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SUMMARY

Chromatin moves with subdiffusive and spatially
constrained dynamics within the cell nucleus. Here,
we use single-locus tracking by time-lapse fluores-
cence microscopy to uncover information regarding
the forces that influence chromatin movement
following the induction of a persistent DNA double-
strand break (DSB). Using improved time-lapse im-
aging regimens, we monitor trajectories of tagged
DNA loci at a high temporal resolution, which allows
us to extract biophysical parameters through robust
statistical analysis. Polymer modeling based on
these parameters predicts chromatin domain expan-
sion near a DSB and damage extrusion from the
domain. Both phenomena are confirmed by live im-
aging in budding yeast. Calculation of the anomalous
exponent of locus movement allows us to differen-
tiate forces imposed on the nucleus through the actin
cytoskeleton from those that arise from INO80 re-
modeler-dependent changes in nucleosome organi-
zation. Our analytical approach can be applied to
high-density single-locus trajectories obtained in
any cell type.

INTRODUCTION

Ever since the first live imaging of chromatin dynamics by single-

particle tracking (Marshall et al., 1997), much effort has been in-

vested into understanding the regulation and biological function

of DNA movement. Unlike the directional separation of sister

chromatids in mitosis, the interphase movement of chromatin

is stochastic, yet it is modulated by ATP levels, suggesting

that DNA dynamics are influenced by enzymatic events (Heun

et al., 2001; Levi et al., 2005; Marshall et al., 1997; Seeber

et al., 2013). Indeed, the majority of chromatin movement moni-

tored in eukaryotic nuclei is subdiffusive (Albert et al., 2013; Ami-
1200 Cell Reports 18, 1200–1214, January 31, 2017 ª 2017 The Auth
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tai et al., 2015; Dion and Gasser, 2013; Weber et al., 2012), being

restricted to volumes significantly smaller than that of the nu-

cleus, arguing that internal forces constrain chromatin move-

ment (Gartenberg et al., 2004; Bystricky, 2015; Chubb et al.,

2002; Marshall, 2002). In budding yeast, such constraint has

been altered by either the ablation of sister chromatid cohesion

(Dion et al., 2013), the targeting of nucleosome remodelers (Neu-

mann et al., 2012), or the elimination of anchorage sites that

tether yeast chromosomes to nuclear substructures, such as

the inner nuclear membrane protein Esc1 (Gartenberg et al.,

2004), nuclear pores (Horigome et al., 2014), or the spindle

pole body (Strecker et al., 2016; Verdaasdonk et al., 2013).

Chromatin movement is thought to facilitate gene induction by

allowing distant enhancers and promoters to interact (Amitai and

Holcman, 2013a; Bell and Felsenfeld, 1999; Dillon et al., 1997;

Ptashne, 1986) or to facilitate the long-range search for

sequence homology during DNAdouble-strand break repair (Ag-

mon et al., 2013; Dion and Gasser, 2013; Miné-Hattab and Roth-

stein, 2012). More generally, the accessibility of DNA sequence

for recognition by either proteins or nucleic acid may benefit

from chromatin mobility. As an example, a fluorescently tagged

locus with a persistent double-strand break (DSB) in budding

yeast, shows greater movement than the same locus undam-

aged (Dion et al., 2012; Miné-Hattab and Rothstein, 2012). The

drivers of this increased mobility and their impact on repair are

debated (Dion et al., 2012; Miné-Hattab and Rothstein, 2012;

Strecker et al., 2016; Verdaasdonk et al., 2013), yet the fact

that increased movement depends on the type of damage

incurred (Dion et al., 2012, 2013) and on a kinase-mediated

DNA damage checkpoint response (Miné-Hattab and Rothstein,

2012; Seeber et al., 2013; Strecker et al., 2016) argues for phys-

iological relevance.

In mammals as well, the chromatin context of a DSB and the

preference of the locus for repair by end joining or ectopic recom-

bination influence whether or not a locus will show enhanced

movement following damage induction (Aten et al., 2004;

Choet al., 2014; Jakobet al., 2009;Krawczyk et al., 2012; Kruhlak

et al., 2006; Lottersberger et al., 2015; Nelms et al., 1998; Roukos

et al., 2013; Soutoglou et al., 2007; Tsouroula et al., 2016).
or(s).
creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:susan.gasser@fmi.ch
mailto:david.holcman@ens.fr
http://dx.doi.org/10.1016/j.celrep.2017.01.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.01.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Radiation-induced foci and uncapped telomeres both show

enhanced movement in mammalian cells (Dimitrova et al.,

2008; Lottersberger et al., 2015), and in both mammals and flies

it was shown thatDSBs that occur in heterochromatinmustmove

out of the heterochromatic compartment in order to be repaired

by recombination (Chiolo et al., 2011; Jakob et al., 2011; Ryu

et al., 2015; Tsouroula et al., 2016).What changes occur on a bio-

physical level to allow suchmovements are unclear, but possible

triggers could be changes in local chromatin structure, the

release of constraints imposed by non-chromatin anchorage

sites, or active, motor-driven transport.

To date, the analysis applied to single-particle trajectories

(SPTs) of tagged chromatin loci has been inadequate to distin-

guish between these possibilities. Here, we present a framework

for statistical analysis of SPTs over time that allows us to extract

a more comprehensive set of biophysical parameters and relate

them to polymer models (Amitai and Holcman, 2013b; Amitai

et al., 2015). We then use simulations based on the b-polymer

model to predict chromatin behavior. Our experimental system

is the well-characterized HO endonuclease- induced DSB in

budding yeast (Dion et al., 2012; Horigome et al., 2014; Miné-

Hattab and Rothstein, 2012; Nagai et al., 2008), which allows

us to monitor locus dynamics before and after DSB induction.

Polymer modeling predicts that chromatin around a break will

expand and that this will drive extrusion of the damage from its

local chromatin domain. We confirm chromatin expansion at

an induced DSB using quantitative, super-resolution structured

illumination microscopy (SIM). Moreover, we demonstrate a sig-

nificant increase in the anomalous exponent of movement, a, at a

DSB in the rDNA, as it shifts from the nucleolus for recombina-

tion-mediated repair (Torres-Rosell et al., 2007).

Our approach consists of two parts. First, we extract from sin-

gle-locus trajectories an ensemble of four statistical parameters

derived from polymer model analysis. These parameters provide

independent information about the nature of locus movement,

allowing us to characterize the origin of the forces acting on

chromatin. We then construct a polymer model and simulate

chromatin behavior, using empirically extracted biophysical pa-

rameters. This analytical approach and predictive modeling

enable a biophysical definition of chromatin dynamics and pro-

vide a paradigm for the analysis of chromatin movement in other

species. In yeast, we show that changes in local chromatin struc-

ture at a break can lead to altered dynamics that can affect

longer-range aspects of chromatin organization.

RESULTS

We use a well-characterized budding yeast strain carrying a

galactose-inducible HO gene, which encodes the Homothallic

switching endonuclease that, in turn, introduces a double-strand

break specifically and uniquely at theMAT locus on Chr III (Table

S1). Cleavage efficiency is measured for each experiment by

qPCR (Table S2). We visualize the locus by tracking a fluorescent

LacI-GFP protein bound to an array of lac operators (lacO) that is

inserted near the cut site (Figure 1A). In addition, we have tagged

the nuclear poreswith a separate redfluorophore (Nup49-Ruby2),

which is bothbrighter than traditional fluorophores andmorepho-

tostable (Lee et al., 2013). This allows us to use less light to stim-
ulate the fluorochrome,minimizing light-induced damage despite

longeracquisition times.Our imaging regimensdonotactivate the

DNA damage response and cells continue to divide after light

exposure (Figure S1). The labeling of the nuclear perimeter with

Nup49-Ruby2allows us to align acquired trajectorieswith respect

to the nuclear center, to correct for translational movement.

Previous studies of chromatin dynamics performed SPTs with

imaging intervals of 1.5 s for 200 frames (Dion et al., 2012; Neu-

mann et al., 2012; Strecker et al., 2016), 10 s for 80 frames

(Miné-Hattab and Rothstein, 2012), 30 s for 20 frames (Verdaas-

donk et al., 2013), 100 ms for 300 frames (Spichal et al., 2016),

and 15–400 ms for 300 frames (Hajjoul et al., 2013). Without suf-

ficient time points, statistically significant information cannot

always be extracted from SPTs. In addition, chromatin motion

may show different properties when imaged at different time-

scales (Amitai et al., 2015; Hajjoul et al., 2013; Levi et al., 2005).

Weaddressed thesecaveats by acquiring 3D images at two time-

scales and generating more frames than had previously been

published. Namely, 750 or 500 3D stacks of images were ob-

tained for each time-lapse movie at Dt = 80 ms (10 ms per

z-slice 38) or Dt = 300 ms (30 ms per z-slice 38), respectively

(Figure 1A). By selecting a small cropped region on the EM-

CCD chip and synchronizing the Piezo z-stage, we could stream

acquisitions just above the camera chip readout rate (�9ms).We

simultaneously captured the two fluorophores, i.e., the LacI-GFP

at MAT and the perinuclear Nup49-Ruby2, and by coupling a

EM-CCD camera with 3D deconvolution by Huygens Profes-

sional, we could use very-low-light conditions over extended pe-

riods of capture. It is important to note that DNA shows signifi-

cantly less movement in S-phase yeast cells than in G1-phase

cells (Dion et al., 2013; Heun et al., 2001); thus, reliable data

cannot be extracted from tracking a field of asynchronous yeast

cells. Single cells must be selected and the data triaged after

determining thecell-cycle stageof each imagedcell. In this study,

we selected only small budded S-phase cells for spot tracking.

Toextract information from theseSPTswe introduce four statis-

tical quantities that can be computed from the data (numerical

code to compute the four parameters is accessible at http://

bionewmetrics.org/ in the ‘‘Nuclear Organization section’’). For

clarity, and tomake thismethod accessible to a general audience,

the majority of the equations defining these parameters are in the

Supplemental Information. Their extraction is key to our analysis,

because these parameters provide independent, complementary

information on first- and second-moment statistics. Each has

been studied separately elsewhere and are described below.

1. The length of constraint LC is defined as the SDof the locus

position with respect to its mean averaged over time. This

parameter provides estimation for the apparent radius

of the volumeexploredbya finite trajectory. For a trajectory

containing Np points, where RcðkDtÞ is the position of

a locus at a time t, LC is obtained from the empirical

estimation:

LC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRcÞ

p
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

k = 1

ðRcðkDtÞ � hRciÞ2
vuut : (Equation 1)
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Figure 1. Extraction of Biophysical Parameters of DSB Dynamics Using Two Imaging Regimens

(A) Schematics of the experimental system and description of extracted biophysical parameters. See text and Supplemental Information for definition of length of

constraint (Lc), effective spring coefficient (kc), the anomalous exponent a reflecting an auto-correlation function, and the Dc (diffusion coefficient).

(B) Upper-left quadrant:MAT locus trajectoriesduring 60 s (Dt = 80ms).Other quadrants contain the extracted parameters Lc, kc, andaof cut (red) and uncut (blue)

MAT loci. Above the panel, the p value of a Kolmogorov-Smirnov (KS) test is indicated. White bar, distribution mean. Strains used are GA-8862/8863 (Table S1).

(C) As in (B) but for Dt = 300 ms during 120 s. For extracted parameters, see Table 1 and Figure S2. Cut efficiencies and nuclei scored are in Table S2.

(D) Monitoring movement at different timescales corresponds to studying the polymer on different scales. The time resolution determines the scale of chromatin

dynamicsmonitored; at a short time resolution (80 ms, pink circle), we observed a smaller element of the chromatin movement than with 300ms resolution (green

circle). Panels present parameters Lc, kc, and a from 80- and 300-ms imaging regimens for an intact locus (see Figures S1 and S2).
It characterizes the confinement of a locus, which in other

studies has been reported as the radius of confinement (Rconf –

not to be confused with Rc). The Rconf is computed from the

asymptotic plateau of mean square displacement (MSD) curves

and is therefore limited to trajectories that plateau. This is

strongly influenced by the length of image acquisition. The

advantage of computing LC is that it gives a robust estimate of

the volume V = 4=3pLC3 occupied by the trajectory and can be
1202 Cell Reports 18, 1200–1214, January 31, 2017
used on any kind of trajectory, as it does not require a plateau

(see Supplemental Information).

2. The anomalous exponent a is computed from the

auto-correlation (AC, Supplemental Information Equa-

tion 11) function for small increments CðtÞ=
hðRcðt + tÞ � RcðtÞÞ2izta. It indicates the nature of the

locus motion; i.e., a = 1 describes normal diffusion, while



Table 1. Biophysical Parameters Extracted from SPTs before and after DSB Induction

Description Parameters Uncut Locus Cut Locus

Dt = 80 ms

Length of constraint LC 0.13 ± 0.03mm 0.23 ± 0.03mm

Anomalous exponent a 0.49 ± 0.14 0.52 ± 0.07

Effective spring coefficient kc 139 ± 63kBT/mm
2 41 ± 11kBT/mm

2

Apparent diffusion constant Dc 14.3 ± 7.5 3 10–3mm2/s 27.8 ± 10.8 3 10–3mm2/s

Dt = 300 ms

Length of constraint LC 0.16 ± 0.04mm 0.21 ± 0.05mm

Anomalous exponent a 0.66 ± 0.08 0.70 ± 0.08

Effective spring coefficient kc 89 ± 40kBT/mm
2 54 ± 22kBT/mm

2

Apparent diffusion constant Dc 3.9 ± 1.1 3 10–3mm2/s 3.9 ± 1.6 3 10–3mm2/s

Yeast strains, conditions of imaging, and cut induction are as in Figures 1B and 1C.
a < 1 is subdiffusive (constrained) and a > 1 is superdiffu-

sive (directed) movement (Kepten et al., 2013; Dion and

Gasser, 2013). In practice, we estimated a by fitting

the first six points of the AC function of an SPT by a

power law ta, as described in the Supplemental Informa-

tion. Every time point affects the initial slope of the AC

function (or the MSD); thus, movies with more time

points will ultimately provide the more accurate approxi-

mation of a, and a more robust representation of the data.

3. The effective spring coefficient kc. An external force acting

on a chromatin locus can be modeled as a spring force

applied on a single monomer belonging to a polymer.

This force affects the entire polymer motion and can be

recovered from the first-order moment statistics of sin-

gle-locus trajectories. The spring force acting at position

xa and measured at position xm is represented by F =

–kc (xm – xa), and the spring constant kc allows us to esti-

mate the effect of local tethering interactions around the

locus of interest (Amitai et al., 2015) (see Supplemental In-

formation, Equation 17). This tethering can arise from in-

teractions of the locus with other chromosomes or nuclear

substructures, such as the nucleolus or nuclear envelope.

While these interactions cannot be measured directly they

can be inferred from SPTs.

4. The effective diffusion coefficient Dc reflects the second-

order statistical properties of a trajectory. This diffu-

sion coefficient accounts for local crowding that may

vary along the trajectory. The estimation procedure is

described in the Supplemental Information.

These four parameters are complementary (monitoring first-

and second-order moment statistics) and provide an advantage

over those extracted previously, which were generally limited to

determination of the radius of confinement (Rconf) and/or the

diffusion coefficient. We use them to characterize the underlying

motion of the monitored locus. In summary, the confinement of

a locus is measured by LC, its velocity is Dc, forces acting on a

locus is given by kc, and, importantly, the nature of the motion

is described by a.
Induction of a DSB Alters the Biophysical Parameters of
a Chromatin Locus
Consistent with previous results that monitored the dynamics of

induced DSBs in yeast (Dion et al., 2012; Miné-Hattab and Roth-

stein, 2012), we find that Lc increases significantly after break in-

duction in both timescales from Lc
uncut 80ms = 0.13 ± 0.03 mm to

Lc
cut 80ms = 0.23 ± 0.03 mm and Lc

uncut 300ms = 0.16 ± 0.04 mm to

Lc
cut 300ms = 0.21 ± 0.05 mm (Figures 1B and 1C, summarized in

Table 1). Comparing the Lc values for unbroken loci tracked at

Dt = 80- versus 300-ms intervals, we find that the 300-ms trajec-

tories have a higher LC. The 300 ms-interval movies are 120 s

long and the 80-ms movies are 60 s long, consistent with the

notion that Lc scales with the time during which the locus has

explored its surroundings.

The increase in movement upon break induction could

reflect the loss of constraint (either from reduced contacts

between nucleosomes or reduced interaction with a less mo-

bile nuclear substructure), or stem from an increased external

force acting on the nucleus. Yeast chromosomes reversibly

interact with nuclear envelope structures (e.g., pores or the

spindle pole body [SPB] (Taddei and Gasser, 2012). Such

interactions not only constrain movement, but could enhance

it, if the nucleus experiences forces leading to rotation or

oscillation. To quantify the strength of tethering interactions

at the site of a DSB, we approximate the confining tethering

force using the classical harmonic potential approximation

(Amitai et al., 2015). A binding force is generically parabolic

(see Supplemental Information); thus, a tethering force is char-

acterized by a strength k acting on a single monomer

Rn: U= ð1=2ÞkðRn � mÞ2, where m is the position of the interac-

tion. Reduction of tethering forces should result in increased

mobility (Amitai et al., 2015). Based on these modeling predic-

tions, we extracted the effective spring coefficient kc (Equation

17, Supplemental Information), which measures the averaged

external forces affecting the observed locus. We find that kc de-

creases significantly for both timescales from kc
uncut 80ms = 135

± 61 kBT/mm
2 to kc

cut 80ms = 41 ± 11 kBT/mm
2 and kc

uncut 300ms =

89 ± 40 kBT/mm
2 to kc

cut 300ms = 54 ± 22 kBT/mm
2 (Figures 1B

and 1C). This decay suggests that there is a local reduction in

interactions around the region of the break. This could increase
Cell Reports 18, 1200–1214, January 31, 2017 1203



the territory the spot explores, as reflected in the increase of the

length LC.
Upon cut induction, we also find a small but significant in-

crease in the anomalous exponent a where auncut 80ms = 0.48 ±

0.14 increases to acut 80ms = 0.52 ± 0.07 and auncut 300ms =

0.66 ± 0.08 increases to acut 300ms = 0.70 ± 0.08 (Figures 1B

and 1C). Surprisingly, we found that the anomalous exponent

a is consistently higher at Dt = 300 ms (auncut 80ms = 0.48 versus

auncut 300ms = 0.66), even without DSB induction. This difference

could arise from the fact that by choosing a time step we implic-

itly establish a cutoff below which locus dynamics are no longer

influenced by the long-range chromatin properties. Vice versa, at

larger intervals (e.g., Dt = 300 ms), the more subtle changes in

chromatin dynamics that occur on shorter timescales (Dt =

80 ms) may be averaged out (see scheme, Figure 1D). Thus,

rapid image acquisition allows us to observe fluctuations of poly-

mer structure at the level of short genomic distances, while larger

time intervals reveals local fluctuations of chromatin at larger

genomic scales. This also provides an explanation of why we

observe an increase in the diffusion coefficient after cleavage

for the trajectories at Dt = 80 ms (DUncut 80ms
c = 15.4 ± 7.7 3

10�3 mm2/s to Dcut 80ms
c = 27.8 ± 10.8 3 10�3 mm2/s), but not at

Dt = 300 ms (DUncut 300ms
c = 3.9 ± 1.1 3 10�3 mm2/s versus

Dcut 300ms
c = 3.9 ± 1.6 3 10�3 mm2/s; Equation 13, Supplemental

Information; Figure S2, Table 1).

Effect of Actin Depolymerization on Chromatin
Dynamics
Since the increase in the anomalous exponent a upon DSB in-

duction was small (auncut 80ms = 0.46 versus acut 80ms = 0.52)

and because a increased with longer imaging intervals, we hy-

pothesized that external forces might act on the nucleus that

could mask changes in a. While our tracking regimen corrects

for translational movement, it cannot account for nuclear rota-

tion or precession. As a simple proof of principle that a in-

creases when an oscillating force is applied to the polymer,

we simulated a Rouse polymer (a = 0.5) with oscillation period

u (Supplemental Information; Figure S3). We find that

when u = 0.04, a increases from 0.5 to 0.7 (Figure 2A),

suggesting that nuclear rotation/precession would increase

a and could, therefore, mask changes in this parameter.

This simulation was performed for a Rouse polymer, yet simu-

lation of other polymer models would yield the same qualita-

tive behavior.

Next, we testedwhether this effect occurs in vivo. Recent work

has implicated the cytoskeleton (Lottersberger et al., 2015; Spi-

chal et al., 2016) and KASH proteins, which anchor inner nuclear

membrane-spanning SUN domain proteins to the cytoskeleton

(Starr and Fridolfsson, 2010) in chromatin movement (Chung

et al., 2015; Lottersberger et al., 2015; Spichal et al., 2016). Given

that in budding yeast, subcellular organelles aremore commonly

positioned by actin filaments, rather than by microtubules (MTs),

we hypothesized that actin filaments connected to the nuclear

envelope could be a source of nuclear rotation, which would,

in turn, increase a, as shown by our numerical simulations. To

test this hypothesis, we fluorescently labeled the SPB, a struc-

ture embedded in the nuclear envelope, by tagging Spc29 with

Ruby2. Movement of the SPB reflects that of the entire nucleus
1204 Cell Reports 18, 1200–1214, January 31, 2017
(Figure 2B). A 1-hr exposure to 25 mmof the sponge toxin Latrun-

culin A (LatA) was sufficient to completely depolymerize cyto-

plasmic actin filaments in yeast (Figure S4). By analyzing SPB

trajectories, we found that a decreases significantly upon LatA

treatment, from aDMSO = 0.37 ± 0.16 to aLatA = 0.26 ± 0.15 (Fig-

ure 2B), suggesting that actin filaments indeed contribute to nu-

clear rotation/precession. The values for kc, Dc, and Lc were not

significantly reduced after LatA treatment (Figures 2B and S3A).

A simple explanation for this phenomenon could be that the nu-

cleus rocks back and forth in the x and y planes, with only the fre-

quency of this motion being reduced by LatA. In this case, the to-

tal area scanned by the SPB remains the same, while a, which

characterizes its motion, decreases upon actin depolymeriza-

tion. The fact the second dynamical parameter (Dc) does not

change suggests that the frequency of the nuclear precession

is large compared to the imaging time step (80ms). Indeed, given

that a is a dynamic parameter computed over the first six time

points, it incorporates motion up to 0.48 s. This is illustrated in

Figure 2A, where the gap between the curves is larger at longer

times.

To see whether nuclear oscillation is necessary for the dy-

namic changes in chromatin following induction of a DSB, we

tracked DSB mobility after treatment with LatA. As observed

for the SPB, LatA treatment reduces Lc in the uncut con-

dition (Lc
uncut No drug 80ms = 0.13 ± 0.03 mm to Lc

uncut LatA 80ms =

0.08 ± 0.03 mm). Upon cleavage, however, this value increases

to Lc
cut LatA 80ms = 0.15 ± 0.06 mm, showing approximately the

same fold increase as we observed at a break without LatA (Fig-

ure 2C). Thus, the DSB-induced increase in movement is not a

result of actin filament-driven dynamics. The spring constant kc
follows the same trend upon LatA exposure (Figure S5B). In other

words, tethering forces are released following break induction

even in the presence of LatA. Interestingly, the diffusion coeffi-

cient of the DSB does not change upon LatA treatment, which

we attribute to the timescale of the nuclear oscillations, as ex-

plained in the previous paragraph.

We note that the anomalous exponent a decreases

strongly upon LatA treatment (auncut No drug 80ms = 0.48 ± 0.14

to auncut LatA 80ms = 0.30 ± 0.14), consistent with the suggestion

that actin polymerization indirectly influences the underlying na-

ture of chromatin movement (Spichal et al., 2016). Importantly,

however, a again increases strongly from auncut LatA 80ms =

0.30 ± 0.14 to acut LatA 80ms = 0.46 ± 0.14, upon induction of a

DSB, despite the presence of LatA (Figure 2D). The same highly

significant change was observed for trajectories taken at Dt =

300 ms (Figure S5C). Thus, the change in locus dynamics at a

DSB is not actin-filament dependent, even though basal chro-

matin movement is influenced by actin-driven nuclear rotation.

Importantly, we show that changes in a can be masked by

such oscillations.

Effect of Microtubule Depolymerization on Chromatin
Dynamics
Early work had shown that MT depolymerization by Nocodazole

in yeast increased chromatin dynamics (Marshall et al., 1997),

as it releases centromeres from their attachment to the SPB

(Bystricky et al., 2004). In contrast, recent work in a mammalian

system showed the opposite effect: MT depolymerization
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Figure 2. Depolymerization of the Actin Cyto-

skeleton Reduces Nuclear Rotation but Does

Not Prevent DSB-Induced Movement

(A) The effect of rotation on the anomalous exponent

a of a monomer within a Rouse polymer. When

an angular velocity of u = 0.04 s–1 is applied to

the polymer, a increases from 0.5 (Rouse polymer)

to 0.7.

(B) The spindle pole body (SPB) is embedded

in the nuclear membrane and is visualized by

Spc29-Ruby2. Its movement is used to monitor

nuclear rotation/precession. Plots show a and

Lc of the SPB after 1-hr treatment with the

solvent DMSO or 25 mM LatA, which fully de-

polymerizes actin cables (Figure S4). Strain used

is GA-9045.

(C and D) The Lc (C) and a (D) for MAT, derived

from trajectories taken at Dt = 80 ms ± 25 mM LatA

before and after 2 hr DSB induction (for strains, see

Figure 1). Corresponding kc and Dc values, as well as

all values for Dt = 300 ms, are in Figure S5. Cut ef-

ficiencies are in Table S2.

*p % 0.05, **p % 0.01, ***p % 0.001, respectively.

See related Figures S3–S5.
decreased uncapped telomere movement (Lottersberger et al.,

2015). Therefore, we revisited this question in yeast to access

how MT depolymerization affects chromatin movement. We
Cell Re
exposed yeast cells to 50 mM Nocodazole

for 1 hr, which is sufficient to arrest cells in

G2/M phase due to activation of the spindle

assembly checkpoint, and subjected the

lacO-tagged MAT locus to time-lapse

imaging, in the presence and absence of a

DSB. Interestingly, MT depolymerization

(in contrast to actin depolymerization)

increased both LC and a and reduced teth-

ering forces (kc) at Dt = 80 ms (Figure 3).

Following DSB induction, however, there

was no further change in movement, with

the exception of a marginal decrease in LC
and increase in kc. Thus, MT depolymeriza-

tion appears to increase chromatin move-

ment to such an extent that a further in-

crease due to local chromatin changes is

not detectable. We attribute the increased

chromatin dynamics upon Nocodazole

treatment to the depolymerization of the

MTs that tether yeast centromeres to the

SPB. In mammals, this effect would not be

observed since there are no direct MT con-

nections from centrosome to kinetochore in

interphase cells. Rather, it was proposed

that the effect of Nocodazole in mammalian

cells, i.e., the loss of increased chromatin

movement after DNA damage (Lotters-

berger et al., 2015), stems from the loss

of the link between cytoplasmic MT and

either the nucleoskeleton or chromatin
through the LINC complex (Linker of Nucleoskeleton and Cyto-

skeleton, (Tapley and Starr, 2013)), thus being more similar to

the effects of LatA in yeast. Complicating this interpretation is
ports 18, 1200–1214, January 31, 2017 1205
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Figure 3. Nocodazole Increases Chromatin

Mobility, and There Is No Further Increase af-

ter Break Induction

(A–D) The Lc (A) and a (B) values for MAT, derived

from trajectories taken at Dt = 80 ms before and after

2 hr DSB induction are given. Strains are as in Fig-

ure 1. Where indicated, 50 mM Nocodazole was

added for the last hour of HO induction. Corre-

sponding kc (C) and Dc (D) values are calculated from

the same dataset. Cut efficiencies are in Table S2.

*p % 0.05 and ***p % 0.001.
the fact that Nocodazole may induce cohesin cleavage in HeLa

cells (Nakajima et al., 2007), an event that increases chromatin

movement in yeast (Dion et al., 2013).

In summary, chromatin dynamics in yeast and mammalian

cells showed opposite effects of MT depolymerization: in yeast,

MTs can constrain chromatin movement, while actin filaments

drive nuclear rotation. Removal of nuclear rotation/precession

by LatA created conditions under which changes in SPT param-

eters were more apparent, while centromere release in yeast

seemed to mask enhanced DSB mobility. In contrast, using

MSD analysis in mammalian cells cytoplasmic MTs and dynein

appeared to drive chromatin movement, an effect that was

enhanced during the DNA damage response (Lottersberger

et al., 2015). Actin depolymerization had no reported effect.

A Polymer Model Predicts Chromatin Expansion at
a DSB
Post-translational modifications on histones and repair/signaling

proteins recruited to DSBs are extensive and occur rapidly at

DSBs. These include histone acetylation, ubiquitination, and

phosphorylation, as well as histone variant exchange and nucle-

osome eviction by nucleosome remodelers (Smeenk and van At-

tikum, 2013). Given the large change in a at the site of aDSBonce

nuclear oscillations were removed (auncut LatA = 0.30 to acut LatA =

0.46), we next explored the consequence of this change on chro-

matin structure, using a generalized polymer model called the

b-polymer model (Amitai and Holcman, 2013b). This model al-

lows for local interactions between monomers to be calculated

from a given anomalous exponent by the relationship a = 1�1/b

(see Supplemental Information). In other words, this polymer

model allows us to explore the effects of a changing anomalous
1206 Cell Reports 18, 1200–1214, January 31, 2017
exponent on the local organization of the

polymer (Figure 4A). This b-polymer model

can be used when anomalous exponents

are in the range of a = 0–0.5, giving us an

advantage over other polymer models,

such as the Rouse model in which a must

be 0.5. Importantly, while other polymer

models can predict anomalous exponents

for a chromatin locus with values smaller

than 0.5 (Weber et al., 2010), none of them

can interpret changes in a of the kind we

observe following DNA damage.

Tomimic the locusmobility before and af-

ter DSB induction, we constructed polymer
models with anomalous exponents that were extracted from

actual trajectories (Figure 4B).We found that as a increases there

is a subsequent decompaction of the polymer (Figure 4B). This is

quantified by an increase in the radius of gyration Rg, which is

the mean distance of the monomers to the center of mass,

from 1.21b when a = 0.33, to 2.34b when a = 0.5 (here b is dis-

tance between two adjacent monomers, for further details see

Supplemental Information). Therefore, higher a values are asso-

ciated with a more open chromatin state. This model thus pre-

dicts that chromatin will expand following induction of a DSB

(Figure 4B).

To test this prediction, we measured the volumes occupied by

the 10 kb of lacO array-containing chromatin near the DSB,

using 3D super-resolution structured illumination microscopy

of GFP-lacI fluorescence (3D-SIM, with an estimated resolution

of �120 nm xy and �350 nm z; Figure 4C). We quantified the

spot volume for hundreds of cells (250–1,030 foci per sample)

with and without HO induction. We found that the 3D spot vol-

ume increased significantly upon cut induction in S-phase cells,

from Vuncut = 0.090 ± 0.041 mm3 to Vcut = 0.109 ± 0.086 mm3 (Fig-

ure 4C; Table S4). This striking increase (+20%) confirms the pre-

diction of the b-polymer model and corresponds to an increase

in a from 0.33 to 0.45.

Nucleosome Remodeler INO80 Drives Increased a

Independent of Actin Dynamics
If decompaction is truly a reflection of altered nucleosome pack-

ing, then we should be able to modulate it by eliminating the

recruitment of the INO80 remodeler, which is recruited to

damage in an Arp8-dependent manner. Loss of INO80 recruit-

ment reduces nucleosome eviction at DSBs and attenuates the
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Figure 4. Polymer Simulations Predict Chromatin Expansion at a DSB, which Is Confirmed Experimentally with Structured Illumination

Microscopy

(A) The b-polymer model allows for the interactions between all monomers to be controlled and measured in simulations. The strength of interaction of all

monomers with any other monomer decays with distance. Anomalous diffusion a is related to b by a = 1�1/b.

(B) b-polymers where the inter-monomer interactions are modified, with b values corresponding to a values obtained from biological experiments (b = 1.5 gives

a = 0.33, and b = 2 gives a = 0.5). The radius of gyration Rg (yellow) measures the degree of compaction. Balls (blue) represent the monomers of radius 0.3b.

(C) Experimental system used to acquire and analyze SIM images of the MAT locus (left), and an example image showing a G1- and S-phase focus (middle),

cumulative distribution function of the 3D volume of spots ± cleavage in wild-type (WT), strain GA-8067 (right). Cells were synchronized with a-factor to obtain G1

(legend continued on next page)
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enhanced chromatin dynamics provoked by a DSB (Neumann

et al., 2012; Seeber et al., 2013; Strecker et al., 2016). Arp8 is

an integral component of the INO80 remodeler that is required

for its nucleosome remodeling activity (van Attikum et al.,

2007). Interestingly, cells lacking Arp8 have strong recombina-

tion defects (Agmon et al., 2013; Strecker et al., 2016) but only

mild defects in checkpoint activation or resection (Chen et al.,

2012; van Attikum et al., 2007). With this in mind, we tracked lo-

cus mobility in an arp8D strain, before and after DSB induction.

Confirming previous reports (Neumann et al., 2012; Strecker

et al., 2016), we find that Arp8 is required for increased mobility

at the DSB: neither the Lc, a, Dc, nor kc changed after cut induc-

tion (Figures 4D and S6).

Based on our interpretation of a as an indirect indicator of

condensation state (Figure 4A), we monitored locus volume us-

ing super-resolution microscopy in the arp8D strain. The DSB

and its surrounding chromatin not only failed to increase spot

volume in the absence of Arp8, but volumes were slightly

reduced (Figure 4E). This links chromatin expansion at the break

to the remodeling activity of INO80 and suggests that INO80may

function at breaks to open chromatin facilitating recruitment of

repair proteins (van Attikum et al., 2007).

Increasing a at a DSB Can Provoke Extrusion of Damage
from a Chromatin Domain
Our data argue that chromatin expands at a DSB, presumably

resulting from a reduction in local forces between monomers

(nucleosomes) near the break. Experimentally, we know that

DSBs trigger changes in chromatin organization and that

they can move from one nuclear sub-compartment to another

(Chiolo et al., 2011; Horigome et al., 2014; Jakob et al., 2011;

Ryu et al., 2015; Torres-Rosell et al., 2007), yet it is not known

how these are related, i.e., whether changes in chromatin at

the site of a break affect the long-range architecture of a chro-

matin domain or a chromosome. Here, we used numerical

simulations to ask what happens to the overall structure of a

polymer if we reduce the intrinsic interactions of a single

monomer, i.e., of a nucleosome near a DSB. The simulations

further allow us to modulate the strength of interactions be-

tween all monomers, enabling us to test a range of situations

that involve changes in specific inter-nucleosomal interactions,

mimicking a controlled spread of decondensation from the site

of damage.

To account for changes in the chromatin structure and to avoid

interpenetration of the chromosome, we added repulsion inter-

actions between each monomer (i.e., Lennard-Jones or LJ inter-

actions) to the b-polymer model (see Figure S7 and Table S3).

We considered a polymer of length n = 33, with a coefficient

b = 1.5, where all monomers are highly connected (Figure 5A).

We note that with the addition of LJ-interaction forces, the rela-

tionship between the exponent of the model and the measured

anomalous exponent a = 1�1/b, no longer holds, and the numer-
cells, and S-phase cells were collected 30 min after release from pheromone. C

counted, cut efficiencies, and statistics, see Tables S2 and S4.

(D) The parameters Lc and a derived from Dt = 80 ms imaging regimen in arp8D af

(E) Spot volumes as in (C) but for arp8D (GA-9602). See also Figures S6 and S8.
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ically estimated a for a self-avoiding polymer with b = 1.5 for a

given monomer is a = 0.52.

We then simulated the effect of a DSB on chromatin organiza-

tion by reducing interactions of the middle monomer n = 17 (red

monomer), such that longer-range connections are lost, and only

nearest neighbor contacts remain (green monomers, Figure 5B).

Surprisingly, this modification had a dramatic effect on the

global structure of the polymer with the middle monomer being

extruded to the periphery of the globular chromatin domain (Fig-

ure 5B). If wemimic the spreading of decondensation by removal

of local forces acting on the two neighbors of the middle mono-

mer (n = 16, 18), the effect is even more pronounced (Figure 5C).

In analogy to the documented behavior of a DSB in heterochro-

matin, we find that the more condensed the polymer is, the more

pronounced the extrusion effect will be. Moreover, the extrusion

is stable as long as the reduced interactions persist: once

shifted, the extruded monomer stays at the periphery of the

chromatin domain (Figure S8).

We next simulated the effect of extrusion on movement by

following the displacement of either an unmodified monomer

(n = 10) or the break-mimicking modified monomer (n = 17) (Fig-

ure 5D). While the unmodified monomer does not change its

position significantly, the modified monomer is highly mobile.

To quantify this effect, we plot the average distance of each

monomer from the center ofmass (cm) of the polymer (Figure 5E).

Before extrusion, the middle monomer was closest to the cm

(see Figure 5A), but as forces are reduced on this monomer it

moves further away (Figure 5E). Finally, we analyzed a for each

monomer during the extrusion process. We find that when the

interactions are removed from the middle and two neighbor

monomers (Figure 5C), a increases sharply from 0.52 to 0.88

(Figure 5F). This is consistent with our empirical observations

of increased a upon DSB induction and local chromatin expan-

sion at the break. This polymer modeling suggests that expan-

sion at the site of the break, reflected as increased a, is sufficient

to shift a DSB to the periphery of its local chromatin domain.

Previous work has shown that DSBs that occur in heterochro-

matin or in the nucleolus must move out of these domains to be

repaired by the recombination machinery (Chiolo et al., 2011;

Ryu et al., 2015; Torres-Rosell et al., 2007; Tsouroula et al.,

2016). To see whether this extrusion correlates with reduced

forces at the break (i.e., increased a), we monitored the dy-

namics of an inducible I-SceI cut site integrated into the yeast

rDNAwith an adjacent tetO array, which is visualized by express-

ing TetR-mRFP (Torres-Rosell et al., 2007). The yeast strain

further expressed a YFP-tagged Rad52, which is largely

excluded from the nucleolus, and a plasmid-borne galactose-

inducible I-SceI endonuclease, as well as constitutively ex-

pressed Nucleolar protein 1 (NOP1)-CFP. Rad52-YFP only co-

localizes with the TetR-mRFP array when the locus has been

extruded from the nucleolus (Figure 5G). To create the break,

we induced I-SceI for 2 hr. To avoid interference by nuclear
ut induction was 30 min (see Supplemental Information). **p % 0.01. For foci

ter 2-hr HO induction (strains GA-8921//8922). Cut efficiencies are in Table S2.
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oscillation, we included 25 mm LatA during the last hour of cut

induction. Dual acquisition (Dt = 80 ms) of TetR-mRFP and

Rad52-YFP signals was performed in S-phase cells, where we

track three conditions: first, an uncut locus (found within the

nucleolus), second, a cut locus (I-SceI is expressed but the array

remains within the nucleolus and no Rad52-YFP is bound), and,

third, the cut locus that is relocated outside the nucleolus and

bound by Rad52-YFP. We find that after break induction Lc in-

creases from Lc
uncut = 0.08 ± 0.05 mm to Lc

cut(inside) = 0.11 ±

0.03 mm and Lc
cut(outside) = 0.12 ± 0.05 mm (Figure 5H). Impor-

tantly, we find that a increases very strongly both upon cleavage

and again upon relocation from the nucleolus (auncut = 0.24 ±

0.1 mm to acut(inside) = 0.38 ± 0.12 mm and acut(outside) = 0.57 ±

0.11 mm). This increase in a likely reflects changes in the contacts

at the site of break, further supported by the decrease kc (Fig-

ure S9). It suggests that chromatin surrounding a break,

extruded from the nucleolus, is more decondensed than a break

within the nucleolus, consistent with a requirement for relocation

for Rad52 binding (Torres-Rosell et al., 2007).

Intriguingly, in the absence of LatA the LC shows the opposite

trend: the uncut locus was more dynamic than the cut one (Fig-

ure S9). While surprising, we note that the rDNA is segregated

from the rest of the nucleus and is attached to the inner nuclear

membrane opposite of the SPB by an inner nuclear membrane

complex called CLIP (Mekhail and Moazed, 2010) (Figure 6).

We hypothesize that the nucleolus is subject to the effects of nu-

clear precession more than internal loci, and thus an uncut rDNA

locus, which is more tightly linked to the nuclear envelope, may

be more influenced by cytoskeletal dynamics. After DSB induc-

tion, the shift of the locus to the nucleoplasm should reduce nu-

clear envelope association and Lc or the length of its trajectory

within a given time frame may be reduced. Regardless of trajec-

tory length, we found that a increases from auncut = 0.38 ±

0.06 mm to acut(outside) = 0.53 ± 0.16 mm, both in the presence

and absence of LatA.

Our experimental data thus recapitulate the predicted

behavior of the b-polymer model of chromatin surrounding a

DSB. The reduction of contacts at the site of a break, observed

as domain expansion or an increase in a, reflect a local change in

chromatin architecture that allows extrusion to occur. Notably,

once chromatin at a DSB has acquired these characteristics,

either through the actions of chromatin remodelers such

as INO80 (Neumann et al., 2012), or by ubiquitination or
Figure 5. PredictedMonomer Extrusion to thePeriphery of Its Local Dom

an rDNA DSB

(A) Steady-state configuration of a b-polymer model (b = 1.5 and n = 33 with Lenna

its neighbors (n = 16, 18) in green.

(B and C) (B) Modeling predicts this outcome upon removing inter-monomer inte

(D) Two trajectories following a monomer unaffected by the extrusion (n = 10) and

point, in red), the interactions for monomers n = 16, 17, 18 are instantaneously rem

(E) Average distance of each monomer from the center of mass corresponding t

(F) The average anomalous exponent a for all different monomers during the ext

(G) Strain schematic (GA-6587) showing an I-SceI cut site sequence that has been

TetR-mRFP binding (red arrows). Cells harbor two plasmids containing either a g

locus is cleaved by I-SceI and the DSBmoves outside the nucleolus, Rad52-YFP c

the nucleolus (Torres-Rosell et al., 2007).

(H) The Lc and a for the strain in (G), derived from trajectories taken at Dt = 80 ms ±

1 hr of HO induction. Corresponding kc and Dc values, as well as values for all p
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SUMOylation of break associated nucleosomes (Horigome

et al., 2016; Ryu et al., 2015; Torres-Rosell et al., 2007), break

extrusion could occur without a requirement for active transloca-

tion. While we do not exclude that directed motion might also

occur, the increase in a that leads to extrusion could simply

result from reorganization to a minimal energy configuration of

the polymer. This biological mechanism may also play a role in

other processes that require locus repositioning, for instance,

during transcriptional activation.

DISCUSSION

Polymer modeling is a powerful tool to analyze changes in chro-

matin structure. The choice of polymer model that best recapit-

ulates the behavior of chromatin is open and highly debated.

Here, we make the case for a family of polymer models called

the b-polymer (Amitai and Holcman, 2013b), as it has the advan-

tage of being able to account for changes in locus dynamics

when movement is characterized by variable values for the

anomalous exponent a. In addition, we show here that image

sampling rate and external forces acting on the nucleus, such

as actin filament-driven nuclear oscillation, can strongly affect

the results obtained from SPT analysis. These can obscure the

underlying properties of chromatin motion and must be taken

in to account in live cell chromatin dynamics.

Previous studies of chromatin locus dynamics have relied

largely on MSD analysis, which monitors the volume of sampled

nuclear space, without shedding light on the nature of the forces

acting on the locus in question (reviewed in Dion and Gasser,

2013). In contrast, the analysis workflow presented here dissects

the velocity of a locus into external forces acting on the chro-

matin fiber and internal interactions along the chromatin fiber.

The four parameters we extract (a, Lc, Kc, and Dc) contain

different information and are largely independent of each other

(described in Figures S10A and S10B). By incorporating these

experimentally extracted values into polymer models we have

predicted that chromatin will decompact at a DSB and that this

should lead to the extrusion of the damage from its local chro-

matin domain. We confirmed both these predictions in yeast

by live imaging of an inducible site-specific DSB, either at MAT

or in the rDNA array. Consistently, an earlier study modeled hu-

man Chr 11 using the expression-dependent Dynamic Loop

Model (Zhang and Heermann, 2014), in which loops create
ain upon Loss of Forces betweenMonomers, andConfirmationwith

rd-Jones interactions) where the middle monomer (n = 17) is colored in red and

ractions in a b-polymer at n = 17 and (C) at n = 16, 17, 18.

the middle monomer (n = 17) (forces removed as in C). At time t = 0 (Sp initial

oved. Over 0.05 s, the color changes gradually to green until the end point Ep.

o (A) full line, (B) dashed line, and (C) dotted line.

rusion process for case (C).

inserted into the rDNA along with an adjacent tetO array, which is visualized by

alactose inducible I-SCEI or NOP1-CFP (Supplemental Information). When the

an be recruited and forms a focus (red arrows). Rad52 is largely excluded from

25 mM LatA before and after 2-hr I-SceI induction. LatA was added for the last

arameters in the absence of LatA can be found in Figure S9. ***p % 0.001.
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Figure 6. Expansion of Chromatin and

Domain Extrusion Provoked by a DSB

Yeast chromosomes are anchored to the nuclear

periphery in multiple ways: (1) their centromeres

attach to the spindle pole body, (2) telomeres

interact through multiple anchors including Sir

proteins, SUN domain protein Mps3, Esc1, and

Ku, and (3) the CLIP complex can tether the rDNA

to the nuclear periphery. Cytoplasmic actin fila-

ments can drive nuclear rotation/precession. After

a DSB is induced, local interactions at the break

are reduced allowing the chromatin surrounding

the break to expand. The loss of interactions leads

to the extrusion of the DSB outside of the nucle-

olus, allowing repair factors like Rad52 to bind.
compartments that are transcriptionally active (fewer loops) or

inactive (more loops). By simulation they also found that a break

in either an active or inactive domain will shift the site of damage

away from the center of mass of the domain. While it was

not confirmed experimentally, this is fully consistent with our

modeling and experimental results.

Our study does not rule out that loss of an extrinsic tether, such

as centromere detachment, could alter chromatin dynamics as

reported by others (Strecker et al., 2016). However, our results

make it unlikely that such changes are the only driving force

behind enhanced break movement. Rather, we argue that the

expansion of chromatin at the site of the break due to histone

modifications and/or eviction (Smeenk and van Attikum, 2013)

enhances a and drives increased movement. While these may

be enhanced or altered by events like centromere detachment,

in our hands, MT depolymerization and centromere detachment

(Bystricky et al., 2004) prior to DSB induction, masks any other

increase in mobility. We note that it is crucial for all experimental

studies of chromatin dynamics to take into account the effects of

nuclear precession, to triage image stacks by cell-cycle stage,

and to monitor cleavage efficiency. Without these controls, re-

sults are likely to be misleading.

We also present here a quantitative 3D-SIM technique that

monitors locus volume, and we show that expansion following

a DSB requires the INO80 chromatin remodeling complex. Other

remodelers, such as the BAF complex (Swi/Snf or Rsc in yeast)

may serve a similar role (Seeber et al., 2014). Importantly, the

targeting of INO80 to an uncut locus similarly increases locus dy-

namics (Neumann et al., 2012), without changing local transcrip-

tion activity, supporting the notion that the shifting or removal of

nucleosomes increases long-range locus dynamics. This has

profound implications concerning the impact of local histone

modifications on the compaction and spatial behavior of larger

chromatin domains. The relevance of our observations is made

clear by two recent studies in which a global decompaction of

chromatin was observed in response to UV-induced DNA dam-

age in mammalian cells (Adam et al., 2016) and in response to

histone degradation in yeast (Hauer et al., 2017). Both studies

reinforce and extend the models we simulated here.
Cell Repo
As mentioned previously, b-polymer

models can only be usedwhen the anom-

alous exponent is in the range of 0–0.5.
This limits their application to constrained, sub-diffusive move-

ment and means that they cannot be used to study directed mo-

tion. Nonetheless, most DNA movement has been shown to be

subdiffusive (Albert et al., 2013; Amitai et al., 2015; Dion and

Gasser, 2013; Weber et al., 2010, 2012). The b-polymer models

do not account for possible impact of local heterogeneous

crowding on the polymer. On the other hand, by adding other in-

teractions, such as polymer bending or Lennard-Jones forces,

we have been able to account accurately for the chromatin

dynamics monitored by fluorescent SPTs. We note that move-

ment arising from nuclear rotation/precession leads to an in-

crease in the anomalous exponent a, with or without a DSB.

Finally, we show that the problem of additive motion can be cir-

cumvented by measuring the dynamics of the locus at different

timescales.

New microscopes that allow for 3D imaging without the use of

moving stages such as the aberration-corrected multi-focal mi-

croscope (Abrahamsson et al., 2013) or a double-helix point

spread function microscope (Backlund et al., 2014) will expand

the impact of high resolution chromatin locus tracking in the

near future, providing even larger datasets that are appropriate

for analysis by the b-polymer model presented here.

EXPERIMENTAL PROCEDURES

Yeast Growth Conditions

Yeast strains used in this study are in Table S1. Yeast cultures were grown

30�C, and imaging was performed at 25�C. Strains were either W303 back-

ground or JKM179, as described in Table S1. The Ruby2 fluorophore plasmid

was acquired from Lee et al. (2013). For DSB live-tracking experiments, yeast

were grown at 30�C on YPAD prior to dilution into synthetic media containing

3%glycerol and 2% lactate (SCLG) for several generations prior to the addition

of 2% galactose to induce expression of HO. Unless otherwise indicated, 2-hr

induction of HO was used, and the efficiency of endonuclease cleavage at

MAT was determined by quantitative PCR with TaqMan probes as previously

described, and qPCR values were normalized to the SMC2 locus (van Attikum

et al., 2007). Cutting efficiencies are summarized in Table S2. See Supple-

mental Experimental Procedures for details.

Microscopy

Livemicroscopy used a Nikon Eclipse Ti microscope, two EM-CCDCascade II

(Photometrics) cameras, an ASI MS-2000 Z-piezo stage, and a PlanApo3100,
rts 18, 1200–1214, January 31, 2017 1211



numerical aperture (NA) 1.45 total internal reflection fluorescence microscope

oil objective and Visiview software. Fluorophores were excited at 561 (Ruby2,

mCherry), 515 (YFP), and491 (GFP) nm.GFPandmCherry/Ruby2fluorescence

were acquired simultaneously on separate cameras. A Semrock FF01-617/73-

25 filter was used to capture the mCherry/Ruby2 signal on camera 1, and a

Semrock FF02-525/40-25 filter was used to capture the GFP signal on camera

2. Time-lapse series were conducted taking eight optical slices per stack either

every 80 ms for 1 min or 300 ms for 2 min. Each optical slice received either a

10-ms exposure for the 80-ms intervals or 30 ms for the 300-ms intervals. Nu-

clear volumes are based on an average haploid nuclear radius of 0.9 mm. Time-

lapse image stackswere analyzedas inDion et al. (2012), using a custom-made

ImageJ (FIJI) plug-in, to extract coordinates of locus position from the movies.

For structured illumination microscopy, and other specifics of staining and foci

selection, see Supplemental Experimental Procedures. Spot tracking was

carried out with the Fiji plugin Spot Tracker 2D (Neumann et al., 2012).

Extraction of Parameters, Modeling, and Simulations with Rouse

Polymer

The extraction of biophysical parameters from the image stacks and their

mathematical derivation are described in Supplemental Experimental Proced-

ures. A Rouse polymer is a collection of monomers moving with a random

Brownian motion coupled to a spring force originating from the nearest neigh-

bors. We use other polymer models by adding interactions such as bending

elasticity, which accounts for the persistence length of the polymer and Len-

nard-Jones forces (LJ), describing self-avoidance of each monomer pairs.

Finally, we used Euler’s scheme to generate Brownian simulations. At impen-

etrable boundary, each rigidmonomer is reflected in the normal direction of the

tangent plane. See Supplemental Experimental Procedures for details.

Error Propagation and Statistical Significance

Significance between a, Kc, Lc, and Dc values was tested using the non-para-

metric Kolmogorov-Smirnov (KS) test. p values are either indicated above the

figure panels or by asterisks, where *p % 0.05, **p % 0.01, ***p% 0.001,

respectively. Error bars on graphs represent the SE unless otherwise stated.

LacI-GFP spot size was shown to be normally distributed and then tested

for differences using a two-tailed Student’s t test (Graph Pad). Significance

cut off was p < 0.05.

The Polymer Model

To account for the chromatin dynamics, we use the generalized polymermodel

called the b-polymer model (Amitai and Holcman, 2013b), which accounts for

anomalous diffusive behavior with a in the range of 0–0.5, as measured for a

yeast in vivo chromatin locus (Hajjoul et al., 2013). We use b-polymer model

where all monomers are connected through a quadratic potential defined by

UbðR1; ::RN; bÞ= 1

2

X
l;m

AlmRlRm;

with coefficients

Al;m =
XN�1

p= 1

~kpa
l
pa

m
p = 4k

2

N

XN�1

p= 1

sinb pp

2N
cos

��
l� 1

2
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�
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��
m� 1

2

�
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�

and

~kp = 4ksin
b �pp

2N

�
for p= 0::N� 1:

In such a model, the strength of interaction Al;m decays with the distance

jl �m j along the chain. By definition, 1 < b < 2 (Amitai and Holcman, 2013b)

and the Rouse polymer is recovered for b=2, for which only nearest neighbors

are connected.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

ten figures, and four tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2017.01.018.
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