaging geometry, where the distance between L2 and the image plane

as well as the distance between L2 and the entrance slit of the spectrometer are set

at twice the focal length of L2. In the far-field geometry, the focal length of L3 is

chosen as the distance from L3 to the entrance of the spectrometer equals the distance

from the image plane to L3. To make it convenient to switch between the near-field

geometry and far-field geometry, M5, M6 and L3 are set up as movable optics. The

following procedures can be carried out if the setup needs to be reconstructed.

1. Position a collimated beam directly into the entrance of spectrometer slit and

align it to the center of the CCD camera.

2. Place L3 in the beam path and move it back and forth so that the focal point

on the screen is tightest.

3. Set up M6 and M2.

4. Send a collimated beam from L3 to L1, and the position of the Li is found when

the output beam is collimated again.
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5. Set up M1 and OL. The position of OL is determined by the sum of the focal

lengths of LI and OL, and is initially laid out by measuring the distance using

a meter tape.

6. Place the sample on a stage, and take out Li from the beam path.

7. Send a collimated beam from the excitation path, and direct the beam to the

CCD through the far-field imaging path. Move the position of the sample mount

so that a tight focal point is found on the spectrometer CCD.

8. Take out M6 and L3, and set up M3, M4, M5 and L2.

9. Send a white light from the excitation path, and aim at the edge of the sample.

Align L2 so that a sharp image with high contrast is formed on the spectrometer

CCD.

NPBS OL
M1

Spectrometer CCD

Sample

M4
M5 Li Exci a ion beam

L2

M3 M2

Figure 4-11: A schematic illustration of the near-field imaging setup used for this disserta-
tion work.

Note that the positions of OL and L2 are approximately correct after the initial

implementation. A further calibration is needed in order to perform near-field and

far-field imaging to a high degree of precision. The following procedures are suggested

to be carried out.

1. Place a 1D phase mask at the sample position. This can be done by taking out

LI and imaging the reflected light in the far-field geometry and checking the

collimation of the reflected light.
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Figure 4-12: A schematic illustration of the far-field imaging setup used for this dissertation

work.

2. Put Li back in the beam path, and send a white light into the excitation path.

3. Move the OL while keeping fixed the relative distance between the phase mask

and the OL until a sharp far-field image of the phase mask is obtained. The

far-field image is an array of spots that is rotated by 900 with respect to the

original phase mask array.

At this point, the far-field imaging path should be well calibrated and ready to use.

The near-field imaging path is calibrated by the following procedures.

1. Send a white light into the excitation path, and aim it at the edge of the sample.

2. Move L2 along the optical axis so that a sharp edge of the sample is observed

on the CCD camera.

4.3.5 Optical efficiency of the imaging path

The optical efficiency of the imaging path is an important factor, since it is crucial

when we convert the CCD counts to the polariton number. In this case, a flat mirror

is placed at the sample position and aligned to the focal plane of the objective lens

that collects the photoluminescence in our experiments. A collimated laser beam at

780 nm is sent to the excitation path and is focused by a microscope objective. The

retro-reflected light is collected by the same objective lens, and propagated though
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the far-field imaging path. The overall efficiency of the optical path, including the

efficiency of the CCD and optical grating used to disperse the light, is calculated as

Chv 
(4.9)

where P is the power measured at the sample position, C is the corresponding CCD

counts per second, and hv is the photon energy of the excitation beam. The quantity

can also be estimated by multiplying the optical efficiency factors of each optic in

the imaging system including the quantum efficiency of the dispersing grating and

spectrometer CCD.

4.3.6 Density of k states on the CCD

Let (kr, ky) label the Cartesian coordinate in reciprocal space at the sample plane,

and let (XF, YF) label the Cartesian coordinate on the CCD. Define the angle 6 as the

emitting angle with respect to the normal of the sample plane, and 0 as the azimuthal

angle of the emission at the sample plane, as shown in Fig. 4-13, thus we have

Sample Plane Lens CCD Plane

r -,IY

x0

f f

Figure 4-13: Two rays at r, and r2 emitting into the same angle (0, #) are imaged onto the
same position rF on the Fourier plane.

k= k sin 0 (4.10)

k

112

M



where ki and k are the magnitudes of the in-plane momentum and the total momen-

tum, with the x and y components being kx and ky, respectively. The function k(O)

can be obtained from the dispersion relation as

1h2 2 2 2k= ( Ex+Ec-+hk,- E-Ec - hk + Q2 (4.12)
2hc ( 2m 2m

where Ex and E. are the exciton energy and cavity energy at k = 0, and Q is the Rabi

energy. Connecting the coordinates on the sample plane to the Cartesian coordinates

on the CCD plane (XF, YF), we find the corresponding relation

XF = pf tan Ocos (4.13)

YF = pf tan 6 sin 0 (4.14)

In the implementation of the far-field imaging setup, we have a few more lenses to

relay image the Fourier plane of the lens to the CCD plane as depicted in Fig. 4-12,

and the magnification from the Fourier plane to the CCD plane is given by p here.

Putting all the pieces together yields

XF = pf tan arcsin L1) cos arctan L) (4.15)

YF = pf tan arcsin ) sin (arctan L) (4.16)

where we express the angles 0 and 4 using k and k1i.

Neglecting polariton dispersion. The area element will be connected through

the Jacobian as

dxFdyF = (xy)kxdy (4 )
D(kx, ky) (.7
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As a first-order approximation, we neglect the polariton dispersion and assume the

emission wavenumber k is angle-independent. The Jacobian is evaluated as

( )(XF, YF)

a(kx, ky)

XF

Ok.

_ y 2f
2

aYF k2 cos4 9
aky

(4.18)

(4.19)dxFdyF = 4Y2fcos4 dkxdky47r2 COS4 0

The transformation can be understood from Fig. 4-14. Figure 4-14(a) shows the

reciprocal space at the sample plane, and kx and k. are uniformly spaced. Figure

4-14(b) displays the one-to-one correspondence of kx and k. on the CCD. Clearly kx

and ky become sparse at high angles, indicating the decrease of the density of k states

at high angles [138]. The blue circles indicate our field of view.

& 0

k g-1 )k (m 1)

(a)

I

0.5k

0

-0.5

-1

5 -1 -0.5 0
-1 -0.5 0

x/(
(b)

0.5 1

Figure 4-14: Mapping of Fourier plane to the spectrometer CCD. (a) Reciprocal space at
the sample plane, k, and k, are uniformly spaced. (b) One-to-one correspondence of k"
and k. on the CCD. The blue circles indicate our field of view.

Taking the fact that the total number of states should be conserved,

S
dn = 4,2 dksdky = Ddxdy (4.20)
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where S/47r 2 is the density of k states in the reciprocal space, S is the sample area,

and D is the density of k state on the CCD. Therefore,

S
= f 2 cos 9 (4.21)

Consequently, the number of states per pixel can be computed as

S AM= D A A = cos 6 (4.22)

where A is the area of a single CCD pixel. Removing the 6 dependence by using the

relation in Eq. (4.10), we obtain

SA(k2 - k2)2

M = 11
47r 2 2f2 k 2

(4.23)

Taking into account the polariton dispersion. When taking into account the

angle-dependence in the emission wavenumber k, we approximate the dispersion re-

lation in Eq. (4.12) as a quadratic relation in order to simplify the calculation of the

Jacobian

k = ko + hk 2
2mc

(4.24)

where ko = Eo/hc,

Jacobian gives

and E0 is the ground state energy at ki = 0. Working out the

O(xF, yF) _ x

a (kx, ky)
_ P2 ! 2 (k2 - akk1)

_Y (k 2 - k 2 ) 2

aky 1

with a = h/mc. Therefore,

dn = dkxdk = S (k -k1) 2  dxdy
47r2 Y 472 p2 f 2 (k 2 + akkHj)
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the density of k states per pixel on the CCD is

SA(k 2 - k2)2
M = - 1(4.27)

74,2 p2 f 2 (k 2 - akk1j)

Compared to Eq. (4.23), a correction of akkjj is added to the denominator. Overall,

the factor M gives a correction of ~12% at the edge of our field of view compared to

k1 = 0, and it is crucial to include in converting the energy dispersions E(k) to the

energy distributions N(E), which will be the focus of Chapter 5.

4.4 Microcavity Structures

The structure of the sample used in this dissertation is shown in Fig. 4-15: three sets

of four 7-nm GaAs quantum wells (QWs) are embedded at three antinodes in a 3A/2

microcavity, with the front and back distributed Bragg reflectors (DBRs) composed

Substrate
DBR

ntensitY profile

Figure 4-15: Schematic illustration of the microcavity structure used in this dissertation.
The red lines indicate the intensity distribution of the confined optical field. The dark and
light gray alternate layers are the distributed Bragg reflectors (DBRs) that are used to
confine the light in the cavity. Quantum wells (QWs) are shown as the orange layers.

of 32 and 40 pairs, respectively, of Alo.2 Gao.sAs/AlAs A/4 layers. The cavity region

is indicated as the orange section, and red lines show the intensity distributions of

the confined light modes in the cavity. This microcavity structure is identical to
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semiconductor microcavity structures with short polariton lifetimes [34] except that

the number of layers in the DBRs is doubled. This leads to an significant increase in

the lifetime of the trapped cavity field to about 135 ps, implying a polariton lifetime

of 270 ps at 6 = 0, which has been verified by transport measurements under both

non-resonant excitation [97] and resonant excitation [98]. The microcavity structure

is wedged along one direction as shown in Fig. 3-13, which allows tuning of the photon

resonance across the exciton resonance, thus allowing control of exciton fractions in

polariton states.

Although the concept of doubling the number of DBR layers is simple, the fabrica-

tion is not trivial because it requires much longer fabrication times, approximately 30

hours of molecular-beam epitaxy (MBE), with tight control during the entire growth

process. If the growth process is not well controlled, inhomogeneities in the lower

levels will be amplified in higher levels.

4.4.1 Optical selection rules in GaAs

The electrons and holes that compose the excitons in bulk GaAs originate in the

underlying atomic orbitals of the Ga and As atoms. The covalent bonding between

Ga and As atoms gives rise to an s-orbital like conduction band and a p-orbital like

valence band. To determine the optical selection rules, we must consider the total

angular momentum of each particle. The total angular momentum J is the sum of

the particle spin S and the orbital angular momentum L,

J = L + S (4.28)

Since holes arise from electrons, both electrons and holes have spins of ISI = .

On the other hand, the orbital angular momentum of an electron in the conduction

band is ILI = 0 since the parity of the conduction band is s-orbital like. Thus the

total angular momentum of the electron is IJI = 1. However, the orbital angular

momentum of the hole is ILI = 1 as a result of the p-orbital like parity of the valence

band. Hence the hole is a IJI = system and we have IJI = and IJI = 1. Holes
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with IJI = 1 resides in the so-called split-off band. At the gamma point k = 0,

they are separated by about 0.5 eV from holes with IJ = in our sample, and are

not resonant with the excitation laser, therefore are not considered throughout this

dissertation. Putting it altogether, this leaves two possible total angular momentum

values, mi = !, for an electron, and four possible values, mj = , t1, for a hole.

We typically refer to the holes with mj = t1 as heavy holes (hh), and the holes with

mi = as light holes (lh). Light holes and heavy holes are degenerate at k = 0

in bulk semiconductors. In quantum wells, confinement lifts the degeneracy, leaving

the heavy hole band at a lower energy. Since the heavy hole and light hole bands are

split by 30 meV in the long-lifetime structure we obtained from Princeton, and the

confined light is close to the resonance of they heavy hole excitons, we only consider

polaritons arising from heavy-hole excitons in this dissertation. The band structure

is summarized in Fig. 4-16(a).

(a) (b) (c)
E(k)

{-1/2,+1/2) {+1/2,-1/2)

m= 1/2 J=1/2 electrons m=-1/2 m=+1/2 I jL
excitons {+1/2,+3/2) {-1/2,-3/2)

conduction

h J=3/2
m2 =1/2m=+

spi-ofholes mj=-3vacuum
split-off m =-1/2 m,=+1/2

m= 1/2 J=1/2

projected J total J

Figure 4-16: (a) A schematic diagram of the energy band structure of a bulk GaAs crystal.
The three lowest states are the split-off band, light-hole and heavy-hole states in the valence
band, and the highest state is the conduction band. The total angular momenta J and their
projections on the growth axis J are also shown next to the band structure. (b) Energy
states and optical transition selection rules for zero in-plane momentum. The dashed (solid)
arrows represent right circularly (left circularly) polarized light. (c) Energy states and
optical transition selection rules in the exciton basis set.

Because of angular momentum conservation, the absorption of a single photon

causes a change in the total angular momentum by +1 given that a photon has a total

angular momentum of IJI = 1. The allowed optical transitions between electrons and
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holes are shown in Fig. 4-16(b). As can be seen, all the connected states have a total

angular momentum difference of Ama = +1, corresponding to excitation with a left

circularly polarized light (dashed lines) or with a right circularly polarized light (solid

lines).

The optical transition can be more conveniently described in the exciton basis

[1391, as shown in Fig. 4-16(c). In the exciton representation, the right circularly

polarized (o+) with the right energy will create a spin-up heavy-hole exciton (but a

spin-down heavy-hole exciton), and vice versa. The vacuum is the unexcited system.

4.4.2 Polariton spin and pseudospin

The picture described above is valid in the strong coupling regime, so there are similar

relations between the photon polarization and the polariton angular momentum. A

o.+ photon creates a 1+1) polariton and a o- photon creates a |-1) polariton. A

linearly polarized photon creates a polariton in the superposition state (I1) +

e2"' 1-1)), which corresponds to a polariton with a spin oriented in the plane of the

quantum well. This leads to a common description of the polariton system as a

pseudospin-1/2 system, and the polariton states 1+1) and 1-1) are represented by

the pseudospin states it) and |4), respectively. The pseudospin representation can be

advantageous when describing quantum-optical phenomena in microcavities.

4.4.3 Characterization of long cavity lifetime

The quality of the sample varies from batch to batch, hence it is important to measure

the lifetime of the microcavity structure to see if it is reasonably long (>100 ps).

Without performing time-resolved measurements, the following calibration [140] can

be carried out for this purpose.

In this measurement, the polaritons were excited incoherently by using an above-

bandgap c.w. laser, and the resulting photoluminescence was imaged onto the CCD

camera in the near-field geometry. A spatial filter was also placed in the Fourier

plane to allow only k ~ 0 components to pass through. Spectrally resolved near-field

119



emissions for different cavity detunings are shown in Fig. 4-17. The horizontal axis

displays spatial position, and the vertical axis displays the lower polariton emission

energy. When the cavity detuning is -5.7meV, as shown in Fig. 4-17(e), polaritons

are mostly localized at the excitation spot, but when the cavity is significantly neg-

atively detuned at -35.9 meV, long-range propagation as far as 500 1m is observed

with high-quality samples, as shown in Fig. 4-17(a). The results can be qualitatively

understood by the change in the effective masses of polaritons for different cavity

detunings. The polaritons are lighter and can propagate further when the cavity

detuning is more negative and polaritons are mostly photon-like. Interestingly, only

up-hill (toward thinner cavity widths) propagation was observed for all different cavity

detunings in our measurement.

A possible mechanism for the observation of uphill propagation of the polariton

fluid is shown in Fig. 4-18. A reservoir of free carriers is created under c.w. non-

resonant pumping. The free carriers then relax down to the high-momentum exci-

ton states via LO-phonon scattering and exciton scattering. Further scattering with

acoustic phonons turns excitons into polaritons. At the pump region, a significant

fraction of polaritons undergo polariton-polariton scattering and reach k = 0, leading

to a bright emission at the pump region. In the meantime, some fraction of polaritons

ballistically accelerate away from the pump spot. In the uphill direction, the kinetic

energy of polaritons is lost in surmounting the cavity gradient, and eventually the

polaritons become stationary, i.e., k ~ 0, at which point their emission gets through

the k-space filter and they enter the field of view. On the other hand, in the downhill

direction, the cavity gradient provides an additional acceleration for polaritons, and

they remain outside of the field of view. Based on the decay of photoluminescence in

the uphill direction, the lifetime of polaritons can be estimated.

4.4.4 Characterization of sample parameters

The cavity length varies as a function of position on the sample. In order to charac-

terize the energy detuning of the cavity mode from the exciton energy, 6, the energy of

the lower polariton was measured as a function of position. For those measurements,
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Figure 4-17: Long-range polariton propagation along the wedged direction of the sample

under c.w. non-resonant excitation. Spectrally resolved near-field emissions for different

cavity detunings (6). The horizontal axis displays the sample position, with zero sample

position corresponding to the zero cavity detuning and negative sample position correspond-

ing to the negative cavity detuning. The vertical axis displays the LP emission energy at

k = 0. Since the polariton effective mass becomes lighter when the cavity is more negatively

detuned, the polaritons propagate further.

the output of the c.w. laser was directly focused onto the surface of the sample as a

Gaussian spot with a FWHM diameter of about 5pm. The power of the c.w. laser

was kept as low as possible to eliminate any energy renormalization of the dispersion

curves from increased densities. In order to isolate the photoluminescence from a

single position on the sample, a pinhole was placed in the reconstructed near-field

image plane downstream show in Fig. 4-11. The pinhole was centered on the excita-
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Figure 4-18: Due to the cavity gradient, the ground state energy of polaritons increases
upon the uphill direction. At the pump region, a significant fraction of polaritons undergo
polariton-polariton scattering and reach k = 0, leading to bright emission at the pump
region. In the meantime, some fraction of polaritons at different stages of relaxation bal-
listically accelerate away from the pump spot with different amounts of kinetic energy in
the form of in-plane momentum. In the uphill direction, the kinetic energy of polaritons is
gradually lost in overcoming the cavity gradient, and kl reduces to ~ 0 and the polaritons
enter the field of view. This occurs at different distances from the pump region, depending
on the in-plane momentum of the polaritons when they left that region. On the other hand,
in the downhill direction, the cavity gradient provides additional acceleration for polaritons,
and they remain outside of the field of view. Based on the decay of photoluminescence in
the uphill direction, the lifetime of polaritons can be estimated.

tion pump spot so that the emission around the excitation spot was collected. Some

representative far-field images at different cavity detunings are shown in Fig. 4-19. As

can be seen, the ground state energy increases as the detuning is increased because

the cavity energy is higher as we move to more excitonic detunings. The spectral

linewidth of the photoluminescence at kl also increases as a manifestation of the in-

creased interactions between polaritons and other species including excitons and free

carriers. The entire set of dispersion curves is used to determine the cavity gradient

and the Rabi splitting. We use the nonlinear least-squares to fit the data set to the
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Figure 4-19: Spatially filtered spectrally resolved far-field polariton photoluminescence in
long-lifetime samples at different cavity detunings. The photoluminescence is shown as a
function of both in-plane wave vector kii and energy. The spatial filter was centered on the
optical pump spot which was focused at a position on the sample corresponding to a cavity
detuning energy, 6, of (a) 9.47 meV, (b) 5.91 meV, (c) 2.36 meV, (d) -1.19 meV, (e) -4.75
meV, and (f) -9.49 meV.

model

1
E(k,x) -

2
2Ex + (gx + gc)(xX - xres) + k2

2m (X - xres)(gx - ge) - h2k2 2

2m)

(4.29)

where we also assume a gradient for the exciton energy. gx and gc are the exciton

and cavity energy gradients, respectively. Xre is the resonance position of the sam-

ple, x is the current position, and m is the effective mass of bare photons which is

experimentally determined by fitting the polariton dispersion collected at a detuning
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of -30 meV to a parabola. The fitted parameters in Eq. (4.29) are

Ex = (1603.20 1.69) meV

g, = (-2.46 2.40) meV/mm

g, = (-12.26 2.36) meV/mm

Xres = (17.12 0.25) mm

Q = (10.84 2.83) meV (4.30)

The results are summarized in Fig. 4-20. The energy of the dispersion relation at

k = 0 is used to map out the energy of the lower polariton as a function of position,

shown in Fig. 4-20 as blue circles. The energies of the lower polariton for very short

and long cavity lengths are asymptotic to the energies of the uncoupled exciton and

cavity modes, respectively, shown as the black dashed lines. The energy difference

between the two modes gives the detuning energy, 6 = E, - E,, which is used to

label the dispersion curves in Fig. 4-19. We also plot the fitted LP energies using

Eq. (4.29), and the fitted values agree well with the measured energies.

1615 Ec

EES1610-

~1605
21

uc 1600

1595- 71 1
15 16 17 18

Sample position (mm)

Figure 4-20: The ground state energy of polaritons as a function of sample positions in the
long-lifetime microcavity. The blue circles are measured ground state energies at different
sample position, and the red line is the fit using Eq. (4.29). Black dashed lines are the fitted
bare cavity energy and exciton energy.
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4.5 Realization of Quantum Condensation in Mi-

crocavities

Quantum condensation of microcavity polaritons is usually referred to as dynamic

condensation owing to the parametric process that drives the formation of polariton

condensates. In this section, we briefly review the details of experimental realization

of quantum condensation with polaritons.

Non-resonant excitation. A c.w. laser with its photon energy far above the po-

lariton resonance, typically matching one of the reflection dips above the stop band,

is used to create a reservoir of free carriers, as shown in Fig. 4-21(a). This excitation

scheme is referred to as non-resonant excitation.

Formation of thermalized exciton reservoir. After non-resonant excitation,

the free carriers relax to the exciton dispersion by scattering with LO phonons. This

process confers very large momenta to excitons, leading to decoupling between exci-

tons and photons, as shown in Fig. 4-21(b). Excitons then lose energy and momentum

by multiple scattering events with acoustic phonons. A thermalized exciton reservoir

is then created in the vicinity of the light cone around krad = 10 pm_, where po-

laritons are formed, as illustrated in Fig. 4-21(c). Polaritons are strongly coupled to

light and can radiatively decay on a much faster timescale, on the order of 100 ps in

the long-lifetime structure. Furthermore, the density of states decreases dramatically

given the change of the energy dispersion in the low-k region. Competition between

slow polariton-acoustic phonon scattering and fast polariton radiative recombination

prevents the system from reaching thermal equilibrium in short-lifetime microcavity

structures, producing the so-called relaxation bottleneck region [141, 142].

Parametric scattering at the magic angle Figure 4-21(d) depicts the relaxation

in the low-k region, where polariton-polariton scattering [143, 144, 145, 146, 147] re-

sults in the relaxation of polaritons into the ground state at k = 0. At an angle known

as the magic angle, the polariton-polariton scattering becomes very efficient because
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Figure 4-21: A schematic illustration of formation of polariton condensates. (a) Non-
resonant pumping excites a reservoir of free carriers. (b) The free carriers scatter with
LO phonons and become non-radiative. (c). Excitons scatter with acoustic phonons, and
produce a thermalized exciton reservoir at the bottleneck region. (d) Further scattering
with acoustic phonons becomes inefficient at the bottleneck region, and polariton-polariton
scattering takes place. At the inflection point of the energy dispersion, polariton-polariton
scattering becomes very efficient. Once the ground state population reaches unity, Bose
amplification takes place, and drives polariton condensation.
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it can satify both the exact energy and momentum conservation, as illustrated in the

figure. When the occupation of the ground state reaches unity, Bose amplification

takes place and stimulates other polaritons into the ground state, causing macroscopic

occupation of the ground state to occur and formation of quantum condensates.

4.6 All-Optical Trapping of Microcavity Polaritons

Exciton-polaritons in semiconductor microcavities have emerged as model systems

for studying many-body effects, nonclassical states of light and matter, and quantum

phase transitions in solid state. Furthermore, because of the extremely small effective

mass, the operational temperature for polaritonic devices that exploit these properties

can be as high as room temperature, presenting promising opportunities to create low-

threshold, fast-operation nonlinear devices such as polariton switches and transistors.

This rapid developing research on exciton-polaritons presents an urgent demand for

control and manipulation of polaritons and their condensates. In this section, we

review previously reported techniques to confine polaritons, followed by a detailed

discussion of the experimental development of all-optical trapping in the Nelson group.

4.6.1 Previous approaches to confine polaritons

The tools to spatially manipulate polaritons rely on trapping either the excitonic

components or the photonic components of the polaritons. Figure 4-22(c) illustrates

a stress trap induced by a sharp metal tip with a diameter of 50 Jim [34]. Because

the bandgap of the semiconductor critically depends on the distance between two

nearest atomic neighbors, the local strain introduces a redshift to the exciton energy,

resulting in the formation of a parabolic potential for polaritons. The implementation

of this technique led to the first successful demonstration of quantum condensation

of exciton-polaritons in a GaAs-based microcavity under strictly non-resonant and

non-local pumping, taking advantage of the diffusion of polaritons into the trap.

A somewhat related technique, which also exploits a modification of the local

strain environment to manipulate the polariton potential landscape, is the application
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Figure 4-22: Different approaches to control of polaritons and their condensates. (a) Fig-
ure taken from Ref. [148]. An SEM image of a patterned microcavity structure grown by
electron-beam lithography. (b) Figure taken from Ref. [149]. An SEM image of a patterned
microcavity structure formed by depositing metallic thin films on the surface after fabri-
cating the microcavity. (c) Figure taken from Ref. [34]. A schematic illustration of a stress
trap. (d) Figure taken from Ref. [150]. A schematic illustration of confining polaritons by
applying surface acoustic waves.

of surface acoustic waves (SAWs) to the polariton system [150, 151], as illustrated in

Fig. 4-22(d). The cavity length and the refractive index of the cavity material are

locally modified in the presence of the acoustic wave, which leads to a change of the

local resonance condition and hence to optical confinement. The rise and fall time of

the acoustic wave can be on the order of 10ns, thus providing a dynamic approach

to confinement of polaritons.

A comparatively simple, yet very efficient method to create polariton confinement

in a grown microcavity structure is the deposition of metallic thin films on the sample

surface [152, 149], shown in Fig. 4-22(b). The metal mask changes the boundary

conditions of the electromagnetic wave with respect to a semiconductor-air interface
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and creates an optical node. As a result, a modest shift in the energy of the optical

resonance can be observed (on the order of 0.1-1 meV), which leads to an effective

photonic confinement. The beauty of this approach lies in its simplicity, and many

pioneering experiments with polaritons in periodic potential landscapes were initially

carried out with such samples, including the observation p- and d-wave condensation

[152, 149, 153].

Owing to the high flexibility and maturity of electron beam lithography and etch-

ing technologies, two-dimensional arrays of micropillars of almost any geometry can

be fabricated easily [154, 155, 156, 157, 158]. Figure 4-22(a) shows an SEM image of

an array of micropillars aligned in a honeycomb lattice configuration [148]. This lat-

tice configuration provides an analogy to a graphene-type structure, and Dirac points

have also been observed at specific locations in the Brillouin zone. Although these

techniques are able to create well defined potential trap profiles, they are necessarily

static and determined at the time of sample fabrication.

4.6.2 Optical trapping of polaritons

The carrier and exciton reservoir, which is created by the excitation laser, provides

a flexible way to create potentials for the polaritons because excitons created by a

laser field in the same structure have much larger effective mass than the polaritons:

the typical polariton mass is less than 10- 4 times that of electron mass, while the

free exciton mass is of the order a tenth of the electron mass in GaAs quantum wells.

Therefore, the excitons created by a laser pulse are essentially static as seen by po-

laritons, and the mean-field repulsion energy of the excitons acts as a static potential

energy barrier. By using spatial light modulators to shape the optical excitation

beam, confinement of almost any geometry can be readily implemented. Based on

optical trapping, many intriguing phenomena have been observed including the for-

mation of the macroscopic high-order quantum states [103, 159] and demonstration

of polaritons with defined chirality [160].

In this dissertation, spatially varying potential barriers for polaritons are created

by pumping the microcavity structure with an annulus of usually 42 pim in diameter.
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Figure 4-23: Energy-resolved real-space emission as excitation power increases. The pump
powers are P = 54.5 mW, P = 129.2 mW, P = 404.7 mW, P = 639.6 mW, P = 774.0 mW
and P = 881.7 mW in (a)-(f), respectively.

Figure 4-23 shows the spectrally resolved emission as a function of position on the

sample for different pump powers. As can be seen in Fig. 4-23(a), when the pump

level is low, polaritons remain in the vicinity of the pump region. The linear slope

is a result of cavity gradient due to the spatially varying cavity thickness. As the

pump power is increased, the energy shift at the pump region increases due to the

accumulation of high densities of hot carriers and excitons, and a potential barrier

for polaritons is formed.

The height of the barrier as a function of the integrated intensity of the photolumi-

nescence is shown in Fig. 4-23, along with the energy shift in the center of the trap at

x = 0. In the range of accessible pump powers, the energy shifts at the pump region

always exceed the energy shifts in the center of the trap, suggesting polaritons are

confined. The confinement of polaritons can also be identified by comparing Fig. 4-25

with Fig. 4-19. When polaritons are not trapped, as shown in Figs. 4-25(d)-(f), they

can accelerate ballistically away from the pump spot, and lead to smeared dispersion
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Figure 4-24: Rap height as a function of integrated photoluminescence intensity at both
the pump region (blue circles) and the center of the trap (red circles).
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toluminescence with a Gaussian excitation profile for pump powers 0.4 mW (a)
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curves. On the other hand, when polaritons are confined in the center, they are able

to reach spatial equilibrium, indicated in Fig. 4-19. In fact, the trapped polaritons

can even reach thermal equilibrium when the cavity detuning is close to resonance
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or positive. This will be discussed heavily in Chapter 5. In Fig. 4-23, we also show

the spectrally resolved near-field emission patterns when a Gaussian spot is used to

excite the microcavity. In this case, polariton condensates are formed on top of the

exciton reservoir.

4.7 Numerical Techniques in Data Analysis

The ordinary least-squares approach is equivalent to maximum-likelihood estimates

in statistics if the data set does not experience heteroscedasticity. Heteroscedasticity

refers to the statistical phenomenon when subsets of a collection of random vari-

ables have different variabilities from others. Since the uncertainties in each of the

individual data points are not necessarily the same in our experiments, an ordinary

least-squares approach would fail to give an accurate inference of the parameters

in our model. A weighted least-squares estimate has been developed to solve this

problem.

4.7.1 Weighted least-squares estimate

The weighted least-squares estimate has been used to estimate some important quan-

tities in the measurements, including the determination of the pure exciton-exciton

interaction strength in Chapter 6. Here a summary of the key concepts of weighted

least-squared regression is presented.

For a regression model

Y = X0 + (4.31)

where Y is an n x 1 column vector with n indicating the number of data points, X

is an n x p matrix with p indexing the number of independent loading factors, and

3 is a p x 1 vector of these independent factors. E is the set of residuals which are
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assumed to be independently normally distributed, with a covariance matrix

2
Ui

0
Var(s) =

0

0 ... 0

2 ... 0

0 ... -

(4.32)

The weighted least-squares regression is conducted to minimize

(4.33)

where w is a n x 1 vector for the weights on different measurements of Y.

differentiating the equation with respect to 3, the estimator is found to be

#=(XTWX) XTWy

By

(4.34)

where W is a diagonal matrix whose entries are the weights w, and the 1 - a uncer-

tainty is given by

A/k = SktI-a/2,n-p-1 k = 1, 2,.. , p

where t is the 1 - a/2 percentile of the student t distribution with degrees of freedom

of n - p - 1. The sample standard deviation is estimated as

(4.36)
n 2?

Sk Ck 'k
-P 1

where ck,k is the diagonal element of (XTWX) 1 , and

e = vW - (Y - x ) (4.37)

For the extrapolation, or prediction in the statistical sense, the value of regressand is
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given by the matrix X. Therefore, the mean of the predicted regressor is simply

y = X (4.38)

and the uncertainty associated with the prediction/extrapolation is given by

ay=Sti-a/2,n-p-l (4.39)

with

S 2  XT (XTWX) 1 Xu (4.40)

and

U = b e-i(4.41)
.1n - p -- 1

This is used in extrapolating the pure excitonic interaction strength in Chapter 6.

4.7.2 Least-squares fitting of ellipses

All the measurements in this dissertation were taken with annulus excitation profiles.

Because of the imperfections of the imaging setup, the excitation profile is usually

an ellipse with an eccentricity close to 0. We extract the lengths of major and minor

axes of the ellipse and report their geometric average as the radius of the excitation

profile. The least-squares fit to an ellipse is not trivial because the parametric form of

an ellipse is not an injective function. An injective function is a one-to-one function

that never maps distinct elements of its domain to the same element of its codomain.

Exponential functions are injective while trigonometric functions are not injective.

We follow the algorithm proposed by Walter Gander et al. [161], and the idea is

summarized in the following.
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An ellipse is parameterized by the quadratic equation

xT Ax + bTx + c = 0 (4.42)

where x = (x 1 , x 2) is a point coordinate in 2D, A is a 2 x 2 matrix, b is a 2 x 1 vector,

and c is a scalar that all need to be determined. Because the equation is typically

over-determined, that is, there are more data points than the number of parameters,

solving the original fitting is effectively carried out as

xi Axi + bTxi + c 0 (4.43)

for all data points with xi, with the constraint

2a 2 + 2a1 + a 12 a 22 (4.44)

Regrouping the parameters as

v = (bi, b2 , c)T

w = (all, v'a12 , a22)T

(4.45)

(4.46)

and defining the coefficient matrix

X11
S = i

xM1 Xm2

1

1

2xi

2XMi

V'2X1iXi 2

v'r2Xm1Xm2

2

X 1

xm2

(4.47)

where m is the number of data points, we find that Eq. (4.43) can be rewritten as

v
r ~ 0

(w)
(4.48)

with constraints I1wHl = 1. This problem can then be solved by a standard linear alge-

bra approach, for example, singular value decomposition. Figure 4-26 shows one ex-
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is used as an approximation to the radius of an ideal annular profile.
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Chapter 5

Exciton-polariton Bose-Einstein

Condensation in Thermodynamic

Equilibrium

The experimental realization of Bose-Einstein condensation (BEC) of atoms has trig-

gered wide exploration of macroscopic quantum effects, including superfluidity and

quantized vortices. However, the ultralow temperature of atomic condensates hinders

further applications. Polaritons in semiconductor microcavities have been used to

demonstrate quantum effects such as condensation [32, 33, 34] and superfluidity [99]

in much elevated temperatures, but polariton lifetimes are typically too short (due to

photon escape from the cavity) to permit thermal equilibration following emergence

of a coherent state [162, 163, 164, 165]. Although polariton experiments and the-

ories have shown that a great number of canonical features of condensation persist

in nonequilibrium, debates persist over whether polariton condensates can be called

Bose-Einstein condensates [166, 167, 168], in part related to the question of whether

polariton condensation is intrinsically a nonequilibrium effect. It is thus of funda-

mental importance to investigate whether polariton condensates can reach thermal

equilibrium. Of course, strictly speaking, BEC cannot occur in an ideal infinite 2D

system, but it has been shown [38, 169, 170, 171] that a 2D Bose gas in a large but

finite trap has the same threshold behavior as a 3D Bose gas in a finite trap of the
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same type. We can thus talk of an equilibrium BEC in 2D and 3D finite trapped

systems using the same language.

In this chapter, we will discuss the first unambiguous observation of Bose-Einstein

condensation of optically trapped polaritons in thermal equilibrium in a high-Q micro-

cavity. In Section 5.1, the thermodynamic properties of polaritons and their conden-

sates in previous experiments with short-lifetime microcavities are briefly reviewed.

The challenges in realizing a polariton gas with full thermalization are also discussed.

In Section 5.2, experimental methodologies are described, followed by discussions of

signatures of quantum condensation in Section 5.3. In Section 5.4, we present the

experimental realization of polariton condensates in true thermal equilibrium over a

wide range of polariton densities and bath temperatures. Details of how to convert

the measured CCD counts to the absolute polariton populations as well as how to

extract the chemical potentials and temperatures from the measured distributions

are included. Section 5.5 shows that the equilibrium behavior of polariton gases and

their condensates depends crucially on the interaction strength among polaritons.

By adjusting the cavity detuning to allow polaritons to become more photon-like, the

equilibrium gas reverts back to nonequilibrium. In Section 5.7, we discuss the first

measurement of a density-temperature phase diagram for Bose-Einstein condensation

of polaritons. The measured phase boundary agrees well with the prediction of basic

quantum gas theory, indicating that polariton condensation is a true phase transi-

tion. We conclude this chapter with a discussion of possible experiments exploiting

the properties of BEC in thermodynamic equilibrium.

5.1 Condensation in Short-Lifetime Microcavities

In this section, we will briefly review the energy distributions N(E) of polariton gases

in short-lifetime microcavities, in particular, polariton condensates in a k-space trap

with a CdTe-based microcavity and in a real-space trap with a GaAs-based micro-

cavity. We will also discuss in detail early efforts in the study of the thermodynamic

properties of polaritons and their condensates.
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5.1.1 Polariton condensation far from equilibrium

Due to the steep dispersion of polaritons within the light cone, as shown in Fig. 3-12,

the particle number loss rate of polaritons through polariton-phonon and polariton-

polariton scattering at in-plane momentum kl = 0 is significantly reduced; hence a

large polariton population can accumulate around k1l = 0 to allow quantum conden-

sation even in short-lifetime samples. However, unlike atomic condensates, polariton

condensates are typically transient due to their limited lifetimes determined by leak-
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Figure 5-1: (a) Adapted from Ref. [33]. The measurements were performed with a CdTe-
based microcavity with a lifetime of approximately 1 ps at positive cavity detunings
6 = 3 - 8 meV. The excitation laser was tuned about 100 meV above the polariton
resonance with a uniform top-hat geometry of 35 pm diameter. (b) Adapted from Ref. [34].
The measurements were performed with a GaAs-based microcavity with a lifetime of ap-
proximately 2 ps at a detuning of 5 = -10 meV before applying the stress. The potential
trap created by the mechanical stress exerted by a rounded-tip pin is about 50 pm in di-
ameter. The excitation laser has an excess energy of 129 meV, and the photoluminescence
was collected from the center of the trap.

age of the cavity. The energy distributions N(E) of the resulting condensates are

highly nonequilibrium because polaritons couple out of the cavity before they equili-

brate with each other and the host lattice. In Fig. 5-1, we show the distributions of

the polaritons created non-resonantly from below threshold to well above threshold

in short-lifetime cavities [33, 34]. The plots are adapted from the two earliest experi-

mental demonstrations of polariton condensation in Refs. [33] an [34]. In Fig. 5-1(a),

a CdTe-based microcavity with a cavity lifetime of 1 ps was used, and the excitation
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laser was carefully shaped into a uniform top-hat shape to eliminate inhomogeneities

within the pump region. In Fig. 5-1(b), a GaAs-based microcavity with a cavity

lifetime of 2 ps was used. Unlike the previous case, mechanical stress was applied to

the microcavity to induce a potential trap so that polaritons could reach spatial equi-

librium, i.e., become concentrated, inside the trap. Although the nature of quantum

condensation was verified by the observation of spontaneous emergence of long-range

coherence in both cases, both systems did not reach thermal equilibrium. As can

be seen, polaritons follow Maxwell-Boltzmann distributions at low pump powers, as

evidenced by straight lines in the semi-log plot. When the pump power is further

increased, a condensate-like peak shows up around the ground state, but the entire

distribution cannot be fitted by the equilibrium Bose-Einstein model. This has led

to a common description of a polariton condensate as "nonequilibrium condensate",

and also has prevented any determination of an equilibrium phase diagram which sub-

sequently led to debate whether polariton condensation is a thermodynamic phase

transition.

5.1.2 Formation of polariton condensates in thermodynamic

and kinetic regimes

Two earlier works have addressed in depth the mechanism of condensate formation

and thermalization of polaritons in short-lifetime samples. In Ref. [172], the polari-

ton condensate in a CdTe-based microcavity was studied over a wide range of pump

powers and bath temperatures. Depending on the cavity detuning which in turn

determines the interaction strength among polaritons, polariton condensates in ther-

modynamic and kinetic regimes were identified. In Fig. 5-2, the pump power was

kept at P = 10.2 mW, and the cavity detuning was chosen to be 6 = 6.8 meV, which

corresponds to an exciton fraction of 62.7% in the polaritons; therefore polaritons

were strongly interacting. This led to full thermalization of polaritons at high bath

temperatures where the bottleneck effect was weak, as evidenced by the good fits

to the Maxwell-Boltzmann distribution. As the bath temperature was decreased, a

140



(a) (b)

a 5.3 K 10 49.7 mW
* 20 K a 29.8 mW

10 - 25K 2 * 13.7 mW
- 35K 10 8.5 mW

"Ih - 5.9 mW
1 a 3.0 mW

W W 1 0  Sl '0.4 mW
z 0 z

10 %b ."

10 0 S","

10- OW 'isi"

0 1 2 3 0 1 2 3 4 5
E(k )-EO (meV) E(k 11)-E0 (meV)

Figure 5-2: Thermodynamic and kinetic regimes of polaritons created non-resonantly in

a CdTe-based microcavity with a cavity lifetime of ~1 ps. Adapted from Ref. [172]. (a)

Energy distributions (dots) and corresponding best fits to the equilibrium Bose-Einstein

distribution (solid lines) collected at a cavity detuning of 5 = 6.8 meV at different bath
temperatures while the power of the excitation laser was kept at P = 10.2 mW. (b) Energy

distributions collected at a cavity detuning of 5 = -1 meV at different pump powers while

the lattice temperature was kept at T = 5.2 K.

condensate-like peak showed up at E = 0 due to the decrease in the critical threshold,

but the overall distribution became nonequilibrium. The best fit to an equilibrium

Bose-Einstein distribution missed the data by about a factor of 10 at low energies,

leading to difficulty in extracting the chemical potential and temperature of polari-

ton gases at the onset of condensation, similar to the case in Fig. 5-1. This regime

was identified as the thermodynamic regime, as the polariton gas could reach thermal

equilibrium under right conditions. In Fig. 5-2(b), the lattice temperature was kept at

T = 5.2 K, and the cavity detuning was chosen to be 6 = -1 meV to make polaritons

less interactive. The polaritons in this case never reached full thermalization at all

pump powers. The hump at E = 2 meV is a signature of the well-known bottleneck

effect in polariton relaxation. Condensation showed up when the pump power was

above P = 10.2 mW, because of Bose amplification of the ground state and depletion

of polaritons in the bottleneck region when N(E = 0) = 1. This has led to the classi-

fication of this regime as the kinetic regime. Although this work was able to identify

the roles of interaction strength in thermalization and polariton condensation, there
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was no comparison of the data at different densities, so that the meaningfulness of the

fit values of chemical potential (in particular, the prediction of the absolute number of

particles from the chemical potential) could not be verified, and questions regarding

whether polariton condensates can reach thermal equilibrium remained unanswered.

In a later work in Ref. [173], the effect of interaction strength on the thermaliza-

tion of polariton condensates was systematically investigated by changing the cavity

detuning. Signatures of condensates in thermal equilibrium were also reported. In

this work, an intense pulsed laser was used to excite a short-lifetime microcavity

structure, which gave a rapidly changing temperature and density of polaritons on

the time scale of tens of picoseconds. It could be argued, however, that on short time

scales of 1-2 picoseconds, the gas could be considered to be in quasi-equilibrium. The

time evolution of the polariton temperatures at four selective detunings is plotted

a 9.0 meV
o- 6.6 meV

t o o . 3.6 meV

1, o -0.9 meV

100 -

0 20 40 60
Time (ps)

Figure 5-3: Figure adapted from Ref. [173]. Time evolution of normalized polariton temper-
ature T/Tbath at cavity detunings of 3 = 9.0 meV (red), J = 6.6 meV (green), J = 3.6 meV
(blue), and 3 = -0.9 meV (magenta). An intense picosecond laser pulse was used to excite
polaritons in a GaAs-based microcavity with a cavity lifetime of -r, = 2 ps at an incident
angle of 500 with respect to the sample surface normal. The excitation profile is a Gaussian
with a diameter of 50 pm. Here closed symbols are the temperatures extracted by fitting
the corresponding distributions to an equilibrium Bose-Einstein model. Open symbols de-
note cases when polaritons are not fully thermalized, and these temperature values do not
correspond to actual temperatures and are plotted rather as references to help qualitatively
understand the dynamics.

in Fig. 5-3 for a fixed pump power of P ~ 3 Pth, where Pth is the pump power at

the threshold. The corresponding excitonic fractions are 76.5%, 70.8%, 62.1%, and
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46.9%, respectively. The closed symbols are the temperatures extracted by fitting the

corresponding distributions to an equilibrium Bose-Einstein model, and open sym-

bols are plotted as references to help qualitatively understand the dynamics. As seen

in this figure, the thermalization time is at least 20 ps for positive detunings, and

for negative detunings, thermal equilibrium is never established within 60 ps. This

work suggests that the thermalization of polaritons is determined by the cavity life-

time and the interaction strength. However, debates arise over whether meaningful

thermodynamic properties of the polariton gas, specifically the validity of the fits of

distributions to the equilibrium Bose-Einstein model, can be extracted from the ex-

perimental data given the fact that with a single Gaussian laser excitation spot, the

potential-energy profile felt by the polaritons is strongly renormalized, leading to both

self-trapping of the condensate in a small, quasi-harmonic potential inside the laser

spot [174], and free streaming away from the spot [175]. In general, it has been shown

that integration of a spatially inhomogeneous distribution can lead to misleading fits

to a Bose-Einstein distribution [176]. Nevertheless, based on reasonable assumptions

for density and temperature variations, fits with an average temperature and chemi-

cal potential [177] can still be obtained, which suggest that the polariton gas should

reach thermal equilibrium provided that the cavity lifetime is longer than their ther-

malization time and polariton condensation is true Bose-Einstein condensation with

a well defined density-temperature phase diagram.

Later work by the same group [13] with the same short-lifetime structure used a

large laser spot with a flat intensity profile and resonant detuning that gave a longer

mean free path to reduce the spatial inhomogeneity. In this configuration, the spatial

coherence properties were measured. The power law for the spatial coherence was

found to depend crucially on the nonequilibrium nature of the polariton gas [13, 178].

These early attempts in addressing the thermalization behavior of polaritons

and their condensates were important steps in understanding polariton condensa-

tion. However, they clearly do not resolve the debate, as terms such as "intrinsic

nonequilibrium character" and "far from equilibrium" have still been widely used in

the literature in the past two years [179, 180, 181, 182, 183].
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5.1.3 Challenges in reaching thermodynamic equilibrium

As discussed above, the key challenge in polariton systems is to achieve long polariton

lifetime, longer than their thermalization time. Since the thermalization time for the

polariton gas was at least 20 ps for polaritons that are mostly exciton-like, and most

samples used in previous experiments have polariton lifetimes on the order of a few

picoseconds [184], this suggests that an improvement of the cavity Q by at least an

order of magnitude is needed, which is not trivial for GaAs fabrication technology.

A great effort has been devoted in designing and fabricating the long-lifetime cavity

structure. A detailed recipe regarding the sample structure and sample fabrication

are discussed in Chapter 4. The new microcavity structure has a Q of -320,000 and a

cavity photon lifetime of 135 ps. This corresponds to a polariton lifetime of 270 ps at

resonance, which has been confirmed by the long-range (millimeter scale) propagation

of polaritons created through either resonant [98] or non-resonant optical excitations

[97].

5.2 Trapping Polaritons in a Flat-Bottom Poten-

tial Barrier

In general, it has been shown that integration of a spatially inhomogeneous distri-

bution can lead to misleading fits to a Bose-Einstein distribution [176]. In order to

guide polaritons toward equilibrium with a specified location and geometry, we made

a spatial trap. In this section, we will describe the generation of a flat-bottom po-

tential trap, and the dispersion relations E(k) of the optically trapped polaritons.

Details of the optical trapping can be found in Chapter 4.

5.2.1 Generation of flat-bottom potential trap

In principle, any well defined potential barrier can be used to trap polaritons and

guide them to spatial equilibrium. However, even a simple harmonic trap will lead

to a change of the density of polariton states, and deconvolution is needed to extract
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Figure 5-4: (a) Reflection of the excitation beam from the sample surface. The white

circle indicates the region of the sample that is observed in photoluminescence imaging

measurements after spatial filtering. (b) Normalized excitation light intensity along the

x = 0 line through the center of the excitation ring pattern shown in (a). (c) Spectrally

resolved photoluminescence along x = 0. The photoluminescence within the solid white

lines is collected and imaged onto the spectrometer CCD in the far-field geometry for the

polariton distribution measurements. The dashed white line indicates the photon energy

gradient deduced from the low-density spectrum.

their energy distributions N(E) from measured k-space dispersions. To simplify the

problem, we made a flat-bottom potential barrier. The flat potential in the center of

the trap results in a density of states invariant of polariton energies, which greatly

reduces the complexities in retrieving the distributions N(E).

In order to generate a flat-bottom potential trap, we shaped the Gaussian beam

into an annulus structure with a diameter of 19 pm, as shown in Fig. 5-4. The

formation of a 2D polariton trap was verified by measuring the energy of the lower

polariton state as a function of sample position. A near-field image of the sample sur-

face was imaged onto the entrance slit of an imaging spectrometer. The spectrometer

slit selected the x = 0 slice of the near-field image and was then spectrally dispersed

on the spectrometer CCD. The resulting image, plotted in Fig. 5-4(c) for the case

of moderate pump powers below the condensation threshold, shows the intensity of

the photoluminescence (PL) emitted by lower polaritons as a function of both the PL

energy and the sample position. The white dashed line indicates the emission energies

at very low pump powers; the slope of this line arises from the wedge of the cavity
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Figure 5-5: Spatial distributions of polaritons at different excitation densities. (a) P =
0.09 P, (b) P = 0.31 Pc, (c) P = Pc, (d) P = 2.42 Pc, (e) P = 3.26 Pc, and (f) P = 5.71 Pc,
where Pc denotes the threshold pumping power. The dashed line indicates the collection
region, and the solid line is the cross section of the horizontal slice at the center. The
long tail from (f) is from the scattering of the neutral density filter used to attenuate the
emission.

thickness shown in Fig. 5-4, which causes a gradient in the cavity photon energy. At

the pump region, there is a blueshift of the polariton energy due to their interactions

with each other as well as from repulsive interactions between polaritons and excitons

and free carriers. As indicated in Fig. 5-4(c), the barrier is not constant around the

ring, varying by about 0.2 meV from one side to the other due to inhomogeneity

in the pump intensity. The barrier is slightly wider than the laser profile, because

excitons propagate up to 1 Mm.

The potential landscape is nearly flat in the region from -5.5 prm to 5.5 pum in-

dicated by the white circle in Fig. 5-4(a) and the horizontal lines in Fig. 5-4(b) and

5-4(c). PL was collected from only this region for determinations of the polariton

energy distributions as discussed below. The nearly flat potential profile corresponds

to a constant density of states in 2D. Additionally, a nearly homogeneous distribution

was established in the field of view. Figure 5-5 plots the spatial distributions for pump

powers from below to far above the condensation threshold. PL from the barrier was

spatially filtered out, since otherwise the emission patterns would be dominated by
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Figure 5-6: Representative far-field energy dispersions in the center of the trap at pump

powers of P = 88 mW (a), P = 451 mW (b), and P = 711 mW (c).

the PL at the pump region, particularly at low pump powers. Within the collection

region, indicated by the dashed line, the spatial distributions vary by less than 20%

over the field of view below the threshold in (a)-(b), at threshold in (c), and above

the threshold in (d)-(e). As seen in this figure, the real-space profiles remain similar

over a broad range of polariton densities, evidenced by the plots of horizontal slices at

the centers shown in Fig. 5-5 as the white solid lines. When the system was pumped

very hard, self-trapping of the polariton condensate was observed. The homogeneous

spatial distribution is also evidenced by little change in the energy-resolved emission

intensities across the field of view within the boundaries of the white solid lines as

seen in Fig. 5-4(c).

5.2.2 Dispersion relation of optically trapped polaritons

Polaritons in the center of trap reach equilibrium in k space. In Fig. 5-6, we show

the dispersion relations for pump powers of P = 88 mW(a), P = 451 mW (b), and

P = 711 mW (c). These dispersions clearly distinguish themselves from the dispersion

of untrapped polaritons which are smeared out in the direction of the propagation,

as seen in Fig 4-25. The levels of the energy dispersions also blueshift, which is a

manifestation of repulsive interactions among trapped polaritons.
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5.3 Signatures of Quantum Condensation

Under right conditions, condensation of a large population of polaritons was observed

in the trap, evidenced by k-space narrowing, superlinear increase in emission intensi-

ties and spontaneous emergence of coherence.

k-space narrowing. Figure 5-6 shows a series of angle-resolved spectra at different

pump powers. Above the condensation threshold as the pump power is increased,

there is a dramatic narrowing of the range of momenta that polaritons occupy. We

integrated the spectra along the energy axis, and calculated the FWHM at different

pump powers. The resulting plot is shown in Fig. 5-7(c). At low pump powers,

polaritons have a broad k-space distribution with a FWHM of 3.4 [m-1, and this

decreases to 0.6 pm- 1 when condensation occurs.

Superlinear increase in emission intensity. Figure 5-7(a) shows the integrated

emission intensities in the field of view as a function of pump power. With increasing

excitation power, the emission intensity increased linearly in the range of P = 200

mW to P = 600 mW. Upon condensation, an increase of the emission intensity by

more than four orders of magnitude was observed. This threshold-like behavior was

also reported in early condensation experiments with short-lifetime cavities [33, 34],

and is a direct result of Bose amplification of the ground state population. In Fig. 5-

7(a), we also plot the ground state energies at ki = 0 at different excitation powers.

As can be seen, the ground state shifts by about 1.4 meV in the range of pump powers

used. The shift is significantly smaller than the Rabi energy, which is calibrated to

be 10.84 meV for this sample. Therefore, the system remains in the strong coupling

regime even above the condensation threshold. In practice, a loss of strong coupling

is typically accompanied by a second threshold corresponding to the onset of photon

lasing, and is fairly straightforward to identify in experiments [174]. However, this is

absent in our measurements.
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Figure 5-7: Signatures of quantum condensation in the center of the trap at a detuning of

6 = 0 meV and a bath temperature of T = 12.5 K plotted as a function of pump power. (a)

The integrated intensity in the field of view (blue), and the ground state energy at k= 0
(red). (b) Spectral width at kii = 0. (c) The k-space FWHM.

Spectral narrowing. Spontaneous emergence of coherence is expected when quan-

tum condensation occurs. This is shown in Fig. 5-7(b). As can be seen, the spectral

width at kii = 0 first increases as the pump power increases because incoherent scat-

tering becomes more frequent as there are more polaritons in the system. When

condensation happens, the linewidth decreases by a factor of 3, indicating an increase

of coherence in the system.

Similar signatures of condensation were also observed for all temperatures we

studied, and in Fig. 5-8, we show the same analysis as above but with a higher lattice

temperature Tbath = 25.0 K. As can be seen, the onset of condensation is accompa-

nied by a nonlinear increase in emission intensities, and spontaneous emergence of

coherence leads to spectral narrowing. k-space narrowing was also observed at this

temperature.
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Figure 5-8: Signatures of quantum condensation in the center of the trap at a detuning of
J = 0 meV and a bath temperature of T = 25.0 K plotted as a function of pump power. (a)
The integrated intensity in the field of view (blue), and the ground state energy at ki = 0

(red). (b) The spectral width at kii = 0. (c) The k-space FWHM.

5.4 Polariton Gas Reaching Thermal Equilibrium

In this section, we will discuss in detail how to extract the intensity distribution

I[E(k)] from a raw tiff image collected in the experiment, and how to convert the

intensity distribution to the occupancy of polariton states N(E), followed by how to

fit the distribution N(E) to obtain the temperature T and chemical potential p.

5.4.1 Extracting polariton dispersion E(k)

Preprocess the tiff image. The raw image collected in the experiment is saved

in the 16-bit tiff format, with intensity counts ranging from 0 to 65535. The raw

image is imported into the data analysis module as a matrix I(x, y) with dimensions

100 x 1340. The dimension of the image is determined by the camera CCD, since the

CCD has 1340 and 100 pixels in the horizontal and vertical dimensions, respectively.

The vertical dimension is used to resolve k, and the horizontal dimension is the
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Figure 5-9: A far-field energy dispersion of polaritons in the center of the trap at a bath

temperature of T = 12.5 K and at a detuning of J = 0 meV. The white diamonds give the

raw energy dispersion relation extracted as the data points with maximum intensity values

for each vertical slice. The white dashed line is the running average of the raw dispersion

relation. The green line is the fit to the lower-polariton dispersion relation in Eq. (3.72).

emission energy. The background signal is taken to be the mean of the rightmost

140 columns, which is subtracted from I(x, y). The raw image is then cut to leave

only the region of interest, and rotated clockwise by 90 degrees to give a normal view

of the polariton dispersion, as shown in Fig. 5-9. Let I(E, k) denote the truncated

matrix.

Binning I(E, k) over k. Binning is performed in the following way to smooth out

the raw image. Starting from the center column, every consecutive specified number

of columns are binned to yield one single vertical slice for each bin. For example, let

-3, -2, -1, 0, 1, 2, 3 denote the column index. If we choose a three-column running

average, the bins are taken as the arithmetic average of (-3, -2, -1), (-2, -1, -0),

(-1, 0, 1), (0, 1, 2), and (1, 2, 3). Typically, we bin over only 3 columns. The k of each

bin is taken to be the k of the center slice. The binned image is slightly smaller than

the raw image along the k dimension.

Extracting the dispersion relation E(k). Each column in the resulting binned

image is traversed. For each column, we find the maximum intensity point, and the

corresponding E and k are taken to be E(k), shown as white diamonds in Fig. 5-9.
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The white dashed line is a five-point running average of the white diamonds. The

intensity counts I[E(k)] for each k state are taken as the sum of the intensities of

each vertical slice. Due to the one-to-one correspondence between E and k given by

the dispersion relation E(k), we hereafter simply denote it as I(E).

Fitting the dispersion E(k) to theoretical model. In order to calculate the

Hopfield coefficients for the subsequent calculations, we fit the dispersion to the the-

oretical model, which has the following form

1h2 2 _7E 2 251

E(k)=- Ex+Ec+ k2 _ yQ2 (EXEC- k2)) .
2 (2m 2m

where E, and E, are the exciton and cavity resonance energies, and m is the effective

mass of bare photons. Note careful unit conversion has to be taken because we use

meV for the energy and degree for the k. E, is the only free parameter inferred by

the nonlinear least-squares fitting. A typical fitted dispersion is shown as the green

line in Fig. 5-9. We will use the fitted E(k) in all calculations below.

5.4.2 Converting I(E) to energy distribution N(E)

In order to convert the intensity distribution I(E) to the energy distribution N(E),

we need to take into account the angle-dependent radiative lifetime of polaritons as

well as the angle-dependent density of k states in the Fourier plane, i.e., the plane of

the CCD, in additional to an efficiency factor that converts the photon counts to the

occupancy.

The angle-dependent radiative lifetime is taken into account through the excitonic

fractions of each k state, which are calculated as

x(k) =11 6(k) (5.2)
2 V (k)2+2
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with cavity detuning defined as

6(k) = Ec + h2k2 EX (5.3)
2m

The lifetime correction factor is computed as

TLP(k) =T (x(k) + 1 x(k) (5.4)

by assuming the lifetime of pure excitons to be 10 times longer than that of cavity

photons, and the bare cavity photon lifetime Tc is experimentally determined to be

135 ps.

The density of k states M(k) can be computed following the basic theory of Fourier

optics as discussed in Chapter 4. Putting everything altogether, we get the occupancy

by using

N(E) = rlI(E)TLp(k)/M(k) (5.5)

where r7 is the efficiency factor, which is determined carefully using the experimental

calibration (see Chapter 4 for details). It can also be obtained by adjusting its value

to achieve the best goodness-of-fit. In the calculation, the energy dispersion E(k) is

used to convert rLp(k) and M(k) to TLp(E) and M(E).

Since we have both positive and negative k's in the dispersion relation E(k), we

can get two sets of energy distributions N(E). We arithmetically average both sides

of N(E) to get the final N(E). The resulting distributions N(E) for different pump

powers are shown as dots in Fig. 5-10. Because a single efficiency factor is used in

extracting all the distributions N(E) at different excitation densities, wecan deduce

the relative occupation numbers from the vertical scale of Fig. 5-10.
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Figure 5-10: Energy distributions of polaritons in the center of the trap at (a) 6 = -5 meV
(weak interactions, nonequilibrium) and (b) 6 = 0 meV (strong interactions, equilibrium)
at different pump powers at a bath temperature of Tbath = 12.5 K. The solid curves are best
fits to the equilibrium Bose-Einstein distribution in Eq. (5.6). The fitted values of T and y
are shown in Fig. 5-12. The threshold powers PBE are 382 mW and 443 mW for detunings
6 = -5 meV and 6 = 0 meV, respectively.

5.5 Varying Polariton Gas from Nonequilibrium

to Equilibrium

To see the effect of interactions on thermalization, N(E) was measured at two different

cavity detunings, J = -5 meV and 6 = 0 meV, for a series of pump powers. The

detuning 6 is the energy difference between the cavity resonance and exciton energy

at k1 = 0. Changing the detuning changes the underlying excitonic fraction of the

polaritons, which governs their interactions. Positive values of detunings indicate

polaritons are more exciton-like, while negative values of detunings give polaritons

which are mostly photon-like. Here J = 0 meV and 6 = -5 meV correspond to

excitonic fractions of 50% and 30%, respectively. This indicates that the polaritons

with 6 = -5 meV have interactions which are weaker by a factor of 3 than those at

6 = 0 meV, and less thermalization is expected.

154

w
z



The measured distributions N(E) at both detunings and various pump powers are

shown in Fig. 5-10. The pump powers are reported in terms of the threshold power,

PBE, defined below. The sample was immersed in a helium bath that was kept at

a temperature Tbath = 12.5 K for both detuning positions. The measured values of

N(E) were fit to a Bose-Einstein distribution, given by

1
NBE(E) =(E- )/kBT _ 1' (5.6)

where T and y are the temperature and chemical potential of the polaritons, re-

spectively, and kB is the Boltzmann constant. The ground state (kl = 0) of the

lower polariton shifts to a higher energy as the density increases, due to the repulsive

polariton-polariton interactions. We defined the ground state energy in each case as

E = 0 so that p = 0 corresponds to the condition for Bose-Einstein condensation.

The best fits of the data to NBE(E) were determined using T and p as free parameters

in nonlinear least-squares regressions, and are shown as solid curves in Fig. 5-10.

When the polariton states are negatively detuned and have very weak interactions,

the fits to the Bose-Einstein distribution are poor. As seen in Fig. 5-10(a), for the case

of J = -5 meV, at low density the distribution has a reasonable fit to a Maxwell-

Boltzmann distribution (which corresponds to a single exponential, i.e., a straight

line on a semi-log plot), but as the polariton density is increased, the distribution

is no longer fully thermal. The hump at E = 0.5 meV is a manifestation of the

bottleneck effect, as was also observed in Ref. [172]. As the density is increased

further, a peak occurs which is condensate-like, but the rest of the distribution does

not fit the Bose-Einstein functional form in Eq. (5.6), indicating that the polaritons

are not in thermal equilibrium. This behavior is similar to that seen in many other

experiments with short-lifetime polaritons, e.g. Ref [33, 172], and is consistent with

a nonequilibrium polariton condensate. The nonequilibrium distribution has been

reproduced by numerical solution to the quantum Boltzmann equation [185]. Despite

the long cavity lifetime, the photon-like polaritons with weak interactions do not

reach thermal equilibrium.
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In contrast, N(E) at 6 = 0 is well described by NBE(E) for all pump powers up

to P = I.1PBE. At pump powers well below PBE, N(E) is well described by a single

exponential function, i.e., a Maxwell-Boltzmann distribution. Between P = 0.9 PBE

and P = 1.1PBE, an upturn in the distribution at E = 0 meV is observed, indicating

that N(E) deviates from Maxwell-Boltzmann statistics and must be described by a

Bose-Einstein distribution with the reduced chemical potential Ip/kBT < 1. The fit

values of T and p used in Fig. 5-10(b) are shown in Fig. 5-12 as the blue symbols.

As seen in this figure, when the density is increased, T decreases from around 20

K to a lowest value of 13.9 0.2 K and p/kBT smoothly goes from -2.93 0.16 to

-0.28 0.01. For pump powers greater than 1. 1 PBE, a condensate in the ground state

appears. This peak cannot be fit to an ideal Bose-Einstein distribution, and we believe

that the reason is the appearance of many-body effects such as the Bogoliubov linear

spectrum and depletion of the condensate due to interactions. In the thermodynamic

limit, the condensate peak should be delta-function like, which is broadened in the

presence of finite-size fluctuations [186]. The high-energy tails of the top two curves

have the same absolute values, indicating that the populations in the excited states

saturate when there is a condensate, consistent with a Bose-Einstein condensation

phase transition for bosons in thermal equilibrium.

The upturn in the shape of N(E) in the low-energy states unambiguously dis-

tinguishes N(E) as a Bose-Einstein distribution rather than a Maxwell-Boltzmann

distribution. Previous reports using short-lifetime samples [173, 172] showed fits of

N(E) without the clear upturn near E = 0 at excitonic detunings; although a conden-

sate peak appeared in some cases, there was not a clear density-dependent evolution

from a thermal Maxwell-Boltzmann distribution to a degenerate Bose-Einstein, non-

condensed distribution. Furthermore, short-lifetime samples thermalized only when

the microcavity was positively detuned [173] and the polariton characteristics were

mostly exciton-like so that the motion of the polaritons was severely restricted. In

contrast, the long-lifetime polaritons seen here at zero detuning follow Bose-Einstein

statistics throughout the phase transition and propagate to fill the trap in spatial

equilibrium.
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Figure 5-11: Energy distributions of polaritons (dots) and the best fits to the equilibrium
Bose-Einstein model (solid lines) at bath temperatures of T = 10.0 K (a), T = 17.5K (b),
and T = 25.0 K (c), with corresponding threshold pump powers PBE = 435 mW, PBE = 474
mW, and PBE = 557 mW, respectively.

We emphasize that not only the curvature of the fits in Fig. 5-10 but also the

absolute vertical scale of the fits is constrained by the values of A. We do not have

a free parameter to change the overall intensity scaling factor for each individual

curve. The data points give the absolute occupation numbers as indicated by the

vertical scale in addition to the relative occupation numbers at different pump powers.

When the value of p in the Bose-Einstein distribution is increased toward zero, this

increases the absolute value of NBE(E). Thus, the fits are tightly constrained by the

requirement that we fit not only the shape of the distribution but also the relative

heights of all the curves with only two parameters, T and p, for each individual

distribution N(E). This constraint is reflected in the very small relative uncertainties

in the fitted values of p shown in Fig. 5-12(b).

5.6 Characteristics of Polariton Condensates in Equi-

librium

The bath temperature was also varied in the range of 10.0-25.0 K. Good thermaliza-

tion was achieved across this range, as seen in Fig. 5-11, where the energy distribu-

tions N(E) at three other bath temperatures, i.e., Tbath = 10.0 K, Tbath = 17.5 K,
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and Tbath= 25.0 K are shown for a series of pump powers. As seen in the figure, the

distributions at all temperatures fit well to the equilibrium Bose-Einstein model in

Eq. (5.6), up to a ground-state occupation number N(0) - 2-3. At higher densities,
the distributions deviate slightly from the equilibrium Bose-Einstein model. This is

not surprising, since many-body effects play an important role when there is a large

ground state occupation.

In Fig. 5-12, we plot the fitted values of T and p/kBT for different pump powers

for bath temperatures of Tbath = 12.5 K and Tbath= 22.5 K. As can be seen, when the

bath temperature is low, i.e., Tbath = 12.5 K, the fit values of T at low densities are

(a) (b)
25 0

20 f-
0 12.5 K 0 o 12.5 K
o 22.5 K 2O o 22.5 K15 -2

15-3
101 -3 ___________

0 200 400 100 200 300 400
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Figure 5-12: Fitted values of polariton distributions as a function of pump power. Errorbars
indicate 95% confidence intervals from the fits. (a) Effective temperatures of polaritons for
bath temperatures Tbath = 12.5 K (blue points) and Tbath = 22.5 K (red points) at different
pump powers extracted by fitting the energy distributions (shown in Fig. 5-10b for the
12.5 K case) to the equilibrium Bose-Einstein model. The dashed lines indicate the helium
bath temperatures. (b) Reduced chemical potential a = p/kBTfit for bath temperatures
Tbath = 12.5 K (blue points) and Tbath = 22.5 K (red points) at different pump powers .

much higher than Tbath and at higher densities they settle to temperatures slightly

above Tbath, while for a bath temperature of Tbath = 22.5 K, the fitted temperatures

stay pinned to the bath temperature, within the uncertainty. The chemical potential

increases smoothly toward zero in each case as the density is increased. A similar

trend was also observed for all other bath temperatures.
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5.7 Phase Diagram of Bose-Einstein Condensation

of Polaritons

Now that we have well defined temperatures ranging over which thermal equilibrium

is established, it is straightforward to determine the phase diagram of polariton Bose-

Einstein condensation. In this section, we will describe how the total number of

polaritons is calculated, and how the threshold for Bose-Einstein condensation is

picked. The effective temperatures of polaritons at the threshold are also examined.

With well defined temperatures and total polariton numbers, the phase diagram of

Bose-Einstein condensation is for the first time measured experimentally.

5.7.1 Computing Ntot in the trap

Since the polaritons are well characterized by the fits to Bose-Einstein distributions,

we obtain the total number of polaritons by extrapolating the fitted distributions

N(E) of polaritons as shown in Fig. 5-11 and 5-10(b) to high energies, and then inte-

grating over the energy, and multiplying by the density of states, using the standard

formula

/E=20 meV

N t N(E)D(E)dE (5.7)

with density of states defined as

D(E) = 2wh2  (5.8)

where A is the area of the trap, mLP is the effective mass of the lower polariton, and

g = 2 accounts for the spin degeneracy of the polaritons. E = 20 meV is used for

the upper bound of integration so that the energy distributions above E = 20 meV

are negligible. Fig. 5-13 shows the deduced occupation number from Eq. (5.7) as

the pump power is increased, using the fit values of T and p in N(E) at each pump

power, for the case of bath temperature Tbath = 12.5 K.
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Figure 5-13: The effective temperatures of polaritons Tfgt (blue) and total number of polari-
tons Net, (red) at different reduced chemical potentials at a bath temperature of Tath = 12.5
K. The vertical dashed line indicates the threshold of the Bose-Einstein degeneracy, i.e.,
-plkBT = In2.

5.7.2 Defining the threshold of Bose-Einstein condensation

Defining the threshold for Bose-Einstein condensation in a two-dimensional system

with a flat potential is problematic, because unlike the three-dimensional case, the

density of states is flat in two dimensions, and the energy distribution NBE(E) given

by Eq. (5.6) evolves continuously into one which is sharply peaked at E = 0 as

density increases. We can define the threshold for crossover from classical to Bose-

Einstein statistics as the case when N(0) ~ 1, or we can define the threshold for

condensation, or quasi-condensation, when N(0) >> 1, e.g., N(0) - 10. Whichever

threshold for N(0) we pick, Eq. (5.9) implies the same scaling law, namely that the

total number Nt,1 at the critical threshold will be proportional to the temperature T.

This is equivalent to a dimensional analysis of the onset of quantum effects when the

thermal de Broglie wavelength AT is comparable to the average interparticle distance

r., which for a two-dimensional system is

m 2
r. ~ n-1/2 ~ AT ~ T. (5.9)
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and therefore n oc T.

To determine the the phase diagram, i.e., to check the scaling law in Eq. (5.9), we

want to plot the total number Nt,, at critical threshold as a function of the fit value

of T at the threshold. The values of Net, were obtained from Eq. (5.7), and plotted as

a function of p/kBTfit in Fig. 5-13 for the data at a bath temperature of T = 12.5 K.

We define the threshold of quantum degeneracy as the onset of Bose amplification,

i.e., N(kji = 0) = 1. This corresponds to a value of 1 /kBT = - In 2, shown by the

black dashed line in Fig. 5-13. For a given bath temperature, the critical temperature

TBE and the critical polariton number NBE are then picked to give the value that is

closest to the black dashed line. This also defines the threshold pump power, PBE,

as the laser power at which the polaritons reach the critical threshold for quantum

degeneracy.

5.7.3 Thermalization of polariton gas at critical point

Based on this methodology, NBE values were determined for a series of Tbath values

ranging from 10.0 K to 25.0 K. The fit values of T at the onset of Bose-Einstein

statistics are plotted in Fig. 5-14(a), showing the general trend of TBE slightly higher

than Tbath, as discussed earlier. The relative deviation is highest at lowest bath
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Figure 5-15: The fractions of polariton populations in the field of view as a function of bath
temperature for chemical potentials of a = 0.2a, (green), a = a, (blue), and a = 5a, (red),
with ac = - In 2 being the critical value of Bose-Einstein condensation.

temperature, when the heat capacity of the sample is lowest, allowing the local sample

temperature to rise more due to the laser heating.

The phase diagram of the Bose-Einstein condensation, i.e., the relation of NBE to
TBE is shown in Fig. 5-14(b). The black line is the best fit of a linear proportionality.

Within the uncertainty, the data are consistent with a linear increase T in threshold

with NBE, consistent with the expected phase boundary of a weakly interacting boson

gas in two dimensions implied by the relation Eq. (5.9). This line can be viewed as

a phase boundary: above the line, the gas is quantum-degenerate, and below it, the

gas is classical.

5.7.4 Replot of phase diagram

Figure 5-14(b) shows the phase diagram deduced by fitting the N(E) data to a Bose-

Einstein distribution, and then integrating the fit curve using Eq. (5.7). This method

allows us to account for the high-energy tail of the particle distribution which extends

outside of our detected range, due to the fact that high-energy states correspond to

high k11, which give light emission outside the numerical aperture of our collection lens.

This correction is highly necessary because the fractions of the polaritons that remain
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outside the numerical aperture are not negligible. Figure 5-15 plots the fraction of

polaritons in the field of view defined in Eq. (5.10).

_ fEmax N(E)dE
=0 (5.10)

f0 N(E) dE

The fraction outside our field of view is particularly high for low densities and high

temperatures when the polaritons have broad energy distributions. About 30% of the

polaritons would be missed if the correction were not performed. Figure 5-16(a) plots

the phase diagram with Nt,, computed from summing the CCD counts per second

defined below in Eq. (5.11)

Nint = i (5.11)

where Ni, ri and Mi are the CCD counts per second, the lifetime of the polariton

state, and the density of k states at pixel i, respectively. accounts for the overall

optical efficiency of the collection setup, including the loss in the dispersive grating

and the quantum efficiency of the CCD. The black line is the best linear fit y cx x. As

can be seen, this plot deviates from linearity. The deviation is a result of the change

in the fraction of polaritons in the field of view at different temperatures.

Figure 5-16(b) shows a correction to Fig. 5-16(a), using the integrated CCD counts

within the field of view, but adding a correction for the high-energy tail outside our

field of view, based on the fits to the Bose-Einstein distribution. The particle numbers

plotted in Fig. 5-16(b) are therefore

gmS E=20 mev

Nhot = Ni t + N(E)dE (5.12)

21h max hemxmmeegintefedo
where Nist is determined using Eq. (5.11), Ema is the maximum energy in the field of

view, and the temperature and chemical potential in N(E) are taken from the fitted

values of Bose-Einstein distributions. The polariton population beyond the upper

bound E = 20 meV of the integration is negligible. The black line is a fitted linear

relation. The difference is negligible compared to Fig. 5-14(b), which is not surprising
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Figure 5-16: Phase diagram of polariton Bose-Einstein condensation with NBE including
only polariton populations in the field of view (a) and with NBE corrected for the polariton
populations outside our field of view (b). Horizontal errorbars are from the fits, and vertical
errorbars are calculated from uncertainties in temperature, chemical potential and photon
counting.

because the fits to the Bose-Einstein distribution fall closely on top of the data at

all temperatures. Compared to Fig. 5-16(a), the linear proportionality is improved

because of the inclusion of polariton populations at high energies which are outside

of our field of view.

5.7.5 Quantitative measure of degree of thermalization

We define the degree of thermalization as

NC
DOT = it (5.13)

where Nfit is total number of polaritons in the field of view implied by the fitted

distribution. The superscript c indicates the values of N chosen at the critical point

of Bose degeneracy. This quantity can also be used as a quantitative measure of the

overall quality of Bose-Einstein fitting. Figure 5-17 plots the DOT at the critical

threshold p/kBT = -ln 2 for the data shown in the phase diagram. As can be

seen, this factor varies within 5% for most of the temperatures. This confirms full
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Figure 5-17: Degree of thermalization at different bath temperatures. Errorbars are calcu-
lated from uncertainties in fitted temperature, chemical potential and counting photons.

thermalization of the polariton gas in the range of studied temperatures. The slight

increase in the DOT might come from the temperature-dependent emission rate of

polaritons, which was not taken into account in the current data analysis routine.

The DOT can also be interpreted as a check of the number of polaritons in the field

of view. We can also perform the check in the following way. Similar to the previous

way, we compared the values of N(E) from our fits to the Bose-Einstein distribution

to independent data for the occupation number obtained from estimating the total

photon emission rate. The process for obtaining the latter was as follows.

1. A laser light with known power was sent through a pinhole at the sample plane,

and the total CCD counts per second corresponding to this were measured.

This gave a factor defined by dNCCD/dt = dNphot/dt.

2. The density of k-states for the trap was calculated from the trap size, assuming

a flat potential, as N, = gAkAk,(A/(27r) 2 ), where A is the area of the trap

and g accounts for the spin degeneracy.

3. With the spectrometer imaging the k-space (Fourier) plane, the range AkAky

per pixel was estimated from the polariton dispersion in the photonic limit,

where the effective mass of the cavity photons is known, giving the energy as a
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function of in-plane k. This was cross-checked with estimates based on the ray

geometry of the lens system which mapped emission angles from the sample to

off-axis lateral shifts in the Fourier plane, as discussed in Chapter 4. The ranges

Ak/.k. per pixel from these two methods agree within our level of uncertainty.

4. The rate of photon emission was related to the total number of polaritons N in

steady state using the relation dN/dt = N/T, i.e., N = (dN/dt)r, where r is

the radiative lifetime of the polaritons, calculated using the Hopfield polariton

coefficients discussed in Chapter 3.

The occupation number can then be estimated, independent of the fits, as

N(E) = (dNcCD /dt)(21r) 2 r
gAAkLAky

= dNCCD (5.14)
dt
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Figure 5-18: Comparison to the critical density using fitted distributions (Nfit) and using
photon counting (NOunt). Errorbars are calculated from uncertainties in fitted temperature,
chemical potential and counting photons.

Because several of these numbers are estimates, there is some uncertainty in the

overall multiplier C which takes into account all of these factors. On the other hand,

the values of N(E) from fits to the Bose-Einstein distribution do not have any overall

multiplier, with their absolute value set by the values of chemical potential p. The
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factor C was adjusted for best fit of N(E) to the CCD data, but had to be the same

for all data sets taken with the same optical setup. Figure 5-18 shows the ratio of the

value of C used for the fits to the nominal value of C obtained from photon counting

using Eq. (5.14) at various temperatures in a single experimental run. As seen in

this figure, the predictions from the fits and the predictions from the photon counting

estimate fell within the range of uncertainty of the photon counting method in every

case.

5.8 Outlook and Conclusions

It has been a longstanding assumption that Bose condensation effects seen in polari-

ton systems are a direct result of the quantum nature of the system when r, - AT,

but up to now it has not been possible to directly test this. By using high-quality

microcavities with lifetimes over an order of magnitude longer than those of previous

samples, polaritons in a two-dimensional flat optical trap are seen to unambiguously

show thermal Bose-Einstein statistics. This clearly distinguishes polariton condensa-

tion from the conventional lasing effect in semiconductor materials.

Now that we have samples in which true equilibrium can be established, new ex-

periments are possible to test theoretical predictions of interacting Bose gases which

have been elusive in cold atom experiments. For example, studies can be conducted

of the excitation spectrum of the interacting Bose gas, and of the crossover from

2D to 1D equilibrium which can be controlled by spatial shaping of the excitation

light to make tailored potential energy landscapes. Characteristics of the nonequi-

librium state can also be studied systematically by varying the cavity detuning to

control the polariton interaction strength and by varying the excitation profile to en-

gineer the potential landscape. Dynamical relaxation into the equilibrium state can

also be studied by using pulsed rather than c.w. excitation followed by time-resolved

measurements, as well as the coherence properties as the system passes through the

Berezinsky-Kosterlitz-Thouless transition. The results are also encouraging for appli-

cations in quantum simulation of condensed matter system that exploit equilibrium
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BEC properties.
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Chapter 6

Direct Measurement of

Polariton-Polariton Interaction

Strength

Excitons have been at the heart of semiconductor physics. In energy-harvesting sys-

tems such as the leaves of a green plant, when a photon of sunlight is absorbed by

a chlorophyll molecule, the solar energy is converted into the excited state of the

molecule, forming an exciton. Excitons then transport energy between molecules in

the leaf, and ultimately mediate the conversion of sunlight into electric energy. Ex-

citonic devices have emerged as new interconnect technologies between traditional

electronic and photonic devices, and present a great pontential advantage over their

traditional counterparts because the zero net charge allows excitonic devices to oper-

ate without the resistive-capacitive delays that retard conventional electronics. Exci-

tonic switches at high speeds have already been demonstrated in AlAs/GaAs coupled

quantum wells [5]. Excitons also play very important roles in the fundamental un-

derstanding of semiconductors, laying the foundation of high-order complexes such

as biexcitons and triexcitons. Topologically protected excitons in thin films have also

been predicted as novel candidates that could permit scattering-free propagation for

long distances [187].

The observation of quantum condensation at room temperature with microcav-
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ity polaritons presents great opportunities in exploiting polaritons as model sys-

tems to study both many-body physics and macroscopic quantum coherence. Ob-

servations such as higher-band p- and d-wave condensates in periodic potentials

[152, 149] offer the possibility to study fundamental many-body interactions in high-

temperature superconductivity with microcavity polaritons. Predictions of the quan-

tum blockade regime in dilute polariton systems have gained significant attention

[188, 189, 190, 191]. This effect would allow us to exploit the fascinating prop-

erties of polaritons in integrated quantum light sources [192, 193, 194], sources of

entangled and indistinguishable photons [195, 196, 197, 198, 199, 200, 201], and to

generate polariton number states in microcavity traps, paving the way for the study

of quantum phase transitions and Bose-Hubbard physics with light. Furthermore,

the light-matter dual nature of polaritons has been exploited in realizing all-optical

circuits. The past decade witnessed the demonstration of exciton-polaritonic devices

such as spin switches [10] and optical transistors [105].

While many of the effects depend crucially on the role of the interactions among

underlying excitons and polaritons, the experimental determination of the interac-

tion strength is notoriously difficult. In this Chapter, we will discuss the first direct

measurement of polariton-polariton interaction strength. We will first review pre-

vious attempts in determining the exciton-exciton interaction strength as well as

polariton-polariton interaction strength in Section 6.1. By using the high-Q micro-

cavity structure, we were able to allow polaritons to propagate away from the pump

region. The conditions for the complete separation between the polaritons and the

exciton reservoir are carefully examined in Section 6.2. In Section 6.3, we discuss

the spatial and spectral profiles of trapped polaritons in the center of the annular

potential profile. In order to determine the interaction strength, the density of po-

laritons in the field of view has to be carefully calibrated. Two ways to compute the

density of polaritons are presented in Section 6.4. The measured interaction strength

between polaritons is discussed in Section 6.5. The measured quantity is two orders

of magnitude greater than previously expected, and is manifested at high densities

through the saturation of the energy shift as a function of density, which was covered
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in Section 6.6. We conclude the chapter by a discussion of possible mechanisms that

could contribute to the large values obtained in our measurements.

6.1 Previous Attempts in Determining Exciton-

Exciton Interaction Strength

In this section, we will briefly review the difficulty involved in determining the exciton-

exciton and polariton-polariton interaction strengthd, as well as previous attempts in

the study of the interaction strengths.

6.1.1 Direct Measurement of Exciton-Exciton Interaction En-

ergy

The main complication in the experimental measurement of exciton-exciton interac-

tion strength is the calibration of the exciton density. On the one hand, generating

excitons involves absorption of photons with uncertainties in the absorption coef-

ficient and in the efficiency of exciton formation. On the other hand, given their

shallow energy dispersion (energy varies by ~10 ieV within 5 pm- 1), most excitons

can easily scatter with acoustic phonons or collide with each other, and become non-

luminescent. In general, the overlap of the excitonic region of the spectrum with

other electronic states such as electron-hole plasmas, biexcitons and trions makes it

difficult to identify purely excitonic signal.

In order to avoid the density calibration, Voros et al. [202] suggest the determi-

nation of exciton-exciton interaction strength through the relationship between the

energy shift A and spectral linewidth F approximated as

A E = gn (6.1)

r = 47rg2nD(E) (6.2)

where g is the interaction strength, n is the density of the excitons, and D(E) is the
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density of states per unit area at the average thermal energy. In a two-dimensional

system, the density of states is constant and equal to m/7rh. Since both quantities

are linear with density, the ratio of the two will be independent of density. By using

a high-quality sample with extremely low inhomogeneous broadening and disorder,

Voros et al. were able to measure the linewidth as a function of energy shift to a high

precision. A spatial trap induced by mechanical strain was applied to the microcavity

sample, leading to the formation of a confinement potential of 3 meV in 500 Jim. The

spatial trap not only prevented excitons from diffusing out of the field of view, but

also reduced the nonradiative decay significantly. Figure 6-1 shows typical spatially

resolved spectra at different densities, taken at times long after a quasi-c.w. laser

pulse. The change in the emission energy is a result of the decrease in the exciton
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Figure 6-1: Figure adapted from Ref. [202]. Spatially resolved luminescence spectra from
indirect excitons in coupled quantum wells at T = 5 K, confined in a two-dimensional trap,
at different waiting times after the initial photoexcitation.

density due to exciton recombination. By extracting the spectral linewidth and energy
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shift at different times from Fig. 6-1, a nonlinear dependence was observed, as shown

in Fig. 6-2. By taking into account the many-body correlations of the excitons,

Voros et al. were able to reproduce the nonlinear dependence to a high precision,

shown as the solid fits in the figure. However, the calculations had to be made using

explicit assumptions in the form of many-body correlations, thus complicating the

determination of the exciton-exciton interaction strength g.
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Figure 6-2: Figure adapted from Ref. [202]. Half width at half maximum of the exciton

luminescence line as a function of the spectral shift at two temperatures. The solid lines

are fits of the theory discussed in the text to the experimental values.

6.1.2 Measurement of Exciton-Exciton Interaction Energy

through Polaritons

The difficulty in calibrating the density of interacting particles can be avoided by

resonantly coupling excitons in quantum wells (QWs) to confined photon modes in a

very high-Q planar microcavity, forming exciton-polaritons. The deep dispersion of

exciton-polaritons, as can be seen in Fig. 3-12, prevents polaritons from undergoing

non-radiative decay through scattering with optical phonons. However, experimen-

tal determination of the polariton interaction strength has been nearly as difficult.

The main challenge in previous experiments for measuring the polariton-polariton

interacting strength has been to establish the absolute density of the polaritons in-
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dependent of any excitons or free carriers that may be present. When the polaritons

are generated by non-resonant laser excitation, not only polaritons but also bare ex-

citons are created. This leads to a population of excitons of unknown density. If

structures with short lifetime (ca. 2 ps) are used, the polaritons do not travel far

from the cloud of excitons. Therefore, when a shift of the energy of the polariton

state is observed, it is not possible to determine how much of this shift is due to

direct polariton-polariton interaction and how much is due to polariton-exciton inter-

action. In principle, there may also be free carriers created near the laser excitation

region, which also interact with the polaritons. Furthermore, the non-resonantly gen-

erated polaritons ballistically escape away from the pump region, and some fraction

becomes non-luminescent. Alternatively, if polaritons are created resonantly, they

typically have a highly non-equilibrium and coherent distribution that does not allow

easy extraction of the energy renormalization of the particles.

In order to localize polaritons spatially, Ferrier et al. [154] formed a semi-infinite

potential barrier for polaritons as shown in Fig. 6-3. Repulsive interaction with the

excitonic reservoir is responsible for condensation in the optical trap formed between

the excitation area and the wire end. The separation of the exciton reservoir from

polaritons was claimed to be realized upon the formation of the condensate since

the real-space distribution of the condensates narrows. By measuring the shift of the

lowest energy polariton state in the semi-infinite optical trap, the interaction strength

between polaritons was extracted to be g = 9 iieV -pm2 . The results are summarized

in Fig. 6-4. The black squares are the measured energy shift at different pump

powers. By assuming the measured energy shift at low powers comes exclusively from

the polariton-reservoir interaction, and the shift is linearly dependent on the pump

power, shown as the red dashed line, the blue shift as a result of polariton-polariton

interactions was taken as the difference between the black curve and the red dashed

curve, and is shown as the blue curve. Clearly this measurement suffers from several

weaknesses. First, the interactions among condensed polaritons are assumed to be

the same as those among normal polaritons. Second, the linear extrapolation of the

energy shift as a function of pump power needs to be carefully justified. Furthermore,
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Figure 6-3: Figure adapted from Ref. [154]. Spatially and spectrally resolved emission of a
microwire excited 15 pm from its end for P = 3 Pth. White lines: Calculated polariton states
confined by the potential shown in white dashed line which includes interaction with the
excitonic reservoir. Inset: Scanning electron micrograph of the microwire with schematic
representation of excitonic reservoir in dashed blue. (b) Same as (a) for P = 30Pth-

polaritons do not reach spatial equilibrium, and possibly lack of thermal equilibrium

as well. The role of confined condensates states in the energy shift is not obvious.

6.2 Separating Polaritons from Exciton Reservoir

We used the very high-Q microcavity under non-resonant excitation. The high Q im-

plies long polariton lifetime, 200 ps or longer, which allows the polaritons to propagate

well away from the laser excitation region. By propagating polaritons to the center of

a sufficiently big optically induced annular trap, we can separate polaritons from the

population of free carriers and hot excitons. The polariton interaction strength can

then be extracted from the spectral data at the center of the trap. In this Section,
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Figure 6-4: Figure taken from Ref. [154]. Measured blueshifts of the lowest energy polariton
state in an semi-infinite optical trap with a diameter of 15 jim.

we will present a detailed discussion of how the polariton signal is isolated.

6.2.1 Determining the diameter of the annulus

The annular trap in this work was formed by irradiating a spatial light modulator

(SLM) with the axicon phase imposed on the surface. The excitation beam is from

an MSquared continuous wave (c.w. ) laser, as discussed in Chapter 4. By changing

the spatial periodicity of the axicon phase pattern, a ring with a diameter in the

range of 30 - 100 pm can be created on the sample surface. In order to completely

separate polaritons from the exciton reservoir, the size of the ring has to be sufficiently

big. It is well known that excitons can propagate up to 100 nm in typical inorganic

[203, 204] and organic systems [205, 206]. This limited range of propagation is also the

main obstacle for an optical transient grating measurement of the exciton diffusion

length in these systems. Therefore, a ring with a diameter of 50 Pm should well

serve this purpose. Nonetheless, a careful determination whether excitons from the

pumping region diffuse into the field of view has been carried out. Figure 6-5 shows

the energy shifts for the ground state of the lower polaritons for different sizes of

the ring trap when the density of the polaritons in the field of view is 1.2 pm 2

(kept constant by keeping the photon emission intensity of the polaritons constant)
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at a cavity detuning of 6 = -0.14 meV. As can be seen, when the trap size is

greater than 25 plm, corresponding to a distance of 12.5 pm from the generation region

on the perimeter to the center of the trap, the energy of the ground state remains

almost the same, which confirms that the energy renormalization only comes from

the contribution of polariton-polariton interactions in the center of the trap, where

excitons do not exist. On the other hand, when the trap size is smaller than 15 pm,

the blueshift is twice the amount we obtained from a big trap, because the edges of

the pump region leak into the field of view. This also emphasizes that a long-lifetime

microcavity is necessary in order to obtain clean blueshifts in a large trap.
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Figure 6-5: Blue shift of the k= 0 state for different ring trap sizes at the cavity detuning
of J = -0.14 meV when the density of the polaritons in the center of the trap is n =

1.2 pm 2 . The errorbars are standard deviations of estimated energy shifts.

The upper bound of the diffusion length of the incoherent excitons generated from

non-resonant excitation has also been measured using a single excitation spot in a

different trapping geometry. An excitation laser with a Gaussian intensity profile

with a FWHM of approximately 8 pm was used to excite the microcavity sample to

generate a population of incoherent excitons as well as polaritons, using the same

non-resonant excitation method as for the ring generation discussed above, but in a

stress-generated trap of the type presented in Ref. [34]. Figure 6-6 shows the PL of

the lower polaritons with k1l = 0. At the excitation region around x = 0, the detuning
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is 6 = 2.3 meV. The red dashed line corresponds to the sum of the single-particle

energy of the lower polariton at low density in this region, found by measuring the

kii =0 PL energy at a very low density, and a fit of emission energies to a Gaussian
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Figure 6-6: kii ~ 0 polariton energies under a Gaussian-shaped spot excitation at a cavity
detuning of 6 = 2.3 meV in a stress trap. The red dashed line is a sum of the bare single-
particle energy and a fit to Gaussian profile y = A exp(-x2 /Ax 2 ), with the diffusion length
of the excitons and free carriers determined from the fit as Ax = 7.5 pm. The lattice
temperature was approximately 8 K.

profile A exp(-x 2/AX 2 ). The fitting gives a FWHM of 7.5 pm and a height of 7.2

meV. Because the generation of the polaritons is done at a single spot in this case,

the excitation density must be much higher to get a number of polaritons in the trap

comparable to the ring generation case. In the case shown in Fig. 6-6, the polariton

density is still below the condensation threshold, but the blue shift at the excitation

spot is much larger than that of the excitation ring region for the experiments reported

here; the blue shift of the excitation region was at most 4 meV in the experiments.

The diffusion of the excitons can be seen from the energy shift of the polaritons in

the vicinity of the excitation region. At x = 10 pm, the blue shift of the polariton

energy reduces to 0.2 meV. Based on this, the upper bound of the exciton diffusion

length was estimated to be 5.3 pm. At regions that are >20 pm away from the center

of the excitation region, the energy shift of the polariton ground state is negligible.

This confirms that the exciton reservoir at the pump region does not leak into
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the center of the trap where the energy shift data will be determined. Although

this experiment with a single spot in a stress trap does not have conditions identical

to those of the laser-generated ring trap, it should overestimate, not underestimate,

the effect of diffusion of the excitons. First, the density at the excitation spot was

higher, as evidenced by the much stronger blue shift, so the pressure pushing excitons

outward should be stronger. Also, the lattice temperature was lower, which should

give a higher exciton diffusion constant.

Based on this observation, we choose an annulus with a diameter of 42 pm for the

further experiments. A real-space image of the excitation profile is shown in Fig. 6-

7. The dashed circle in Fig. 6-7(a) and the dashed line in Fig. 6-7(b) indicate the
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Figure 6-7: (a) The real-space image of the laser reflection, which is a ring with a diameter

of 42 pm. The white dashed circle indicates the region where the photoluminescence (PL)

is collected. (b) The white solid line is the cross section of the y = 0 slice that is selected

by the entrance of the imaging spectrometer and then energy-resolved. The white dashed

line indicates the position of the pinhole.

collection region defined by a spatial filter placed at the reconstructed real-space plane

downstream. The y = 0 slice was selected by the spectrometer slit and then spectrally

dispersed to get the emission energy. Fig. 6-7(b) shows the intensity profile of the
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y = 0 slice. We also measured the integrated light intensity in the collection region

with and without a neutral density filter, and determined that the light intensity in

the collection region is -2000 times smaller than that in the pumping region. This

is crucial to the quality of the measurement, for otherwise, light in the collection

region can create excitons and free carriers which can lead to an additional shift of

the polariton energy. As discussed below, typical energy shifts of the polaritons in the

collection region are about 10% of the energy shift in the pumping region. Assuming

that the exciton density is proportional to the pump intensity, the energy shift of the

polaritons in the collection region cannot come from the excitons.

6.2.2 Trapping polaritons in the center of the annulus

The potential profile induced by the annulus pumping was examined by applying

k-space filtering with an iris at the Fourier plane of the objective. Typical spatially
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Figure 6-8: Blue shift of the kIj = 0 state at the pumping region in an annular trap with a
diameter of 35 pm as a function of pump power for 5 = 1.06 meV. The slope of the emission
energy is a result of cavity wedge.

and spectrally resolved emission was shown in Fig. 4-9(d). By fitting each vertical

slice I(E) in the figure to a Gaussian function I = A exp(-(E - EO) 2 /20 2 ) + B with

free parameters A, E0 , a and B independently, and taking the fitted EO for all the

different positions as the potential profile, the resulting plot is shown in Fig. 6-8 for
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different pump powers. As is seen, the potential profile around x = 0 is nearly flat in

all the densities, due to the polariton population finding a common chemical potential

in equilibrium. Meanwhile, the height of the barrier increases as the pump power is

increased. The slope in the potential profile is a result of the spatially varying cavity

width.

The accumulation of the polaritons in the center of the trap can be seen in Fig. 6-

9. It shows the energy shift at the pump region with a diameter of 35 pm for different

pump powers, but all below the condensation threshold, so there is no condensate.

The polariton density is significantly higher on the left side of the trap, as a result

of optical trapping. The fact that the blue shift is asymmetric, larger inside the

trap than outside it, is further evidence that it does not arise from exciton diffusion.

Exciton diffusion from the generation region should be symmetric, as excitons flow

both inward and outward. The density of polaritons is not expected to be symmetric,

unlike the excitons, because polaritons stream away from the barrier when there is

no trap [140], while they accumulate in the trap when there is an energy minimum to

collect them. The total number of polaritons as a function of pump power in the field
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Figure 6-9: Blue shift of the k= 0 state at the pumping region in an annular trap with a
diameter of 35 pm as a function of pump power for 6 = 1.06 meV. The slope of the emission
energy is a result of the cavity wedge. The left edge of the plot is toward the center of the
trap.

of view, indicated by the dashed circle in Fig. 6-7(a), is plotted in Fig. 6-10(b). As
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is seen, the measured number of polaritons increased linearly with pump excitation

density in the low-density regime below the condensation threshold.

6.3 Interactions of Polaritons inside the Trap

6.3.1 Energy shift of k1l = 0 states at different intensities

Under the mean-field approximation, at low particle density, the blue shift of the

ground state energy is linearly dependent on the particle density n, i.e.,

AE = gn (6.3)

where AE and n are the blue shift and particle density, respectively. In the absence

of many-body correlations, the slope g is density independent.

In order to determine the energy shift of the ground state, we spectrally resolved

the emission in the field of view and imaged it to the far-field geometry to obtain the

dispersion relation. Figure 6-10(c) shows a typical energy-resolved emission pattern

in the far-field geometry at low excitation power, and Fig. 6-10(d) shows a case

of high excitation power, but below the condensation threshold. As can be seen,

the ground state polariton energies, indicated by the horizontal dotted and dashed

lines, are blue shifted due to repulsive interactions among polaritons. In order to

determine the ground state energy at zero excitation density, we linearly extrapolate

the measured blue shifts to zero density. All the blue shifts are then reported with

respect to this energy. As shown in Fig. 6-10(a), the blue shift increases linearly

with the polariton density, agreeing with the mean-field theory. This confirms that

the interaction strength g does not depend on the density of the polaritons in this

regime.
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Figure 6-10: (a) Blue shifts of ground state energies at different polariton densities at a

detuning of J = 6.29 meV. (b) Polariton number in the field of view at different pumping
powers. (c)-(d) Typical energy-resolved dispersions corresponding to the data points in-

dicated by the green square (c) and blue diamond (d) in (a), both at low densities when

there is no condensate. The dashed lines are the assigned energies of the ground state of

polaritons.

6.3.2 Spectral profile of kl = 0 states at different intensities

There is also a Lorentzian spectral broadening which arises from the interactions. To

a good approximation, when there is no condensate, this spectral broadening can be

seen as simply the uncertainty energy given by AE = h/At, where At is the average

incoherent scattering time. This broadening also gives a measure of the polariton-

polariton interaction strength. At low density, the emission profile deviates away

from the Lorentzian profile and resembles the Voigt profile, which accounts for the

disorder-induced inhomogeneous broadening, as discussed in the following.

The emission profiles at kii = 0 at different excitation densities for the detunings

in Figs. 6-10 are shown in Fig. 6-11 to 6-17. The background signal is not subtracted,
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and the solid lines are the fit to a Voigt lineshape, given by

V(E; a, y, E0 , A, c) = A j G(E'; a, Eo)L(E - E; -y, Eo)dE' + c (6.4)

where G(E; a, EO) is the Gaussian profile

e-- (E-Eo )2/20.2

G(E; a, Eo) (6.5)

and L(E; 'y, EO) is the Lorentzian profile

1 -y
L(E; y, EO) - , (6.6)7r(E - EO)2 + y2

A is the amplitude of the profile, and c is the baseline. In the nonlinear regression,

the Welsch weight of the form

w = exp(-r 2) (6.7)

is applied with a default tuning constant of 2.985 in order to increase the robustness

of the fitting. Here r is the normalized residual, and w is the robust weight. As can be

seen, the emission profiles are well captured by the Voigt lineshape at all densities and

detunings. We also plot the fitted linewidths o and -y next to the emission profiles.

The superimposed solid lines are best fits to a linear dependence. As can be seen, the

homogeneous linewidth -y shows a strong density effect because the increase in the

polariton density leads to more frequent collisions, and it is also reduced in magnitude

when the detuning is negative where polaritons have high photonic components. On

the other hand, the inhomogeneous linewidth a remains approximately the same in

the range of densities and detunings used in the measurements.
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Figure 6-11: (a) Energy emission profiles at ki = 0 at different excitation densities for the
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Figure 6-12: For the same conditions as Fig. 6-11 but with a the detuning of S = 6.29 meV.
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(a) (b)

300

250

200

150

1598 1599 1600 1601
Energy (meV)

0.18

0.16

0.14
E
:S 0.12

a)
.S 0.1

0.08

0.06

1602 1603 0 0.5

Figure 6-14: For the same conditions as Fig. 6-11 but with a the detuning of J = 0.65 meV.

(a) (b)

600

500-

400-
C

300-

200

1596 1597 1598
Energy (meV)

0.18

0.16

9 0.14

0.12

0.1

0.08

0.06

0.04

1599 1600 0 2 3 4
Polariton density (Am 2)

Figure 6-15: For the same conditions as Fig. 6-11 but with a the detuning of S = -2.07
meV.

186

* 'Yly

0 n = 0.50 g-

0 n = 0.87 g-

0 n = 1.25 g-

0 n = 1.78 pm

0 n = 1.98 m-2.

Co
Ca
C

-I
- TT T j4 4

- L

1 1.5
Polariton density (im 2)

o n = 0.38 pm-2

o n=178 mm-2

0 n = 2.44 Am~
2

o n = 2.77 m

o n = 2.91

0 0

2.9 .m

12

Y

(a) (b)

1604

1



(a)

1588.5 1589 1589.5 1590 1590.5 1591
Energy (meV)

Figure 6-16: For the same conditions as Fig.
meV.

o n=0.23 W

o n = 0.90 g
o n = 1.19 g

o n = 1.66 W
0 n = 2.88 g

1584.5 1585 1585.5 1586 1586.5
Energy (meV)

m-
2

M-
2

m-
2

m-2

M-

0.2

0.15

a
E

V

a
C

0.1

0.05

0

0 0.5 1 1.5
Polariton density (pm~

2

6-11 but with a the detuning of 6 = -10.11

(b)

0.18

0.16

0.14
*
5 0.12

0.1

- 0.08

0.06

0.04

1587 0 1
Polariton density (im-2

3 4

Figure 6-17: For the same conditions as Fig. 6-11 but with a the detuning of 6 = -15.49
meV.

187

1400

1200F

o n-=O019 pm-
2

o n= 1.00 m
2

o n=1.51 pm
2

o n 1.66 pm-
2

o n= 2.02 Im 
2

(h
Ca
C

1000-

800-

600-

400-

200

158

- * 5

-_

2

(a)

a

1000-

900-

800-

700-

600-

500-

400-

300-

200-

1584

1 1131 Iii 1

- fwtbfd

(b)

8



2.5-

2-

1.5-

0.5 -

0

50 0.2 0.4 0.6 0.8 1
Excitonic fraction x

Figure 6-18: Interaction strength extracted from the slopes of linear fits to the homogeneous
linewidth in Fig. 6-11 to 6-17. The red line is a fit to 'y Oc x2 .

6.3.3 Determination of interaction strength based on the emis-

sion linewidth

In Fig. 6-18, we plot the slopes of linear fits to the homogeneous linewidths in Fig. 6-11

to 6-17. As can be seen, the linewidths increase as densities increase because increased

density leads an increase in the collision frequency between polaritons, which is in

turn manifested through broadened linewidths. The red line is a fit to -y = ax 2 with

a = 2.09 t 1.06 meV-[pm2 , which quantitatively agrees with the interaction strength

deduced from the energy shift in the following. The quadratic dependence comes

from the fact that the polariton-polariton scattering is of two-body type.

6.4 Calibration of polariton density

Care was taken to ensure that the polaritons were nearly in spatial and thermal

equilibrium. The spatial distributions of the polaritons in a trap are nearly spatially

homogeneous as shown in Fig. 5-5. At high density when a condensate forms, there

is evidence of self-trapping into a central region of the laser-generated trap. The data

for detunings with significant exciton components have reasonable thermalization, as
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are observed in Chapter 5. When polaritons are very photon-like, the spatial and

energy profiles of the polaritons become quite inhomogeneous, but do not hinder the

determination of the interaction strength.

The greatest uncertainty in these measurements is the determination of the po-

lariton density, i.e., the total number of polaritons in the area of the field of view.

We used two methods and found consistency between them. The first was to care-

fully determine the absolute collection efficiency of our photon detection system, as

discussed in Chapter 4. The number of polaritons at a given momentum kII was then

deduced from the rate of photon emission knowing the cavity photon lifetime and

the photonic fraction of the polaritons at that k1l. Specifically, the total number of

polaritons in the field of view can be computed using

NLP Z M (6.8)

where Ni is the counts per second on the CCD in the measurement, rri is the lifetime

of polaritons, which is also angle-dependent, and and Mi are the optical efficiency

and the density of k states for pixel i, calculated in Chapter 4.

An independent check of the efficiency factor can be done by calculating the

number of polaritons from integrating over the Bose-Einstein distributions as shown

in Fig. 5-10(b) using

ginS fEmax
NLP = ]m N( E)dE (6.9)

27th2 f

where S is the area of the field of view and Emax is the upper bound of the energy

limit collected by the objective lens. From this way, we compute that the number of

polaritons in the field of view at a pumping power of P = 78 mW is NLP = 1058. By

using Eq. (6.8), we get a quantity of NLP = 1012, which is less than 5% different.

These methods give us an accurate calibration of the polariton density in the field

of view in the annular trap. More generally, we do not have to rely on the details of

the above calculations to get the approximate range of the polariton densities. We
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know that we measure the polariton spectra up to the condensation threshold (as

evidenced by the sharp spectral narrowing, discussed below and also reported in Ref.

[1401). Quantum effects will be important when the thermal de Broglie wavelength

is comparable to the interparticle spacing, i.e., when

2irh2

AT 7 kT =r= (6.10)
mkBT

where n is the particle density, and T is temperature of the particle. This implies

n ~ mkBT/27rh 2 ~ 4 x 107 cm- 2 near the condensation threshold, for kBT - 20 K and

the polariton mass given above. Note the critical densities derived from these three

different approaches are significantly smaller compared to what has been reported in

previous literatures, which is typically on the order of n = 10' cm-2. This suggests

that earlier experimental measurements significantly underestimated the interaction

strength of polaritons, by about two orders of magnitude.

6.5 Interaction strength of polaritons at low parti-

cle densities below the condensation threshold

In Fig. 6-19, we plot the measured blue shifts of the kl = 0 state as a function of

polariton density at four representative detunings. As expected, polaritons experience

higher blue shifts for excitonic detunings than for photonic detunings, since the energy

renormalization presumably comes from the excitonic constituents. The solid lines

show linear fits to the data using weighted least square estimates, as discussed in

Chapter 4.

Figure 6-20 shows the extracted slopes at different cavity detunings versus their

corresponding excitonic fractions. The interaction strength increases when excitonic

fractions in polaritons are higher. The standard theory predicts that the interaction
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Figure 6-19: Blue shifts of the ground state energies as a function of polariton density at

different cavity detunings. The solid points are measured blue shifts, the linear lines are fits

to AE = gn using weighted least-squares estimates. The errorbars are standard deviations

of estimated energy shifts.

between polaritons is governed by their underlying excitonic fractions x, given by

X = - (I + , (6.11)

where Q is the full Rabi splitting and 6 is the cavity detuning, defined as J = Ec(kl=

0)- Ex, where E, and Ex are the cavity and exciton energies, respectively. The exciton

fractions x are deduced for each data set from the effective mass of the lower polariton

dispersion using the formula x ~ 1 - mc/mLp, where m, is the bare cavity photon

mass, measured at very large photonic detuning (-22.5 meV). Since the interaction

of exciton-polaritons is presumed to come exclusively from their underlying excitonic

components, we fit the extracted slopes in Fig. 6-19 to a quadratic relation g = ax2,

as shown by the red line in Fig. 6-20. The dependence of the shift on exciton fraction

is clearly superlinear, which is another indicator that the shift is not arising from

polariton-exciton interactions; if interaction with excitons were the dominant cause

of the blue shift, the shift would be linear with exciton fraction.
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By extrapolation, the interaction strength in the limit of x -+ 1 is determined

as 0.44 0.11 meV.[m2 . This value is quite surprising, in that it is two orders of

magnitude larger than the absolute value calculated in Ref. [24], which has guided

many theoretical investigations of polaritons. This theoretical work suggests the

exciton-exciton interaction strength to be g - 6EBa2, where EB is the excitonic

binding energy, and aB is the excitonic Bohr radius. Using the typical values for

excitons in GaAs narrow quantum wells, namely EB ~ 10 meV and aB- 100 A,
gives g ~ 6 peV-ttm 2 . This, in turn, implies that the polariton gas is intrinsically

weakly interacting, as measured by the unitless parameter y = g/(h2/2m) ~ 0.01

[207, 208], using the effective mass of polaritons m - 10- 4 mo, where mo is the vacuum

electron mass. However, the measured interaction strength implies that the unitless

parameter for the strength of the interactions is y = g/(h2 /2m) - 1, which means

that the polariton gas cannot be treated by standard weakly interacting Bose gas

theory. In particular, it implies that many-body correlations will play an important

role at high densities.

The extrapolation to x - 1 seems to imply that not only polaritons, but bare

Wannier excitons also have this strong interaction. However, we note that in all the

measurements here, the effective masses of the particles was very light, comparable

to the polariton mass at resonance, as plotted in Fig. 6-21. The effective mass of the

polaritons were deduced from the Hopfield coefficients used, which were derived from

the detuning, as discussed above. It may be that the strong interactions seen here

depend crucially on the light effective mass of the polaritons, and therefore it may be

unwarranted to extrapolate this result to the pure exciton limit.

As noted above, the polariton-polariton interactions affect not only the blue shift

(real self-energy) but also the line broadening (imaginary self-energy). The Lorentzian

line broadening value of - 1 meV is also two orders of magnitude larger than what

would be expected for the nominal exciton-exciton interaction strength. Using the

semiclassical formula T-1 = notv, where n is the density, o -~ aB is the scattering cross

section, and V is the average thermal velocity. It gives r - 100 ps, or h/T ~ 0.01 meV

with typical values for microcavity polaritons n = 4 x 107 cm- 2 , a- = 100 Aand
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Figure 6-20: Measured interaction strength (g) as a function of excitonic fraction (x), which

is deduced for each data set from the effective mass of the lower polariton dispersion using

the formula x ~_ 1 - mc/mLP, where m, is the bare cavity photon mass, measured at very

large photonic detuning (-22.5 meV). Solid points are slopes extracted from Fig. 6-19. The

red line is a best fit to a quadratic dependence using weighted least-squares estimates. The

horizontal errors represent standard deviations of the calculated excitonic fraction using

Eq. (6.11), and vertical errorbars represent standard deviations of interaction strengths

from numerical fits.

V = 2 x 108 cm/s for T = 20 K. The measured Lorentzian broadening corresponds to

a polariton-polariton scattering time of less than 1 ps.

Furthermore, the interactions between polaritons are predicted to be spin-dependent,

and several experiments have studied this spin dependence. In the experiment re-

ported here, we assume that the polaritons are equilibrated into a mixture of both

spin states, and therefore the interaction strength we measure is an average value.

Because the interaction of polaritons is stronger for spin-aligned polaritons, we ex-

pect that our measured interaction strength will be dominated by the spin-aligned

contribution.
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Figure 6-21: Effective mass of the polaritons as a function of the detuning, where m 0 is the
vacuum electron mass deduced from the energy dispersions collected in a ring with a radius
of 42 Mm, corresponding to that in Fig. 6-19. Horizontal errorbars are standard deviations
of cavity detunings from numerical fits, and vertical errorbars are standard deviations of
calculated effective masses using the Hopfield formula.

6.6 Saturation of the interaction strength at high

particle densities above the condensation thresh-

old

Evidence of the importance of many-body correlations is seen in the behavior of

the blue shift at the condensation threshold. In Fig. 6-22, we plot the blue shift

of the ground state emissions at different polariton densities up to and above the

condensation threshold in an annulus trap with a diameter of 72 1um, for an excitonic

detuning of J = 4.31 meV. We also show the spectral width of the emission at kj = 0.

As discussed above, the condensation threshold is indicated by spectral narrowing.

At low densities, the blue shift scales linearly with the polariton density with a

slope of 0.91 0.13 meV.[tm 2 , consistent with the value expected for this detuning.

The linewidth of the emission also increases linearly with density because the larger

population leads to more frequent incoherent collisions, and then narrows due to the

emergence of coherence when condensation occurs. At the condensation threshold, the
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Figure 6-22: Measured blue shifts (blue circles) and spectral widths (red circles) of the

kii = 0 lower polariton emission as a function of polariton density at a cavity detuning of

5 = 4.31 meV in an annulus trap with a diameter of 36 pm. The straight line shows a linear
dependence.

blue shift of the polariton emission becomes strongly sublinear with density, following

a power law AE ~ n0-03. The simple mean-field prediction for a weakly interacting

Bose gas is that the shift should still be linear with density when it condenses, with

an overall slope that is reduced by a factor of two due to the nature of quantum

indistinguishability [209]. The fact that the shift is strongly sublinear points to the

importance of high-order correlations in the condensate regime, which have been

shown to have a significant role in strongly interacting gases [210].

6.7 Why Are Polaritons Strongly Interacting?

Given that the measured value of the blue shift is so much larger than the theo-

retical expectation, we consider possible ways that the measurement could be mis-

leading. First, one may ask whether excitons and/or free carriers generated by the

non-resonant laser may indeed be diffusing into the region where the polaritons are

observed. We are confident that this is not the case. As the diameter of the ring

trap is increased up to 100 pm, the blue shift at fixed density has a constant value
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independent of the trap radius, as seen in Fig. 6-5. If exciton or free carrier diffu-

sion were playing an important role, the blue shift at the condensate density would

depend strongly on the ring radius, as their diffusion length becomes much less than

the radius. Also, the exciton diffusion length has been directly measured, as seen

in Fig. 6-6 and Fig. 3(a) in Ref. [104], and is determined to be less than 10 pm.

Furthermore, it is also known that the diffusion length of the polaritons decreases

with increasing excitonic component as polaritons with higher excitonic components

have greater effective mass and stronger interactions with phonons. This will lead to

less exciton population far from the excitation region, while here we see that the blue

shift increases with increasing excitonic fraction.

6.7.1 Phase-space filling

A blue shift may arise from phase-space filling, which leads to a reduction of the Rabi

splitting between the upper and lower polariton branches. This is also predicted to

give shifts of order EBaB or less [211, 212], much less than what we observe here.

Band-gap renormalization due to heating (i.e., phonon population) is known to give

a red shift, not a blue shift, with increasing temperature.

6.7.2 Thermal up-conversion of free excitons

Another possibility is that the polaritons generate free excitons in the center of the

trap via thermal up-conversion. In this model, excitons are present in the center of the

trap, not due to diffusion from the laser excitation region, i.e., from the walls of the

ring trap, but from migration of polaritons by themselves, which then turn back into

free excitons by thermal excitation. For this to give the blue shift we see, assuming the

standard interaction strength, there would need to be two orders of magnitude more

excitons than polaritons. This would severely deplete the population of polaritons.

Also, this effect should be exponentially dependent on the splitting AE between the

polariton and exciton states, due to the Boltzmann e-AE/kBT factor, but in fact we

see even more blue shift than expected when the lower polaritons are very photonic,
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with large AE. We also see very little temperature dependence of the blue shift at

constant AE as the lattice temperature is changed, as discussed in the following.

The temperature dependence of the blue shift under typical conditions is shown

in Fig. 6-23. As seen in this figure, the shift at the pumping region is not strongly

dependent on the lattice temperature. This is evidence against the mechanism dis-

cussed in the main text which conjectures that the polaritons generate excitons due

to thermal excitation after they move to the center of the trap. Since a thermal ex-

citation process is exponentially sensitive to the temperature due to the Boltzmann

factor e-AE/kBT, such a process would be strongly temperature dependent.

Additionally, the weak dependence on temperature also indicates that exciton

diffusion from the generation region on the ring into the trap is not playing a major

role, because the exciton diffusion constant should also be strongly dependent on the

lattice temperature, with much higher diffusion at lower temperatures.

On the other hand, our experiments indicate that the blue shift at the Bose-

Einstein condensation threshold varies roughly linearly with temperature. This can

be understood as arising from the density dependence of the critical temperature of

the condensation threshold. In two dimensions, the critical temperature should vary

linearly with density. The mapping of the BEC threshold density as a function of

temperature has already been discussed in Chapter 5.

6.7.3 Energy shift from quantum confinement

Figure 6-8 shows the complete view of the barrier measured under the same condition

as in Fig. 6-9 with high k components filtered. As is seen, the potential profile around

x = 0 is nearly flat in all the densities, due to the polariton population finding

a common chemical potential in equilibrium. Meanwhile, the height of the barrier

increases as the pump power is increased. This could contribute, in principle, an

energy shift of the polariton states due to increasing quantum confinement in the

trap region. However, the contribution is negligible. Using the result from a finite-
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Figure 6-23: Blue shift of the kii = 0 state at the pumping region in an annular trap with
a diameter of 33 prm as a function of pump power for different temperatures, for J = -0.16
meV.

well potential, we have

E = (6.12)
L2M

where m is the mass of polariton, L is the trap diameter, and 71 is the solution to the

equation

C2
tan y7= - 1 (6.13)

with the trap strength being defined as

L 2m

2 h2 V (6.14)

and V is the height of the barrier. Plugging a typical parameter m = 9 x 10-5 mo,
L = 42 pm, and Vo = 2 meV, we find E = 10 peV. On the other hand, the measured
blue shift is typically on the order of 0.1 meV. Note that if we used a small trap,
of order 10 micron diameter, as in the experiments of Ref. [213], then the quantum
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confinement energy would be up to 20 times larger, and so could become comparable

to the interaction blue shifts.

6.7.4 Other possible mechanisms

Assuming that the above mechanisms are ruled out, we can ask what mechanism could

give us much stronger effective interactions at low density than predicted. One possi-

bility is that the nearby biexciton resonance [214] significantly affects the interactions.

We believe this is not the case, because the dependence of the interaction strength

on detuning is not especially strong. Another possibility is a mechanism involving

disorder, which has also been invoked as a way of explaining the larger-than-expected

blue shift in previous experimental results [215, 216]. In our experiments, the pho-

tonic disorder is very low, but the excitonic disorder is approximately 2 meV (as

measured by the inhomogeneous broadening of the bare exciton line). Jacob Taylor

[217] has suggested that disorder may cause the excitons participating in the polariton

states to be spatially correlated in "puddles" of much higher density than the average

polariton density. This view requires no change to the standard exciton-exciton inter-

action strength. It is supported by the observation that both the blue shift and the

Lorentzian line broadening are about 100 times larger than expected; both of these

depend linearly on the effective density. Lastly, it could be that polaritons are really

strongly interacting, and previous measurement is not incorrect. Polaritons have long

de Broglie wavelengths, up to 1 lpm, and the effective scattering cross section is much

larger compared to excitons due to field-mediated interactions. This could in prin-

ciple lead to much higher interactions compared to bare excitons. This might also

explain the fact that we see significantly higher blue shift values when x -+ 0, since

field-mediated interactions could dominate over Coulomb interactions.

6.8 Conclusions

In conclusion, we have directly measured the polariton-polariton interaction strength

by propagating polaritons to the center of a laser-generated annular trap. The inter-
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action strength is independent of polariton density in the low-density regime. The

measured value is two orders of magnitude larger than expected from prior theoreti-

cal calculations. The polariton-polariton interaction is effectively a X(3) nonlinearity

[218], and is an important parameter for the design and theoretical modeling exciton-

polaritonic optical devices. The large value measured here indicates that the efficiency

of these devices may be much greater than anticipated, at least in the low-density

regime. The saturation of the blue shift upon condensation calls for further theoretical

analysis, and is likely due to coherent many-body effects of the condensate.
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Chapter 7

Stable Mode Switching in

Polariton Condensates

Microcavity polaritons provide unique testbeds for the study and manipulation of

macroscopic quantum effects. Now that we have a high-Q microcavity structure

which allows the formation of thermalized polaritons in a broad range of densities and

temperatures, and the annular trap to spatially confine the polaritons, it is straight-

forward to investigate in detail the modes of condensates in the annular optical trap.

In this Chapter, the multistate optical switching among high-order bouncing-ball

modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton con-

densates in laser-generated annular traps is presented. The formation of ripples and

petals in the annular trap is discussed in Section 7.2. By tailoring the diameter and

intensity of the annular trap, polariton condensates can be switched among different

trapped modes, accompanied by a redistribution of spatial densities and a superlinear

increase in emission intensities, implying that polariton condensates in this geometry

could be exploited as multistate switches, as discussed in Section 7.3. A model based

on non-Hermitian modes of the generalized Gross-Pitaevskii equation is proposed in

Section 7.5. The model reveals that this mode switching arises from competition

between pump-induced gain and in-plane polariton loss. We conclude the section by

a survey of the experimental parameters for reproducible switching among trapped

modes, and present the phase diagram for mode switching in Section 7.4. Taken to-
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gether, the experimental results and theoretical modeling advance our fundamental

understanding of the spontaneous emergence of coherence and move us toward its

practical exploitation.

7.1 Experimental Methods

Previous experiments on Bose condensation of polaritons were usually performed with

the photonic resonance close to the excitonic resonance, which resulted in highly exci-

tonic characteristics in polaritons. Together with short cavity lifetimes, this severely

limited the distance that polaritons could propagate [219, 213, 220]. The develop-

ment of new structures with much longer cavity lifetimes, from 20-30 ps [184] to well

over 100 ps [140, 98, 104], has allowed the possibility of polariton propagation over

macroscopic distances. This property was used to measure the polariton-polariton

interaction strength in a region with no free excitons [37], as discussed in Chapter 6.

In the work of this chapter, we generated polaritons with high photonic fractions

by choosing a region of the wedged sample with a large negative cavity detuning.

Their highly photonic nature allowed the polaritons to propagate coherently over long

distances to form condensate states with spatial extent up to 50 Prm inside an optical

trap. Annular-shaped beams with diameters ranging from 21 prm to 54 Prm were

used to create the optical trap. The laser beam was tuned about 140 meV above the

bandgap of the QW material. Therefore it essentially generated free carriers, which

subsequently relaxed down to exciton and polariton states. Petals and ripples were

formed inside the excitation annuli. In theory, if not limited by the pump power,

higher-order condensate states with lengthscales on the order of millimeters could

be realized in this high-Q microcavity structure, making them entirely visible to the

naked eye.

While interactions of polaritons in this case are not strong enough for them to

thermalize into equilibrium gases, they still play an important role. The interac-

tions of polaritons with excitons in the pump region allow the polaritons to undergo

condensation inside optical traps. Furthermore, nonlinear polariton-polariton inter-
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actions result in switching among different condensate modes at high pump powers,

as discussed further in Section 7.5.

7.2 Petals and Ripples in the Annular Trap

7.2.1 Spatial and spectral distributions of petals

Petals are whispering-gallery modes in the annular trap. Fig. 7-1 shows the emission

patterns from an annular trap with a diameter of 41 pm. Polaritons remain in the

vicinity of the pump region below the condensation threshold, as shown in Fig. 7-1(a).

The asymmetry in the density distribution is largely due to inhomogeneity within the

pump intensity profile. Fig. 7-1(c) shows the momentum distribution of the polaritons

below the condensation threshold. Because the photonic mode in the microcavity we

used has an energy gradient of ~11 meV/mm along the white line in Fig. 7-1(a),

there is a net flow of the polariton fluid along this energy gradient, as evidenced by

the accumulation of the polariton densities with in-plane wavevector components at

k.~1 pm 1 and k ~ -1 pm 1 in Fig. 7-1(c). The cavity gradient can also be

identified from the spectrally and spatially resolved emission profile in Fig. 7-1(e) at

low pump powers. In this plot, the x = 0 pm slice of Fig. 7-1(a) was projected onto

the entrance slit of the spectrometer CCD and then spectrally dispersed. As can be

seen, there is an energy difference of -0.5 meV between the emissions at x = 20

pm. The propagation effect can also be identified in energy-resolved k-space emission

profiles as smeared energy dispersions, which has been reported in Ref. [140] with the

same sample structure.

When the excitation density is above the condensation threshold, polaritons prop-

agate over 10 pm toward the center of the trap and form petal states inside the ex-

citation ring. The center position of the pump annulus is plotted in Fig. 7-1(b) as

white dashed lines, along with the spatial emission profile from petals. The petals

demonstrate nodal structures similar to those of the high-order whispering-gallery

modes in lasers, with the periodicity matching the density accumulation at kx = 1
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Figure 7-1: Petals in the annular trap with a diameter of 41 pm. (a)-(b) The polariton
density distributions below (a) and above (b) condensation threshold in an annular trap. (c)-
(d) The polariton momentum distributions below (c) and above (d) condensation threshold.
(e)-(f) The energy-resolved polariton density distributions at x = 0 below (e) and above (f)
condensation threshold. (g)-(h) The energy-resolved polariton momentum distributions at
kr = 0 below (g) and above (h) condensation threshold. The white solid line in (a) indicates
the direction of the cavity energy gradient (the photon energy decreasing from upper right
to lower left), and the white dashed line in (b) shows the center position of the annular
pump.

pm- 1 and k. = -1 pm- 1. The petal structure is also observed in momentum space as

expected since the condensate is a coherent state and the density distributions in real

space and momentum space are Fourier-transform related. As expected, the energy-

resolved measurements show far narrower emission spectra from the condensates (f

and h) than from polaritons below the condensation threshold (e and g). Above the

threshold, petals typically have higher energies than those polaritons that have flowed

to the center of the annular trap, as seen in Fig. 7-1(f).

Patterns similar to petals in Fig. 7-1(b) have also been observed in structures with

shorter polariton lifetime [103], but were attributed to the interference of two counter-

propagating condensates in a channel formed by two concentric rings of excitation

light beams. We find that the same patterns can be generated without the need for

a channel formed from optical excitation beams. This indicates that the interactions

of nonequilibrium condensates, but not the channel, play the most important role in

determining the patterns that emerge.
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7.2.2 Spatial and spectral distributions of ripples

Unlike petals, ripples are radially confined bouncing-ball modes in the annular trap.

In Fig. 7-2(a), we plot the emission profile observed when a 33-jm annulus was used

to excite the microcavity. Below the condensation threshold, the distributions of

polaritons in real and momentum spaces show very similar signatures to those in

the previous case. However, confined ripples appear when the excitation density is

above the condensation threshold, as shown in Fig. 7-2(b). Similar patterns have

been studied in quantum chaotic systems where they were termed as bouncing-ball

modes [221]. In momentum space, we observed two large populations of polaritons at

k" = 1 rm-1 indicative of a ripple mode, together with several states with smaller

but not negligible amounts of polaritons. This suggests that the ripple pattern in

Fig. 7-2(b) arises from the interference of these paired momentum states. Figures

7-2(f) and (h) show energy-resolved emission profiles along the vertical slices x = 0

and kx = 0 in Figs. 7-2(b) and (d) respectively. The fact that the density at ky = 0 is

much higher than those at higher-momentum states can be attributed to the fact that

we aligned the kx = 0 slice of Fig. 7-2(d) to the entrance of the spectrometer CCD.

Again the emission spectra narrow dramatically above the condensation threshold.

We observe that the high-order condensate states appear at lower thresholds than

the lowest-order condensate state at k = 0, unlike the case in Ref. [37], where po-

laritons are composed of higher fractions of excitons. This confirms that interactions

play a very important role in the formation of the lowest-order versus high-order con-

densate states. Polaritons have ~5% of excitonic fractions in this measurement, and

are weakly interacting with each other. At low powers, polaritons flow away from

the pump region and meet in the center of the trap, and scattering to the kl = 0

state is negligible due to the well known bottleneck effect [142]. As pump power

increases, the interactions between reservoir excitons and bottleneck polaritons lead

to the formation of metastable petals and ripples at finite momentum (kjj = 1 pm-1

in our case). However, when polaritons have higher excitonic fractions, in particular

at resonance, where polaritons are equal mixtures of excitons and cavity photons, the
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Figure 7-2: Ripples in the annular trap with a diameter of 33 Jrm. (a)-(b) The polariton
density distribution below (a) and above (b) condensation threshold under annular-shaped
beam excitation. (c)-(d) Polariton momentum distribution below (c) and above (d) con-
densation threshold. (e)-(f) Energy-resolved polariton density distribution at x = 0 below
(e) and above (f) condensation threshold. (g)-(h) Energy-resolved polariton momentum
distribution at kx = 0 below (g) and above (h) condensation threshold. The white solid line
in (a) indicates the direction of the cavity energy gradient (photon energy decreasing from
upper right to lower left), and the white dashed line in (b) shows the center position of the
annular pump.

interaction strength increases by approximately two orders of magnitude [37]. This

leads to a less severe bottleneck effect [173], and favors the formation of the lowest-

order condensate state. On the other hand, a balance of polariton leakage from the

pump region against amplification from the reservoir determines that whether ripples

or petals are the lowest-threshold mode; this is expanded upon in Section 7.5.

7.3 Stable Mode Switching in Condensates

The condensates can be switched among various petal and ripple states by varying

the pump power continuously. In the top panel of Fig. 7-3, we show the integrated

the emission intensity in the field of view as a function of pump power. The intensity

undergoes several distinct superlinear increases, which are marked by the red lines,

and increases by five orders of magnitude when the pump power is increased by a

factor of only -15. The real-space density distributions corresponding to the green

dots in the upper panel are shown in Fig. 7-3(a)-(f). We clearly identify that the
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Figure 7-3: Top: the PL intensity as a function of pump power. The red lines indicate

boundaries of different quantum states. The green dots are selected pump power levels for

which the normalized real-space density distributions of the quantum states are shown in

(a)-(f), respectively.

superlinear increases in emission intensity are accompanied by redistributions of the

real-space densities, that is, by mode switching.

In Fig. 7-3(a), the excitation level was still below the condensation threshold, and

a pattern similar to those in Figs. 7-1(a) and 7-2(a) was observed. Figure 7-3(b)

demonstrates the onset of a higher-order state, but it was very difficult to resolve

reliably. In Fig. 7-3(c), a two-node ripple mode appears. Figure 7-3(d) and (e) are

mixtures of both petals and ripples. Numerical simulations discussed below suggest

that petals and ripples coexist at this power due to interactions between these states.

As shown in Fig. 7-3(f), when the system was pumped very hard, all high-order

quantum states collapsed to the lowest-order condensate state. This power tunability

of mode switching not only allows us to distinguish different high-order modes, but

also suggests that polariton condensates in the annular trap could be implemented in

device applications for stable multistate switches. With better control of the pump

power, we believe more states can be accessed independently.
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7.4 Phase boundaries of higher-order quantum states

In order to fully characterize the phase boundaries between different quantum states,

we recorded the real-space polariton density distributions with excitation ring diam-

eters ranging from 21 pm to 54 pm and pump powers ranging from 50 mW to 1

W. Note that we typically report the pump power before the AOM, and the actual

power incident on the sample is 1000 times smaller, given by the duty cycle of the

AOM, the shaping efficiency of the SLM and the optical efficiency of the excitation

path. Because of the stability of the distributions and the superlinear increases in the

emission intensities as shown in Fig. 7-3, we are able to classify different quantum

states at different pump conditions. The resulting phase boundaries are shown in

Fig. 7-4. In this plot, different colors are assigned to different types of states with

distinct spatial distributions. The black-shaded region (0) in the upper left region

indicates the uncondensed polaritons. Blue (2) and green (5) stand for ripples and

petals, respectively. Both petals and ripples exist in a very narrow range of the phase

diagram. This indicates that switching among polariton condensate states in the op-

tical trap is very sensitive and reliable. The different regions of the staircase structure

in the phase diagram show modes with different numbers of nodes that were observed

with incremented values of the excitation ring size and power. The lowest-order con-

densate states, coded as red (7), occupy the lower right region of the phase map. The

rest of the colors indicate patterns that are mixtures of high-order states, similar to

those shown in Fig. 7-3(d) and (e).

Based on this phase diagram, we can see that as the excitation density and ring size

are increased, ripples and petals appear successively as the lowest-threshold modes,

and the phase boundary between the lowest-threshold modes and the uncondensed

polaritons is approximately linear. Both features will be explained in the following

section. The number of lobes in either petals or ripples can be easily tuned by chang-

ing the pump parameters, as shown in Fig. 7-4(b)-(e). This measured phase diagram

should serve well to calibrate the implementation of exciton-polaritonic multistate

switches using high-order condensate states.
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Figure 7-4: (a) Measured phase boundaries for condensate modes in annular optical traps.
The yellow solid line is the simulated boundary for the lowest-threshold mode. Different col-

ors correspond to different types of states, with blue, green and red indicating ripples, petals
and lowest-order condensate state. The black-shaded region is uncondensed polaritons, and

the other colors are mixtures of modes similar to those in Fig. 7-3(d) and (e). The spatial

distributions of the modes indicated by colored dots are shown in (b)-(e) correspondingly.

7.4.1 Spatial distributions of mixed modes in the optical trap

Because of the interactions among high-order modes, a large set of mixed modes

shows up in the phase diagram. In Fig. 7-5, we plot the spatial distributions for 12

mixed modes whose positions in the phase diagram are marked in Fig. 7-6. As can

be seen, modes (1)-(3) have both ripple and petal characteristics, and modes (4)-(7)

and (9)-(11) are petal-like and are quantized in the azimuthal direction, although the

emission intensities from peaks and nodes are comparable. Modes (8) and (12) are

ripple-like. Based on our numerical simulations, mixed modes are direct consequences

of interactions between high-order modes with very close thresholds, rather than being

artifacts from time-integrated measurements.

7.4.2 Evolution of node numbers of ripple and petal states

in the optical trap

The number of nodes in either ripple or petal states can be varied by adjusting

the pump diameter. The pump power also needs to be increased in order to reach
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Figure 7-5: (1)-(12) Mixed modes for selected points in the phase diagram plot shown in
Fig. 7-6. The scale bar in (12) indicates 10 Mm.

condensation threshold as the diameter of the pump increases. In Fig. 7-7, we show

the spatial distributions of 12 distinct modes with various nodes. As can be seen, by

changing the pump parameter, we could switch from a 2-node ripple state up to an

8-node ripple state continuously. Similar switching behavior can also be realized by

using petals as shown in Figs. 7-7(8)-(12).

7.5 Theory and Numerical Simulation of Pattern

Formation

7.5.1 Gross-Pitaevskii equation and linearization

We use a generalized Gross-Pitaevskii equation (GPE) to describe the dynamics of

polaritons under incoherent pumping. In this standard approach, the nonlinear in-

210



50

E45

Q40
E
T 35

.c 30

25

7

6

5

4

3

2

1

--' 0
200 400 600 800

Pumping power (mW)

Figure 7-6: Phase diagram indicating the positions of the modes whose spatial distributions
are shown in Fig. 7-5.

A
II

ur I

Ii ~I

F 1

0.8

0.6

0.4

0.2

0

Figure 7-7: (1)-(12) Spatial distributions of ripple and petal states with different numbers
of nodes obversed when the pump parameters are varied.

211

7L



teractions of polaritons within the condensed fraction are treated at the mean-field

level, while pumping and losses are introduced as complex-valued terms so that the

generalized GPE for the dynamics of the condensate wavefunction TI(r, t) has the

form:

__ -F gII72\1 (7.1)
i- = --- + gRnR + - (RnR - Nc) -- g|2at 2m 2 1

where for clarity we have suppressed the (r, t) dependence of the polariton wave-

function and the density nR of the pump-generated exciton reservoir. This reservoir

gives rise to a repulsive term describing the interaction of condensate polaritons with

reservoir excitons, with a strength of gR, together with an amplification of the con-

densed fraction via stimulated scattering from the reservoir at a rate of R. This latter

gain contribution together with the inclusion of polariton mirror loss at rate y make

the effective generator describing condensate dynamics non-Hermitian in this case.

Finally, the polariton-polariton repulsion within the condensate appears as the non-

linear term oc g at the mean-field level. The dynamics of the pump-induced reservoir

must also be accounted for by a dynamical equation of the form:

O_ Pf(r - Rn PF- -yRnR (7.2)
at

Here P and f(r) are the pump strength and spatial profile, respectively. The afore-

mentioned scattering from the exciton reservoir into the condensate at the rate R

causes a depletion of the reservoir, which is encapsulated in the second term on the

right-hand side. Reservoir losses that occur via mechanisms other than scattering

into the reservoir (e.g. recombination losses) are described by -YR.

For pumping powers below the condensation threshold, the system has a steady

state with a pump-generated exciton density and an uncondensed polariton popula-

tion. The steady state reservoir density in this regime can be obtained after linearizing

Eq. (7.2) by dropping nonlinear terms of order I T 2; in this steady-state regime, the
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exciton reservoir density adiabatically follows the pump:

P
nR(r, t -+ oo) = f(r) (7.3)

'_R

Below the condensation threshold, a linearization of the GPE is also valid; we can re-

place nR(r, t) by its linearized steady state value, and neglect the nonlinear polariton-

polariton interactions oc g. This yields the linearized GPE in Eq. (7.1) for condensate

dynamics

7.5.2 Linear threshold modes

We now analyze steady-state condensate formation in the linearized regime. In par-

ticular, if we consider a single-frequency steady-state ansdtz for the condensate wave-

function:

I(r, t) = pn(r)e-L'"n, (7.4)

the linearized GPE in Eq. (7.1) becomes:

[V2  giR ilL2 + 9R Pf(r) + -- Pf(r) - - r), (r) (7.5)
2m -yR 2 -y 2 (

The condensate wavefunction for a single-frequency w, condensate is therefore the

nth eigenmode of the generator of the linearized dynamics, RL(P). We require wn to

be a purely real frequency for the steady-state solution to correspond to a nontrivial

condensate mode.

Let us now discuss how this requirement determines the power threshold for a

given spatial mode. For simplicity, we rewrite the above eigenproblem in the form:

[-V 2 + sPf (r)] yo(r) = q2 p,(r) (7.6)
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where we have introduced the pump-induced potential s:

S 1 ( i
=- gR +i R) (7.7)

2m AR 2

and the 'wavevector' q(w,) is defined by:

= -n + -^Yc (7.8)
2m 2

To determine the eigenmodes of 7WL(P), the above eigenproblem must be formulated

as an appropriate boundary value problem (BVP). The following choice is made:

[-V 2 + sPf(r)] y'n(r) = q2 (wn)on(r) , r E P

_v2 V(r) = q2 (Wn) Vn(r) , r ( P (7.9)

where P is the region enclosed by the outer edge OP of the pump. Note here that we

impose an 'outgoing' boundary condition with wavevector q(Wn) at the pump edge

0P, as opposed to the more usual case of considering a boundary far from the pump

region where the condensate wavefunction is vanishingly small and standard Dirichlet

boundary conditions can be employed. For the large condensate sizes considered

here, the latter approach would require simulating a very large spatial grid, making

computation times inconveniently long. Our approach allows the use of a minimally

relevant grid size. This occurs at a relatively minor expense: the outgoing wavevector

imposed via this boundary condition depends on the unknown eigenvalue wn, and

this BVP therefore needs to be solved self-consistently. To do so, we fix the outgoing

wavevector by choosing an outgoing frequency Q:

[-V 2 + sPf(r)] p,(r) = q2 (wn)pn(r) , r E P

-V 2'V(r) = q2(Q) n(r) , r P (7.10)

It is now straightforward to solve this BVP for a range of (increasing) values of the

pump power at a fixed Q. As a result, one obtains a set of eigenmodes {pn(r)} and
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Figure 7-8: Flow of (complex) eigenvalues of the linear non-Hermitian generator 7HL(P)
as a function of pump power P across the complex plane, computed for a fixed outgoing

frequency Q. The flow direction is indicated by the arrow. Eigenvalues approach the real

axis from below as pump powers are increased. The lowest threshold mode is indicated

in blue. It reaches the real line (loss = 0) for the smallest pump power, and has a real

frequency w, equal to the imposed outgoing frequency Q.

eigenfrequencies {wn(P)} of 7L(P). These generally complex frequencies {wn(P)}

flow across the complex plane as the pump power is varied; an example of this flow is

shown in Fig. 7-8. For a certain pump power Pn, the nth eigenfrequency Wn crosses

the real axis (becomes real). The imaginary part of wn represents net loss, so its

becoming zero implies that gain overcomes polariton loss at this pump power, and

the associated eigenmode is an unstable fluctuation around the uncondensed polariton

state. Furthermore, if the (now real) frequency is also equal to the imposed outgoing

frequency, that is Wn = Q, the wavevector q(Wn) is equal both inside and outside the

pump region P. The self-consistency condition is therefore simultaneously fulfilled,

and the corresponding nth eigenmode On(r; Wn, Pn) represents a true condensate mode

with a real frequency Wn and a linearized power threshold Pn. By varying the outgoing

frequency Q, and computing eigenvalues as a function of pump power, a set of such

linear threshold modes {ps(r; Wn, Pn)} can be obtained.
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7.5.3 Continuity equation and linear threshold formula

From the linearized dynamical equation for the condensate wavefunction, it is possible

to obtain an equation for the dynamics of the condensate density, |T,2. In particular,

aiim 2  a_a = * + c.c. (7.11)at at

From the generalized GPE in Eq. (7.1), it is easily found that:

*--= -- *V2W + -igRnR - 2 RnR )112 (7.12)
at 2m 2

and therefore,

al 1(*V2q _ XV 2 *) + RnRI4'12  2 (7.13)at 2,m

The first term on the right hand side has the form of the divergence of a probability

current; this can be made more explicit by defining the probability current j as:

_ W*-- c.c.') (7.14)
2m \

following which the condensate density dynamics is governed by the equation:

= RnRI 12 -_ . I 12 (7.15)
at

which has the well-defined form of a continuity equation. In particular, the above

equation can be put into a more practical form by integrating over the area 'P of the

region enclosed by the outer pump edge,

d d2r |12 = Rj d2r nfRI||2 _ .d -yc f d2r I12 (7.16)

where the divergence theorem allows the term involving j to be rewritten as a flux

integral. This equation has a simple interpretation: any increase in the total number

of polaritons (oc fp d2 r I T 12) within the pump region comes from amplification via
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the exciton reservoir, at a rate of R. Losses in the polariton number can be attributed

to either the mirror loss -y, or a leakage of the condensate from the pump edge. Since

we integrate within the outer pump edge 49P, beyond which by definition no source of

polariton formation exists, there can be no incoming probability current that would

increase the polariton number within the pump region.

Now, we narrow our focus to the linearized regime, where the reservoir density

nR = Pf (r)/yR is the same as shown earlier. Furthermore, we consider a single mode

solution such that T (r, t) = 5pn(r; wn, Pn)e-iw't , where Spn(r; w, P,,) is the eigenmode

of 7RL(Pn) that has (real) eigenfrequency w,. For simplicity, we suppress the parame-

ters defining on in the following discussion. With this ansitz, the condensate density

is time-independent and the above continuity equation reduces to the form

RPf d2r f(r) I|Po 2 = J[p] dg+ -y, f d2 r Ispn1 2  (7.17)
'YR In

The probability current (o) is now evaluated for the eigenmode <pn. Defining the

condensate density pn, pump overlap 9, and in-plane loss y, respectively as the

following:

jd2r 1|<n| 2 , gn = d2r f (r)I|n|1 2 , -Yn J[ Pn] -d' (7.18)/ 1PPn ' P

we can recover the linear threshold formula:

Pn _ l+'Yn/(Pnc) _ 1+ n

PO gn gn (-9

where P, is the linear threshold power for the nth mode, and P = ('Yc'R)/R.

7.5.4 Competition between petals and ripples

Based on Eq. (7.19), for a given mode, the threshold is determined by: (i) relative

loss Fn, which is defined as the ratio of in-plane loss -yn to the total mirror loss pn'Yc

the former being the flux of probability current jleaking across the outer pump edge

49P (see Fig. 7-9(a)), and (ii) gn, a dimensionless measure of the overlap between
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Figure 7-9: (a) Lowest-threshold modes for pump diameters 21 Am and 33 Am; white
dashed lines indicate the inner and outer pump edges. (b) Loss-overlap characteristics for
lowest threshold petal and ripple modes, and petal-to-ripple threshold ratio, versus pump
diameter. Overlap is scaled by a dimensionless factor oc pump area A to highlight the
separation between ripple and petal modes. (c) Loss, overlap, and threshold evolution for
two ripple modes (dashed lines 1 and 3) and twp petal modes (solid lines 2 and 4) shown in
the top panel. Red (blue) shaded area denotes pump diameters where ripple (petal) modes
have lowest threshold. A thick line in the threshold plot indicates the lowest threshold
mode; in the region with no thick lines, a mode other than those considered here has lowest
threshold. (d) Simulation of condensate density for increasing pump power at a fixed pump
diameter of 21 Am.

the mode and the pump within the region P enclosed by this pump edge. The

lowest-threshold mode minimizes Eq. (7.19) by maximizing overlap with the pump

to benefit from amplification, while still having low density near OP to reduce the

relative loss F,. Note that as relative loss for a mode becomes smaller, its overlap

becomes increasingly important in determining the threshold.

By using the experimental pump profile as f(r) in the nonlinear Gross-Pitaevskii

equation, the petals and ripples observed in the experiment can be qualitatively re-

produced. Fig. 7-10 shows the resulting polariton density distributions. The pump
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Figure 7-10: Simulated patterns using the generalized Gross-Pitaevskii equation.

profile that generated the pattern in Fig. 7-7(11) was used in the simulations for

Figs. 7-10(a) and (b), and the number of lobes in each case was exactly reproduced

using this method. The relative intensities of the peaks along the azimuthal direc-

tion were also qualitatively captured by this model. In the simulation, a ripple state

showed up at a lower energy (~0.05 meV lower) but with significantly higher pump

density (-50%). This mode was not observed in the experiment, due to the limited

pump power we have. By using the pump profile corresponding to that of Fig. 7-7(2),

the reproduced polariton density distributions agreed well with those observed in the

experiments, shown in Fig. 7-10(c) and (d). Additionally, another two patterns were

identified, and they have energies similar to the first mode (within 0.01 meV) with a

difference in the pump threshold of less than 2%.

We study the linear modes of 7L(P) for a range of pump diameters; the loss-

overlap characteristics for the lowest-threshold ripple and petal modes are plotted

in Fig. 7-9(b). While petal modes have stronger overlap and higher. loss than ripple

modes, their thresholds decrease below that of ripple modes as the pump diameter

increases. To understand this, we focus for clarity on one low-order and one higher-

order mode for petals (labeled 2 and 4) and ripples (1 and 3), and consider their

loss, overlap, and threshold evolution as a function of pump diameter in Fig. 7-9(c).

Crucially, we see that the relative loss decreases as the pump diameter increases. This
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is because the in-plane loss scales as the circumference of the pump profile and the

mirror loss scales as the area of the condensate mode, and the net dependence of the

relative loss is 1/R. Due to this effect, there exists for each mode a large enough pump

diameter at which its relative loss is small enough such that the overlap 9" primarily

determines its threshold. In this competition, petal modes have an advantage over

ripple modes. Therefore, below a critical pump diameter petals are typically too lossy

to have lower thresholds than ripples, even though their pump overlap is stronger.

Beyond this critical diameter, [, for petals decreases enough for their stronger overlap

to pull their thresholds down below those of the competing ripple modes. For annular

excitation profiles, a transition diameter will always exist due to this decrease of F;

the particular diameter depends on details of the profile. By extension, for higher-

order states with higher relative losses (see Fig. 7-9(c)), larger pump diameters are

needed than those for lower-order states until F, decreases sufficiently to encourage

condensation into these modes, in agreement with observations here. Finally, we note

that the overlap g,, decreases with growing pump diameter since the pump density

Pf(r) goes down as 1/R for a radius R annular pump with fixed FWHM. From

Eqs. (7.19) and (7.18), the resultant decrease in g, increases Ph linearly with pump

diameter. This is apparent from the simulated lowest threshold boundary, in good

agreement with the experimental phase diagram shown in Fig. 7-4.

Going beyond the condensation threshold requires full simulation of the nonlinear

GPE over a large spatio-temporal grid. The large condensate sizes (up to -50 pm)

observed in the current work, together with short polariton wavelengths (-1 Mm),

require fine spatial resolution, and make such simulations very computationally ex-

pensive. We circumvent this issue by expanding the condensate wavefunction in

a pump power-dependent, non-Hermitian basis set {p,(r; P, w,)} that accounts for

the spatial complexity of the linearized condensate problem, with time-dependent

coefficients. For discrete values of P = Ps, one mode in each set reduces to the corre-

sponding threshold mode introduced before. Note that in general Wo is complex, but

for that particular threshold mode it is on the real axis. This reduces the full non-

linear GPE and reservoir dynamical equation to a set of coupled ODEs, an effective
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nonlinear coupled-mode theory for reservoir-condensate dynamics. Applying to the

specific case of a pump of diameter 42 tim, the coupled-mode theory reveals mixing of

the lowest-threshold modes beyond threshold, when polariton-polariton interactions

within the condensate become important. In particular, the coexistence of petal and

ripple states shown in Fig. 7-9(d) was reproduced using this theory.

7.6 Conclusion and Outlook

We have seen the formation of high-order condensate states, including ripples, petals

and their coherent mixtures, under non-resonant excitations, with a well defined phase

diagram in the pump parameter space. Ripples are confined bouncing-ball modes

while petals are whispering-gallery modes in the trap. The all-optical trapping allows

facile switching among these condensate states in the annular trap, accompanied by

superlinear increases in emission intensities.

The measured patterns bear some similarities to the multiple modes seen in stan-

dard vertical-cavity, surface-emitting lasers (VCSELs), e.g. the petal patterns seen in

Ref. [222]. However, in typical lasers and VCSELs, the systems hop uncontrollably be-

tween different modes, leading to unwanted noise [223]). The nonlinear interactions

in polariton condensate systems stabilize the modes to resist multimode behavior.

This means that this system acts effectively as a multistable optical switch, in which

transitions between states can be effected by small changes of the input light beam.
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Chapter 8

Future Directions

Now that we have a system that has long enough lifetime to allow polaritons to

fully thermalize and form equilibrium Bose-Einstein condensates, and we also know

that polaritons are strongly interacting, it would not be a giant leap for us to apply

coherent control to this fully quantum-mechanical system and study the dynamics

between interacting condensates. In this Chapter, we will discuss possible directions

that can be pursued in the future following the work of this dissertation.

8.1 Berezinskii-Kousterlitz-Thouless (BKT) Phase

Transition

The long lifetime of our microcavity structure allows polaritons to reach full thermal-

ization before coupling out of the cavity, leading to the formation of Bose-Einstein

condensates in thermal equilibrium. In principle, it could also support the BKT

phase transition in thermal equilibrium, which is unique to 2D systems [17]. As is

well known, infinite 2D systems do not support BEC, but the BKT transition is possi-

ble. In physics, the BKT transition is a transition from bound vortex-antivortex pairs

at low temperature to unpaired vortices and antivortices at the critical temperature.

At low enough temperature, the first-order spatial correlation function g(l) (s)

decays slowly so that superfluid properties can be observed locally. In particular,
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considering a small enough contour so that the superfluid phase can be defined at all

points on it, the phase change 64 along the contour can only be a multiple of 27r. If

60 = 0, a superfluid current will flow, which decays when 6 changes by 27r. This

change can only occur when a quantized vortex moves across the contour, which is

possible when free vortices exist in the system. Thus, a state with free vortices is

non-superfluid. On the other hand, at very low temperature, vortices and antivortices

gather in clusters of zero total vorticity. When one cluster moves across the contour,

the total phase change 64 does not change, so supercurrents do not dissipate. This

is the essential idea behind the BKT transition.

The BKT transition can also be understood from a thermodynamic perspective.

In a 2D superfluid, the energy cost for the excitation of a quantized vortex [44] is

r12 R
AE = 7rP2s - In - (8.1)

whereas the entropy of the system will increase by an amount of

R
AS = 2kB In - (8.2)

rc

accompanied by the formation of the vortex. Here R and r, are the sizes of the

system and vortex core, respectively, and P2, is the 2D superfluid mass density. The

free energy of the system could be lowered provided that

AE - TAS < 0 (8.3)

Working out the algebra, we obtain

gr n 2
T ;> P2 (-) =T(8.4)

2kB

where the critical condition can be rewritten as

n2SA = 4 (8.5)
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Here n2s is the number density of the superfluid, and AT is the thermal de Broglie

wavelength at the critical temperature. As can be seen, the BKT transition happens

at similar but slightly higher temperatures than BEC.

It is straightforward to observe the BKT transition from a trapped BEC by spatial

interferometry. Due to the existence of the vortex and antivortex, the wavefunction of

the BKT state experiences phase singularities, which translates to a fork-like structure

in the interferogram. However, the phase of the BEC state is locked to be uniform

across the wavepacket. Furthermore, the first-order spatial correlation function g(')(s)

can be exploited to identify the BKT state. g(l)(s) of the BKT phase is predicted to

be

9 (1)(s) (ST)V (8.6)

where

ST T (8.7)
2Tr

and the exponent v is temperature-dependent

T
T =(8.8)

4Tc

If the temperature of the system is Tc, 1/4 is expected for the exponent. On the

other hand, the first-order spatial correlation function of the BEC state follows a

power decay with a temperature-independent exponent. By examining the short- and

long-distance behaviors of the first-order spatial correlation function of the emission

from a large condensate in short-lifetime samples, Roumpos et al. [224] reported that

the BKT phase order survives in open-dissipative systems, particularly in exciton-

polaritons. However, the observed exponent of the power law was in the range of 0.9

to 1.2, far away from the equilibrium prediction 0.25. Possible explanations include

the nonequilibrium nature of the condensates and nonuniform spatial distributions of

the condensates. It would be intriguing to unravel these different effects by performing
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similar measurements using our long-lifetime microcavity structure.

8.2 Tonks-Girardeau Gas in ID Confinement

Since polaritons are strongly interacting, the transition to Tonks-Girardeau gas might

be possible in a ID confinement. In physics, a Tonks-Girardeau gas (TGG) is a Bose

gas in which the confined bosonic particles behave as if they were non-interacting

fermions due to strong repulsive interactions. It is named after physicists Marvin D.

Girardeau and Lewi Tonks. Strictly speaking, this is not a Bose-Einstein condensate

as it does not demonstrate any of the characteristics, such as the off-diagonal long-

range order or a unitary two-body correlation function, even in the thermodynamic

limit.

The gradual transition between the BEC regime and the TGG regime is charac-

terized by the dimensionless parameter -y, which is defined as

Eint (8.9)
Ekin

where Eint and Ekis are the interaction energy and kinetic energy of underlying par-

ticles, respectively. As illustrate in Fig. 8-1, when y < 1, the healing lengths of

particles are much larger than the interparticle spacing, and the system tries to min-

imize the kinetic energy, leading to the formation of BEC. When y >> 1, the healing

length is much smaller than the interparticle spacing, the system tries to minimize

the interaction energy, and particles become localized, forming TGG.

For microcavity polaritons, we know the interaction energy is on the order of 0.1

meV, as evidenced by the blueshfit of the polariton ground state energy. By appro-

priately engineering the potential, the kinetic energies of polaritons can be reduced

to 1 meV or even less. Hence, -y > 1 could possibly be achieved for the preparation

of a TGG. In the TGG regime, the sound velocity c scales linearly with the particle

226



(a)

7(b)

(c)

Figure 8-1: Schematic Illustration of the transition from BEC to TGG. (a) When ^y < 1,
particles are in the BEC state, forming a single-particle wave packet. (b) As -y increases,
the size of the single-particle wavefunction decreases. (c) In the regime of y > 1, TGG
forms. Bosons that originally form BEC now behave like fermions, and become spatially
distinct.

density n, explicitly expressed as

C = 7(8.10)
m

whereas the sound velocity scales as the square root of underlying particle density

in the BEC regime. Hence the scaling law can be used to determine if the system is

in the TGG regime. The first-order spatial correlation function g(l)(s) can also be

exploited to identify the TGG. g(i)(s) of the TGG is predicted to have an inverse

square root dependence

g(1)(s) = i (8.11)

where is the healing length. As discussed in Chapter 1, for a 1D BEC, the depen-

dence is exponential.
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8.3 Trion-polariton Condensates and Bose-Fermi

Mixtures

One of the striking features of polaritons is that their extremely light effective mass

can allow quantum phenomena, in particular superfluidity, at much elevated temper-

atures up to room temperature, and thus could be possibly exploited for frictionless

energy transport at easily obtainable temperatures. It would be more intriguing if

charged polaritons, i.e., trion-polaritons, undergo superfluidity. Trions are two holes

and one electron or two electrons and one hole, depending on the doping condition of

the host semiconductor material, and trion-polaritons are light-matter mixtures, sim-

ilar to exciton-polaritons. Superfluidity of charges will be superconducting, and if it is

possible with trion-polaritons, room-temperature superconducting is not impossible.

Trion-polaritons are formed in a semiconductor microcavity with doped quan-

tum wells. The presence of charges inside the quantum well could interact with the

polaritons, and form a new composite system provided that the charge-polariton cou-

pling is faster than the decay time of charges. Recently, the optical properties of

trion-polaritons have been investigated in detail theoretically [225, 226].

On the other hand, conventional superconductivity occurs at low temperatures

and can be described within the framework of the BCS theory [84], which relies

on the formation of Cooper pairs. Cooper pairs are two electrons on top of the

Fermi sea that are bound through phonon-mediated interactions, however small the

attractive interaction between them [227, 228]. The phonon-mediated interaction

can be partially understood as lattice screening of Coulomb interactions between

the paired electrons. In cuprate-based high-Tc superconductors, electron pairing is

also thought to be realized through a mediating boson, although probably not the

phonon [229]. Excitons have been proposed as suitable mediating bosons to achieve

high critical temperatures of superconductivity in specially designed heterostructures

[230] (see Ref. [231] for a review). As compared to phonons, the characteristic cutoff

energy above which the attractive character of the interaction is lost for the excitons is

several orders of magnitude higher and the critical temperature is therefore expected
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to be significantly increased with respect to the conventional BCS superconductors

[230].

Since polaritons are bosons, they have been predicted to mediate the pairing of

electrons in a microcavity structure where a two-dimensional electron gas is sand-

wiched between two undoped quantum wells [232]. In the past few years, two-

dimensional semiconductor materials, such as MoS 2 and WS 2 , have emerged as pos-

sible candidates for the realization of trion-polariton condensation. Given the two-

dimensionality of the material, the phonon-electron interaction is significantly en-

hanced through the out-of-plane coupling. On the other hand, it has been demon-

strated that the strong coupling of excitons in a two-dimensional material and light

in a microcavity is possible [233], and a Rabi splitting of about 50 meV was realized,

indicating the possibility of room-temperature condensation. As the next step, ap-

propriate doping of charges can be introduced in bare quantum wells, and followed by

a detailed investigation of the effects of charges on the light-matter coupling. Under

appropriate conditions, polaritons, and possibly phonons and excitons could mediate

the pairing of charges, leading to the formation of trion-polariton condensates.

8.4 Quantum Simulation with Polaritons and Their

Condensates

Bose-Einstein condensation in optical lattices has been proved as a powerful tool to

study the dynamics of complicated many-body systems. The observation of the Higgs

boson in a superfluid due to spontaneous symmetry breaking [18] is one of the ex-

amples. On the other hand, the light-matter dual nature of polaritons permits the

control and probing of the system in a direct way by examining the properties of

those photons that couple out of the cavity. It is also straightforward to measure the

spectral functions, A(k, w), of polaritons, which can provide insights into the dynam-

ics of many-body interactions in polariton systems. For cold atoms, the equilibrium

occupation numbers can be measured [234], but the spectral functions are not readily
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(a) (b)

Figure 8-2: Quantum simulation with optically engineered confinement. (a) Ring superflu-

idity in annular confinement. (b) Quantum chaos in a stadium potential.

accessible. Additionally, the driven-dissipative nature of polariton systems allows an

exploration of nonequilibrium quantum dynamics. By tuning the interaction strength

of underlying polaritons through the cavity detuning, it is also possible to study the

crossover dynamics between equilibrium and nonequilibrium phase transitions. Tak-

ing advantage of these unique characteristics, high-order condensation modes includ-

ing p-wave [152] and d-wave [149] condensates have been demonstrated in periodic

lattice structures. Observations of non-Hermitian physics [160] and phase frustration

[235] have shown that polaritons are important complements to atomic condensates.

We will briefly discuss two problems that could be studied with polaritons and their

condensates.

8.4.1 Ring superfluidity

Owing to its connection to superconducting rings and persistent flows in superfluid

helium, ring superfluidity has attracted much attention in the past few years [236, 237,

238, 239, 240, 104]. The polariton systems have been shown to allow superfluidity [99]

and vortex structures [100, 101, 102]. It is thus a natural step to explore the possibility

of ring superfluidity in polariton systems. Annular confinement developed in Chapter

5 can be exploited, shown in Fig. 8-2(a). By introducing a polariton fluid, shown as

a tip inside the ring, using a resonant pulse with a controlled wavevector, different

propagation behaviors can be anticipated. Let v denote the initial velocity vector of

the resonant fluid, and v, denote the Landau critical velocity for superfluidity. Hence,
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1. If v is in the radial direction, and vi < vc, superfluidity propagation through

the barrier is anticipated.

2. If v is in the radial direction, and |v| > v,, the polariton fluid will scatter with

the confinement barrier, and classical deflection with dissipation is anticipated.

Since the lifetime of polaritons is sufficiently long, by engineering the size of the

annular confinement, several deflections would be possible, leading to the for-

mation of a stable density distribution. Given the wave nature of the quantum

fluid, it will behave differently from a classical billiard ball elastically bouncing

off a closed barrier.

3. If v is in the azimuthal direction, the ring superfluidity is expected. This is

because the interaction between the barrier and the resonant fluid is repulsive,

and can be effectively treated as a centripetal force.

Different propagation dynamics can be identified from time-resolved real-space and

k-space images. Ring superfluidity allows the possibility of macroscopic superposition

of states with different circulation, and is topologically distinct from a condensate in

a simply connected region. Therefore, phase rotation of a multiple of 7r is antici-

pated. On the other hand, superfluidity in the radial direction leads to a suppression

of the Rayleigh scattering, while normal propagation behavior through the barrier

would lead to the generation of wake fields, both of which can be identified through

momentum distributions using k-space imaging.

8.4.2 Quantum billiard in a stadium potential

Quantum chaos emerges as a branch of physics which studies the relationship be-

tween quantum mechanics and classical chaos. The correspondence principle states

that classical mechanics is the classical limit of quantum mechanics. If this is true,

then there must be quantum mechanisms underlying classical chaos. Quantum chaos

typically deals with systems whose exact solutions are precluded by the fact that

the constituents of the system influence each other in a complex way. Numerical
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techniques or approximation schemes such as Dyson series are used to calculate the

properties of the system. Soon after the realization of Bose-Einstein condensation,

quantum simulation with condensates became a popular approach to quantum chaos

given the classicality of the quantum condensation. Condensates are classical in the

sense that they are macroscopic, and their dynamics can be well described by classical

wave equations without resorting to quantum mechanics.

One of the intriguing questions concerns the dynamics of a quantum billiard in

a stadium potential, as shown in Fig. 8-2(b). The chaotic behavior is determined

by the length of the straight segments in the stadium. The quantum billiard finds

some application in double-clad fibers. In such a fiber laser, the small core with a low

numerical aperture confines the signal, and the wide cladding confines the multi-mode

pump. In the paraxial approximation [241, 2423, the complex fields of pumps in the

cladding behave like wavefunctions of quantum billiards. The modes of the cladding

with scarring may avoid the core, and symmetrical configurations could enhance this

effect.

By shaping the above-band excitation beam into a stadium shape with the SLM,

a stadium potential for polaritons can be created. A second resonant beam with

a controlled wavevector can be used to create the billiard inside the stadium. The

dynamics of the billiard can be studied using time-resolved real-space and k-space

imaging techniques. By varying the excitonic fractions of polaritons through the

cavity detuning, the effects of interactions on the dynamics of the quantum billiard

can also be investigated.

8.5 Room-Temperature Polariton Condensation and

Beyond

Quantum condensation of polaritons can occur at room temperature in principle.

However, its operation temperature is limited by the small binding energy of excitons,

~10 meV in GaAs quantum wells. Up until now, mostly studied polariton conden-
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sates are still near liquid helium temperatures. On the other hand, the demand for

polaritonics requires room-temperature operation. Using excitons with large binding

energies in other systems, quantum condensation of polaritons has been observed at

room temperature in GaN [77], polymer [79], and organic molecules [78]. Although the

observed condensation has not been in equilibrium, it paves the way for the study of

Bose-Einstein condensation at room temperature. Recently, strong coupling of light

with an atomically thin monolayer material [243], MoS 2 , has been demonstrated.

The two-dimensional material is of the transition-metal-dichalcogenides (TMD) fam-

ily, and has shown exceptional light-matter interaction strength (100 times larger

oscillator strength than GaAs) [243, 244, 245], giant exciton binding energy (0.3-

0.5 eV) [246, 247, 248, 249, 250, 251, 252], and large nonlinear optical susceptibility

[253, 254, 255, 256], all of which can be exploited for realization of Bose-Einstein

condensation of polaritons at photonic detunings and room temperature, enabling

quantum simulation for a broad range of parameters and polaritonics at easily ob-

tainable temperatures.
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Appendix A

Generation and characterization of

polarization-entangled photon

states

A.1 Stokes Parameters for 2-qubit

Stokes parameters are a set of parameters that were originally used to describe the

polarization states of electromagnetic radiation. Since the space of polarization states

of electromagnetic radiation is isomorphic to the Hilbert space of a qubit, they have

also been borrowed to describe a quantum state, relating the density matrix p in the

following way, in particular for a 2-qubit,

P = SmnOm 9 J-n (A.1)
m,n=O

where S is the Stokes parameter and o is the Pauli matrix. We will write everything

in JH) and IV) basis, which is the most natural basis set when we deal with the

polarization of light. In practice, this relation can be generalized to a multiple-qudit

system, where generalized Pauli matrices, the matrices of the generator of the SU(n)

group, can be used in place of the Pauli matrix.
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A.2 Reconstruction of the Density Matrix

As is seen from Eq. (A.1), indices m and n appear in pairs. We can carefully reorder

the tensor products and their related Stokes parameters so that one index can be

used in the summation

16

p = rL, (A.2)
v=1

where F, is the tensor product of the Pauli matrices and r, is the corresponding

projection coefficient. On the other hand, the measured counts n, can be computed

as the expectation value of the density matrix projected to specific quantum states,

which is,

nv = N ( Fv I rv| xp) ( A.3)

where N is a normalization factor, and , is the state in the measurement. Substi-

tuting Eq. (A.2) into Eq. (A.3), we obtain

16

n. N E rVGv1I ( A.4)
V=1

where

G = (TI I r, I T v) (A.5)

Note that v indexes the measurement and p indexes the basis set. In order to get ry,

we have to invert Eq. (A.4), which leads to

16

r= (G-)n, (A.6)
v=1
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This requires G to be nonsingular, which sets the constraint for the choice of projection

states. Plugging Eq. (A.6) into Eq. (A.2), we obtain

1 16

p = NZ Mn (A.7)
L=1

where

Mi = (G-')viT, (A.8)

Based on (A.7), we can successfully reconstruct the density matrix up to a normaliza-

tion factor from experimentally measurable coincidence counts. The related matrices,

including F and M, are presented in the end of this appendix.

A.3 Maximum-Likelihood Estimation

Due to experimental inaccuracies in waveplate angles and statistical fluctuations of

coincidence counts, the reconstructed density matrices are sometimes non-physical,

that is, the matrices are not Hermitian and positive semidefinite. To get around this

problem, the maximum-likelihood estimation of density matrices could be carried out.

First, we generate an explicitly physical density matrix, i.e., a matrix that possess

normalization, Hermiticity, and semidefinite-positivity. A smart choice would be

pp (t) = T(1)t1 T (t) / Tr_ (T (t) t T (t)) (A.9)

and we take T(t) as

16

T(t) = t1v (A.10)
v=1

where t, is the projection coefficient. In the context of the maximum-likelihood

estimation, we should find out a set of {t,},=1 ,2 ,...,16 so that the constructed density

matrix can lead to experimental measurements, usually coincidence counting, with
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the most probable likelihood. Therefore, we need to construct a likelihood function.

Given the physical density matrix pp, we know that the measurement data consist

of a set of 16 coincidence counts il, whose expectation value is given by Eq. (A.2).

Assuming that the coincidence measurements are independent and their measurement

noise has a Gaussian probability distribution, the probability of obtaining this set of

16 counts is

V=1 I V

where o, is the standard deviation of the vth coincidence measurement, which can

be approximately as N/K , and C is the normalization constant. In order to simplify

the maximization, we seek to minimize the negative log-likelihood, given by

L 6[N (X@v\ p(t1, t2,..., t16)| 1,) -- nv] 2(A12
L 2N (I, p,(tt2, t. . . ,1t6 )|)

To perform the numerical minimization, ti, t 2 ,... ,t16 are initialized to a series of ran-

domly generated numbers in the range of [0,1]. Multiple trials of the minimization are

performed in order to avoid any unwanted local minima. After minimizing the likeli-

hood function, we obtain the T matrix, and based on Eq. (A.9), we can reconstruct

a physical density matrix.

A.4 Error Analysis

The error analysis of tomographic density matrices is based on the Monte Carlo

method, where additional numerically simulated data sets are used to obtain a statis-

tical distribution of the elements of reconstructed density matrix pp. Once we know

that waveplate angles follow the Gaussian distribution and photon counts follow the

Poisson process, we will be able to sample a set of coincidence counts. Based on ex-

perience, the error from waveplate angles is much smaller than the error from photon

counts, so we only take into account the error from counting statistics. Then the
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maximum likelihood method is used to obtain a set of physical density matrices from

the simulated counts. The ensemble of reconstructed density matrices can be fur-

ther used to calculate a set of physical quantities like fidelity, and the errors of these

quantities are derived from the calculated set. Note that typically 100 simulations

are used.

A.5 Physical Quantities to Characterize the Quan-

tum States in 2-qubit Systems

Fidelity. Fidelity defines the overlap between two quantum states, which has the

form

F(po, p) = Tr pop } (A.13)

Usually we choose po to be the density matrix of a pure maximally entangled state.

In this way, we could use the calculated fidelity as a measurement of entanglement.

In the 2-qubit case, po is chosen to be the Bell state.

Tangle and concurrence. Tangle and concurrence are measurements of non-

classical properties of a quantum state. For the 2-qubit system, concurrence is defined

as follows: consider the non-Hermitian matrix R = pEpTE where the superscript T

denotes transpose, and E is the spin flip matrix in the basis of IHH), IHV) , IVH) IVV)

defined as

0 0 0 -1

0 0 1 0
E =(A. 14)

0 1 0 0

- 1 0 0 0,
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If the eigenvalues of R, arranged in decreasing order, are given by rl ;> r2 ;> r3 > r4,

the concurrence is defined as

(A.15)

The tangle is calculated directly from the concurrence as

T = C 2 (A.16)

Entanglement of formation is a similar quantity that measures the entanglement of a

state, which is defined as

E = h ( C2)
2

(A.17)

where

(A. 18)

is the log-likelihood function of the Bernoulli distribution.

Entropy. Entropy quantifies the degree of mixture in a quantum system.

generally, it is defined as

More

S = - Tr {plnp} (A.19)

A more analytically convenient description is the linear entropy, which has the form

4 r
SL = - - T_ p2}) (A.20)
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Figure A-1: Schematic illustration of the experimental setup for the generation and char-
acterization of polarization-entangled photon pairs.

A.6 Experimental Design

A.6.1 Experimental layout

A schematic illustration of the experimental setup for the generation and character-

ization of polarization-entangled photon pairs is shown in Fig. A-1. A 390-nm blue

light beam with appropriate polarization is focused onto a nonlinear crystal, typically

BBO. Under type-II phase matching, the down-converted red photons are along two

intersecting rings. By placing two pinholes at the positions of intersection, we pick

up the streams of entangled photon pairs. The A/4-waveplate (QWP), A/2-waveplate

and polarizer in the downstream are used to project entangled photons to a specific

polarization state in state tomography measurements. The photons are detected by

a pair of single photon counters (SPCs) and are converted to digital signals through

the time-digital converter (TDC).

A.6.2 State characterization

State projection. In order to characterize the two-photon quantum state, a set

of 16 projective measurements have to be carried out. We set the fast axes of both

polarizers in the downstream to be horizontal. We use the Jones notation with the

convention

IH) =( V) = (A.21)
(0 )1)
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The corresponding matrices for a QWP and a HWP whose fast axes have angles

about q and h with respect to the horizontal axis, respectively, are given as follows

UQwp(q) I - i + cos 2q sin 2q (A.22)
N sin 2q i - cos 2q

and

cos 2h sin 2h
UHwp(h) = (A.23)

sin 2h cos 2h

respectively. The single-photon state will be projected as

IF ()(q, h)) = UQwP (q)UHwp (h) = ') (A.24)
proj 0 b(q, h)

with the coefficients

1
a(q, h) = (cos 2(q - h) + i cos 2h) (A.25)

1
b(q, h) = (sin 2(q - h) + i sin 2h) (A.26)

The projection state for the entangled photon pair is given by

a(qi, h1 )a(q2 , h2 )

(1)a(qi, hi)b(q2 , h2 ) (.7
( j (ql, hi, q2, h2 )) = IFoj(qi, hi)) | ro (q2, h2)) (A.27)

b(qi, hi)a(q2 , h2 )

b(q1, hi)b(q2 , h2)

in the basis set JHH), IHV) , VH), IVV).

Measurement selection. In order to successfully reconstruct the density matrix

of the two-photon state, the 16 independent measurements that are chosen have to

yield an invertible G matrix. If the measurements are not independent, G will be
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singular. One of the most convenient choices is listed in Table A.1.

v Mode l Mode 2 qi h, q2 h2

1 H H 0 0 0 0
2 H V 0 0 0 45
3 V V 0 45 0 45
4 V H 0 45 0 0
5 R H 0 22.5 0 0
6 R V 0 22.5 0 45
7 D V 45 22.5 0 45
8 D H 45 22.5 0 0
9 D R 45 22.5 0 22.5
10 D D 45 22.5 45 22.5
11 R D 0 22.5 45 22.5
12 H D 0 0 45 22.5
13 V D 0 45 45 22.5
14 V L 0 45 90 22.5
15 H L 0 0 90 22.5
16 R L 0 22.5 90 22.5

Table A. 1: Measurements for the reconstruction of 2-qubit density matrix.

Related matrices for state tomography F matrices are the basis set of the

density matrix to be reconstructed. Let us define the SU(2) generator as

o = IH) H) + V) IV) (A.28)

(71 = IIH) H) -- IV) IV) (A.29)

02= |H) IV) + |V) H) (A.30)

U3 = i(IV) IH) - IH) IV)) (A.31)

Note the order of the generator is not important. We can order P matrices in the

following way (a factor of 1/2 is left out for simplicity, which has to be included in

actual calculations)
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The G matrix is a 16 x 16 matrix. The row index is for measurements, and the

column index is for the basis set. We show the matrix elements in table form in Table

A.2. There are another 20 measurements, together with these 16 measurements,

forming an over-complete set which is usually used to infer the density matrix by

least-squares fit. Last, M matrices are used to connect the measurements directly to

the reconstructed density matrix. The form of these matrices is independent of the

chosen set of F matrices used to convert the density matrix into a vector. However,

it does depend on the set of tomographic states I,). With the order corresponding
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1_ TY3 4 5 6 7 8 910 11 12 13 14 15 16
H 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

HV 1 -1 0 01-1 0 0 0 0 0 0 0 0 0 0
RV 1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0
VH 1 0 0 -1 0 0 0 0 0 0 0 0 0 0
RH Il1G0 0 00 00 00 01 10 0
RV 1 -10 0 0100 10 00 0 10 1 1-1 0 0
DV 1-10 0 00 0 01 -1 0 0 0 0 0 0

DD 10 1 0 0 0 0 0 1 0 1 0 0 0 0 0
RD 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
HD 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

VL1 0 0-1 -1 00 10 00 00 00 0
HL 10 0-1 10 0 -10 00 00 00 0
RL 1 0 0-1 0 0 0 0 0 0 0 0 1 0 0 -1

Table A.2: The G matrix in the state tomography.

to those in Table A.1, we can find M matrices to be

2 -1-i -1+i 1 0 -1-i 0 1

1 -1+i 0 -i 0 1 -1+i 2 -i -i+i

2 1-i i 0 0 0 i 0 0

1 0 0 0 1 -1-i 0 0

0 0 0 1 0 0 -1+i 1

1 0 0 -i -1+i 0 0 -i 0

2 0 Z 0 0 2 -1-Z 2 -1-i

1 -1-i 0 0 1 0 -1-i 0
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