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ABSTRACT

A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A
previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or
transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst
and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere
interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates
several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation
during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in
transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in
each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate
during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This
finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the
inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also
implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a
competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

Key words: accretion, accretion disks – methods: analytical – methods: numerical – pulsars: general –
stars: rotation – X-rays: binaries

1. INTRODUCTION

Millisecond pulsars (MSPs), a subset of fast-spinning
neutron stars, are an important probe of the physics of
ultradense matter in compact stellar cores (Bogdanov et al.
2007; Lattimer & Prakash 2007; Bhattacharyya 2010). When
radio MSPs were first discovered in the early 1980s, it was
proposed that they are spun up to high rates via accretion in
low-mass X-ray binaries (LMXBs; Alpar et al. 1982;
Radhakrishnan & Srinivasan 1982). This was eventually
confirmed by discoveries of X-ray MSPs and transitional
pulsars (Chakrabarty & Morgan 1998; Wijnands & van der
Klis 1998; Archibald et al. 2009; de Martino et al. 2013;
Papitto et al. 2013). However, the detailed mechanism of this
spin-up is not yet well understood. One puzzling aspect is that
the distribution of pulsar spin frequencies cuts off sharply
above around 730 Hz in both the X-ray MSPs (Chakrabarty
et al. 2003; Chakrabarty 2005, 2008; Patruno 2010) and the
radio MSPs (Ferrario & Wickramasinghe 2007; Hessels 2008;
Papitto et al. 2014), well below the breakup spin rates for
neutron stars (Cook et al. 1994; Bhattacharyya et al. 2016).
Some authors have suggested the need for an additional
angular momentum sink such as gravitational radiation
(Bildsten 1998; Andersson et al. 1999; Chakrabarty et al.
2003). Others have argued that standard magnetic disk
accretion torque theory can account for the spin distribution,
for appropriate choices of pulsar magnetic field strength B and
long-term average accretion rate Mav˙ (Andersson et al. 2005;
Lamb & Yu 2005; Patruno et al. 2012b). Detailed differences
between the radio and X-ray spin distributions (Ferrario &
Wickramasinghe 2007; Hessels 2008; Papitto et al. 2014)
led to the suggestion of significant spin-down when the

accretion phase eventually ends and the binary “detaches”
(Tauris 2012). However, as we show, none of these analyses
fully accounted for the effect of transient accretion on the
pulsar spin evolution, even though most neutron star LMXBs
are X-ray transients (Liu et al. 2013), and among them almost
all the X-ray MSPs are transients (Patruno & Watts 2012;
Watts 2012). As an example, while Possenti et al. (1999)
discussed the effects of transience on neutron star spin
considering a lower Mav˙ for transients, one needs to consider
the same values of parameters (including Mav˙ ) for a persistent
and a transient accretor in order to cleanly separate out the
effects of the transience phenomenon.
Many LMXBs alternate between long intervals of X-ray

quiescence lasting months to years and brief transient outbursts
lasting days to weeks. These outbursts are believed to be
caused by accretion disk instabilities and are seen in many
systems. Such instabilities occur when Mav˙ is lower than a
certain limit (see, e.g., Lasota 1997). When the steady mass
injection from a donor star accumulates enough mass in the
disk, an ionization instability is triggered in which the
instantaneous accretion rate Ṁ (and hence the X-ray luminos-
ity) increases by several orders of magnitude, causing a
transient outburst with low duty cycle. When the accretion disk
is emptied by the enhanced accretion rate Ṁ , the source returns
to an extended X-ray quiescent state. A new outburst occurs
when sufficient mass accumulates in the disk again (Done
et al. 2007). The crucial effect of transient accretion on the
long-term spin-up of pulsars to millisecond periods has so far
not been reported. In this paper, we show numerically that, for
a given long-term average accretion rate Mav˙ , the final ν value
can be significantly different depending on whether the
accretion is persistent or transient. We also analytically
compute the equilibrium spin frequency of neutron stars spun
up in transient LMXBs.
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2. THE MODEL

2.1. Disk–magnetosphere Interaction and Torques

Consider a spinning, magnetized neutron star accreting from
a thin, Keplerian disk. The neutron star has gravitational mass
M, radius R, spin frequency ν, and magnetic dipole moment
μ=BR3 (where B is the surface dipole magnetic field
strength). There are three important length scales needed for
understanding the different accretion regimes. The magneto-
spheric radius rm, where the magnetic and material stresses are
equal, is
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where ξ is an order of unity constant that depends on details of
the disk–magnetosphere interaction (see, e.g., Psaltis &
Chakrabarty 1999). The corotation radius, where the stellar
and Keplerian angular velocities are equal, is
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Finally, the speed-of-light cylinder radius is pn=r c 2lc . For
neutron stars, we may always assume >r rlc co. In the standard
scenario for magnetic thin-disk accretion, steady accretion
occurs only when <r rm co (the accretion phase), with the
magnetosphere lying within the corotation radius (Pringle &
Rees 1972; Lamb et al. 1973). For rm>rco (the so-called
“propeller” regime), accretion is largely shut off by a
centrifugal barrier (Illarionov & Sunyaev 1975; Ustyugova
et al. 2006). For >r rm lc, the accreted matter is swept clear of
the magnetosphere, and the radio pulsar mechanism can turn on
(Stella et al. 1994). This has recently been confirmed with the
discovery of three transitional pulsars, which show radio
pulsations in X-ray quiescent phases (Archibald et al. 2009; de
Martino et al. 2013; Papitto et al. 2013). Linares (2014) has
listed the properties of their X-ray states, related to accretion, as
well as their pulsar state. These sources could be ideal to probe
the accretion, propeller, and quiescence phases.

The accretion/ejection and the interaction between the disk
and the stellar magnetosphere exert a torque on the neutron star
that can be written as (e.g., Parfrey et al. 2016)

= +N N N , 3acc field ( )

where Nacc is the contribution due to the accreting material and
Nfield is the contribution due to the interaction of the stellar
magnetic field with the disk. The specific angular momentum
of the accreting matter at the radial distance =r rm (i.e., disk
inner edge) is =l GMrm . Therefore, for rm<rco, M GMrm˙
is the rate of angular momentum added to the neutron star,
implying

=N M GMr . 4acc m˙ ( )

For rm>rco, i.e., in the propeller regime, the accreted matter is
expected to be largely thrown away from the system by the
rotating stellar magnetic field. This ejected matter takes away
angular momentum from the neutron star, which can be of the
order of l for unit mass of the accretion disk (Tauris 2012).
Here we note that, for rm close to rco, all accreting matter may
not be expelled, and a portion of this gas may return to the disk

(e.g., D’Angelo & Spruit 2010). However, as Ṁ varies rapidly
during an outburst of a transient source, rm is expected to be
considerably larger than rco most of the time during the
propeller phase. Considering the above points, we can write

h= -N M GMr , 5acc m˙ ( )

for rm>rco, where η, which is an order of unity positive
constant, includes the uncertainty due to the unknown fraction
of matter ejected for each Ṁ value. In this paper, we consider a
large range of η (0.2–1) and show that our qualitative results
and general conclusions do not depend on this value.
The torque on the neutron star due to the interaction of the

stellar magnetic field with the entire disk is (Rappaport
et al. 2004)

ò= f
¥
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r
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Here, m=B rz
3, and Bf, the azimuthal component of the

magnetic field, appears due to the dragging of the magnetic field
in the disk. Following Rappaport et al. (2004; see also Livio &
Pringle 1992; Wang 1995), we assume = - W WfB B 1z K( ) for

 r r rm co and = - - W WfB B 1z K( ) for  r r rm co.
Here, Ω=2πν and ΩK is the Keplerian angular frequency.
Therefore, in the accretion phase,
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This expression is the same as the second term on the right-
hand side of Equation (24) of Rappaport et al. (2004). In the
propeller phase,
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Note that, for rm=rco, this expression reduces to m- r92
co
3 ,

which is the second term on the right-hand side of
Equation(23) of Rappaport et al. (2004). Here is the reason
why we use a more general expression. Rappaport et al. (2004)
considered that the disk always extends up to r=rco in the
propeller phase. This could be possible if Ṁ does not
considerably vary. But Ṁ , and hence rm, varies rapidly during
an outburst of a transient source, which we consider. In such
cases, the disk is expected to either advance (during outburst
rise) or recede (during outburst decay) quickly, and hence we
consider a disk extending up to rm in both accretion and
propeller phases (e.g., Tauris 2012). Accordingly, Equation (8)
gives an appropriate torque by such an advancing and
receding disk.

2

The Astrophysical Journal, 835:4 (8pp), 2017 January 20 Bhattacharyya & Chakrabarty



Therefore, in our computations, we use the following
expressions of torque on the neutron star:
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for the accretion phase and
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for the propeller phase. Note that the accretion torque is
positive for rm<rco and negative for rm>rco. Accretion thus
drives the neutron star toward an equilibrium where =r rm co

and the equilibrium spin frequency is
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In some of our numerical runs, we also consider other
additional spin-down mechanisms. When rm;rlc, some of our
runs include the electromagnetic (EM) torque due to magnetic
dipole radiation from the spinning neutron star,
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In addition, for all accretion regimes, some of the runs also
include the gravitational wave (GW) torque due to a rotating
misaligned mass quadrupole moment Q (Bildsten 1998),

⎜ ⎟⎛
⎝

⎞
⎠

pn
= -N

GQ

c

32

5

2
. 13GW

2 5

( )

We assume that = ´Q 0.5 1037gcm2, consistent with the
upper limit set in the 401Hz X-ray pulsar SAX J1808.4–3658
(Hartman et al. 2008).

2.2. Transient Outbursts

For simplicity, we model the time evolution of a transient
outburst as a linear increase of Ṁ from quiescence ( M 0˙ ) to
a maximum value Mmax˙ , followed by a linear decrease of Ṁ
back down to quiescence (Figure 1). In actuality, the magnitude
of the rise and decay slopes can be different, although this does
not affect our qualitative results. The evolution of Ṁ over an
outburst causes rm to change as well. As the outburst rises, the
system moves from quiescence ( r rm lc) through the propeller
regime (rm>rco) into the accretion regime ( <r rm co). During
the decay, the system passes back from accretion through
propeller into quiescence. For an outburst duty cycle (fractional
duration) f, we have

M f M
1

2
, 14av max˙ ˙ ( )

independent of the recurrence time. It is convenient to define a
transience parameter =m M M ;max av˙ ˙ ˙ this scales as 1/f, with
the proportionality factor depending on the shape of the
outburst light curve. This factor is 1/2 for the triangular
outburst profiles we consider here.

2.3. Numerical Computation of Spin Evolution

We wish to compare the spin evolution of persistent and
transient accretors for the same average accretion rate Mav˙ . In
all cases, we start with a slowly spinning (n  1 Hz) neutron
star with mass M=1.35Me (Thorsett & Chakrabarty 1999),
moment of inertia =I MR0.4 2 (Revnivtsev & Mereghetti
2015), and a fixed surface magnetic field B. We then compute
the spin evolution of the neutron star for a fixed Mav˙ , using
Equations (9) and (10), and continue until a certain total rest
mass ΔMtot=0.6Me is transferred to the neutron star. Note
that the amount of mass transferred to a neutron star depends
on the progenitor system (e.g., LMXB versus intermediate-
mass X-ray binary [IMXB]; Lin et al. 2011; Chen &
Podsiadlowski 2016) and is not fully understood yet. While a
transferred mass of ~ M0.1 can make a neutron star fast
spinning (this paper; Tauris et al. 2012), a gravitational mass as
high as ∼0.4Me could also be transferred (Lin et al. 2011).
Therefore, since the transferred rest mass is higher than the
corresponding gravitational mass considering the binding
energy (Bagchi 2011), we continue our calculation until

M0.6 rest mass is transferred, to be on the safe side. For
the persistent case, we simply set the instantaneous accretion
rate =M Mav˙ ˙ . For the transient case, we allow Ṁ to vary
through a series of outbursts with transience parameter ṁ. The
torques in Equations (9) and (10), along with the instantaneous
Ṁ , determine the amount of angular momentum ΔJ and rest
mass transferred in each time step. We account for the
conversion of accreted rest mass to gravitational mass in the
neutron star using Equations (19) and (20) of Cipolletta et al.
(2015). Using the increased M, we update our values of R
(µ -M ;1 3 see, e.g., Ghosh 2007, p. 177) and I and then proceed
to the next time step. Note that our choices for this relation are
not unique and in general will depend on the equation of state
model assumed for the neutron star core. However, our
qualitative results do not depend on our specific choices here.

Figure 1. Schematic illustration of how the accretion rate Ṁ evolves through
various phases for a transient LMXB. The instantaneous Ṁ is normalized by
the outburst peak value M ,max˙ and time is plotted in arbitrary units. Two
outbursts are shown, with triangular outburst profiles, separated by a quiescent
interval. The dashed horizontal line shows the condition rm=rco, which
corresponds to the normalized effective accretion rate M Meff max˙ ˙ . When Ṁ is
above this line, the source is in the accretion phase (blue). When Ṁ is below
this line but within an outburst, the source is in the propeller phase (red).
Outside of the two outbursts shown in the figure, the source is in the quiescent
phase (gray).
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We consider Mav˙ values ranging from 5×1014 to 3×
1017gs−1, corresponding to ~ M0.0004 0.25 Edd– ˙ , where

´M 1.2 10Edd
18˙ gs−1 is the Eddington critical accretion

rate for a 1.35 Me neutron star. We also consider transience
parameters ṁ in the 2–200 range. These ranges are realistic.
For example, the estimated Mav˙ and ṁ are ≈7×1014 gs−1

and ≈40, respectively, for SAX J1808.4–3658 and are
≈3×1016 gs−1 and ≈8, respectively, for 4U 1608–522
(assuming a 0.2 efficiency of energy generation; Chakrabarty
et al. 2003; Watts et al. 2008). Besides, we consider B values in
the range 3×107–109 G. Note that B is held fixed for any
given run; we do not model accretion-induced field decay, but
rather start with a fixed field strength that is already low (“post-
decay”). We perform our runs both including and excluding the
electromagnetic torque term in Equation (12) during
quiescence.

3. RESULTS

Our results for a typical numerical run are shown in Figure 2.
For the persistent accretor case, the spin frequency rapidly
reaches neq (Equation (11)) and then tracks νeq as it gradually
evolves with increasing M. For clarity, we will call the
persistent equilibrium spin neq,per. We find that, even for the
same Mav˙ , the evolution for a transient accretor is very
different. Since the instantaneous Ṁ varies between a low
value and Mmax˙ over each transient outburst, the instantaneous
neq will also vary between a low value and νeq,max (νeq
corresponding to Mmax˙ ). The νeq,max curve is shown near the
top of the figure. The large swings in instantaneous neq occur on

too short a timescale to plot in the figure. Moreover, the
outbursts are each much too short to allow the spin ν to track
these rapid swings in νeq. Instead, ν smoothly increases until it
reaches, and then tracks, an effective equilibrium frequency νeq,
eff that is significantly larger than νeq,per (but not quite as large
as neq,max). If we include an electromagnetic spin-down torque
during quiescence, then the resulting neq,eff

EM curve is somewhat
below the νeq,eff curve (and with a shallower slope), but still
much above the curve for the persistent case.
Qualitatively, these results are quite general across all of our

runs. Figure 3 shows examples for a range of B, Mav˙ , and
=m M Mmax av˙ ˙ ˙ to demonstrate the robustness of our results.

Figures 3(a) and (b), which are for B=108 G and
= ´M 6.3 10av

15˙ gs−1, show that νeq,max, νeq,eff, and neq,eff
EM

are lower for lower ṁ. The effect of EM torques is larger for
higher ṁ, as seen in these figures, for two reasons: first, EM
torque has a strong spin dependence ( n~ ;3 Equation (12)), and
second, the fractional quiescence duration (during which the
EM torque is active) decreases with f and hence increases with
ṁ (see Equation (14)). Figure 3(c) shows that all the spin
frequencies are lower for a higher =B 109 G. This is because
the accretion disk does not penetrate as far into the magneto-
sphere, and hence the minimum possible rm value is higher
(Equation (1)). However, νeq,eff is still significantly larger than
νeq,per for this case. In Figure 3(d), we consider a much lower
B=3×107 G and a smaller Mav˙ and find that all our results
from Figure 2 are still valid. Here, we also show that the
gravitational wave torque (Equation (13)) can bring down ν
significantly (in this case, below the observed cutoff value of
;730Hz), but ν is still much higher than neq,per.
In order to examine the effect of the uncertainty in η value

(Equation (10)), we compute spin evolution for η=0.2, 0.5,
and 1, keeping other parameter values the same (see Figure 4).
This figure shows that not only does the nature of spin
evolution remain the same for this wide range of η values, but
also quantitatively the curves are not very different from each
other. For example, there is ≈12% difference in ν values
between η=0.2 and η=1, after 0.6Me rest mass is added to
the neutron star. Therefore, our general conclusion, that ν
attains a higher value for transience for the same Mav˙ , remains
valid for the assumed large range of η values. Moreover, for a
lower value of η, the spin-down torque is lower (Equation (10)),
and hence the star acquires an even higher ν.
Figure 5 confirms the above conclusions in a compact

manner and for a wide range of Mav˙ and ṁ values. This figure
comprehensively shows that the more extreme the transient
behavior is (larger ṁ), the faster a neutron star spins for a given
ΔMtot (=0.6Me). This figure also shows that the effect of EM
torques can be significant if ν or ṁ has a high value.

4. ANALYTICAL CALCULATION OF EQUILIBRIUM
SPIN FREQUENCY FOR TRANSIENTS

Figures 2 and 3 show that a transient source attains the
equilibrium spin frequency νeq,eff, which is several times higher
than that (neq) for a persistent source. It is also interesting to
note that νeq,eff and νeq,max maintain a constant ratio, as shown
by the horizontal part of the red dot-dashed curve of
Figure 6(b). In this section, we will try to analytically
understand these two new results. Moreover, the analytical
expression for νeq for persistent accretors (Equation (11)) is
widely used to understand the spin distribution of MSPs, even
though most of the neutron star LMXBs are transients. It

Figure 2. Numerically computed evolution of spin frequency vs. transferred
rest mass. We assume initial parameter values of gravitational mass
M=1.35Me and ν=1 Hz and fixed parameter values of B=1.5×108 G
and = ´M 6.3 10av

15˙ gs−1 (i.e., 10−10
M yr−1). The torques given in

Equations (9) and (10) (with η=1) are used. This figure compares the spin
rate evolution between a transient and a persistent source for the same average
accretion rate. The three upper curves (in red) are for a transient with the
transience parameter = =m M M 100max av˙ ˙ ˙ . Among these, the dotted curve
corresponds to the maximum possible equilibrium spin frequency νeq,max

(which is neq for Mmax˙ ), the dot-dashed curve corresponds to the spin frequency
ν without considering the effect of EM torques, and the solid curve corresponds
to the spin frequency ν including spin-down due to EM torques. The lower
curve (in black) is the spin frequency for a persistent accretor with =M Mav˙ ˙ .
The nearly saturated value after the initial rise corresponds to the equilibrium
spin frequency νeq,per (which is νeq for persistent accretion). Note that the
persistent accretor needs only a small amount of transferred mass to attain
neq,per. This figure shows that the neutron star in a transient can spin up to a
much higher value relative to that in a persistent source.
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would, therefore, be preferable to find an analytical expression
of neq,eff appropriate for transient accretors, which could then be
used to better understand the spin evolution and distribution of
MSPs, most of which evolved in transients.
The spin equilibrium condition for a transient source is

somewhat different from that for a persistent source. Here is the
reason. A persistent source, when it reaches the spin
equilibrium, is expected to always remain in the spin
equilibrium, as the rm=rco condition could continuously
remain valid. This spin equilibrium frequency νeq, given in
Equation (11), evolves with increasing M (Section 3). On the

Figure 3. Numerically computed evolution of spin frequency as in Figure 2, for
several different cases. (a) Same as in Figure 2, except with B=108 G. (b)
Same as in panel (a), except with transience parameter =m 10˙ . (c) Same as in
panel (a), except with =B 109 G. (d) Same as in panel (a), except with

= ´B 3 107 G and = ´M 1.2 10av
15˙ gs−1 (i.e., » - M10 3

Edd˙ for a 1.35 Me
neutron star). The additional blue solid curve in this panel includes the spin-
down due to both EM and GW. This figure confirms the findings from Figure 2
for a wide range of parameter values.

Figure 4. Numerically computed evolution of spin frequency as in Figure 2, for
different η values (see Equation (10); Section 2.1). Red dot-dashed curve:
η=1 (as in Figure 2); blue dashed curve: η=0.5; black solid curve: η=0.2.
This figure shows that, even for drastically different η values, the spin
frequency evolutions are qualitatively similar to each other, and even
quantitatively are not very different.

Figure 5. Spin-up efficiency (frequency increase per unit rest mass transfer) vs.
transience parameter =m M Mmax av˙ ˙ ˙ , from numerical computation of spin
evolution of accreting neutron stars. We assume initial parameter values of
M=1.35Me and ν=1 Hz and a fixed value of B=1.5×108 G. The solid
curves with filled circles include the effect of spin-down due to EM torques,
while the corresponding dotted curves with crosses do not. For each point
(circle or cross), D = M M0.6tot . Curves are for the following Mav˙ values:
5×1014, 1015, 5×1015, 1016, 5×1016, 1017, 3×1017 gs−1 (bottom to
top). The ṁ values used are 2, 3, 5, 10, 20, 30, 50, 100, 200 (left to right).
However, not all of these ṁ values are available for every Mav˙ value, since we
do not consider accretion rates exceeding the Eddington limit. This figure
shows that spin-up efficiency increases with transience for reasonable Mav˙ and
ṁ ranges, even when spin-down due to EM torques is included.
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other hand, Ṁ and hence rm change drastically for a transient
source during an outburst. As a result, the neutron star always
gains angular momentum during the accretion phase
(Equation (9)) and loses angular momentum during the
propeller phase (Equation (10)). Therefore, unlike in the case
of a persistent source, a spin equilibrium cannot be established
at every instant for a transient source, and =r rm co is not the
correct condition for spin equilibrium of transients, as rm
drastically evolves. A simple balance of the positive torque
(Equation (9)) with the negative torque (Equation (10)) also
does not work, because they cannot balance each other
throughout an outburst, as rm evolves. What could then be
the criterion for the spin equilibrium of a transient accretor?
Note that, although ν evolves throughout the two phases of a
given outburst in a cyclic manner, this change is negligible,
given that a typical outburst duration is very small compared to

the spin-up timescale of a neutron star. Therefore, if no net
angular momentum is added to the neutron star in an outburst
cycle, the small cyclic change in ν during each outburst can be
ignored. As a result, for timescales longer than an outburst
duration, a spin equilibrium for transients can be established if
the stellar angular momentum gain in the accretion phase
cancels the stellar angular momentum loss in the propeller
phase in every outburst cycle. This criterion, to the best of our
knowledge, has not previously been used to calculate the spin
equilibrium frequency for transients.
In order to analytically estimate the equilibrium spin

frequency νeq,eff, we consider a simple but general torque
formula

= 
dJ

dt
AM , 15n˙ ( )

where J is the stellar angular momentum, A is a positive
constant, and the positive and negative signs correspond to
rm<rco and >r rm co, respectively. We use this torque
formula, because torques given by Equations (9) and (10) are
not simple enough for analytical calculations. However, before
proceeding further, it is desirable to check whether the form of
the torque formula given in Equation (15) is reasonable, that is,
whether it can be approximately constructed from Equations (9)
and (10). In order to do this, we note that Nfield tends to m r32

m
3

for r rm co in the accretion phase, and Nfield tends to m- r32
m
3

for r rm co in the propeller phase (Equations (7) and (8)). For
other values of rm, Nfield has a value in between these limiting
values. Therefore, using Equations (7) and (8), one could
approximately write

bm
= N

r3
, 16field

2

m
3

( )

where  b0 1, and the positive (negative) sign is for the
accretion (propeller) phase. Similarly, using Equations (4) and
(5), and for η=1, one can write

= N M GMr , 17acc m˙ ( )

where the positive (negative) sign is for the accretion
(propeller) phase. Therefore, using Equation (3), as well as
Equations (16) and (17), the approximate torque can be written
as

bm
=  N M GMr

r3
. 18m

2

m
3

˙ ( )

Using Equation (1), it is easy to verify that this torque formula
is exactly of the form given in Equation (15) (for n=6/7).
Moreover, a comparison between the blue solid and red dot-
dashed curves of Figure 6(a) shows that Equation (18) gives a
spin evolution very similar to that given by Equations (9) and
(10), with a quantitative difference at the level of a few percent.
Note that, following Tauris (2012), we assume β=1/3 in
Equation (18) for Figure 6(a). However, this specific value of β
is only for demonstration, and the spin evolution curve changes
at most by a few percent between β=0 and β=1. Therefore,
it is reasonable to proceed with the simple but general torque
formula given by Equation (15), which is suitable to
analytically estimate the equilibrium spin frequency νeq,eff.

Figure 6. Numerically computed evolution of spin frequency as in Figure 2. (a)
The red dot-dashed curve is for the realistic torques given by Equations (9) and
(10), and the blue solid curve is for the approximate torque given by
Equation (18). Both these curves show computed spin frequency ν evolution
due to mass transfer. This panel shows that the spin evolution for the
approximate torque is qualitatively similar to, and quantitatively only a few
percent different from, that for the realistic torques. (b) The red dot-dashed and
blue solid curves are the same as in panel (a), except that the ν values are
normalized with νeq,max (shown by the red dotted curve in panel (a)). The
dashed horizontal line gives a normalized (with neq,max ) analytical value of the
equilibrium spin frequency νeq,eff, corresponding to Equation (22). This panel
shows that both the red dot-dashed and blue solid curves saturate as ν attains
the equilibrium value νeq,eff. This numerical saturation value is close to the
analytical value of ≈0.85 from Equation (22) for n=6/7.
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Note that this exercise will also be very useful to understand
the results described in Section 3.

As mentioned earlier, the spin frequency attains the
equilibrium value νeq,eff, if ΔJ in the accretion phase
( <r rm co) and ΔJ in the propeller phase ( >r rm co) during an
outburst cancel each other. Here, using Equation (15),

ò ò òD = =  = J dJ A M dt A M dM , 19n n
1˙ ˙ ˙ ( )

where dM dt˙ and hence =A A dM dt1 ( ˙ ) are constants for a
linear Ṁ profile during an outburst. Therefore, the above-
mentioned requirement for ν=νeq,eff gives

- = -+ + + +M M M M , 20n n n n
max

1
eff

1
eff

1
lc

1˙ ˙ ˙ ˙ ( )

and hence

= +M

M
2 , 21nmax

eff

1 1
˙
˙ ( )( )

where the effective accretion rate Meff˙ corresponds to =r rm co,
and we assume that Mlc˙ corresponding to quiescence ( r rm lc)
is zero. Since the equilibrium spin frequency scales as
n µ Meq

3 7˙ (Equation (11)), we find

n
n

= - +2 . 22neq,eff

eq,max

3 7 1 ( )( ( ))

Equation (22) gives an analytical expression of equilibrium
spin frequency νeq,eff for transient sources. This equation also
shows why n neq,eff eq,max is a constant, as shown in Figure 6(b).
We expect n n » 0.85eq,eff eq,max for the torque in Equation (15),
with n=6/7. This expected value from our simple analytical
calculation very well matches (within 4%) with the value from
our numerical computation with the approximate torque given
in Equation (18) (Figure 6(b)). Even the constant νeq,eff/νeq,max

ratio from the numerical computation with the torques given in
Equations (9) and (10) matches within 10% with the analytical
value of 0.85. Note that this matching is better for a lower value
of η in Equation (10). Therefore, our analytical results for a
simple torque formula are valid for the realistic torques
(Equations (9) and (10)) with a small error of a few percent.

Finally, we analytically estimate the range of νeq,eff/νeq,per,
i.e., the ratio of spin rates for transient and persistent accretors
with the same Mav˙ value. For this, we consider a typical
M Mmax av˙ ˙ of 10–100 (Burderi et al. 1999). Since n µ Meq

3 7˙
(Equation (11)), this range of M Mmax av˙ ˙ gives a ≈2.7–7.2 range
for n neq,max eq,per. Assuming n=6/7 in Equation (15), and
hence νeq,eff/νeq,max=0.85, we analytically estimate a ∼2–6
range of νeq,eff/νeq,per. This is consistent with the numerically
computed curves displayed in Figures 2 and 3.

5. DISCUSSION OF ASSUMPTIONS

We use x = 1 in this paper, which is consistent with the
expected range ∼0.5–1.4 (Wang 1996). Note that a different
value of ξ does not change our qualitative results, as νeq,per, νeq,
max, and hence νeq,eff scale with ξ in the same way, i.e., xµ -3 2.
Note that, for fixed values of the equilibrium spin frequency
and other parameters, the magnetic field xµ -B 7 4

(Equation (11)). Consequently, in order to attain a measured
ν value, the stellar magnetic field is to be lower for a higher
value of ξ. Therefore, a value of ξ different from 1 will not

change our conclusions, but our assumed B values will be
different.
We use a linear Ṁ profile during both outburst rise and

decay, because this is the simplest and the cleanest profile for
the demonstration of our results. In reality, both rise and decay
profiles may be complex, can have several peaks, can have a
somewhat flat top, and may be difficult to fit with a simple
function (see, e.g., Figure2 of Yan & Yu 2015). However,
such a complex profile will not in general change our
conclusions. For example, an exponential decay profile
( tµ -M texp˙ [ ] with time constant τ) gives
n n = -2 n

eq,eff eq,max
3 7 , which is 0.71 for n=6/7. Therefore,

for a linear rise and an exponential decay profile, which is often
seen, the value of n neq,eff eq,max should be between 0.71 and
0.85 for =n 6 7. For a profile having a flat top, n neq,eff eq,max
is expected to have a higher value.
Is it justified to keep B, Mav˙ , and Mmax˙ fixed in our

calculation of evolution? We consider each parameter in turn.
In the case of B, it is convenient to keep the parameter fixed in
order to cleanly demonstrate the effect of transient accretion on
the spin evolution. We note that B likely decreases by orders of
magnitude from an initial high value (∼1012 G) on a timescale
short compared to the LMXB lifetime (see, e.g., Page
et al. 2000; Geppert & Rheinhardt 2002; Lamb & Yu 2005;
Patruno et al. 2012a; Istomin & Semerikov 2016), and hence
the use of a fixed low post-decay B value may be justified. We
also find this with our numerical calculations of spin evolution
for two initial ν values, 1 and 100Hz, keeping other parameter
values the same. By the time the star is spun up to 100 Hz, B
must decrease to a much lower value, or else the star could not
be spun up to this high ν value, and a further major decrease of
the B value is unlikely. Since we find that the spin evolution
curves for both cases are very similar to each other, we
conclude that a fixed B value considered in numerical
calculation does not have an impact on the general conclusions
of this paper.
In the case of Mav˙ , we hold the parameter fixed in order to

separate out the effect of transient accretion from the much
slower variation of Mav˙ due to binary evolution, which is also
already a much better studied issue. We do not expect any slow
evolution of Mav˙ to change the main findings of this paper.
Finally, in the case of Mmax˙ , we hold this parameter fixed
merely for the purpose of demonstration. In reality, Mmax˙ varies
(usually within a factor of 10; Yan & Yu 2015), and depending
on this, ν should track an average νeq,eff (e.g., in between red
dashed curves of Figures 3(a) and (b)). However, our
conclusions are not affected by this.

6. SUMMARY AND IMPLICATIONS

The main finding of this paper is that the spin rate of a
transient LMXB pulsar attains a much higher value than that
for a persistent LMXB with the same average accretion rate,
usually even for less than M0.1 mass transferred to the
neutron star. This is easily visible in Figures 2 and 3. This
crucial effect of transient accretion on the spin-up of neutron
stars implies that any meaningful study of the observed spin
distribution of MSPs requires its inclusion. This effect will also
have an impact on the current understanding of spin-up and
spin-down torques, accretion, binary evolution, and B-values,
because nearly all the accreting MSPs are transients.
In this paper, we also report, for the first time, an analytical

expression of equilibrium spin frequency appropriate for
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transients. The standard expression of νeq in persistent accretors
(Equation (11)) laid the foundation for previous pulsar spin
distribution studies. However, this should now be replaced by
our expression for νeq,eff (Equation (22)) for transients. Note
that νeq,eff, unlike νeq, depends on the torque law and hence
may provide a way to better understand the interaction between
the accretion disk and the pulsar magnetosphere.

Finally, Figures 2–6 show that at least some neutron stars
with appropriate parameter values are expected to reach
submillisecond spin rates, even for low Mav˙ . Our results
reemphasize the puzzling absence of observed MSPs with spin
rates above 716Hz and suggest a reconsideration of the need
for a competing spin-down mechanism, such as gravitational
radiation. Recent work concluding that the spin equilibrium set
by disk–magnetosphere interaction alone is sufficient to explain
the observed spin distribution (e.g., Patruno et al. 2012b) does
not account for the effect of transient accretion, as we have
shown here. Another recent paper (Parfrey et al. 2016)
proposes a new spin-down mechanism via an enhanced pulsar
wind during the accretion phase, but again does not consider
the effect of transient accretion. While it is generally believed
that radio pulsar activity only switches on during an X-ray
quiescence phase (Section 2.1), these authors argue that the
neutron star magnetic field lines within the light cylinder can be
forced to open to infinity by the accretion disk, which may give
rise to a strong pulsar wind in the accretion phase. However,
even if this possibility is confirmed, spin-down torques due to
gravitational radiation may still play a role for the fastest-
rotating MSPs. This is not inconsistent with the absence of
evidence for a gravitational wave torque in slower MSPs
(Haskell & Patruno 2011), considering the extremely steep spin
dependence ( n~ ;5 Equation (13)) of such torques. The resulting
continuous gravitational radiation may eventually itself be
directly detectable with interferometric detectors (e.g., Aasi
et al. 2014), although the practical obstacles to making such
detections in transient LMXBs (where regular monitoring of
the evolving binary parameters is difficult) have been
previously discussed (Watts et al. 2008).

The authors thank an anonymous referee for constructive
comments, which were useful to improve the paper. D.C.
thanks the MIT-India Program for travel support.
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