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INTRODUCTION

Advances in computation have brought about significant
improvements in creating fast-running high-fidelity simula-
tions of nuclear cores. The BEAVRS benchmark [1] is a
highly-detailed PWR specification with two cycles of mea-
sured operational data used to validate high-fidelity core anal-
ysis methods. This PWR depletion benchmark captures the
fine details of the LWR fuel assemblies, burnable absorbers,
in-core fission detectors, core loading and shuffling patterns.
Specifically, 58 of the 193 assemblies contain in-core detectors
with measurements taken over 61 axial positions every month.
These detectors are U-235 fission chambers with slightly vary-
ing mass of U-235. The collected signals are normalized on
a given assembly permitting full core comparisons. The fuel
layout for cycle 1 and instrument tube locations for the reactor
are given in figures 1 and 2 respectively. Through a series
of data processing and comparisons, it was shown [2] that
axially integrated radial maps of reaction rates were in close
agreement between provided detector data and calculated data.

More recently, the focus of the BEAVRS project has been
on quantifying uncertainty to further assess the validity of
aforementioned results. A close investigation of sources of
error shows that uncertainties from operational nuclear data
arise primarily from data measurements and processing. A
summary of concrete values for such uncertainties is listed in
Table 1.

Source of Type of .
. . Uncertainty
Uncertainty Uncertainty
Detector Count Rates Measurement 1.0%
Background Signal Measurement ~0%
Gain Factor Measurement ~0%
Core Power Factor Measurement <0.1%
Interpolation Post-processing 1%-13%
Axial Realignment Post-processing 10%-15%
Radial Integration Post-processing 1.5%

TABLE 1. All sources of error in the BEAVRS benchmark
related to measurement and post-processing uncertainties|[3]

While the errors in axial realignment and interpolation
seem significant, these sources affect only a small subset of
data points near grid spacers and do not persist throughout the
entire core. Instead, measurement uncertainty from detector
count rates and radial integration dominate the uncertainty in
measured data are determined as the most significant sources
of error.

This uncertainty analysis treated each given burnup step as

independent of comparable data at neighboring burnup steps.

More recent work has been targeted at understanding how
reaction rates vary over time, in order to determine whether
calculated reaction rates follow any observable trends. This
abstract hones in on transient uncertainty quantification, in
order to compare observed data against models for transient
behavior. The first section of the paper uses linear regression
tools to fit operational data, while the latter portion of the paper
explores more complex simulation tools to fit operational data.
Ultimately, the BEAVRS benchmark aims to serve as a true
non-proprietary international benchmark for the validation of
high-fidelity tools.
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Fig. 1. Fuel Layout for cycle 1 - Numbers indicate burnable
absorber pins [1]
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Fig. 2. Instrument tube locations [1]



LINEAR REGRESSION MODELS

Models for time series analysis fit under two broad cat-
egories - stationary and non-stationary models. Stationary
models assume that statistical properties such as mean, vari-
ance, and autocorrelation of the underlying distribution do not
vary over time, while non-stationary models have statistical
properties that are time-dependent. Written mathematically, a
stationary model can be expressed as:

V=Mt & (D

and a non-stationary model can be expressed as:

Ve =M T &, )

where y; is the regressed variable, &, can be viewed as the
residual between the regressed and observed value, and y is
time-independent, while g, is time dependent.[4] For a nonsta-
tionary linear regression, u, can be expressed as

My = fo + it 3

For a linear regression model to be valid, it needs to meet
four requirements[5]:

1. Residuals of regressed values and measured values are
independent of each other with respect to time.

2. Residuals of regressed values and measured values are
homoscedastic.

3. Regressed linear lines exhibit a high value of R?

4. Residuals of regressed values and measured values ex-
hibit a normal distribution centered around a 0 mean.

Homoscedacity refers to the fact that residuals converge
to a constant value, while R? is a measure of goodness of fit of
a linear model to the data, and is a value between 0 and 1 that
describes the percentage of variable variance that is explained
by a the model. A higher value of R? implies that a the model
is indeed a good fit for the data, and is defined mathematically,
for a linear model, as[5]:

Xe
T
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where y is the mean observed value. Out of the four aforemen-
tioned conditions, the first two conditions can be shown as
valid for BEAVRS data using statistical tests, while the third
and fourth conditions will be explored more closely in the next
section.

Even if these four conditions are true, however, the biggest
challenge with using a non-stationary model such as a linear
regression model is to prove that the time trend persists for all
time periods, and is not merely a transitory phenomenon. How-
ever, for certain ranges of burnups, linear models are quite an
accurate fit for the data. In fact, as a fist-order approximation,
it has been shown that at steady-state operations reactivity and
hence reaction rates, follow a linear trend with burnup[6].

FITTING LINEAR REGRESSION MODELS TO
BEAVRS DATA

This section attempts to explore how well linear regres-
sion models work with BEAVRS data. We begin by looking at
the eighth-core symmetric radial map of reaction rates at Hot
Zero Power Conditions.
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Fig. 3. Octant-symmetric radial map of normalized reaction
rates at 0.0 MWd/kg

Each assembly exhibits some trend over burnup, and we
wish to overlay a linear model that minimizes total residual.
Figure 4 shows BEAVRS data compared to a linear fit for
Assembly B9

Cycle 1 Readings for Assembly B9 (Linear Regression vs. Detector Data)
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Fig. 4. Measured and linearly regressed reaction rates vs.
Burnup for Assembly B9

With this plot, both R?> and RMS values between BEAVRS
and linear fit can be calculated. For this specific assembly, R?
is equal to 99.3% and RMS is 0.3%. Figures 5 and 6 summa-
rize both of these values as radial map for Cycle 1 data and
Cycle 2 data respectively, where the top number corresponds
to RMS error, while the bottom number corresponds to R?
goodness of fit.

These maps illustrate that assemblies with high values of
R? have low RMS values, and in general there is reason to
believe that linear models are adequate for first-order fitting



Fig. 5. RMS and R? values using linear regression model for
each assembly over cycle 1 burnups. The top value corre-
sponds to RMS error, while the bottom value corresponds to
R? goodness of fit.
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Fig. 6. RMS and R? values using linear regression model for
each assembly over cycle 2 burnups. The top value corre-
sponds to RMS error, while the bottom value corresponds to
R? goodness of fit.

purposes. However, there are assemblies in Cycle 1 where
a linear fit is inadequate, and a big reason for this is that the
power history for Cycle 1 is erratic, thus violating the steady-
state assumption of the linear reactivity model. Power histories
for both cycles are given in figures 7 and 8

While figures 5 and 6 show that a linear model is an
adequate model for most assemblies, another condition that
needs to hold true for a linear regression model to be valid is
that the residuals between regressed and actual values need to
be normally distributed. Figures 9 and 10 plot the residuals
for all assemblies as a histogram for both cycle 1 and 2. The
figures resemble the shape of a normal distribution, and also
pass the Shapiro-Wilk test for normality. Thus, the results
from the linear model indicates that errors are approximately
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Fig. 7. Power history for Cycle 1
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Fig. 8. Power History for Cycle 2
on the order of 0.8% for cycle 1 and 0.6% for cycle 2.

FITTING DATA FROM SIMULATION CODES TO
BEAVRS DATA

While a linear model can be used to fit data for reaction
rates over burnup, more sophisticated models are explored in
order to account for higher-order effects that cannot be cap-
tured simply by a linear fit. Simulated reaction rates from
CASMO-5 lattice codes and SIMULATE-3 nodal diffusion
simulator serve as an additional basis to compare with reaction
rates over burnup. However, these simulations consistently
overpredict reaction rates, and we attribute this persistent dis-
crepancy as model bias. Further work is in progress to quantify
an exact amount for this model bias, but as an example, figure
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Fig. 9. Histogram of all residuals for Cycle 1
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Fig. 10. Histogram of all residuals for Cycle 2

11 shows how simulated reaction rates vary over burnup for
assembly B9. The blue line is the normalized reaction rate,
and this curve is shifted down by a constant percentage in
order to be compared to the detector rates. This percentage
signifies the model bias, and now the green line can be used
as an additional basis for calculating RMS values, just like the
linear fit.

Once model bias is explicitly quantified for each assembly,
a radial map similar to figure 5 can be generated to express
RMS values between CASMO/Simulate and detector readings
for each assembly. We are working towards generating radial
maps similar to figures 5 and 6, and expect to find the error
between CASMO/Simulate and detector data to be smaller
than the error between the linear model and detector data, since
CASMO/Simulate account for higher order effects occurring
during reactor operations.
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Fig. 11. Measured and simulated reaction rates vs. burnup for
assembly B9. The green simulated line corrects for the model
bias observed in the blue line

CONCLUSIONS

The BEAVRS benchmark has been instrumental in show-
ing the efficacy of high fidelity modeling tools to model realis-
tic PWR models. Recent work has been focused in quantifying

the uncertainty in areas of data measurement, data process-
ing, and simulation tools. Time series analysis methods were
investigated as a means to calculate transient detector uncer-
tainty data, and we expect to find that this uncertainty should
be consistent with measurement and post-processing uncer-
tainty that were calculated at each burnup step. For linear
models, errors were on the order of 0.6% to 0.8%. We also use
simulation codes to calculate RMS error to more accurately
model reaction rates, and expect to find that such modeling
tools will yield more accurate results than linear regression
models. Future work involves looking at stationary models
instead of non-stationary models as added references for fit-
ting available data. In addition, we hope to cross reference
CASMO/Simulate with other codes to verify that our results
are consistent across multiple software platforms.
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