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Abstract

We present new radio continuum observations of NGC253 from the Murchison Widefield Array at frequencies
between 76 and 227MHz. We model the broadband radio spectral energy distribution for the total flux density of
NGC253 between 76MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and
extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy,
is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around
230MHz. The extended emission component of the spectrum of NGC253 is best described as a synchrotron
emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central
starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the
western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated
electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale
synchrotron radio halo of NGC253 in our radio images. At 154–231MHz the halo displays the well known
X-shaped/horn-like structure, and extends out to ∼8 kpc in the z-direction (from the major axis).

Key words: galaxies: halos – galaxies: individual (NGC 253) – galaxies: starburst – radiation mechanisms: non-
thermal – radiation mechanisms: thermal – radio continuum: galaxies

1. Introduction

Observing at low radio frequencies (0.5 GHz) is of particular
value: low-energy and old plasma can be revealed, tracing and
constraining physical conditions in galaxies. In star-forming
galaxies this plasma of low surface brightness forms, e.g.,
extended halos associated with winds and large-scale magnetic
fields, or it produces diffuse emission from galactic disks.
Furthermore, measurements at low radio frequencies can help to
distinguish, for instance, between thermal and nonthermal plasma,
and their absorbing mechanisms, responsible for the level of

observed radio emission. It is expected that the Square Kilometre
Array (SKA) will unravel a large population of star-forming
galaxies (e.g., Beswick et al. 2015; Jarvis et al. 2015), but before
we can embark on a large-scale study of star-forming and starburst
galaxies and their evolution with continuum radio surveys, we
need to understand the origin of the complex radio spectral energy
distributions and morphologies of these galaxies. Nearby objects
are ideal laboratories for this task.
NGC253 is the dominant galaxy in the nearby Sculptor

Group, at a distance of 3.94Mpc from the Local Group
(Karachentsev et al. 2003) and velocity cz = 240 km s−1. It is
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an almost edge-on SBc-type galaxy (de Vaucouleurs
et al. 1991) observed at an inclination of 78°.5 (Pence 1980)
and is considered to be a prototype of nuclear starburst galaxies
(Rieke et al. 1980). Its estimated stellar mass is ∼4×1010Me,
with a prominent stellar halo of 2.5×109Me extending up to
30 kpc above the disk (Bailin et al. 2011). As one of the closest
and most prominent galaxies, NGC253 has been extensively
studied in all wavelengths, including broadband radio con-
tinuum, polarization, and H I observations (Beck et al. 1979,
1994; Klein et al. 1983; Hummel et al. 1984; Carilli et al. 1992;
Ulvestad & Antonucci 1997; Lenc & Tingay 2006; Heesen
et al. 2009a, 2009b, 2011; Lucero et al. 2015, among others).

Radio emission from starburst galaxies originates from two
principal components: the nonthermal synchrotron emission
from relativistic electrons spiralling in the interstellar magnetic
field, and the thermal emission from electrons colliding with
ions in the ionized interstellar medium around hot stars. The
sources of the nonthermal emission are predominantly cosmic
rays accelerated by supernova remnants (SNRs), which in
NGC253 ultimately create a prominent synchrotron radio halo
(Carilli et al. 1992). Studies of the magnetic field of NGC253
suggest that the disk wind model and large-scale dynamo
action are shaping the vertical structure of the field, which in
turn enhances the transport of cosmic rays through a
collimation of strong, starburst-driven superwind (Beck
et al. 1994; Pietsch et al. 2000; Strickland et al. 2002; Heesen
et al. 2009a, 2009b, 2011).

The starburst region of NGC253 is violently active; the
supernova rate of the inner 300 pc of the galaxy is estimated
to be between 0.14 and 2.4 yr−1, and the star formation rate
is ∼5Me yr−1 (Lenc & Tingay 2006; Rampadarath et al. 2014;
Bendo et al. 2015; Lucero et al. 2015). It has been suggested that
up to half of the radio sources in the central starburst region are
dominated by thermal emission, i.e., H II regions characterized
by a flat radio spectral index24 α;0.1 and including at least
one large supercluster of stars (Ulvestad & Antonucci 1997;
Keto et al. 1999). Outside the central starburst region the radio
emission at gigahertz frequencies is dominated by steep-
spectrum diffuse emission and SNRs, but several strong thermal
sources are detected (Ulvestad 2000). Based on integrated radio
continuum spectra, Niklas et al. (1997) estimated 10% of the flux
density of NGC253 at 1 GHz to be of thermal origin, increasing
to 35% at 10GHz.

At low radio frequencies both of these principal components
become pronounced. Synchrotron emission has a steep
spectrum, becoming dominant at sub-gigahertz frequencies,
due to the population of old, low-energy electrons. However,
such emission may also be subject to self-absorption in the case
of compact objects. Thermal emission also becomes increas-
ingly more absorbed with decreasing frequency. The free–free
absorption (FFA) in the central starburst of NGC253 has
previously been measured (Carilli 1996; Tingay 2004).

Here, we present extensive imaging of NGC253 at low
radio frequencies (<230MHz) obtained with the Murchison
Widefield Array (MWA; Bowman et al. 2013; Tingay
et al. 2013). Our images are some of the deepest yet at these
frequencies, and at low angular resolution they are especially
sensitive to large-scale diffuse structure, allowing us to
investigate the extent and frequency dependence of the radio
halo. The paper is structured as follows. Our radio data and

methods, including assumed models of radio spectra and model
fitting, are described in Sections 2 and 3 respectively. Results
are presented in Section 4. The synchrotron radio halo of
NGC253 is discussed in Section 5.1. We discuss low-
frequency radio emission from NGC253, its radio spectral
energy distribution, and radio spectral maps in Section 5.2.
Conclusions are given in Section 6.

2. Observations and Data Reduction

We use radio continuum data from the Galactic and
Extragalactic All-Sky MWA Survey (GLEAM; Wayth
et al. 2015) and the MWA Epoch of Reionization experiment
(MWA/EoR; Bowman et al. 2013; Pober et al. 2016). The
GLEAM survey provides unprecedented spectral coverage
between 72 and 231MHz, while the MWA/EoR image at
169MHz is almost twice as deep as the most sensitive GLEAM
image at 200MHz (rms noise 4.1 mJy beam−1 and 7.3 mJy
beam−1 respectively). In addition, the data have been observed
and processed independently, providing a verification of our
flux density calibration.

2.1. The Galactic and Extragalactic All-Sky
MWA Survey (GLEAM)

The GLEAM survey observed the entire radio sky south of
declination +30° at an angular resolution of approximately
1.7 arcmin (227MHz) to 5 arcmin (76MHz). At 154MHz the
GLEAM survey is sensitive to structures up to 10° in angular
scale, and has an instantaneous field of view of 25×25 deg2.
The observations were made in a meridian drift scan mode
covering frequencies between 72 and 231MHz with band-
widths of 7.68MHz grouped in five bands each 30.72MHz
wide. These bands, centered on 87.7, 118.4, 154.2, 185.0, and
215.7MHz (hereafter 88, 118, 154, 185, and 216MHz), were
observed sequentially as 112 s snapshots; each frequency was
observed every 10 minutes. During a night typically 8–10 hr in
hour angle were observed. Frequencies between 134 and
137MHz were avoided because of satellite interference. For
more details on the survey parameters and strategy see Wayth
et al. (2015).
Here we use GLEAM data from the first year of observing

(Data Release 1 from 2013 August–2014 June; Hurley-Walker
et al. 2017). The sky area covering NGC253 was observed on
2013 August 10 and 2013 November 25. The full data
reduction process is described in detail in Hurley-Walker et al.
(2017); here we summarize only the main calibration and
imaging steps.
The correlated data were first preprocessed with the COTTER

pipeline, which performs flagging of data affected by radio-
frequency interference (RFI) and averaging of the data to 1 s
time and 40 kHz frequency resolution (Offringa et al. 2010,
2015). Standard calibration (phase and amplitude bandpass
calibration) was done with CASA (Common Astronomy
Software Applications package; McMullin et al. 2007).
Imaging and self-calibration were then performed using
WSCLEAN imager (Offringa et al. 2014), which corrects for
wide-field w-term effects. Images of 7.68MHz bandwidth at
20 frequencies distributed continuously between 72 and
231MHz (avoiding 134–137MHz) and using a robust
weighting r=−1.0 (Briggs 1995) were then created. Decon-
volution has been performed at this stage, and details are
provided in Hurley-Walker et al. (2017).

24 Radio spectral index α is defined such that the flux density Sν at a frequency
ν is nµn

a-S .
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The primary beam correction of our GLEAM observations
was done with the model of Sutinjo et al. (2015) down to the
10% level of the beam response. An additional calibration stage
was necessary to correct for residual declination dependence of
the flux density scale in the final mosaics arising from the
limited accuracy of the adopted primary beam model. This was
done by comparing flux density measurements of all
unresolved sources extracted from GLEAM images above 8σ
rms noise level to their radio spectra as predicted by three
catalogs: VLA Low-Frequency Sky Survey redux (VLSSr;
Lane et al. 2014), Molongo Reference Catalogue (MRC; Large
et al. 1981, 1991), and NRAO VLA Sky Survey (NVSS;
Condon et al. 1998). The absolute flux density scale of the
GLEAM images is accurate to 8%, which is included in the
quoted uncertainties of the measurements (for details see
Hurley-Walker et al. 2017).

Images for each of five central frequencies centered on
frequencies of 88, 118, 154, 185, and 216MHz and of bandwidth
30.72MHz were made. The images at the two highest frequencies
are further combined to create a “deep” image at 200MHz with a
bandwidth of 61.4MHz. We also use the 7.68 MHz images for
construction of the high-resolution radio spectrum of NGC253.
The final synthesized beam sizes, and rms and background noise
levels in the deep 200MHz image are 2.22×2.12 arcmin2,
position angle (PA)=−78°, 11mJy beam−1, and 7.3mJy beam−1

respectively, and their range between the lowest and highest
GLEAM frequencies is listed in Table 1.

2.2. MWA Epoch of Reionization (EoR) Data

The observed MWA/EoR field that contains the Sculptor
Group (EoR0 field) is centered on R.A.=0h, decl.=−27°,
and was observed for a total of 30 hr between 2013 August and
October in a combination of a tracking mode and a drifting
mode. In this hybrid mode the telescope tracks a set of discrete
pointing centers through which the field of interest is drifting.
The observations cover frequencies between 138.9 and
197.7 MHz observed as two bands (low and high), each with
an instantaneous bandwidth of Δν=30.72MHz.

The correlated MWA/EoR0 data were preprocessed with the
COTTER pipeline (Offringa et al. 2015) and averaged to 4 s time
and 40 kHz frequency resolution. Calibration of the data was
performed as a direction-independent self-calibration using the
MITCHCAL tool (Mitchell et al. 2008) and was based on a
bootstrapped sky model. The initial sky model was generated
from the MWA Commissioning Survey (Hurley-Walker et al.
2014), the MRC catalog, and the Sydney University Molonglo
Sky Survey (SUMSS; Mauch et al. 2003). Imaging was
performed with the WSCLEAN software that corrects for the
nonzero w-term effects. During the imaging process 2500
sources were peeled, and the images were created with a
uniform weighting. The primary beam, and so the flux density
scale, was corrected by applying the model of Sutinjo et al.

(2015). As shown by Hurley-Walker et al. (2014), this model is
accurate to 10%, hence we add this error in quadrature to the
quoted uncertainties of our measurements.
The final image used in this paper is centered at 169.6MHz

(hereafter 169MHz) with a total bandwidth of Δν=58.8MHz,
synthesized beam size 2.3×2.3 arcmin2, and rms noise
4.1 mJy beam−1. The calibration and imaging process of the
EoR0 data is presented and discussed in detail in Offringa
et al. (2016).

2.3. Other Low-frequency Radio Surveys

There are two additional all-sky low-frequency radio surveys
that include NGC253: the 74MHz VLSSr (Lane et al. 2014) and
the 150MHz Tata Institute of Fundamental Research (TIFR)
Giant Metrewave Radio Telescope (GMRT) Sky Survey (TGSS)
Alternative Data Release1 (ADR1; Intema et al. 2016).
The TGSS survey observed the whole radio sky north of

declination −53° at a frequency 150MHz (bandwidth
Δν=16.7 MHz) at an angular resolution ´25

d - ( )25 cos 19 arcsec2 at declinations south of +19°. The
instantaneous field of view of the survey at half power at
150 MHz is 3.1×3.1 deg2, with sensitivity to structures up to
68 arcmin in angular scale (Intema et al. 2016). Since the
absolute flux density calibration of the TGSS ADR1 may be
uncertain up to 50% in some sky regions,25 we independently
verified the calibration in the area of NGC 253. We selected
unresolved sources with flux density >1 Jy from the
5 × 5 deg2 mosaic that included NGC 253 (R03_D17). We
compared the TGSS ADR1 flux densities of these sources
with the predicted values based on the spectral modeling in
which we used the VLSSr, GLEAM (deep 200 MHz), MRC,
and NVSS surveys. We found that the TGSS mosaic required
scaling by a factor 1.02 in flux density, and the absolute flux
density calibration was accurate to 7%; we further added this
error in quadrature to the quoted uncertainties of our
measurements.
The VLSS survey (Cohen et al. 2007) observed the radio sky

north of −30° at a frequency 74MHz. Here we use the recent
re-reduction of the survey data, the VLSSr (Lane et al. 2014).
VLSSr images have an angular resolution of 75×75 arcsec2

and a theoretical sensitivity to structures of 13–37 arcmin in
angular scale.
We find that neither TGSS nor VLSSr is sensitive to the

extended emission of NGC253 (Figure 1). For this reason we
use the TGSS data for the flux density measurement of the
central starburst region, and both TGSS and VLSSr for
measurements of the flux densities of background sources only.

3. Methods

3.1. Flux Density Measurements

Measurements of the total flux density of NGC253 were
performed with CASA task IMSTAT, which provides a summed
flux density within a specified region of the image corrected for
the synthesized beam. We masked all pixels below 2.6σ local
rms noise level (Hales et al. 2012). For point sources the flux
density was measured with the AIPS task JMFIT; for each
unresolved source we fit for two components—a Gaussian and
a zero level with a slope. The absolute flux density scale is set
to the scale of Baars et al. (1977).

Table 1
Range of Angular Resolution and Noise Values of the GLEAM Data

ν
Synthesized Beam rms Noise Background

(MHz) bmaj×bmin PA (mJy beam−1) Noise
(arcmin2) (deg) (mJy beam−1)

76 5.03×4.72 −18.8 107 −44
227 1.73×1.67 −26.0 12.8 −3.3

25 http://tgssadr.strw.leidenuniv.nl/doku.php
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3.2. Models of Radio Spectra

Radio sources often show simple spectra that can be
approximated by a power law. However, at low radio frequencies
(a few hundredmegahertz and below) radio spectra are
consistently more curved (Laing & Peacock 1980; Hummel 1991;
Deeg et al. 1993; Blundell et al. 1999; Duffy & Blundell 2012;
Marvil et al. 2015) until a turnover frequency below which
they become inverted. The spectral turnover is typically caused
by synchrotron self-absorption (SSA) and/or thermal FFA
(Callingham et al. 2015, and references therein). If there is no
evidence for a turnover in the radio spectra we construct here (see
Section 3.4 for the method of model selection), we proceed with
fitting a polynomial. The curved radio spectra are then modeled
with an nth-order polynomial, which on a logarithmic scale takes
the general form

å n
n

n
n
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n

=

= + + +

n
=
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where A0 is an offset parameter (equivalent to log(S0) in the
case of a simple power law), A1 is the spectral index −α, and
An are curvature parameters (cn). In the linear space the model
takes the form

=n
n n

=

( )( )S 10 , 2
i

n
A

0

logi
i

0

which we use in our modeling to preserve Gaussian noise
characteristics of the measurements.

Where the data suggest or show a spectral turnover, the
following models are tested: SSA, FFA, or a combination of
these and power-law components.

3.2.1. Synchrotron Self-absorption

At low radio frequencies the intensity of the synchrotron
radiation may become sufficiently high (optically thick regime)
for reabsorption, termed SSA, to take over. The process may be
important, or even dominant, for compact sources (Slysh 1990;
Chevalier 1998). We model the synchrotron radio spectra that
may turn over due to self-absorption at low radio frequencies as
(e.g., Tingay & de Kool 2003)

n
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=
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2.5

where nt=1 is a frequency at which the optical depth (τ) reaches
unity.

3.2.2. Free–Free Absorption

The self-absorbed bremsstrahlung (i.e., free–free absorbed)
radio spectrum can be expressed as (e.g., McDonald et al. 2002)

n
n

= -n t
t

t n
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=

-
⎛
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⎞
⎠⎟ ( ) ( )( )S S e1 , 51

1

2
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where the opacity coefficient is given by

t n n n= t=
-( ) ( ) ( ). 6ff 1

2.1

As discussed in Section 1, radio emission from NGC253 is a
mixture of synchrotron emission from cosmic rays from SNRs
and thermal emission from H II regions. The FFA is expected to
start dominating at low radio frequencies, where the intensity of
the electrons in the ionized gas becomes high (optically thick
regime). For NGC253 it is a natural assumption that the thermal
plasma coexists with the synchrotron-emitting electrons, hence the
radio spectrum can be modeled as a synchrotron power law with
an internal free–free absorbing screen (SFA; Tingay & de
Kool 2003),

n
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3.3. Weighted Nonlinear Least-squares Fitting

All measurements in this paper are considered to be
independent of each other (in the GLEAM survey valid for
flux densities 5 Jy; see Hurley-Walker et al. 2017), thus a
simple form of χ2 statistic is used for the fitting of the radio
spectra, which at the same time is the goodness-of-fit of the
fitted model (Mi),

åc =
-⎛

⎝⎜
⎞
⎠⎟ ( )M data

error
8

i

n
i i

i

2
2

for i=1, K, n data points. In minimization of Equation (8) we
use the Levenberg–Marquardt algorithm (Levenberg 1944;
Marquardt 1963) implemented in the Python26 module LMFIT

(Newville et al. 2014).

Figure 1. 330 MHz image of NGC253 from Carilli (1996) with overlaid
contours from the TGSS ADR1 survey (white) and the MWA/EoR image (red).
The TGSS contours start at 4σ local rms noise level (σ=11.7 mJybeam−1) and
increase as σ2i for i>0. The MWA/EoR0 contour marks the 4σ radio intensity
at 169 MHz (16.4 mJy beam−1). The sizes of the synthesized beams at 169 MHz
(red), 330 MHz (green), and 150 MHz (black) are drawn in the top right corner.
Background sources, not associated with the intrinsic emission of NGC253, are
labelled with numbers (see Section 4.1). The color scale is in units of Jy beam−1,
and the pixel size is 5×5 arcsec2.

26 http://www.python.org
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3.4. Model Selection

We use the Bayesian inference method for the formal model
selection. We follow the prescription outlined in Callingham
et al. (2015), with the log-likelihood function (the probability
of observing the data given model parameters θ) in the form of

 åq p= -
-

+
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )M

ln
1

2

data

error
ln 2 error . 9

i

n
i i

i
i

2

2
2

Under the hypothesis that the models being compared (M1, M2)
are equally likely, the model can be selected based solely on the
Bayesian evidence (Z), where

D = -( ) ( ) ( ) ( )Z Z Zln ln ln 102 1

and

ò ò ò q q q= P( ) ( ) ( ) ( )Z d... . 111,2

The dimensionality of the integration depends on the number of
model parameters. If Δln(Z)�3 model M2 is strongly favored
over M1. If 1<Δln(Z)<3 model M2 is only moderately
favored over M1, and if Δln(Z)<1 the preference of one
model over the other is inconclusive. For more discussion on
the theoretical background of the method used see Callingham
et al. (2015). We use the MULTINEST tool (Feroz &
Hobson 2008; Feroz et al. 2009, 2013; Buchner et al. 2014)
for our calculations of the Bayesian evidence.

4. Results

In what follows we refer to the “halo” as the radio emission
beyond the boundary of the optical disk of the galaxy. Given
the low angular resolution of the MWA observations we
distinguish only between the disk of the galaxy and the
extended synchrotron halo.

4.1. Background Sources

There are three discrete radio sources located within the
extended emission of NGC253; the sources are marked in

Figure 1, and their positions are based on the NVSS and
measurements of Heesen et al. (2009a).
Discrete radio source no.1 is located at R.A.(J2000)

=00h47m59 10, decl.(J2000)=−25°18′22 45 at 200MHz,
and is most likely a background radio source (Carilli
et al. 1992). The radio source is detected in the GLEAM
images, but at low frequencies it becomes increasingly
confused with the halo emission of NGC253. We measure
the flux density of the source only in the deep GLEAM image
(Table 2). Discrete radio source no.2 is located at R.A.
(J2000)=00h47m12 01, decl.(J2000)=−25°17′43 9 and is
most likely a faint background radio source (Heesen
et al. 2009a). This source is heavily embedded in the extended
emission of NGC253 in the MWA images. Discrete radio
source no.3 is located at R.A.(J2000)=00h47m44 91, decl.
(J2000)=−25°13′38 4. This source is embedded in the
extended emission in our MWA images, but is clearly detected
in the TGSS ADR1 image (Figure 1). The flux density
measurements of the background sources are listed in Table 2,
and the spectral modeling results are given in Table 3. We
subtract the estimated contribution of these sources to the flux
density from the measurements of the total flux density of
NGC253. In addition, we model background source no.1 as a
point source with a peak flux density of 240mJy at 169MHz
and 223mJy at 200MHz, and for pictorial purposes we
subtract it directly from the plane of the radio image. The
resulting radio contours are overlaid on Hα and X-ray images
in Figure 2 and discussed in Section 5.1.

4.2. NGC 253

Radio images of NGC253 at six chosen radio frequencies
are presented in Figure 3. At 200MHz, the deepest image from
the GLEAM observations presented here, the size of NGC253
is 1310 arcsec (major axis) and 535 arcsec (minor axis)
measured at PA=52°, with a total radio luminosity density
of 2.4(±0.1)×1022WHz−1. At 169MHz (MWA/EoR0
image), the size increases by 3%–6%, to 1440 arcsec (major
axis) and 615 arcsec (minor axis), which may be a combination

Table 2
Flux Density Measurements of Background Sources Embedded in NGC253 Radio Emission

Frequency Background Background Background Angular References
(MHz) Source 1 Source 2 Source 3 Resolution

(mJy) (mJy) (mJy) (arcsec2)

74 263±76a L L 75×75 ac

150 212±19 15.6b 162±17 36×24 bc

200 233±23 L L 138×126 c
330 190±10 L L 72×72 d
610 84±15 L L 114×24 e
843 97±10 L L 47×43 f
1465 63.0±2.5 L L 66×38 g
1465 53.0±3.0 17.2±1.0 26±2 30×30 d
1490 5.6±0.5 L 53.0±0.5 19.0±0.5 h
4850 19.0±1.0 6.6±0.3 7.9±0.4 30×30 d
8350 9.5±0.5 L L 84×84 d

Notes. All measurements are in the same absolute flux density scale of Baars et al. (1977).
a Tentative detection (2.5σ).
b Upper limit, equal 3 × local rms noise level.
c Our measurement based on images from the quoted survey.
References. (a) Lane et al. (2014), (b) Intema et al. (2016), (c) this publication, (d) Heesen et al. (2009a), (e) Bosma et al. (1983), (f) Reynolds & Harnett (1983), (g)
Hummel et al. (1984), (h) Condon (1987).
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of the intrinsic increase in size and the uncertainty of the
measurement.

4.2.1. Total Radio Emission

Radio continuum spectra of NGC253 between 76MHz
and 10.7 GHz are plotted in Figure 4 and the flux density
measurements are tabulated in Table 4. Background radio
sources (Section 4.1) located within the diffuse emission of
NGC253 were subtracted from the total flux density
measurements. In the construction of the radio spectrum we
used archival data provided that the measurements were of
angular resolution comparable to GLEAM or were sensitive to
low-brightness emission on angular scales of at least 0°.5, the
total flux density was integrated over the diffuse emission of
NGC253 and not fitted by Gaussian components, and the
absolute flux density scale and the uncertainties of the
measurements were quoted. We do not use measurements at
an angular resolution of >20 arcmin because of confusion of
NGC253 with nearby sources.

We find the best fitting model to be a second-order
polynomial with S0=7.30±0.04 Jy, α=0.56±0.01, and
a curvature c1=−0.12±0.01 at a reference frequency of
1 GHz (χ2=140, with degrees of freedom: dof=45;
Figure 4), which is significantly preferred to a simple power
law (Δln(Z)=100.5±0.3).

4.2.2. Central Starburst Region

The angular resolution of the MWA data is too low to
resolve the central starburst region of NGC253; the highest
angular resolution achieved is 102 arcsec at 227MHz
(GLEAM) and 138 arcsec at 169MHz (EoR), which is over
three times the size of the starburst region (Condon et al. 1982;
Antonucci & Ulvestad 1988; Carilli 1996). We construct radio
spectra of the central starburst region using data from the
literature and new measurements from the TGSS ADR1 survey
(Figure 4, Table 5). We limit the measurements to those that are
at an angular resolution comparable to the size of the central
starburst region (approximately 20–30 arcsec).
We find the best fitting model to be a second-order polynomial

with S0=2.28±0.02 Jy, α=0.20±0.01, and a curvature
c1=−0.24±0.01 at a reference frequency of 1GHz
(χ2=12.8, dof=13; Figure 4). We further attempt to model
the spectral turnover, and we find SFA (Equation (7)) to be the best
fitting model with = t=S 4.43 0.141 Jy, α=0.43±0.01, and
n = t= 238 15 MHz1 (χ2=42.9, dof=13). Based on the
Bayesian evidence the SFA model (synchrotron plasma absorbed
by an internal free–free absorbing screen) is preferred to the pure
SSA model (D = ( ) )Zln 8.3 0.3 .

4.2.3. Spectral Index Maps

Using the total flux density images at 200MHz (GLEAM),
169MHz (MWA/EoR), and 1.46 GHz (Carilli et al. 1992), we

Table 3
Results of the Spectral Modeling of the Background Sources

Background Polynomial S1 GHz α c1 dof χ2

source order (mJy)

1 2 80.7±1.9 0.79±0.02 −0.25±0.04 7 19.2
2 2 21.9±1.0 0.32±0.07 −0.63±0.11 1 3.5
3 1 33.1±1.4 0.88±0.03 L 1 2.8

Figure 2. Left: Hα image from the Survey for Ionization in Neutral Gas Galaxies (SINGG; Meurer et al. 2006). The image was taken with the CTIO 0.9 m telescope
for SINGG using a 75 Å wide narrowband filter, and continuum was subtracted using an image taken in the R band (Harris filter) in the same observing setup.
The image has been smoothed by a factor 6 to aid in inspection of the faint wind features. The GLEAM contours start at 4σ rms level (σ=11 mJybeam−1) and
increase by a factor of s2i for i>0. The background discrete sources within extended emission of NGC253 have been removed (see Section 4.1). Right: XMM-
Newton image of soft X-ray emission from NGC253 and its environment (0.2–1 keV band; Bauer et al. 2008) with overlaid MWA/EoR0 intensity contours.Both
color bars are in units of 10−3 counts s−1 px−1. The MWA/EoR0 contours start at 4σ rms level (σ=4.1 mJybeam−1) and increase by a factor of s2i for i>0.
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created maps of the spectral index distribution and corresp-
onding maps of the uncertainty and signal-to-noise ratio
(Figure 5). To create the spectral index maps we convolved
the 1.46 GHz image with the resolution of the GLEAM image

(for the 200MHz–1.46 GHz spectral index map), and the
MWA/EoR image (169MHz–1.46 GHz spectral index map).
The spectral index maps suggest an apparent variation in α

across the disk and halo of NGC253. The central regions of

Figure 3. Radio images of NGC253 from the GLEAM survey at five selected frequencies: (centered on 88 MHz (top left), 118 MHz (top middle), 154 MHz (top
right), and 215 MHz (bottom right) with bandwidth Δν=30.7 MHz; centered on 200 MHz with bandwidth Δν=61.4 MHz (bottom middle) and from the MWA
EoR data (169 MHz; bottom left). The synthesized beam sizes are drawn in the top right corner of each image. The color scales are in units of Jybeam−1, and the pixel
sizes are 28.8×28.8 arcsec2 at 88 MHz, 118 MHz, and 154 MHz, 30.6×30.6 arcsec2 at 169 MHz, and 18.8×18.8 arcsec2 at 200 and 215 MHz.

Figure 4. Left: Radio spectra of the total radio emission of NGC253 (filled symbols) and the central starburst region (empty symbols; measured at an angular
resolution of ∼20–30 arcsec, equivalent to ∼300–500 pc; Table 5). The measurements from the GLEAM survey are drawn as circles, those from the MWA/EoR0
observations as a star, and data from the literature as triangles (Table 4). The final spectral energy distribution of the NGC 253 total emission is modeled as a three-
component model (solid line, purple) and is a combination of a power law, a second-order polynomial component modeling the extended emission (drawn
cumulatively as dashed–dotted–dotted, green), and internally free–free absorbed synchrotron emission of the central starburst (dash-dotted, brown/yellow; refer to
Section 5.2). For reference the central starburst modeled as self-absorbed synchrotron emission (dashed, blue) and a second-order polynomial (dotted, gray) is also
drawn. The contribution of the background sources to the flux density has been subtracted from the total flux density of NGC253 (Section 4.1). Right: Radio spectra
of the background sources. The measurements are listed in Table 2, and results on the spectral fitting in Table 3. The uncertainties on each fit are drawn as shaded
areas.
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Table 4
Total Integrated Flux Density Measurements of NGC253

Frequency Total Angular Largest References
(MHz) (Jy) Resolution Angular Scale

(arcmin2) (deg)

76 23.9±2.0 5.1×4.7 29 a
80 23.7±4.0 3.7×3.7 no info b, c
84 22.6±1.9 5.1×4.7 27 a
92 20.9±1.7 5.1×4.7 24 a
99 20.0±1.6 5.1×4.7 23 a
107 20.3±1.7 5.1×4.7 21 a
115 20.0±1.6 5.1×4.7 19 a
122 18.8±1.6 5.1×4.7 18 a
130 17.8±1.5 5.1×4.7 17 a
143 17.9±1.5 5.1×4.7 16 a
151 16.6±1.4 5.1×4.7 15 a
158 16.1±1.3 5.1×4.7 14 a
166 15.7±1.3 5.1×4.7 13 a
169 15.0±1.2 5.1×4.7 13 a
174 16.4±1.3 5.1×4.7 13 a
181 15.7±1.3 5.1×4.7 12 a
189 15.3±1.2 5.1×4.7 12 a
197 15.4±1.2 5.1×4.7 11 a
204 15.8±1.3 5.1×4.7 11 a
212 15.1±1.2 5.1×4.7 11 a
220 14.7±1.2 5.1×4.7 10 a
227 15.0±1.2 5.1×4.7 10 a
330 16.5±1.9 1.2×1.2 1.2 d, e
408 15.7±1.9 2.9×2.86 no info f
468 15.1±1.5 2.1×2.1, 5.2×5.2a extr. single dishb c, g
610 9.4±0.6 1.9×0.4 no info h
843 9.0±0.9 0.72×0.78 no info (th: 1.1) i
960 8.0±0.12 20.2×20.2 single dish c, g
1100 6.7±0.08 4.2×4.2 no info, dense core j
1200 6.68±0.10 3.4×3.4 no info, dense core j
1300 6.22±0.07 3.2×3.2 no info, dense core j
1400 5.89±0.16 2.9×2.9 no info, dense core j
1410 6.12±0.12 15.5×15.5 single dish c, g
1430 5.7±0.5 0.91×0.83 no info (th: 0.8) h
1465 5.9±0.1 1.1×0.63 extr. single dishb k
1465 6.3±1.1 0.5×0.5 0.25 d, e
1490 5.6±0.5 0.9×0.9 0.27 m
2650 3.85±0.12 8.3×8.3 single dish c, g
2695 4.26±0.14 4.9×4.9 single dish n
2700 3.49±0.12 8.0×8.0 single dish c, g
4850 2.93±0.13 2.7×2.7 single dish n
4850 2.71±0.14 0.5×0.5 single dish e
4850 2.69±0.10 4.2×4.2 single dish p
5009 2.50±0.23 4.0×4.0 single dish c, g
5009 2.12±0.09 4.0×4.0 single dish c, r
8350 1.66±0.08 1.4×1.4 single dish e
8700 2.06±0.12 1.5×1.5 single dish n
10550 1.98±0.18 1.2×1.2 single dish s
10700 1.95±0.15 1.2×1.2 single dish t

Notes. Uncertainties associated with the GLEAM, MWA/EoR, and TGSS measurements include the fitting error and the uncertainty of the absolute flux density
calibration; for the remaining data the errors quoted in references are adopted. All measurements are brought to the same absolute flux density scale of Baars et al.
(1977). If no information on the largest angular scale of the final images was reported, we state “no info,” and we provide a theoretical value (upper limit, marked as
“th”) for those measurements for which information on the interferometer’s shortest baseline was provided, and assume that adequate uv coverage has been achieved
and no minimum-uv cut has been applied.
a Conflicting details given in the reference.
b Corrected for zero-spacing missing flux density with extrapolation.
References. (a) This publication, (b) Slee & Higgins (1973), (c) Kuehr et al. (1981), (d) Carilli et al. (1992), (e) Heesen et al. (2009a), (f) Cameron (1971), (g) Wills
(1975), (h) Bosma et al. (1983), (i) Reynolds & Harnett (1983), (j)Williams & Bower (2010), (k) Hummel et al. (1984), (m) Condon (1987), (n) Beck et al. (1979), (p)
Griffith et al. (1994), (r) Wall et al. (1976), (s) Beck et al. (1994), (t) Klein et al. (1983).
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the galaxy are dominated by a flat component (α=0.31–0.34),
coinciding with the central starburst. The gradual steepening
along the minor axis found by Heesen et al. (2009a) is seen
only on the northern side of the galaxy in our maps. Further,
the region extending southwest (SW) from the central starburst
region seems to be flatter (α0.53) than the other parts of the
galaxy outside the central starburst (α∼0.60–0.65).

To verify the significance of the variation in spectral index
across the galaxy, we used the T–T method (Turtle et al. 1962).
The method allows one to estimate a spectral index within
defined regions of a source between two frequencies. We define
nine regions within NGC253 (Figure 5). Due to the low
angular resolution of our observations and to avoid over-
sampling, only one data point is associated with each region.
The results are shown in Table 6 and Figure 6.

We find that between 200MHz and 1.465 GHz the
apparently flat regions (Regions 8 and 9) are statistically
different from the other regions within NGC253 apart from
Region 1 (Figure 6, Table 6). This spectral flattening is not
present in the map of the radio spectral index distribution
between 330MHz and 1.46 GHz of Heesen et al. (2009a), even
though the same high-frequency map is used. This clearly
indicates that the flattening occurs at <300MHz. There is also
a slight flattening of the spectral index in the northeast (NE)
region perpendicular to the major axis (Region 1), although we
find this flattening to be statistically different only from
Regions 2 (eastern northwest (NW) halo), 4 (radio spur), and 5
(including central starburst) in the a1.4 GHz

200MHz map. All regions
flatten further at 169MHz, reducing the differences between
spectral indices of the regions.

5. Discussion

5.1. Low-frequency Synchrotron Radio Halo

A large-scale radio halo in NGC253 was discovered and
confirmed by Carilli et al. (1992) and studied extensively by
Beck et al. (1994) and Heesen et al. (2009a, 2009b, 2011). This
synchrotron halo is most pronounced at low radio frequencies,
with estimated scale heights of 1.7±0.1 kpc at 1.4 GHz and
2.5±0.2 kpc at 330MHz (Heesen et al. 2009a). Both the deep
200MHz GLEAM image and the MWA/EoR image at
169MHz reveal the extended synchrotron halo, which is at
least as extensive as one detected in the 330 MHz map of
Carilli et al. (1992) (Figure 1).

5.1.1. Maximum Vertical Extent

We measured the observed, projected maximum vertical
extent of the disk and halo of NGC253 at 169MHz as a
function of the distance from the nuclear region along the major
axis (Figure 7, Table 7). The extent is measured perpendicular
to the major axis (at PA=−38°, z-direction) in steps of
132 arcsec (2.4 kpc) separately for the north (filled circles) and
south (empty circles) sides of the disk and halo as divided by
the major axis (PA=52°). We find the projected radio halo to
extend up to 4.75 kpc above the optical edge (B band including
90% of total light, Lauberts & Valentijn 1989) and 6.3 kpc
above the infrared edge (total Ks band, Jarrett et al. 2003) of the
galaxy, reaching up to a total 7.9 kpc in the z-direction. This is
consistent with previous radio measurements at higher radio
frequencies (Reynolds & Harnett 1983; Hummel et al. 1984;
Carilli et al. 1992, Figure1; but see Heesen et al. 2009a), as
well as with broadband X-ray observations of the galaxy’s

extended extraplanar emission (Pietsch et al. 2000). Heesen
et al. (2009a, 2009b) attributed the decrease in scale height they
measured and modeled to the increased synchrotron losses in
the central regions, where the magnetic field is highest.

5.1.2. Halo Morphology

The shape of the radio halo in our MWA radio images
(Figure 2) resembles the “horn-like” or “X-shaped” structure
seen at gigahertz radio frequencies (Heesen et al. 2009a), in H I
(Boomsma et al. 2005; Lucero et al. 2015), X-rays (Fab-
biano 1988; Pietsch et al. 2000; Bauer et al. 2008), Hα (G.
Meurer, private communication; Figure 2), UV (Hoopes et al.
2005), and far-IR (Kaneda et al. 2009).
The radio halo was investigated in detail by Heesen et al.

(2009b) who, through modeling of the large-scale magnetic
field, attributed its origin to disk wind, confirming previous
suggestions (Carilli et al. 1992; Beck et al. 1994). This is also
in line with the Hα and optical analyses of the inner starburst-
driven superwind (Westmoquette et al. 2011). In our MWA
maps both the NE and NW halo regions are pronounced. The
extended soft X-ray emission (<1 keV) of the halo, detected in
the northwestern direction from the disk of NGC253, is
interpreted as bubbles of hot low-density gas (Figure 2; Pietsch
et al. 2000; Strickland et al. 2002). Heesen et al. (2009b)
postulate that the large-scale magnetic field of the halo follows
the walls of these bubbles, where it may be compressed,
producing the X-shaped synchrotron radio halo as well as
heating up pre-existing cold gas to X-ray energies. The
northern halo can also be easily seen, in projection, in our
Figure 2 where we overlay MWA/EoR intensity contours on
the XMM-Newton image of soft X-ray emission.
The southeast (SE) region of the extended halo, the “spur”

(Carilli et al. 1992), is contaminated by a background source.
We modeled the background source as unresolved (at MWA

Table 5
Flux Density Measurements of the Central Starburst Region of NGC253

Frequency Central Angular References
(MHz) Component Resolution

(Jy) (arcsec2)

150 2.16±0.15 36×24 ab

330 2.67±0.16 33×21 b
610 2.3±0.2 114×24 c
1413 2.33±0.14a 3×1.8 d
1450 2.07±0.04 33×21 b
1465 2.04±0.10 30×30 e
1660 1.96±0.04 33×21 b
4520 1.36±0.04 33×21 b
4850 1.27±0.06 30×30 e
4890 1.30±0.04 33×21 b
6700 1.13±0.04 37×37 f
7000 1.04±0.04 35×35 f
8090 0.93±0.03 33×21 b
8350 0.98±0.05 84×84 e
8470 0.89±0.03 33×21 b

Notes. All measurements are in the same absolute flux density scale of Baars
et al. (1977).
a Integrated.
b Our measurement based on images from the quoted survey.
References. (a) Intema et al. (2016), (b) Carilli (1996), (c) Bosma et al. (1983),
(d) Condon et al. (1982), (e) Heesen et al. (2009a), (f) Williams &
Bower (2010).
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angular resolution) and subtracted it from the 169MHz EoR
and deep 200MHz GLEAM images as described in Section 4.1.
The residual emission, which we consider intrinsic to the
“spur,” is shown in Figure 2 overplotted on the Hα and X-ray
images. Although slightly offset (as expected, see Figure19 in
Heesen et al. 2009b), the feature broadly coincides with the
extended outflows at both frequencies as clearly seen in our
figure. The spur has been previously interpreted as originating

from the active star formation region in the NE end of the bar
(Waller et al. 1988; Carilli et al. 1992). We confirm the
association of the radio “spur” with an extended Hα outflow,
which can be clearly seen in our Figure 2 (G. Meurer, private
communication; Kennicutt et al. 2003). In our radio spectral
map between 200MHz and 1.46 GHz the spur displays the
steepest spectral index within the galaxy (Figure 5), gradually
steepening from α∼0.7 to α∼0.9 outward from the disk of

Table 6
Radio Spectral Indices (α) Measured for Selected Regions of NGC253 (Figure 5)

Region a1.4GHz
169MHz S169MHz S1.4 GHz

169res a1.4GHz
200MHz S200 MHz S1.4 GHz

200res

(mJy) (mJy) (mJy) (mJy)

1 0.54±0.06 242±26 75±10 0.57±0.06 233±25 75±10
2 0.63±0.04 586±59 149±13 0.68±0.03 581±51 149±13
3 0.57±0.02 883±89 257±11 0.62±0.02 884±73 257±11
4 0.67±0.04 415±42 97±9 0.72±0.04 412±36 97±9
5 0.31±<0.01 6558±656 3341±14 0.34±<0.01 6589±528 3341±14
6 0.60±0.07 224±24 61±10 0.70±0.07 246±25 61±10
7 0.58±0.03 488±49 139±10 0.63±0.03 487±42 139±10
8 0.50±0.02 616±62 211±9 0.51±0.02 578±49 211±9
9 0.53±0.06 216±23 69±9 0.51±0.06 192±21 69±9

Note. Radio spectral index maps are used at 169 MHz (MWA/EoR0; S169 MHz), 200 MHz (GLEAM; S200 MHz), and 1.465 GHz convolved to 169 MHz (S1.4 GHz
169res ) and

separately to 200 MHz (S1.4 GHz
200res ) angular resolution.

Figure 5. Top left: map of the radio spectral index distribution between 200 MHz (GLEAM) and 1.465 GHz (Carilli et al. 1992) at an angular resolution of
133×127 arcsec2 (drawn in the top right corner). The color scale is α px−1 with the pixel size 18×18 arcsec2. The spectral index was calculated only for pixels at
�4σ rms level at each frequency. We also mark regions for which we calculate their separate spectral index for the T–T method (see Section 4.2.3). Top middle: a map
of the average signal-to-noise ratio (S/N) of pixels at 200 MHz and 1.46 GHz used to create the spectral index map. Top right: uncertainty on the spectral index
calculation per pixel based purely on the off-source rms noise levels. This uncertainty will be dominant for the low S/N pixels. At high S/N this uncertainty can only
be considered as a lower limit. Bottom row: same as top row but between 169 MHz (MWA/EoR0) and 1.465 GHz (Carilli et al. 1992), at an angular resolution of
138×138 arcsec2.
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the galaxy (though it still contains background source no.1 with
α=0.57), which is indicative of ageing unabsorbed synchro-
tron plasma.

5.2. Spectral Properties of NGC253

5.2.1. Broadband Spectrum of Total Radio Emission

The broadband spectrum of the total radio emission from
NGC253 is steep, although flattening at megahertz radio
frequencies (Figure 4). The total radio emission originates from
SNRs, H II regions (predominantly the central starburst region;
e.g., Ulvestad & Antonucci 1997; Ulvestad 2000; but see
Waller et al. 1988; Hoopes et al. 1996) and electrons (cosmic
rays) freely spiralling in the large-scale magnetic field (radio

halo; Heesen et al. 2009a). The steep spectrum is understood to
be of a synchrotron origin. The flattening of the spectrum,
however, may be due to a number of reasons, including some
degree of absorption of the synchrotron emission (Equation (3))
and a low-energy cutoff of the electron population, where in
general it is assumed the spectrum of the electron energy (E)
can be described as a power law µ -( )N E E p with the index p
related to the radio spectral index as a = -( )p 1 2. The

Figure 6. T–T plots between 200 MHz and 1.465 GHz (left) and between 169 MHz and 1.465 GHz (right). The fitted spectral index for each region (Figure 5) is
drawn as a solid line and is tabulated in Table 6. Region 5 (central starburst) is not pictured. For clarity, only the uncertainties associated with Region 8 are drawn as a
shaded area.

Figure 7. Projected maximum vertical extent of the disk and halo of NGC253
at 169 MHz (h) as a function of the distance from the nuclear region along the
major axis (x), where 0 is centered on the nucleus of the galaxy. The NE
direction along the major axis is negative and SW is positive. The extent is
measured perpendicular to the major axis (at PA=−38°) at a step of
132 arcsec (2.4 kpc) separately for the north (filled circles) and south (empty
circles) sides of the disk and halo as divided by the major axis (PA=52°). The
synthesized beam size of the radio image, 138×138 arcsec2, is not included in
the uncertainties and is drawn as a solid horizontal line. Measured sizes of
NGC253 in the optical B band including 90% of total light (dashed–dotted
line) and total infrared Ks band (dashed line) are drawn for reference. Plotted
values are tabulated in Table 7.

Table 7
Projected Maximum Vertical Extent of the Disk and Halo

of NGC253 at 169 MHz (h)

x x h North h North h South h South
(arcsec) (kpc) (arcsec) (kpc) (arcsec) (kpc)

−658 −11.8 113 2.0 100 1.8
−526 −9.5 213 3.8 211 3.8
−395 −7.1 262 4.7 327 5.9
−263 −4.7 396 7.1 440 7.9
−132 −2.4 416 7.5 367 6.6
0 0.0 311 5.6 291 5.2
132 2.4 270 4.9 291 5.2
263 4.7 297 5.5 323 5.8
395 7.1 279 5.0 260 4.7
526 9.5 201 3.6 171 3.1
658 11.8 56 1.0 100 1.8

Note. The projected maximum vertical extent is measured at a distance x from
the nuclear region along the major axis, where 0 is centered on the nucleus of
the galaxy. The NE direction along the major axis is negative and SW is
positive. The extent is measured perpendicular to the major axis (PA=−38°)
separately for the north and south sides of the disk and halo. The uncertainties
on the measurements are 21.6 arcsec (equivalent to 0.4 kpc). See Section 5.1
for discussion.
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flattening of the spectra of starburst galaxies at low radio
frequency is not unusual and it has been observed previously
(e.g., Marvil et al. 2015).

We attempt to separate the contributions of the extended and
central starburst emission to the total flux densities to see
whether the spectral flattening can be attributed mostly to the
absorption occurring in the central starburst region. To do this
we simultaneously fitted the spectra of the total flux density and
the central starburst region, assuming an underlying two- or
three-component spectrum composed of the central starburst
region (component C) and extended emission (component E,
consisting of one or two components). As an example of our
fitting method, in the case where component E is modeled as a
power law and component C as free–free absorbed synchrotron
emission, the model equation ( n )S mod takes the form

= + +n n n n( ) ( ) ( )S S S S , 12mod E C tot C cor

where

n
n

=n

a-⎛
⎝⎜

⎞
⎠⎟ ( )S S , 13E

0
ext

0

ext

n
n t n

=
-

n

a t n- -⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

S S
e1

. 14C
0
cor

0 ff

cor
ff

τff(ν) is given by Equation (6) and the indices indicate: tot—
total, cor—core, C—component C, E—component E, ext—
extended. This model equation is then compared to our
observed data ( nS obs), where = +n n nS S Sobs obs,tot obs,cor. In the
two-component model, we fit component E with either a
simple power law or a curved spectrum (second-degree
polynomial; Equation (1)). In the three-component model, we
fit component E with a combination of a power law and either a
curved spectrum, a synchrotron self-absorbed component
(Equation (3)), or a synchrotron free–free absorbed component
(Equation (7)). Component C is modeled with either a second-
degree polynomial, self-absorbed synchrotron emission, or
synchrotron power-law emission with a free–free absorbing
screen.

We find the best fitting model to be the three-component model,
with (1) component E modeled as a combination of a simple power
law and a second-order polynomial, with a total flux density
S0=5.08±0.50 Jy and α=0.71±0.01 at reference frequency
1GHz, and 34% of S0 becoming absorbed at low frequencies as
described by a second-order polynomial with c1=−0.76±0.17,
and (2) component C modeled as a synchrotron plasma with an
internal free–free absorbing screen, with = t=S 4.34 0.111 Jy,
n = t= 231 14 MHz1 , αSSA=0.41±0.01. The three-comp-
onent model (χ2=173, dof=58) is favored over any two-
component model, even if component E is modeled as a second-
order polynomial (D > ( ) )Zln 4.3 0.3 .

Preference of the three-component model indicates that
flattening of the spectrum of component E at the lower
frequencies is non-negligible. In principle, this flattening could
be attributed to SSA caused by shock reacceleration of the
halo/disk plasma, an external free–free absorbing screen, or an
intrinsic low-energy cutoff of the electron distribution. Thermal
FFA can be largely excluded based on the limited evidence for
high thermal content in the halo of NGC 253, especially in the
SW region (see Section 5.2.2 for details). Although our
Bayesian inference tests indicate that the flattening caused by
the SSA is moderately favored over the low-energy cutoff in

the electron distribution, which could be inferred from the
second-order polynomial fit (D = ( )Zln 2.5 0.3), we find
that the former fit is associated with very high uncertainties. We
also find that any model invoking multiple internal components
that we tested is strongly favored over an external free–free
absorbing screen. Our results do not change in the absence of
the data points between 300 and 600MHz that may seem
unusually high, which further strengthens our result that the
radio-emitting plasma in the disk and halo of NGC253 is
composed of at least two spectral components that behave
differently. This result is also in line with our findings on the
variation of the radio spectral index across the galaxy
(discussed further in the next section).
Furthermore, another important result of our spectral

modeling is that the central starburst region is best modeled
by the SFA model. Although, in principle, the second-order
polynomial is statistically favored, the SFA model is more
realistic. Curved radio spectra can be explained by a low-
energy cutoff of the electron population, SSA, SFA, or FFA
models. As we have shown, the SSA model is statistically ruled
out (Section 4.2.2). Given the overwhelming evidence of a
significant thermal component in the central starburst (e.g.,
Figure 2; Ulvestad & Antonucci 1997; Keto et al. 1999; Kepley
et al. 2011) coexisting with synchrotron plasma, the synchro-
tron FFA model is more likely than the low-energy cutoff in the
electron population. The plasma becomes optically thick
around a frequency of 230MHz. Given this result, and under
a simplified assumption that a uniform optical depth holds
across the region, we estimate a typical emission measure
(Oster 1961; Spitzer 1978) of the absorbing gas toward the
central starburst region to be very high, of the order
4×105 pc cm−6 (assuming electron temperature Te = 4000 K;
see discussion in Carilli 1996).

5.2.2. Maps of the Radio Spectral Index Distribution

We now consider the origin of the variation in α across the
disk and halo of NGC253. The southern flattening occurs
beyond the SW spiral arm, in the halo region. In Figure 8 we
overplot the a1.4 GHz

200 MHz and extraplanar H I contours on the XMM-
Newton soft X-ray image of NGC253. The diffuse X-ray
emission indicates ionized hot gas. As pointed out by Lucero
et al. (2015), the neutral cold H I gas seems to surround the X-
ray-emitting regions. The spatial variations of the radio spectral
index seem to follow the distribution of the X-ray emission,
with the steepening of α occurring in the regions of intense soft
X-ray emission (radio spur and NW halo) and the flattening
around the voids of diffuse X-ray plasma (western SE halo,
eastern NW halo). This distribution seems to also match the
extraplanar H I emission, especially in the western SE halo
region. In Hα we detect faint diffuse emission in the NE halo
and the southern “spur” (Figure 2), with the line fluxes
measured down to 3×10−18 erg cm−2 s−1 arcsec−2. In these
regions the spectral index seems to steepen (Figure 8(B)).
There is, however, almost no Hα emission present in the
western SE halo, while most of the flattening of component E
in the modeling of Section 5.2.1 is due to this region
(Figure 8(C), Regions 8 and 9 in Figure 5).
It has previously been suggested that the halo gas originates

from both galactic “fountains” from the star-forming disk and a
galactic superwind (Pietsch et al. 2000; Bauer et al. 2008). This
strong superwind may be pushing and collimating the neutral
cold gas in the halo (Lucero et al. 2015). In the case of strong
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collimation shocks one may observe flattening of radio spectra
due to SSA in transverse shocks. Our results seem to favor such
a scenario. It is also worth noting that the spectral flattening of
the SW halo corresponds to an extended loop, or arch, seen in
optical images (blue filter; Beck et al. 1982). However, if the
SW halo is predominantly diffuse and of low density, the
flattening may be rather due to an intrinsic low-energy cutoff of
the electron distribution.

Another important note is that, based on our modeling of the
broadband radio spectrum, the SW halo region cannot be fully
responsible for the total spectral flattening. Radio emission that
becomes absorbed at lower frequencies constitutes more than
30% of the total extended radio emission at 1 GHz
(1.73±0.36 Jy), while the SW region is only 0.77 Jy at that
frequency, which means that the flattening must also be

occurring, although to a lesser degree, in other regions across
the disk and halo.
Although the SW flattening of the radio spectral index is most

likely of a synchrotron origin, an external free–free absorbing
screen was also previously suggested. The foreground absorption
model was favored by Bauer et al. (2008) based on their modeling
of X-ray data and apparent differences in radio and X-ray halo
morphologies. As proved later (e.g., Heesen et al. 2009a, 2009b;
this publication, Section 5.1), deep continuum and polarization
radio observations at both gigahertz and megahertz frequencies
reveal the horn-like structure of the radio halo, which directly
resembles the X-ray diffuse emission. Based on the assumptions
of equipartition, Heesen et al. (2009a, 2011) find the magnetic
field within the halo to be very high, 7–12μG, reaching as much
as 160±20 μG in the central regions and 46±10 μG in the

Figure 8. (A) XMM-Newton image of soft X-ray emission from NGC253 and its environment (0.2–1 keV band; Bauer et al. 2008) with overlaid contours of the
GLEAM radio spectral index distribution (black) and anomalous extraplanar H I (Lucero et al. 2015). The color bar is in units of 10−5 counts s−1px−1. The H I
contour levels are 0.09, 0.58, 1.45, 2.9, and 4.8×1019 cm−2. The beam size of the H I observations is 3.5×3.0 arcmin2. (B) Zoom-in on the north disk and NE halo
in our Hα image (Figure 2) with overlaid contours of the GLEAM radio spectral index. (C) Zoom-in on the SW halo in Hα with overlaid contours of the GLEAM
radio spectral index. The two objects at R.A.=00:47:20.3, decl.=−25:22:51.4 and R.A.=00:47:34.8, decl.=−25:23:41.9 are foreground stars. The color bar of
panels B and C is in units of counts s−1px−1.
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starburst outflow. The magnetic field in the central regions is
strong enough for synchrotron emission to contribute a few
percent to the total X-ray emission (Lacki & Thompson 2013).
As discussed in the previous section, we also find that an external
free–free absorbing screen is not a statistically preferred model.
These new findings support models in which the total X-ray
emission may indeed come from a combination of thermal and
synchrotron plasma rather than multi-temperature pure thermal
plasma with an externally caused absorption (see Bauer
et al. 2008).

6. Conclusions

We present deep, low-frequency radio continuum images and
flux density measurements of a nearby, archetypal starburst
galaxy, NGC253. Our data are part of the GLEAM and the
MWA EoR observations. The images span frequencies between
76 and 231MHz at an angular resolution of 1.7–5 arcmin and
rms noise levels of 4–75mJy (depending on frequency), and
represent the deepest measurements of NGC253 at these low
radio frequencies yet.

Our main findings are summarized as follows.

1. We detect a large-scale synchrotron radio halo that at
154–231MHz displays the X-shaped/horn-like structure
seen at gigahertz radio frequencies, and it is broadly
consistent with other multiwavelength observations of
NGC253.

2. The projected maximum vertical extent of the synchro-
tron emission at 169MHz is up to 7.5 kpc NW (7.9 kpc
SE) from the major axis of NGC253, consistent with
large-scale soft X-ray emission (extending 9 kpc NW)
and X-ray outflow (6.3 kpc SE).

3. The radio spectrum of the central starburst region of
NGC253 is significantly curved at low radio frequencies,
with the spectral turnover occurring around
230–240MHz, which is statistically constrained for the
first time.

4. The maps of radio spectral index show significant spectral
variations in the structure of NGC253 between 200MHz
and 1.465 GHz. In particular, we isolate a region of
statistically significant spectral flattening to the western
side of the SE halo. However, as the SW region is rather
faint at 1.46 GHz it cannot be fully responsible for the
total spectral flattening, which indicates that the flattening
must also be occurring, likely to a lesser degree, in other
regions across the disk and halo.

5. The broadband spectrum of integrated total radio
emission of NGC253 is best described as a sum of
central starburst and extended emission, where the central
starburst component is best modeled as an internally free–
free absorbed synchrotron plasma, and the extended
emission as synchrotron emission flattening at low radio
frequencies. We also find that an external free–free
absorbing screen is not a statistically preferred model
when compared to models including multiple internal
components.

6. We find that the extended emission of NGC253 is best
modeled by a combination of two synchrotron compo-
nents, one of which becomes significantly absorbed at
low radio frequencies. The flattening occurs at frequen-
cies below 300MHz, and may be attributed to SSA of

shock-reaccelerated electrons or an intrinsic low-energy
cutoff of the electron distribution.
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