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Abstract

Tensors, which are the linear-algebraic extensions of matrices in arbitrary dimensions,
have numerous applications to data processing tasks in computer science and computational
science. Many tensors used in diverse application domains are sparse, typically containing
more than 90% zero entries. Efficient computation with sparse tensors hinges on algorithms
that can leverage the sparsity to do less work, but the irregular locations of the nonzero
entries pose significant challenges to performance engineers. Many tensor operations such as
tensor-vector multiplications can be sped up substantially by breaking the tensor into equally
sized blocks (only storing blocks which contain nonzeros) and performing operations in each
block using carefully tuned code. However, selecting the best block size from among many
possibilities is computationally challenging.

Previously, Vuduc et al. defined the fill of a sparse tensor to be the number of stored
entries in the blocked format divided by the number of nonzero entries, and showed how
the fill can be used as part of an effective, efficient heuristic for evaluating the quality of a
particular blocking scheme [2, 3]. In particular, they showed that if the fill could be computed
exactly, then the measured performance of their sparse matrix-vector multiply was within 5%
of the optimal setting. However, they gave no theoretical accuracy bounds for their method
for estimating the fill, and it is vulnerable to several classes of adversarial examples.

In this paper, we present a sampling-based method for finding a (1 + ε)-approximation to
the fill of an order N tensor for all block sizes less than B, with probability at least 1 − δ,
using O((B2N/ε2) log(BN/δ)) samples for each block size. We introduce an efficient routine
to sample for all BN block sizes at once in O(NBN ) time. We extend our concentration
bounds to a more efficient bound based on sampling without replacement, using the recent
Hoeffding-Serfling inequality [4]. We then implement1 our algorithm and evaluate it on sparse
matrices from the University of Florida collection and compare our scheme to that of Vuduc,
as implemented in the Optimized Sparse Kernel Interface (OSKI) library, and a brute-force
method for obtaining the ground truth. We find that our algorithm provides faster estimates
of the fill at all accuracy levels, providing evidence that this is both a theoretical and practical
improvement.

1 Introduction

Tensors are multi-dimensional generalizations of matrices. They have important applications in the
physical and computational sciences, ranging from machine learning to computational chemistry.
Many tensors used in diverse application domains are sparse, typically containing more than
90% zero entries. Most fundamental linear algebraic operations on tensors, such as tensor-vector
multiplications, run in time proportional to the number of elements in the tensors. Sparse tensors
provide an opportunity to write algorithms and data structures with complexity proportional to
the number of nonzero entries, with substantial increases in performance. However, the increased
complexity of data structures that can describe the irregular locations of nonzeros in these tensors
poses a significant challenge to algorithm designers and performance engineers.

1Our code is available under the BSD 3-clause license at https://github.com/peterahrens/FillEstimation.
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1.1 The problem of selecting a block size 1 INTRODUCTION

These challenges will only grow as architectures become increasingly specialized. In order
to write the most efficient sparse tensor code, the programmer must take into account both the
target architecture and the relevant structural properties of the nonzeros of the sparse tensor.
Writing custom code for each processor requires extensive engineering effort. Additionally, the
structure of nonzeros in a sparse tensor is usually known only at runtime. As a result, autotuning
(automatically generating customized code) has become a necessary part of writing efficient code
for operations on sparse tensors.

Sparse Tensor Representations. Previous efforts in autotuning for sparse tensors focus on
sparse matrices, which see the broadest application. The diverse space of operations and nonzero
patterns of sparse matrices have led to the development of a wide variety of sparse matrix formats
that allow programmers to more efficiently operate on the matrices. Perhaps the most popular
such format is the Compressed Sparse Row (CSR) [5]. Like most sparse matrix formats, CSR
stores only the locations and values of the nonzero entries of the matrix; the specific details of the
format are not relevant to the present exposition and are omitted. Note that the results in this
paper apply to any sparse matrix format which can be generalized to include a block structure.

To decrease the complexity of storing the locations of individual nonzeros, performance engi-
neers have developed a variant of CSR called Blocked Compressed Sparse Row (BCSR) [6]. In
BCSR, an m×n matrix is partitioned into m/r×n/c submatrices, where each submatrix is of size
r× c. The submatrices are called blocks, and are stored in a dense format, with zeros represented
explicitly. Only blocks which contain nonzeros are stored, and the locations of the stored blocks
are recorded using CSR format.

The key advantage of the BCSR format (and blocked formats in general) is the reduced com-
plexity of operations on the “dense” part of the matrices. For example, consider the common
operation of a matrix-vector multiplication. If a matrix has a natural block structure, then the
blocked matrix can be multiplied by a blocked vector using standard CSR methods, but the
individual blocks can be multiplied using a small, fixed-size, dense matrix-vector multiply. Per-
formance engineers have experience in writing efficient code for small dense linear algebra kernels.
The programmer and compiler can utilize standard techniques like loop unrolling, register and
cache blocking, and instruction-level parallelism.

Matrices with a natural block structure appear in numerous applications, such as matrices
produced by finite element methods. The BCSR format can be extended naturally to support
higher-dimensional tensors as well [7, 8, 9].

Preliminaries. Throughout this paper, we will discuss N -dimensional tensors in a particular
orthogonal basis. That is, tensors are N -dimensional arrays of elements over some field F, usually
the real or complex numbers. We denote tensors by capital script lettersA and vectors by lowercase
boldface letters a.

The element of an order N tensor A indexed by (i1, i2, . . . , iN ) is denoted A[i1, i2, ..., iN ]. For
compactness of notation, we sometimes specify an index into a tensor as a N -component vector
i = (i1, i2, . . . , iN ). If we wish to represent the integer range i, i+1, ..., i′, we use the syntax i→ i′.
If we wish to represent the range of indices between two vectors, we use the syntax i→ i′, meaning
i1 → i′1, ..., iN → i′N . Subtensors are formed when we fix a subset of indices. We use a colon to
indicate all elements along a particular dimension. Thus, the middle n/2 columns of a matrix
A ∈ Fn×n would be written A[:, n/4→ 3n/4].

The number of nonzero entries in a A is denoted k(A). When we compare a vector to a
scalar, we mean to compare each entry of the vector pointwise. For notational convenience, we
occasionally redefine the starting index of a tensor. Thus, A ∈ FI→I′ is an (I′1 − I1 + 1) × ... ×
(I′N − IN + 1) tensor whose smallest index is I and largest index is I′.

1.1 The problem of selecting a block size

Since the performance of blocked sparse tensor operations depends on the block size, we must
find some block size that gives good—and ideally the best—performance on the matrix. If we
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Figure 1.1 – A sparse matrix before blocking (left) and an example of a blocked sparse matrix
(right). The squares denote nonzero elements and circles are explicit zeros that are introduced due
to the blocking scheme. In this example, the blocking scheme is defined by b = (3, 3) resulting
in kb = 13. The number of nonzero elements k(A) = 52, so we can compute the fill as follows:
fb = (3× 3× 13)/52 = 2.25.

set the block size too small, then we must store the locations of more blocks, and we waste time
processing the block locations. If we set the block size too large, then the blocks will be filled with
too many zeros, and we waste time computing unnecessary dense matrix operations.

Definition 1.1. A blocking scheme b of a tensor A ∈ FI1×I2×···×In is parameterized by a vector
b = (b1, b2, . . . , bN ) of block sizes. The blocking scheme induced by b is a partition of A into
N -dimensional subtensors with bi entries along the ith dimension. Thus, a nonzero at location i
would be stored at the block index(⌈

i1
b1

⌉
,

⌈
i2
b2

⌉
, ...,

⌈
iN
bN

⌉)
.

We present an example of a blocking scheme in a sparse matrix in Figure 1.1. Blocked formats
fill in the empty slots of nonempty blocks with explicit zeroes and do not fill in empty blocks.

When manipulating a sparse tensorA, we want to find a blocking scheme that includes all of the
nonzero entries of A in few blocks. We are therefore interested in the number of blocks containing
a nonzero under the blocking scheme b, which we denote kb(A). Notice that k1(A) = k(A), since
tiling A into unit-size blocks will have exactly one non-empty block for every nonzero.

Intuitively, a blocking scheme is good if it packs all of the nonzeros into a small number of
non-empty blocks. We define the fill, which captures this notion of blocking scheme quality:

Definition 1.2 (Vuduc et al. [3]). The fill of a tensor A with respect to a particular blocking
scheme b is the ratio

fb(A) =
b1b2 · · · bnkb(A)

k(A)
.

That is, the fill is the ratio of the number of entries in nonempty blocks in the blocking scheme b
of A to the number of nonzeros in A. Where it is clear what tensor we are referring to, we often
write the fill as fb.

In their seminal work, Vuduc et al. demonstrate that the fill can be used as an effective heuristic
for predicting the performance of a particular block size on a sparse matrix A. They showed that
when the fill was known exactly, performance of the resulting blocking scheme was optimal or near-
optimal (within 5%) on all of the platforms that they tested [3]. Once per machine, we compute
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a profile of how the machine performs for a particular block size. Let Pb be the performance of
the machine (in MFLOP/s) on a dense matrix stored with blocking scheme b. We can think of
Pb as a measure of how efficiently we can process nonzeros when nonzeros are stored in blocks of
size b. We can estimate the performance of the machine on the BCSR format of A as Pb/fb(A).

Unfortunately, the fill of a tensor with respect to a blocking scheme can vary substantially
depending on the tensor’s structure. The blocking scheme that minimizes the fill of a tensor can
be found by searching over all possible blocking schemes and computing the number of nonempty
blocks for each. However, it is computationally intractable in practice to calculate the fill exactly,
since we would spend far more time estimating the fill to find the optimal blocking scheme than
we would performing the tensor operations directly [10, 3].

In practice, we care only about block sizes that are small enough to fit in most L1 caches, which
is typically at most 12 entries along both dimensions for matrices [10]. Furthermore, the cost of
calculating the fill rivals the performance benefits obtained from blocking. Thus, our problem is
to quickly compute an approximation to the fill with reasonable accuracy:

Problem 1.1 (Fill approximation problem). Given a tensor A and a maximum block size B,
compute a (randomized) approximation Fb(A) such that

(1− ε)fb(A) ≤ Fb(A) ≤ (1 + ε)fb(A)

for all block sizes b ≤ B, with probability at least 1 − δ. Equivalently, we want to compute a
random variable Fb(A) such that

Pr

[
max
b≤B

|fb − Fb|
fb

> ε

]
≤ δ .

Previously, Vuduc et al. gave sampling methods for estimating the fill of a sparse matrix, but
did not give any theoretical analysis of the accuracy of their method. Furthermore, their method
takes as long as 1 to 10 times the time it takes to perform a sparse matrix-vector multiplication
on the same matrix [10].

1.2 Our contributions

We describe the first algorithm which solves the fill approximation problem with provable guar-
antees, and demonstrate that it is faster and more accurate on a suite of sparse matrices than the
state-of-the-art algorithm due to Vuduc [3]. At a high level, our algorithm repeatedly samples a
nonzero entry in the tensor, then computes the number of nonzero elements in the block of that
entry, for all possible blocking schemes. For each blocking scheme, it then averages the reciprocal
of this count over all sampled indices. We provide a more detailed description of this sampling
algorithm in Section 3. We show that this is an unbiased estimator for the fill of the tensor, and
give tight concentration bounds.

More formally, suppose that our algorithm is given a maximum block size B and a sparse
tensor A. Our algorithm repeatedly samples a location i from a tensor A. For each blocking
scheme b ≤ B, it computes the number zb(i) of nonzero entries in the block that i appears in
under the blocking scheme b. After drawing a total of S samples i1, i2, . . . , iS , it computes the
averages

Fb :=
b1b2 · · · bN

S

S∑
j=1

1

zb(ij)

for all b ≤ B.
Our algorithm extends the concept of fill from sparse matrices to general sparse tensors in

a natural way. We also contribute a fast, tightly optimized method for computing zb(i) for all
blocking schemes b at the same time using multi-dimensional prefix sums (cumulative sums).
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1.2.1 Theoretical contributions

We provide the first rigorous analysis of an algorithm for approximating the fill of anN -dimensional
tensor under a particular blocking scheme. We provide a full analysis of our sampling method in
Section 4.

First, we show that our sampling-based algorithm is indeed an unbiased estimator for the fill fb
(with expectation equal to the fill):

Theorem 1.1. For any blocking scheme b, the random variable Fb is an unbiased estimator for
the fill: that is, E[Fb] = fb(A).

An unbiased estimator is useful only if it has reasonable concentration about its mean. Prior
work on fill estimation gave no theoretical analysis of the concentration of the estimator, in part
because the heuristic is not conducive to theoretical analysis. In fact, prior methods suffer from
vastly worse performance on certain adversarial examples, as we show experimentally in Section 5.

In contrast, we give two concentration bounds for Fb, showing that our algorithm solves the
fill approximation problem so long as we use enough samples. If we sample the nonzeros with
replacement, an analysis based on Hoeffding’s inequality gives that:

Theorem 1.2. If we sample at least B2N

2ε2 log
(

2BN

δ

)
samples with replacement, then

Pr

[
max
b≤B

|fb − Fb|
fb

≤ ε
]
≥ 1− δ .

Notice that for constant δ, this bound is independent of the number of nonzeros k(A), whereas
the algorithm introduced by Vuduc et al. depends linearly upon the number of nonzeros [3].
Because it runs in constant time with respect to the number of nonzeros, the bound on S could
(and does, for realistic settings of ε and δ) exceed the number of nonzeros. This is fundamental
to bounds based on Hoeffding’s inequality, and methods based on sampling-with-replacement in
general.

To avoid this issue, we consider the case where we sample without replacement. This analysis
is more involved, since the sampled locations are no longer independent and so we cannot use
Hoeffding’s inequality. Instead, we use the recent Hoeffding-Serfling inequality, due to Bardenet
and Maillard, obtaining a strictly tighter bound, which is also at most the number of nonzeros [4].

Theorem 1.3. Let T = B2N

2ε2 log
(

2BN

δ

)
. If

S ≥
T − T/k(A) +

√
(T − T/k(A))2 + 4T (1 + T/k(A))

2 + 2T/k(A)
,

then

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ δ .

1.2.2 Experimental contributions

We implemented2 the sampling algorithm described in Section 3 for sparse CSR matrices in C
and compared it against the existing algorithm for fill estimation proposed by Vuduc et al. [10]
using the same test matrices. We also examine the performance on pathological inputs for each
algorithm. We show that our algorithm approximates the fill more accurately and quickly than
the existing method and present our findings in 5.

Finally, we note that estimating the fill can be an important part of any sparse data structure
which uses blocking, not just BCSR. In fact, any sparse data structure can be adapted to a blocked
regime by grouping a tensor into blocks and simply treating nonzero blocks as nonzeros of some
sparse tensor.

2Our code is available under the BSD 3-clause license at https://github.com/peterahrens/FillEstimation.
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2 RELATED WORK

2 Related Work

Fill estimation is an important intermediate step in autotuning blocked sparse matrix compu-
tations [11, 2, 12, 13, 14]. Previous work also includes autotuning for matrix computations on
GPUs [15] and performance tuning for sparse matrix kernels [16, 17].

To our knowledge, there are no theoretical guarantees on the accuracy of existing algorithms
for fill estimation in matrices. [10] provides an empirical study.

2.1 OSKI Heuristic for fill estimation

We first describe the existing heuristic for fill estimation. Since the algorithm is implemented in
the Optimized Sparse Kernel Interface (OSKI) library, we will refer to it as OSKI [3]. OSKI samples
from the nonzero structure using some user-chosen parameter σ ∈ [0, 1] that adjusts the runtime
and accuracy of the algorithm.

Most of the work in OSKI is accomplished in the EvaluateRows subroutine. Let B be the
maximum number of rows or columns in a block — that is, the maximum block size is B × B
(recall that for matrices, a typical setting of B is 12). EvaluateRows computes an estimate of
the fill for a fixed r and all 1 ≤ c ≤ B. Let the input matrix A have dimensions m×n. We define
the i-th block row to be the rows ir through (i+ 1)r− 1 (A[ir → (i+ 1)r− 1, :]). EvaluateRows
exactly computes the number of nonzero blocks in an expected fraction σ of the block rows. OSKI
works by calling EvaluateRows once for each row size 1 ≤ r ≤ B.

EvaluateRows evaluates an expected fraction σ of block rows by evaluating each one with
probability σ. For each block row that EvaluateRows chooses to evaluate, it uses B arrays of
length n (this construct is referred to as blocks visited) to store the number of nonzeros seen so
far in each block as it iterates over the nonzeros of A[ir → (i+1)r−1, :] in row-major order. Each
time a nonzero is seen in a previously unvisited block of size r × c, the estimate of the number of
blocks of size r × c (stored in an array as nnz visited[c]) is incremented.

For each blocking scheme (r, c), the fill estimate is defined by

Fr,c(A, σ) =
rc(nnz visitedr[c])

σk(A)

We provide pseudocode for EvaluateRows in Algorithm 2.1. The function takes as input a
tensor A, maximum block dimension B, evaluation probability σ, and a fixed row dimension r.
The algorithm estimates the fill for all blocking schemes with row dimension r. To compute fill
estimates for all blocking schemes, we call the function once for each possible row dimension r.

Algorithm 2.1.
1: function EvaluateRows(A, B, σ, r)
2:

3: blocks visitedc ∈ Nn ∀1 ≤ c ≤ B
4: nnz visited ∈ NB
5: blocks visitedc ← 0∀1 ≤ c ≤ B
6: nnz visited← 0
7: for i ∈ 1→ m/r do
8: Flip a coin with heads probability σ.
9: if heads then

10: for nonzero column indices j in A[s, t] ∈ A[ir → (i+ 1)r − 1, :] do
11: for c ∈ 1→ B do
12: nnz visitedr ← nnz visitedr + 1
13: blocks visitedc[bj/cc]← blocks visitedc[bj/cc] + 1
14: if blocks visitedc[bj/cc]← 1 then
15: nnz visited[c]← nnz visited[c] + 1

16: Loop through the nonzeros again and zero out blocks visited.
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Theorem 2.1. OSKI takes time Ω(σB2k(A)) in expectation.

Proof. First, notice that the algorithm EvaluateRows takes Ω(σBk(A)) time in expectation.
Since each block row is evaluated with probability σ, each nonzero in the matrix is evalu-

ated with probability σ and since the algorithm performs at least B operations for each nonzero
evaluated, the algorithm takes Ω(σBk(A)) in expectation.

Since OSKI must call EvaluateRows B times (once for each row size 1 ≤ r ≤ B), the proof
is complete.

3 The Algorithm

For notational convenience, we introduce a few important definitions for working with blocking
schemes on tensors:

Definition 3.1. The head of a block is the unique element in the block with the lowest index
along all dimensions. For any index i, let hb(i) denote the index of the head of i’s block under
the blocking scheme b. Similarly, the tail of a block is the unique element in the block with the
highest index along all dimensions. For any index i, let tb(i) denote the index of the tail of i’s
block under b.

Our algorithm works by repeatedly sampling a nonzero entry of the tensor, computing a value
associated with that entry for all blocking schemes b, and then averaging over the samples for
each blocking scheme. The function that we compute is xb, defined on each index i of a nonzero
of A and given by:

xb(A, i) =
1

zb(i)
=

1

k(A[hb(i)→ tb(i)])
,

where zb(i) is the number of nonzeros in the block of i under blocking scheme b. Thus, xb(A, i)
is the reciprocal of the number of nonzeros in i’s block.

More formally, we begin by drawing a total of S samples i1, i2, . . . , iS from the set of nonzero
indices in A. We then compute the estimates

Fb :=
b1b2 · · · bN

S

S∑
j=1

xb(ij)

for all b ≤ B.
As it turns out, the average of xb(A, i) over all i is closely related to the fill of the matrix,

up to factors that are trivial to compute. The estimate Fb that our algorithm computes is an
unbiased estimator for the fill:

Theorem 3.1 (Restatement of Theorem 1.1). For any blocking scheme b, the random variable
Fb is an unbiased estimator for the fill: that is, E[Fb] = fb(A).

Proof. Notice that the sum of xb(A, i) over all of the nonzeros i within a particular block is 1, so
long as the block contains at least one entry. Thus, the sum of xb(A, i) over all nonzeros i in A
is equal to the number of blocks that contain nonzeros. Thus, we may multiply our average by
b1b2...bn to obtain an estimator of fb(A, i), by definition.

Consider the population χb(A) = (xb(A, i)|A[i] 6= 0). We have just shown that the average
value of elements in χb(A) is kb(A)/k(A).

Thus, our task is to randomly sample elements from χb to compute an estimate of its average.
We can compute a sample of χb by selecting a nonzero uniformly at random, looking up how many
nonzeros are in the block corresponding to this nonzero, and returning the reciprocal. This is a
lot of work to do for one sample, especially if the block is very full. However, the computations of
xb(A, i) for the same i use many of the same computations and data. Once we have the locations
of all the nonzeros within a B radius of our nonzero at index i, we can compute xb(A, i) for all
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3.1 NumSamples 3 THE ALGORITHM

b ≤ B at the same time using prefix sums (cumulative sums), saving an enormous amount of
work. We provide pseudocode for this algorithm, called ComputeX , in Algorithm 3.3.

We define the NumSamples function in Algorithm 3.2 and provide analysis of the number of
samples necessary in Section 4.

Putting these pieces together, our algorithm is as follows:

Algorithm 3.1. Given a sparse tensor A ∈ FI1×I2×...×IN , i, and B, compute an approximation
to fb(A, i) for all block sizes b ≤ B. Note that A may be stored in a sparse format, whereas all
other tensors are stored in a dense format.

Require:
0 ≤ δ ≤ 1
ε > 0
B ≥ 1

1: function EstimateFill(A, B, ε, δ)
2: Y ∈ RB×...×B
3: F ∈ RB×...×B
4: S ← NumSamples(A, B, ε, δ)
5: Y ← 0
6: for i ∈ sample of size S without replacement from the nonzero indices of A do
7: Y ← Y + ComputeX (A, B, i)
8: for b ∈ 0→ B do
9: F [b]← b1b2...bnY[b]

s

10: return F
Ensure:

(1− ε)fb(A) ≤ F [b] ≤ (1 + ε)fb(A) with probability at least (1− δ).

Since we know that Algorithm 3.1 will work if its subroutines work, we have only to explain
the functions NumSamples and ComputeX .

3.1 NumSamples

We state the NumSamples algorithm here, and leave the analysis for Section 4. The number of
samples used here corresponds to the bound according to sampling without replacement.

Algorithm 3.2. Given a sparse tensor A ∈ FI1×I2×...×IN , ε, and δ, compute an estimate of the
number of samples necessary to return an (ε, δ) approximation.

Require:
0 ≤ δ ≤ 1
ε > 0
B ≥ 1

1: function EstimateFill(A, B, ε, δ)

2: T ← B2N

2ε2 log
(

2BN

δ

)
.

3: S ← T−T/k(A)+
√

(T−T/k(A))2+4T (1+T/k(A))

2+2T/k(A)

4: return S
Ensure:

S is such that Algorithm 3.1 will return an approximation F which satisfies (1 − ε)fb(A) ≤
F [b] ≤ (1 + ε)fb(A) with probability at least (1− δ).

3.2 ComputeX
The main idea of ComputeX is to create a tensor Z0 corresponding to the number of nonzeros
of A in certain subtensors surrounding i. More formally, Z0 ∈ Ni−B→i+B−1 will be constructed so
that Z0[j] is equal to the number of nonzeros in the subtensor A[i−B → j]. In one dimension, we
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3.2 ComputeX 3 THE ALGORITHM

can compute zb(A, i) as Z0[tb(i)]−Z0[hb(i)− 1]. In two dimensions, we can compute zb(A, i) as
Z0[tb(i)]−Z0[tb1(i1), hb2(i2)−1]−Z0[hb1(i1)−1, tb2(i2)]+Z0[hb(i)−1]. Higher dimensions become
more complicated, but we will show how to reuse computations to keep things manageable.

First, notice that we can compute Z0 using prefix sums! We initialize Z0[j] to 1 if A[j] 6= 0 and
0 otherwise. Then, we take a prefix sum along each dimension in turn. After taking the first prefix
sum, Z0[j] represents the number of nonzeros in A[i1 − B → j1, j2, ..., jN ]. After taking the nth

prefix sum, Z[j] represents the number of nonzeros in A[i1−B → j1, ..., in−B → jn, jn+1, ..., jN ].
After the N th prefix sum, we have computed Z0.

Computing the actual values of z once we have Z0 is slightly trickier. For each value of b1, we
compute Z1[j2, ..., jN ] to be the number of nonzeros in the subtensor A[hb1(i1)→ tb1(i1), i2−B →
j2, ..., iN − B → jN ] as Z0[tb1(i1), j2, ..., jN ] − Z0[hb1(i1) − 1, j2, ..., jN ]. Once we have Z1 for a
particular value of b1, then for each value of b2 we can take differences between elements of
Z1 to compute Z2, where Z2[j3, ..., jN ] is the number of nonzeros in the subtensor A[hb1(i1) →
tb1(i1), hb2(i2) → tb2(i2), i3 − B → j3, ..., iN − B → jN ]. Continuing in this way, ZN is just the
scalar zb(j).

We provide an example of the prefix sum routine in a sparse matrix in Figure 3.1 and show
how to use subtractions to count the number of nonzero entries in Figure 3.2.

To reflect the fact that A may be stored in an arbitrary sparse format, we abstract the process
of finding the indices of nonzeros within a certain range into an algorithm called NonzerosIn-
Range. NonzerosInRange(A, j, j′) returns a list of all i ∈ j → j′ such that A[i] 6= 0. Efficient
implementations of NonzerosInRange will be discussed for various sparse formats in Section
3.2.1

We can now state ComputeX .

Algorithm 3.3. Given a sparse tensor A ∈ FI1×I2×...×IN , i, and B, compute xb(A, i) for all
N -dimensional grids b ≤ B. Note that A may be stored in a sparse format, whereas all other
tensors are stored in a dense format.

Require:
A[i] 6= 0
B ≥ 1

1: function ComputeX (A, i, B)
2: Z0 ∈ Ni−B→i+B−1

3: Z0 ← 0
4: for j ∈ NonzerosInRange(A, i−B, i +B − 1) do
5: Z0[j]← 1

6: for n ∈ 1→ N do
7: for j ∈ in −B + 1→ in +B − 1 do . Perform prefix sum
8: Z0[:, ..., :, j︸ ︷︷ ︸

n

, :, ..., :]← Z0[:, ..., :, j︸ ︷︷ ︸
n

, :, ..., :] + Z0[:, ..., : j − 1︸ ︷︷ ︸
n

, :, ..., :]

9: for b1 ∈ 1→ B do
10: Z1 ← Z0[tb1(i1)], :, ..., :︸ ︷︷ ︸

n−1

]−Z0[hb1(i1)− 1, :, ..., :︸ ︷︷ ︸
n−1

]

11: for b2 ∈ 1→ B do
12: Z2 ← Z1[tb2(i2), :, ..., :︸ ︷︷ ︸

n−2

]−Z1[hb2(i2)− 1, :, ..., :︸ ︷︷ ︸
n−2

]

...

13: for bN ∈ 1→ B do
14: ZN ← ZN−1[tbN (iN )]−ZN−1[hbN (iN )− 1]
15: X [b]← 1

ZN

Ensure:
X [b]← xb(A, i)

9



3.2 ComputeX 3 THE ALGORITHM

Step 1: 6× 6 block
with explicit zeros

0 1 1 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

0 0 1 0 1 0

0 0 0 0 1 1





Step 2: Row prefix sum

0 1 2 2 2 2

1 1 1 1 1 1

0 0 1 1 1 1

0 0 0 1 2 3

0 0 1 1 2 2

0 0 0 0 1 2





Step 3: Compute Z0 via
column prefix sum on rows

0 1 2 2 2 2

1 2 3 3 3 3

1 2 4 4 4 4

1 2 4 5 6 7

1 2 5 6 8 9

1 2 5 6 9 11




Figure 3.1 – A view of the prefix sum routine in a sparse matrix. The filled rectangles represent
nonzero elements. In this example, we want to compute the number of nonzero elements in the 6× 6
block. To do so, we fill in a block with ones where our matrix has ones and zeros where it has zeros
in the block. We then perform a prefix sum on the rows, then the columns. The highlighted element
in step 3 is the number of nonzeros in the block.

11

3

5

3

Step 4: Compute Z2 using column prefix sums
Z2 = 11− 5− 3 + 3 = 6

0 1 2 2 2 2

1 2 3 3 3 3

1 2 4 4 4 4

1 2 4 5 6 7

1 2 5 6 8 9

1 2 5 6 9 11




Figure 3.2 – An example of subtractions in ComputeX on a matrix. First, we compute the prefix
sums. In this example, we want to find the number of nonzeros in the shaded area. We compute the
number of nonzeros in the sub-block by subtracting the prefix sum results from the complement of
the requested sub-block in the overall block.

10



4 ANALYSIS

The time complexity of ComputeX is as follows:

Theorem 3.2. The algorithm ComputeX uses at most (N + 1)(2B)N floating point operations
(flops) to compute X .

Proof. Each prefix sum takes at most (2B)N additions to compute, and we compute N prefix sums.
In the final loop, Zn is of size (2B)N−n. We must compute Zn at most Bn times. Therefore,

the block difference computation incurs at most
N∑
n=1

2−n(2B)N subtractions. We must also do

one division for all BN block sizes. Therefore, the algorithm uses at most (N + 1)(2B)N flops to
compute X , plus the time spent in NonzerosInRange.

3.2.1 NonzerosInRange

The implementation of NonzerosInRange depends on the initial format of the sparse matrix A.
We discuss two possible implementations to give the reader an idea of how one might implement
this routine and to explain why this routine should not be costly in theory or practice.

If A is a matrix in CSR format (where nonzeros in each row are stored in sorted order of
their column index), then using a binary search within each row provides an O(B log2(N) + B2)
implementation, where the B2 term reflects the maximum number of indices that may need to be
returned.

If A is a tensor stored as an unsorted list of nonzero indices, we can perform the following
procedure. Before we run EstimateFill, we block the entire matrix A into blocks of size B ×
...×B, and store the blocks in a sparse format (without explicit zeros). We store each block that
contains at least one nonzero in a hash table. Then, our implementation of NonzerosInRange,
which is only ever called with ranges of size 2B × ... × 2B, needs only to look up the 3N blocks
which might contain zeros in the target range, scan through these blocks to find nonzeros which
are actually in the target range, and return these nonzeros. The entire algorithm has a setup cost
of O(k(A)) and an individual query cost of O(3NBN ).

4 Analysis

We use a sampling procedure to repeatedly sample nonzero entries of the tensor and evaluate xb
on each selected entry, for all parameter settings b simultaneously. At the end of the algorithm,
we averages these values for each blocking scheme b, to obtain an estimate of fb(A) for all b.
Suppose that our procedures samples a total of S nonzeros of A, which are located at positions
i1, i2, . . . , iS . We want to select S as small as possible for efficiency while still having provable
guarantees on the concentration of our unbiased estimator

∑
j xb(ij)/S.

We give two concentration bounds for our estimator: one that assumes that the samples ij are
sampled with replacement, using Hoeffding’s inequality [18], and an improved version where the ij
are sampled without replacement, using the recent Hoeffding-Serfling inequality due to Bardenet
and Maillard [4]. Although the two concentration bounds are identical as the number of nonzeros
k(A) grows, the two bounds differ when the number of nonzeros is small.

4.1 A concentration bound when sampling with replacement

We make use of Hoeffding’s inequality, which we state here for completeness:

Theorem 4.1 ([18]). Let X1, X2, . . . , XM be M independent random variables bounded such that

0 ≤ Xj ≤ 1. Let X̄ = 1
M

∑M
j=1Xj be their mean. Then for any t ≥ 0,

Pr[|X − E[X]| ≥ t] ≤ 2 exp(−2Mt2) .

Observe that for any blocking scheme b and any tensor element i, the value xb(i) is a ran-
dom variable bounded between 0 and 1. Furthermore, since the entries i1, i2, . . . , iS are sampled

11



4.2 A concentration bound when sampling without replacement 4 ANALYSIS

independently from among the nonzeros, the random variables xb(i1), xb(i2), . . . , xb(iS) are inde-
pendent. We can therefore apply Theorem 4.1 to obtain our first concentration bound:

Theorem 4.2 (Restatement of Theorem 1.2). If we sample at least S ≥ B2N

2ε2 log
(

2BN

δ

)
samples

with replacement, then

Pr

[
max
b≤B

|fb − Fb|
fb

≤ ε
]
≥ 1− δ .

Proof. By definition, Fb = b1b2···bN
S

∑S
j=1 xb(ij). By Theorem 1.1, E[Fb] = fb. xb(i1), xb(i2), . . . , xb(iS)

are independent and bounded between 0 and 1. By Theorem 4.1, we have

Pr[|Fb−fb| ≥ εfb] = Pr

[∣∣∣∣ Fb − fb
b1b2 · · · bN

∣∣∣∣ ≥ εfb
b1b2 · · · bN

]
≤ 2 exp

(
−2Sε2

(
kb(A)

k(A)

)2
)
≤ 2 exp

(
−2Sε2

(BN )2

)
,

since Fb is b1b2 · · · bN times an average of S values, each of which is at least 1/BN , since each
block has at least one nonzero entry and is of size at most BN . By the union bound over the BN

possible blocking schemes b,

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ 2BN exp(−2Sε2/B2N ) .

Therefore, if S ≥ B2N

2ε2 log
(

2BN

δ

)
,

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ δ .

Note that this bound is not directly dependent on k(A). Clearly, obtaining a high probability
bound with δ ≤ 1/k(A)w for some w would indeed require dependence on k(A), albeit only
logarithmically. However, in practice a small constant δ such as 0.01 likely suffices. This bound
is quite reasonable when S � k(A), the number of nonzero entries in the tensor. Because it is
constant with respect to the number of nonzeros, the bound on S could (and does, for realistic
settings of ε and δ) exceed the number of nonzeros. This is fundamental to bounds based on
Hoeffding’s inequality, and methods based on sampling-with-replacement in general. In the next
section, we obtain a bound on the number of samples needed that scales “smoothly” with the
number of nonzeros, and critically never exceeds it.

4.2 A concentration bound when sampling without replacement

Recall that our algorithm can be viewed as sampling a set of random locations in the tensor, and
then evaluating the deterministic function xb for various blocking schemes b at that location. In
the previous section, we imagined sampling the locations with replacement, so that the selected
nonzeros are independent. By a stochastic domination argument, we could easily extend this
bound to the case where the locations are sampled without replacement, but the bound remains
weak in the regime where the minimal S and k(A) are similar in size. Here, we use the following
recent concentration bounds for sampling without replacement due to Bardenet and Maillard [4]:

Theorem 4.3 (Hoeffding-Serfling inequality). Let χ = {x1, x2, . . . xM} be a finite population of
M > 1 real points with a = minj xj and b = maxj xj. Let (X1, X2, . . . Xm) be a list of size m < M
sampled without replacement from χ. Then for all ε > 0, we have

Pr

∣∣∣∣∣∣ 1

m

m∑
j=1

Xj −
1

M

M∑
j=1

xj

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
− 2mε2

(1−m/M)(1 + 1/m)(b− a)2

)
.

Here, our finite populations are χb, the images of the nonzeros under the functions xb. Observe
that our algorithm as stated in Section 3 samples points independently, but without replacement,
and so we can readily apply Theorem 4.3.

12



5 RESULTS

Theorem 4.4 (Restatement of Theorem 1.3). Let T = B2N

2ε2 log
(

2BN

δ

)
. If

S ≥ S0 =
T − T/k(A) +

√
(T − T/k(A))2 + 4T (1 + T/k(A))

2 + 2T/k(A)
,

then

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ δ.

Proof. By Theorem 1.1, E[Fb] = fb, and so by Theorem 4.3,

Pr

[
|fb − Fb|

fb
≥ ε
]

= Pr

∣∣∣∣∣∣ 1S
∑
j

xb(ij)−
kb(A)

k(A)

∣∣∣∣∣∣ ≥ kb(A)

k(A)
ε

 ≤ 2 exp

(
− 2Sε2

(1− S/k(A))(1 + 1/S)B2N

)
.

Taking the union bound over the BN such parameters, we obtain that the probability that we
have more than ε relative error for any blocking scheme is

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ 2BN exp

(
− 2Sε2

(1− S/k(A))(1 + 1/S)B2N

)
≤ 2BN exp

(
− 2S0ε

2

(1− S0/k(A))(1 + 1/S0)B2N

)
.

Substituting our expression for S0 and rearranging, we obtain that

Pr

[
max
b≤B

|fb − Fb|
fb

≥ ε
]
≤ δ.

5 Results

We implemented3 our algorithm, which we will refer to as ASX, for sparse matrices in CSR format
in C.

We chose C to provide a fair comparison to the competing algorithm described in [3], which
we will refer to as OSKI. To remove differences in speed from using different library functions, we
modified OSKI to use the default GNU Scientific Library (GSL) random number generator, which
is an implementation of the mt19937 Mersenne twister, a pseudorandom number generator which
is considered suitable for use in Monte Carlo simulations [19, 20]. To avoid differences in speed
due to different integer types, we modified both ASX and OSKI to store sparse matrix indices using
the unsigned type size t, a macro which expands to a 64-bit unsigned quantity on our system.

We also chose C because C can efficiently execute the dense integer and floating point operations
in Algorithm 3.3. An important factor in the design of this algorithm was that most of the
computational work is a good target for instruction-level parallelism and cache optimizations. We
have not yet fully optimized the inner kernel, but we leave this remark here to hint at future work.

5.1 Test Cases

We run our code on 5 matrices, 3 of which are matrices taken from the SuiteSparse Collection and
used by Vuduc et al. [3] to measure OSKI, and 2 of which are pathological cases we invented to
trip up both OSKI and ASX respectively.

The three matrices taken from SuiteSparse attempt to show the performance of the fill algo-
rithm over a variety of fill patterns which appear in practice.

3dtube is a matrix arising from the application of finite element analysis to a computational
fluid dynamics problem. This matrix consists mostly of 3×3 dense blocks (96% of nonzeros reside
in these blocks).

3Our code is available under the BSD 3-clause license at https://github.com/peterahrens/FillEstimation.
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5.2 Performance Results 5 RESULTS

ct20stif arises from the application of finite element analysis to a different problem, that of
structural mechanics. This matrix consists of a mix of different block sizes, mostly 3×3 and 6×6.

gupta1 is the matrix representation of a linear programming problem, and has no obvious
block structure.

pathological ASX is a matrix designed to bring out the worst in our ASX algorithm. Because
the indices of nonzeros are sampled with equal probability, blocks with many nonzeros become
much more likely to be sampled than blocks without nonzeros. We maximize the probability of
sampling full blocks by filling them completely. We minimize the probability of sampling sparser
blocks by leaving only one nonzero in each one. We create a 1000 × 1000 matrix with 500 full
12× 12 blocks and 500 sparse 12× 12 blocks. This is a matrix which ASX should perform poorly
on.

pathological OSKI is a matrix designed to bring out the worst in the OSKI algorithm. Because
OSKI samples rows with equal probability, hiding many blocks which look different from the rest of
the matrix in a single row should cause OSKI to perform poorly. This matrix is of size 10000×10000,
and the first 6 rows are dense, while all other rows have only a 1 in the first column.

5.2 Performance Results

Vuduc et al. describe how the fill heuristic is multiplied by a performance constant to create a
performance heuristic. After computing the approximate fill for each blocking, the blocking with
the maximum such heuristic value is chosen [3]. We can guarantee that the relative error between
the estimated best performance heuristic value and the true best performance heuristic value is
at most the maximum relative error in all of the estimates:

max
b≤B

|fb − Fb|
fb

.

Therefore, we measure the mean over several trials of the maximum relative error over all estimates.
Keep in mind that if the mean maximum relative error is greater than 1, this represents a complete
loss of accuracy, as a bogus algorithm which returns 0 for all estimates would achieve a better
mean maximum relative error.

Each data point on the following plots represents the mean (for both maximum relative error
and time) of 100 runs. All trials were performed on a Mid 2015 15-inch Retina MacBook Pro
boasting an Intel®Core™i7-4770HQ CPU @ 2.20GHz Processor with 32KB of L1 cache, 26KB of
L2 cache, 6.3MB of L3 cache, and 64B cache lines.

In practice, we found that the runtime and accuracy of the OSKI implementation varied sub-
stantially across matrices, even for the same recommended parameter setting of σ = 0.02. Ideally,
sampling algorithms should be able to provide users with a consistent level of accuracy so that
they can use the estimates provided with some confidence. Figure 5.1 shows the runtime and
accuracy of ASX and OSKI on all of the above matrices using default settings. We see that on
practical test cases, ASX provides results which are twice as accurate as OSKI in half the time. We
also see that ASX performs about as well on pathological matrices as it does on practical ones,
whereas OSKI does not provide useful estimates on these matrices.
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Figure 5.1 – Accuracy and Time for both ASX and OSKI on several matrices (average of 100 trials,
error bars reflect one standard deviation above and below the mean). ASX parameters are ε = 0.5
and δ = 0.01. OSKI parameters are σ = 0.02. In all cases, the average error due to OSKI is greater
than that of ASX. ASX is faster on real-world matrices and slower on pathological cases, but unlike
OSKI, ASX provides useful results for the pathological cases.

The variance in OSKI’s runtime made it difficult to create useful plots. Despite this difficulty,
almost all sampling algorithms, including OSKI, provide some tradeoff between accuracy and run-
time. Even though the relationship between OSKI’s parameters and its runtime and accuracy is
unpredictable, the relationship between OSKI’s runtime and its accuracy is familiar. Therefore,
we show, for both ASX and OSKI, the error in the estimated fill after running these methods for
differing lengths of time.
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Figure 5.2 – Accuracy vs. Time Tradeoffs for matrices which arise in practice (average of 100 trials,
error bars reflect one standard deviation above and below the mean). Given the same runtime, ASX
estimates the fill more accurately than OSKI does in all cases.

Figure 5.2 shows the performance of the two algorithms on the matrices which arise in practice.
Here we see that ASX reliably provides results within 0.1 relative error much faster than OSKI can.
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6 CONCLUSION

Figure 5.3 – Accuracy Vs. Time Tradeoffs for pathological cases (average of 100 trials, error bars
reflect one standard deviation above and below the mean).

Figure 5.3 shows the performance of the two algorithms on pathological cases. We ran both
ASX and OSKI to completion, meaning that both algorithms were run until they computed an
exact estimate. In both the pathological ASX and pathological OSKI cases, we find that ASX

estimates the fill more accurately in less time than OSKI. In the pathological ASX case, we see
that ASX performs better than OSKI, but the difference is smaller than in the practical cases.

6 Conclusion

We have shown our algorithm to be more predictable and accurate than existing approaches. Our
algorithm can efficiently compute an approximation of the fill in a wide variety of circumstances.
Specifically, ASX computes the fill more accurately and faster than existing approaches on real-
world inputs and provides useful estimates of the fill in pathological test cases.

Sampling techniques are useful in autotuning since we can often sacrifice some accuracy in
the heuristics for a faster autotuner runtime. As libraries for numerical computation evolve and
autotuning moves from compile-time implementations to run-time implementations, developers
will need heuristics whose execution time is small in comparison to that of the routine which is
being tuned [21].

We have shown an example of how sampling can be applied to autotuning to efficiently produce
good approximations with provable guarantees and hope that this work shows the broader potential
for sampling techniques when designing autotuned numerical software. The creation of faster
sampling algorithms with provable guarantees will allow library developers to write software that
can more accurately specialize to user data and provide the best possible performance for their
application and hardware.
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6.1 Future Work REFERENCES

6.1 Future Work

The main motivation behind the design of our algorithm was to express the problem as a dense
set of operations that can be computed efficiently. We have shown that our approach is faster
than existing approaches in all test cases. Future work includes a parallel implementation of both
ASX and OSKI. Although both algorithms easily parallelize to a multicore setting, we hope to gain
even more performance through instruction level parallelism in dense operations such as the prefix
sum and the differences operation.

Recall that a blocking scheme b is defined by the dimensions of each block (b1, b2, . . . , bN ).
Another variant on the fill estimation problem introduces offsets. An offset is defined by a vector
o = (o1, o2, . . . oN ) such that the block indices of a nonzero element i are defined as follows:(⌈

i1 + o1
b1

⌉
,

⌈
i2 + o2
b2

⌉
, ...,

⌈
iN + oN
bN

⌉)
.

Both the ASX and OSKI algorithm currently estimate the fill using only block sizes, but some
matrices may have smaller fills in an offset blocked sparse matrix. Because most of the information
needed to compute xb,o is already computed when we compute xb, we can compute the fill over
all possible combinations of block sizes and offsets by modifying only the differences operation.

Another extension to the problem is to limit the volume of the blocking scheme. That is, for
any blocking scheme b, we require b1 × b2 × . . . × bN ≤ V for some maximum volume V . For
volume to be a nontrivial quantity, we would set it to less than BN where B is the maximum size
of a block dimension. If the blocks are too large, the performance of tensor operations declines
as we are required to fill in more explicit zeros. Thus, we are unlikely to choose these block sizes
after calculating the fill. If the volume is limited to V , then the expected value of xb(A, i) on a
randomly chosen i is at least 1/V . Thus, limiting the volume increases the lower bound on the
expected value of the fill, meaning that the theoretical accuracy guarantee will get closer to the
empirically measured accuracy.
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