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Abstract 
 

 Increased use of secondary raw materials in metals production offers several benefits including 

reduced cost and lowered energy burden. The lower cost of secondary or scrap materials is accompanied 

by an increased uncertainty in elemental composition. This increased uncertainty for different scraps, if 

not managed well, results in increased risk that the elemental concentrations in the final products fall 

outside customer specifications. Previous results show that incorporating this uncertainty explicitly into 

batch planning can modify the potential use of scrap materials while managing risk. Chance constrained 

formulations provide one approach to uncertainty-aware batch planning; however typical formulations 

assume normal distributions to represent the compositional uncertainty of the materials. Compositional 

variation in scrap materials has been shown to have a skewed distribution and, therefore, the performance 

of these models, in terms of their ability to provide effective planning, may then be heavily influenced by 

the structure of the compositional data used. To address this issue, this work developed several 

approximations for skewed distributional forms within chance constrained formulations. We explored a 

lognormal approximation based on Fenton’s method; a convex approximation based on Bernstein 

inequalities; and a linear approximation using fuzzy set theory.  Each of these methods was formulated 
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and case studies executed using compositional data from an aluminum remelter. Results indicate that the 

relationship between the underlying structure/distribution of the compositional data and how these 

distributions are formulated in batch planning can modify the use of secondary raw materials.  

Introduction 
One key strategy that will likely play a role in addressing sustainability challenges in materials use is 

increasing reliance on secondary (i.e., recycled) materials. For recycled resources, energy benefits are 

well documented and in some cases exceptional [1].  In addition, making use of secondary raw materials 

typically provides economic benefits in the form of reduced materials cost, although this may not always 

be the case. Along with these benefits, increasing the volume of raw materials derived from secondary 

sources has challenges such as increased quality variability relative to primary due to contamination and 

co-mingling of diverse materials and alloys [2]. Socio-economic barriers offer challenges as well, such as 

low consumer participation [3, 4], market resistance [5, 6], transaction costs [7], and geographic 

discrepancies between sources and sinks [8]. This work offers operational strategies for dealing 

specifically with compositional variability in secondary streams compared to those derived from primary 

resources. Compositional uncertainty in alloying elements may lead to conservative use of these materials 

(in other words, these materials may be undervalued) because the risk of producing alloys out of 

specification may be costly. Operators make use of batch planning tools to assist in processing decisions 

[9]. Analytical techniques based on statistical methods can provide promising approaches to assess and 

improve the productivity of metal recycling process [10]. Previous work by some of the authors indicated 

that one approach to batch planning tools that explicitly considers raw material variability, a chance-

constrained (CC) model formulation, increases secondary material use in the case of aluminum [11, 12]. 

Here we explore the consequences of underlying assumptions related to this formulation that may still 

underestimate the potential for scrap incorporation. In particular, most batch planning or blending models 

[13] and particularly those used for the metals industry, model the input quality distributions as normal, 

an assumption that has been challenged previously [14-16] and that we will show empirically here for the 
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case of aluminum. As an example, in the contribution by Van Schaik and Reuter, which focused (among 

other contributions) on the impact of distributions of product lifetime, composition, weight and demand 

on achievable recycling rate for automobiles (using an approach that would be extensible to other 

products) a series of Weibull distributions were used [16]. In the remainder of this introduction, we first 

provide background on blending models, then discuss the frequency of non-normal distributions, and 

finally we describe ways the literature has expanded the formulation beyond this assumption. 

Optimal blending models have been a topic of study for several decades, including the use of linear 

programming to identify the lowest-cost mix of raw materials to yield an end product of given 

specifications [17, 18]. These linear formulations are used in industry and described in the published 

literature for cases such as blending of petrochemicals [19, 20], agricultural products [21], and recycling 

[11, 22]. Where relevant, these models have also included effective treatments of the thermodynamics of 

the system [23, 24]. Another extension of these models was to move beyond the deterministic treatment 

of raw material quality. Authors have called for strategies to address raw materials quality uncertainty as 

far back as 1957 [25]. This early work by Debeau led to the development of strategies that incorporate 

information about raw material quality variation within a linear performance constraint [26-29]. These 

approaches have been shown to improve the robustness of the batch plan given uncertain inputs; however, 

they do not completely characterize variation in the final batch. Another strategy described in the 

literature uses linear performance constraints (generally based on the mean quality of raw materials) but 

manages variability with a penalty function in the objective [30-32]. A CC formulation of the 

performance constraints more explicitly models the implications of feedstock variation. Such a 

formulation is a mechanism to embed a more rich set of statistical information into optimization based 

decision models. Many firms track the statistical variation in their feedstocks; this method relates the 

desired level of confidence to the underlying standard deviations observed in these sampled raw 

materials. With the understanding that the compositional constraints will not be satisfied always due to 

the inherent uncertainty, they can be rewritten as probabilistic expression and transformed into their 
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deterministic equivalents. CC variants were first formulated by Charnes and Cooper [33].  This technique 

has found several applications in problems such as feed mixing [34], materials production [11, 35, 36], 

and coal blending [37]. This previous research has demonstrated the potential benefits of the CC-

formulation through numerical experiments around specific cases. Previous work by a subset of the 

current authors provided an analytic characterization of the benefit of using a CC formulation as 

compared to one with a linearized constraint [12]. However, given the implementation described above, it 

becomes a necessary part of the blending model to comprehend the statistical nature of the uncertainty in 

the feedstocks, for the metals industry, this means knowing the type of distribution followed by 

compositional variability. 

 In many of the cases cited above involving both linear and CC programming, normal distributions are 

assumed to represent the probabilistic description of uncertain parameters. From a theoretical point of 

view, this assumption may be justified in the view of the central limit theorem when the underlying 

factors influencing an uncertain parameter have additive effect. In CC formulations this assumption has 

practical advantages as the analytical solution leads to an equivalent deterministic form that facilitates 

handling the associated optimization problem as shown in the methods section below.   

However, in many applications including, but much broader than inorganics recycling, the underlying 

uncertainty is not well captured by a normal distribution [38]. Some physical quantities are intrinsically 

non-negative and a distribution with positive support (in other words, bounded below by zero) can be a 

more appropriate choice. Moreover, in many applications the statistical distributions of random quantities 

can be asymmetric. For instance, in many problems involving chemical and material processes the 

statistical distributions can be highly skewed [39]. In material engineering applications such as metals and 

ceramics, the skewed and, in particular, lognormal distributions are very frequently observed in 

parameters describing the structure of materials, such as grain size and area distributions, which 

consequently influence material properties [40, 41]. In finance applications, particularly in the context of 

portfolio selection, asymmetric distributions are frequently observed in the quantities such as cash flows 
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[42, 43]. In these situations, the assumption of normality to represent the underlying uncertainty may lead 

to statistical bias in the simulation of quantities of interest. Goicoechea and Duckstein [44] used a change 

of variable technique to construct deterministic equivalents for some probabilistic programming with non-

normal distributions involving mutually independent random variables. Biswal et al. [45] investigated the 

probabilistic linear programming with independent exponential random variables. Kataria et al.[46] 

compared the effect of normal, truncated normal and lognormal distributions in a chance-constrained 

formulation of water pollution. Pagnoncelli et al. [47] studied the chance constraint portfolio selection 

when the returns follow a multivariate lognormal distribution.  

The problem of optimizing the secondary material use under uncertainty in raw material specifications 

can be challenging [48]. From a mechanistic perspective, one of the main challenges is finding a balance 

between robustness and efficiency in the representation of the underlying optimization problem. In many 

cases the use of a surrogate (approximate) model is unavoidable due to computational complexity and 

data availability. Normal distributions for approximating the uncertainty in raw material specifications are 

used in this context as described above mainly due to its efficiency and computational flexibility. 

However, the robustness of this assumption must be evaluated and compared with other approximations 

that maintain a comparable level of efficiency.  

This paper examines the implied impact, in terms of cost and secondary raw material usage, of 

modeling the underlying incoming materials quality distribution as normal. First, we examine the 

statistical characteristics of a set of secondary aluminum raw materials to demonstrate the challenges of 

the normal assumption. We then develop three alternative formulations for non-normal distributions, 

focusing on the situation where the incoming composition distribution is actually lognormal, and compare 

the overall performance for the case of aluminum recycling. The choice of lognormal distribution is of 

particular interest since in many real life applications the underlying distributions are more appropriately 

approximated as lognormal distribution. Since many real life populations are multiplicative rather than 

additive and, in view of central limit theorem, the multiplicative effect results in lognormal distribution. 
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Furthermore, many physical quantities are positive resulting in skewed distributions and the lognormal 

distribution provides a more reasonable model to capture this behavior. As mentioned above, other 

distributions, such as Weibull, have also been used. The comparison is made using an abstracted 

statement of the problem, applicable to any blending algorithm where the quality specification blends 

linearly, as well as for a specific set of raw materials from an aluminum remelter. We also identify 

characteristics of raw materials for which the assumption of normality would be most problematic. 

Method 
The goal of the method development was twofold, first to examine the statistical distributions for specific 

secondary raw materials and second to modify the CC formulation to incorporate non-normal 

distributions. 

First, goodness of fit statistical tests were performed.  A large set of compositional data 

(approximately 500 data points) was gathered for aluminum scraps over the course of five years from 

three industrial aluminum remelters.  This set of historical data represented more than 100 types of non-

ferrous scrap types or grades; seven grades were chosen that each had over 80 distinct compositional 

samples and included used beverage cans, mixed wrought automotive body, siding, automotive castings, 

litho sheets, and general traded scrap.  The chi-squared test determines how closely a real set of data 

follows a theoretical distribution with the metric χ
2
 defined in Eq. 1, where O is an observed frequency 

and E is an expected frequency for the distribution of interest. The number of samples or observations is 

n.  
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Most generally, the chance constrained optimization method is used to determine an optimal 

composition of raw materials.  The objective is to fulfill a set of demands for finished products at the 

lowest cost given available raw materials. For the case of aluminum these materials include primary 

material and alloying elements (both with a narrow uncertainty in quality) as well as scrap materials (with 
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a wide uncertainty in quality). Due to the uncertainty in the compositional specifications for different 

scrap types, the element concentrations in the final products will vary. As mentioned above, previous 

research shows that incorporating this uncertainty into the batch mixing optimization can increase the 

potential use of scrap materials.  The CC formulation provides a computational setting to sufficiently 

account for this uncertainty. The objective is to ensure that with a certain confidence, the concentrations 

of different element in the finish goods remain within a prescribed threshold based on the products’ 

specifications. The CC formulation can be described as follows:  

                     
 

 (2) 

Subject to:  
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              (6) 

 

 

Where the variables are defined below:  

  : unit cost($/T) of raw material i  

   : mass of raw material i used in making finished good j   

  : mass purchased raw material i 

  : mass of raw material i available for purchasing  

  : mass of finished good j produced  
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  : mass of finish good j demanded 

   :  mass element of k in raw material i (uncertainty quantity)    

   
     : maximum specification for mass element k in finished good j  

   
     : minimum specification for mass element k in finished good j  

     : confidence level that the actual composition will fall below the upper limit of final alloy 

composition 

 

     : confidence level that the actual composition will fall above the lower limit of final alloy 

composition 

 

Pr{∙} represents the probability or the likelihood and is defined with respect to the probability distribution 

of random variable    .  

The above stochastic optimization is classically solved by transforming eqs. 5 and 6 to equivalent 

deterministic inequalities. When    ’s  are normally distributed this transformation is exact, that is, 

analytical forms for the equivalent deterministic constraints exist. However, such a closed form 

transformation is not generally available when    ’s do not include normal distributions. Using some 

assumptions, however, the probabilistic constraints can be approximately transformed to deterministic 

inequalities, which facilitate solving the optimization problem. This approach assumes that most non-

metal contamination in the scrap stream has been dealt with prior to the melting stage via sorting and 

segregation. Blending models typically only account for the compositions of metals within the scrap 

stream, although the overall yield which is captured does account for the fact that there may be some 

remaining contamination. 

For the problem at hand, we assume that the compositions of the constituent raw materials    ’s follow 

a lognormal distribution. We then demonstrate several approximation methods to solve the associated CC 

problem. The objective is then to study how this different approximation can influence the robustness of 

resulting batch.  For this purpose, Monte Carlo simulations are performed to compute the error rate of 

resulting batch for each method, where the error rate is defined as the percentage of batches that fall 
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outside of the finished goods specifications. Here we describe reformulating the compositional constraints 

based on an approximation using normal distributions (the traditional approximation), lognormal 

distributions (the distribution closest to the actual uncertainty), a convex approximation, and a linear 

approximation using fuzzy chance constraints.    

Normal approximation 

Assuming that the compositional specifications can be sufficiently approximated with normal 

distributions, the equivalent deterministic constraints associated with eqs. 5 and 6 can be expressed as:  

                      
                           

  

 

   

      
     (7) 

                   
                             

  

 

   

      
        (8) 

where:  

     : average mass element k in raw material i  

   : standard deviation of the composition of element k in raw material i 

    : correlation coefficient between composition of element k in raw materials i and l  

(                  ) 

 It should be emphasized that this transformation would be exact if    ’s followed a normal 

distributions. For the problem under consideration, however, this representation involves approximating 

the lognormally distributed random variables,    ’s ,with normal distributions.  

Lognormal approximation 

When the compositional specifications,    ’s , follows a multivariate lognormal distribution, a closed 

form expression for the chance constraint problem is not available since the distribution of a sum of 

lognormal random variables,          , is not known. One way to circumvent this difficulty is to 

approximate the sum with a lognormal distribution. The problem of sum of lognormal random variables is 
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encountered in many applications including signal processing as well as financial theory. Different 

techniques have been suggested to identify the parameters of the resulting approximated lognormal 

distribution for the sum. One common and simple method is Fenton’s method [49]. In this method a 

lognormal approximation is obtained for the sum of independent lognormally distributed random 

variables by matching the moments. The method was later extended for the case of dependent random 

variables in [50]. Using Fenton’s approximation the equivalent deterministic constraints associated with 

eqs. 7 and 8 can be expressed as  [47]:  
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where     and      are defined as follows,  
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Bernstein’s convex approximation  

Another approach to make the chance constraint problem computationally tractable is to use a convex 

approximation of the probabilistic constraints. A class of analytical approximation can be obtained 

making use of the theoretical bounds on the probability of violating the constraints, and as a result 

converting the probabilistic constraints to the convex deterministic ones. Some of these inequalities 

include Chebyshev's inequality, Bernstein's inequality, Hoefding's inequality (see [51], [52]). These 

approximations are generally conservative, but they can provide a reasonable approximation with a low 

computational cost for the original problem. Ben-Tal derived a convex approximation of the constraints 

for unknown, but bounded uncertainty [52]. A very similar form was also proposed by Nemirovski and 

Shapiro based on Bernstein inequality for the so called “case of ambiguous chance constraints”, where 

one does not rely on the exact knowledge of the underlying probability distributions of random variables 

[53]. For the problem under consideration, these convex approximations of eqs. 7 and 8 take the 

following forms:  
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where   
    and   

    control the confidence level for the Max. and Min. constraints, respectively and we 

have :      
            and     

          . This representation requires the knowledge of 

appropriate upper bound     and lower bound     corresponding to the compositional specifications    . In 

this work we set the upper and lower bounds to be, respectively, the 95
th
 and 5

th
 percentiles for    ’s based 

on their lognormal distributions.  

Linear approximation using fuzzy chance constraints  

CC programming can be expressed in a fuzzy environment, which can provide an alternative approach 

to deal with uncertainty in the constraints [54].  Making use of fuzzy set theory, this method relies on 
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representing the uncertainty in the form of possibility measure, rather than probability measure. In this 

representation, the uncertain parameters are expressed as fuzzy numbers with prescribed membership 

functions (possibility distribution), analogous to probability distributions. Liu discussed different cases 

where the chance constraints with fuzzy numbers can be converted to their respective crisp equivalence 

[54]. Rong and Lahdelma applied this approach to the problem of scrap charge optimization in steel 

production [36]. The stochastic parameters were represented as triangular fuzzy numbers and the 

probability distributions were transformed into the respected triangular possibility distributions. The 

resulting fuzzy programming model can then be converted into a deterministic linear problem making use 

of the crisp equivalent representation of the fuzzy constraints.   

Let              
      

   be the fuzzy number representation of    , where      is the mean and (     

   
   and (   

         are the left and right spread of the fuzzy number. A set of crisp equivalence for the 

chance constraints in eqs 7 and 8 can be represented as:  

  

 

                              
                 

         (15) 

                                    
            

         (16) 

This formulation requires tuning parameters     ,    
  and     

  appropriately based on the probability 

distribution of    . For a triangular fuzzy number these parameters can be expressed as    
             

and    
             , where    and    depend on the shape of probability distributions of    . The level 

of confidence is controlled by            and           . In a practical setting these parameters can 

be tuned such that different failure rate is fulfilled.  

Individual ways of representing the statistical characteristics of the lognormally distributed raw 

material compositions were needed for each the formulations described above. For the normal case, for 

each lognormally distributed composition of the scrap, a normal distribution is fitted and the 
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corresponding mean and standard deviation are computed. The optimization problem is then solved for 

different values of    
         and the associated error rate is computed using a Monte Carlo 

simulation. For the convex approximation the upper and lower bounds    ,     are set to be the 95
th
 and 5

th
 

percentiles of    ’s based on their lognormal distributions. The optimization problem is solved with 

different confidence level by varying   
    and the associated error rate is computed using a Monte Carlo 

simulation. Finally for the fuzzy method the      is set to the mean value of compositional specification: 

          . The optimization problem is solved for different set of values for parameters    and       

such that different failure rate is obtained.    

Results 

The goals of this analysis were to understand the limitations of formulating a CC batch planning 

algorithm based on normally distributed incoming raw materials quality when the actual uncertainty of 

the raw materials is lognormally, or otherwise, distributed. Specifically this work examined alternate 

ways to formulate the raw materials quality within CC algorithms for the particular case of aluminum 

remelting and compared these formulations to the traditional normal formulation to determine whether 

increased scrap or reduced cost could be realized.  

We began the assessment with a quantitative examination of the compositional distributions of a 

large set of aluminum scraps gathered over five years from three industrial aluminum remelters. To 

illustrate these distributions, two example frequency histograms for iron and copper compositions in a 

scrap are shown in Figure 1a and b for one automotive scrap. In addition a set of box and whisker plots 

for a different scrap type over the same time period. Each box and whisker in Figure 1c are from at least 

80 data points In all of the results shown, the values are clustered around minimum values with a tail at 

the high end of composition suggesting a skewed probability distribution.  
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Figure 1. Compositional histograms from two elements, a) Cu and b) Fe within scrap aluminum 

alloys, c) box and whisker for six elements within a different scrap sample (median, 25
th

 and 75
th

 

percentiles shown in the box, 5
th

 and 95
th

 in whisker) 

In order to demonstrate a more quantitative understanding of the common distributions for alloying 

element composition within  incoming raw materials , seven different scrap grades from an aluminum 

secondary processor were analyzed for best fit with results shown in Table 1. We determined the 

appropriateness of other probability distributions for the following distributions: normal, logistic, 

lognormal, maximum extreme, gamma, beta, Weibull, exponential, triangular, uniform, and Student’s T 

according to the Anderson-Darling and chi-squared fit tests.  A statistical fit to these data on scrap 

composition for a wide range of common major elements including lead, copper, silicon, iron, 

manganese, chromium, tin, zinc, and zirconium showed that there was a wide range in types of 

probability distributions and none were normally distributed. Of the seventy cases (seven scrap grades 

looking at ten elemental compositions), the most common distribution by a factor of two was the 

lognormal distribution (44%). The next most common type was the logistic (21%) followed by max 

extrema (16%). These distributions have higher weighting towards the lower end of the distribution. The 
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closest to a normal distribution was the Student’s t fit for a few elements such as manganese, magnesium, 

and titanium.   

Table 1. Best fit distributions by element for ten common alloying elements for seven scraps 
commonly used in aluminum remelting. 

 

Table 1 shows that for some elements the compositional distribution was almost always 

lognormal as is the case for copper, zinc and lead. Titanium, and zinc quantities are also more commonly 

lognormally or logistically distributed. Based on the evidence shown in Figure 1 and overall trends from 

the scraps investigated in Table 1, we found that the elemental compositions are not typically normally 

distributed. This result was also consistent with findings a subset of the authors found on a different data 

set from a different aluminum manufacturer[55]. We found that the coefficient of variation (standard 

deviation divided by the mean for the normal equivalent) for the compositional data examined varied 

quite widely -- as low as 6% to almost 70%.  

The primary contribution of this work was to understand the implications of modifying the 

assumption of normality in the CC formulation, particularly as the first analysis showed very few 

compositions are normally distributed. Two analyses were made to illustrate the impact of varying 

distribution assumptions on overall cost and secondary materials use particular to the case of aluminum 

remelting. The importance of this application is that the compositions of elements are fractions of percent 

and are weighted towards the lower part of the distribution as described above. The first analysis was an 

abstract model developed to show the general trends behind each of the formulations described in the 

methods section. For this case, an abstract example was developed that incorporated only one 
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compositional constraint and the specifications for the scrap materials were all identical. In addition, the 

availability and price parameters for each of the scrap materials were also identical. The second analysis 

was for a case derived from an actual remelter. For this case, the number of tracked elements is six and 

the concentrations of these elements within either three or six scraps (depending on the scenario) were 

based on actual data from an aluminum remelter (normalized to protect sensitive information). Further 

detail is provided on the real case below. For both analyses, the batch plan was developed using a CC 

formulation for only one final product specification, although there is nothing in the formulation that 

limits increasing this number. This was done to simplify the presentation of the results below. 

In order to evaluate the performance of different methods, a Monte Carlo simulation was 

performed to estimate the error rate of meeting the compositional specifications of the final product 

associated with the resulting batch for each method. The numerical values of scrap specifications are 

sampled from the corresponding lognormal distributions. The error rate is defined as the percentage of 

batches in Nmc (number of Monte Carlo runs) for which at least one of the compositional specifications 

falls outside of the final product specifications.  

We begin with the results of the abstract case. Figure 2a shows the normalized production cost 

versus the error rate for different ways of formulating the compositional specifications (each plot is 

normalized by the maximum cost or scrap use in each case to facilitate interpretation by the reader). The 

production cost was determined from the unit material cost for each raw material and the quantity for 

each material determined from the CC batch plan. Error rate is varied as described above. The normalized 

amount of scrap usage versus the error rate is compared in Figure 2b (again normalized by the highest 

value for scrap in each case). These results assume the uncertainty in the composition is 30% of the mean 

with three scraps, based on the quantitative modeling above. This is a middle value of uncertainty in 

composition. Both figures show similar trends as would be expected for the abstract case. The batches 

resulting from solving the CC formulation with lognormal, normal, and Bernstein approximations have 
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similar lower cost and higher scrap usage than the fuzzy approximation for a given level of error rate. 

And as error rate increased, the amount of scrap used increases with a plateau at higher error rates. 

 

Figure 2: Abstract case of 30% coefficient of variation a) Normalized production cost versus error 

rate for different methods. b) Normalized scrap usage versus error rate for different methods. 

If instead we have a level of uncertainty of 70%, as shown in Figure 3, the separation between the 

formulations is now more apparent where the lognormal exhibits ~10% decrease in cost and increase in 

scrap usage than the normal and Bernstein approximations. By approximating the middle range of scrap 

usage as a line (with R
2
 of 0.9) we learn that as error rate decreases, the methods are more distinct: the 

lognormal exhibits closer to 16% more scrap use than the normal or Bernstein approximations for error 

rates of 1%. As shown previously [12], the benefit of the explicitly capturing uncertainty method 

increases as the uncertainty within raw materials quality increases so the difference between the 

approximations shows a similar trend between 30% and 70%. In other words, as the scraps become more 

uncertain, formulating the constraint closer to their actual behavior becomes more significant. Because 

the approximation scheme used for the case of fuzzy representation of chance constraint is linear in form, 

it is not surprising that it underperforms in terms of cost and scrap usage. Another observation comparing 

Figure 2 to Figure 3 is that the cost increases and scrap use decreases as would be expected because 

higher uncertainty in the lower quality raw materials means that increased primary is required to meet the 

final product specification. Scrap use for the 30% uncertain case reaches almost 800 kg versus only 600 
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for the 70% uncertain case. Figure 4 summarizes the scrap use at the two different coefficients of 

variation by distribution method at a 10% error rate (0.1 fraction). 

 

Figure 3. Abstract case of 70% coefficient of variation a) Normalized production cost versus error 

rate for different methods. b) Normalized scrap usage versus error rate for different methods. 

 

Figure 4. Scrap use by distribution approximation for an error rate of 0.1 (10%) for COV of 30% (tan) and 70% (black). 

We also explored the impact of additional numbers of scraps on the problem. Figure 5 shows a similar 

trend between 30% COV and 70% COV for the case of 6 scraps, but just for the metric of cost as the 

trend in scrap usage is similar. Here the axes are the same scale so a more direct comparison of cost is 

possible. The difference between the lognormal and normal approximations for the 70% COV scrap usage 

is again around 10% averaged over the error rates. Normal and Bernstein approximations still behave very 
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similarly. Therefore, the number of uncertain raw materials used by a particular producer does not seem 

to have strong influence over the approximation used in the compositional constraint. 

 
Figure 5: Abstract case of production cost for six secondary raw materials a) 30% coefficient of 

variation and b) 70% coefficient of variation. 

Real production cases are more complex than the abstract analysis developed above. As such, the final 

analyses explored the performance of the various constraint formulations in the context of a real-world 

case of aluminum recycling. Because we did not see such a difference in the number of scraps in the 

analysis shown above, we only varied the compositional uncertainty derived from actual raw materials for 

the real case as shown in Figure 6. For this case, the models examine the problem of mixing quantities of 

up to six scraps with six relevant alloying elements available (Cu, Fe, Mg, Mn, Si, and Zn) and primary 

raw materials, all of unlimited availability, to produce an identical mass of one final product at lowest 

cost. The total demand for the product was based on one months’ production at a typical remelter for the 

kinds of alloys under investigation, approximately 1.5 ktons. The elements chosen for this analysis have 

been identified by literature and industry as having a) the highest degree of uncertainty, combined with b) 

being the most problematic from a specification standpoint.  Scrap streams are certainly dynamic and the 

problematic tramp elements of today will not be the problematic tramp elements of tomorrow. For 

example, as less and less cast is being produced, it in turn will end up as scrap less frequently and silicon 

may no longer become a problematic contaminant.  The increasing use of advanced metals making use of 

specialty alloying elements such as chromium, nickel, vanadium, molybdenum, and zirconium, among 
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others, may indicate emerging contaminant elements for the future [56-58]. This approach is adaptable 

and expandable to accommodate whatever elements are of concern in the scrap stream of interest. As 

described in the introduction, this approach is also applicable beyond metal recycling and could be used 

for other blending models. However, these blending formulations cannot be used in the absence of 

fundamental considerations of thermodynamics of remelting. Changing and uncertain quality of 

recyclates has a large impact on the potential for recycling to offer the energy benefits suggested above 

[22, 24]. 

The case selected for this study represents the production decisions of a European aluminum recycler 

that produces a broad range of alloys including the final product being modeled. The scraps represent raw 

materials that were available and used by that producer during 2012 and normalized scrap composition 

data are provided in the appendix. The availability and price information are taken from data provided by 

industry. The elemental compositions are assumed to be uncorrelated. The baseline is to assume that the 

distributions are lognormally distributed and modeled as described above. For this analysis the linear 

approximation based on the fuzzy method was dropped as the performance was consistently lower for the 

abstract case. 
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Figure 6. Actual case results a) Production cost versus error rate and b) scrap usage for different 

methods for 30% coefficient of variation assumption on scraps. c) Production cost versus error rate 

and d) scrap usage for different methods for 70% coefficient of variation assumption on scraps.  

Figure 6 shows that similar trends were found for the real case as compared to the abstract analysis. First, 

for the case where the scraps had a 30% coefficient of variation, there was little difference in both cost 

and scrap usage among the CC formulations. However, for the 70% case, the lognormal distribution 

formulation shows an increased scrap use of 14%, relative to the normal and Bernstein approximations, 

and corresponding decrease in cost relative to the normal distribution. Because the best fit distribution 

found for the scrap data was lognormal, this could explain why this increased scrap use was found. In the 

abstract case it was assumed that the actual distributions of compositions are lognormal. The objective is 

see the error or performance of other approximation methods compared to the solution based on the 

lognormal.  Because the actual distribution is lognormal, it is expected that the lognormal approximation 

would perform best (i.e. have a low error rate with high scrap utilization).  In the case of real 



 22 

compositional data, based on the goodness of fit results, the lognormal is in fact the best fit for more than 

40% of the element-scrap type compositions. The best fit distributions for the rest also turned out to be 

skewed distributions, which can be sufficiently approximated as lognormal in most cases. These 

observations justify why we observe a better performance when we use a lognormal approximation for 

the chance constrained problem. 

Results of the chance constrained formulation approach were calibrated with actual batch plans at an 

industrial partner; utilization rates and “first-on” error rates were found to be in excellent correlation with 

the predicted modeling values.  Actual costs will obviously be much more complex than the simplified 

materials cost represented in this work.  “First-on” error rates were used as in reality, the composition of 

the blend is tested to see if it is within specification and then modified via addition of alloying elements or 

fluxes or diluted with primary aluminum; in practice, there are a very small number of off specification 

batches that cannot be used for production.  This aspect of dilution with primary has the largest impact on 

the environmental impacts of the process as described below. 

Leveraging CC modeling to explicitly manage compositional uncertainty has been implemented 

previously to increase scrap utilization [12]. In this work, we have shown that incorporating statistical 

distributions that represent that uncertainty based on distributions that more match that of the actual 

composition also increases scrap use. This increase in scrap use may translate directly to energy savings. 

Readers are referred to previous work by a subset of the authors regarding energy savings relative to 

batch planning without explicit consideration of uncertainty (frequently leading to conservative scrap use) 

[11]. Here we offer an estimate of energy savings based on the incorporation of different distribution 

functions. Primary aluminum production uses on average 175MJ per kg while secondary production from 

old scrap uses on average a fraction of that amount or roughly 12 MJ per kg for a difference of 

approximately 160 MJ/kg although there is some variation in this number [59]. Comparing the results for 

the batch plans using the lognormal formulation with that of the normal and Bernstein (the latter two are 

quite similar to each other) shown in Figure 6d we see that approximately 66 more tonnes of scrap are 
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used (as a maximum) in a production plan of about 1.5 kt when these distributions are varied. This 

translates to approximately 11 million MJ of energy savings for the alternate distribution functions. 

Employing this approach to managing uncertainty in the scrap stream allows for 14% less dilution of 

finished alloys with primary aluminum in order to achieve compositional specifications. Given the 2014 

secondary production within the United States of 3.64 million metric tons, this translates to savings as 

shown in Table 2. The US is not a major producer of aluminum and 2014 was a comparatively depressed 

commodity year so these savings have the potential, globally and in the future, to be much larger. 

However, this number is likely an upper bound for several reasons. First, we note that increased use of 

secondary may not directly lead to displacement of primary production, as found by several previous 

authors [60, 61], In addition, the energy impact will be highly dependent on the compositions (and types) 

of scrap, which influences their yield in a remelting setting. Future work could example these aspects in 

more detail as they are indirectly related to the distributions modeled in the batch planning algorithm. 

 

Table 2.  Potential energy savings from enhanced scrap utilization in industrial case 

 Energy 

Primary production 175 MJ/kg 

Secondary production 12 MJ/kg 

Savings 93% 

Potential US Savings 83,064 million MJ/year 

  

Conclusion 
The major contribution of this work was to develop a formulation for non-normally distributed raw 

materials that could be incorporated into a chance constrained model for batch planning particular to the 

aluminum industry. To this end, several formulations were explored including one based on Fenton’s 

method, Bernstein inequalities and an approximation using fuzzy set theory. These formulations were 

then compared to the more typical normally distributed approximation for an abstract case as well as one 

based on the conditions for an aluminum remelter. As shown previously, the quantitative assessments of 

the characteristic distributions for elemental composition within scraps from this remelter were found to 

rarely be normal. This makes sense based on the non-negative characteristic of scrap quality, i.e. 
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elemental compositions cannot be less than zero. The most common distribution for the industrial 

aluminum secondary materials was lognormal and the lognormal approximation formulation based on this 

had the highest scrap use (and lowest cost) batch plan. This would be a recommended approach for metals 

producers to incorporate in their blending models when they are working with scrap streams with well-

characterized historical compositions. The benefit of the Bernstein inequality- based formulation is that 

no underlying distribution must be known, so for cases where compositional data has not been collected, 

this approach could be beneficial. 
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Appendix 

Table S.1. Normalized mean composition relative to mean composition of the finished good. 

 Si Fe Cu Mn Mg Zn 

Scrap 1  0.9 0.6 0.4 0.5 1.2 0.1 

Scrap 2  0.6 1.1 0.7 2.1 0.2 0.0 

Scrap 3 1.3 0.6 0.7 0.5 1.2 1.3 

 


