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I. INTRODUCTION

We consider multivariable linear stochastic systems in an ARMAX

format:

A(z)y(t) = z B(z)u(t) + C(z)w(t) (1)

Here z is the backward shift operator: zy(t) := y(t-l). y(t) e IRm is the

output, u(t) e -IR is the input and w(t) e IRm is a white noise process

with mean 0 and covariance E w(t)w (t)= Q.

n

(2.i) A(z) = I + I A.z
i=l

n

(2.ii) B(z) = B0 + . Bz . 0 and B(z) is of full rank. (2)
i=l

n -1
(2.iii) C(z) = CO + I C.z C (z) is analytic inside the

i=l closed unit disc.

(2.iv) d, the delay, is an integer with d>l .

We shall define as "admissible", control laws which are of the form

u(t) = M(z)y(t) where

(3.i) M(z) is a matrix of rational functions

(3)
(3.ii) M(z) is analytic at z=O.

The condition (3.ii) restricts us to the set of non-anticipative control

laws, while (3.i) is imposed merely for convenience.

We shall further say that an admissible control law u(t) = M(z)y(t)

is "stabilizing" if the four transfer functions
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M(z) [I-zdA (z)B(z)M(z)]-l [ dA-l(z A

(4)

[I-zdM(z)A- (z ) B (z) 1 and zdA- (z)B(z) [I-zdM(z)A1 (z)B(z)]

are all analytic inside the closed unit disc.

Our goal in this paper is to find a control law, from among the set

of all admissible stabilizing control laws, which minimizes the variance

EyT (t)y(t) of the output process.

For single-input, single-output (i.e., m=k=l) minimum phase systems,

the problem has been solved by Astrom [1]. The minimum variance control

law is shown to be

-G (z)
u(t) - B(z)F(z) y(t) (5.i)

where F(z), a polynomial of degree d-l, and G(z), a polynomial, satisfy

C(z) = A(z)F(z) + z G(z) (5.ii)

If the system is of non-minimum phase, then while the above control

law still minimizes the variance of the output process from among the set

of all admissible control laws, it is not however stabilizing. To satisfy

stability, one must "sacrifice" some variance. This constrained optimiza-

tion problem of obtaining a control law which minimizes the output variance

over the set of all admissible, stabilizing control laws, for single-input,

single-output systems has been solved by Peterka [2]. It is shown to be

S(z)
u(t) = R(z) y(t) (6.i)

where R(z), a polynomial of degree (n+d-l), and S(z), a polynomial, satisfy
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B*(z)C(z) = A(z)R(z) + z B(z)S(z) (6.ii)

Here, B*(z) is the minimum phase spectral factor of B(z)B(z ).

In the multi-input, multi-output case, Borison [3] has considered the

situation where i) the number of inputs is equal to the number of outputs

ii) B0 is invertible and iii) B(z) is of minimum phase, i.e. det B(z) # 0

for 0< Izf <l . Under these conditions, the optimal solution is given by a

multivariable analog of (5.i,ii). This treatment is not fully general

from several points of view. Firstly, conditions i) and iii) are restrictive.

Secondly, the restriction that B0 is invertible, condition ii), means that

by defining a new control u(t) := B u(t), we really have a system where

for each output variable there is one special input variable which in-

fluences that output variable after other input variables have ceased to

influence it. Moreover, the different output variables will be influenced

by their special input variables with the same delay. This simplifies the

problem considerably and in fact one outgrowth of this restriction is that

the control law really minimizes, separately, the variance of each output

variable, or equivalently, the same control law simultaneously minimizes

EyT (t)Ry(t) for all R>O. We shall see that this situation is not true in

general.

In another treatment of the multi-input, multi-output case, Goodwin,

Ramadge and Caines [4] assume that A(z) = (l+a z+...+a z n ) I where
1 n

1a''...a are scalars. Stability of the solution is not considered,

but use is made of the solution only when d=l, the number of inputs is

equal to the number of outputs, B0 is invertible, and the system is of

minimum phase, i.e. det B(z) # 0 for O<lz l < 1, in which situation there

are no problems.
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We also refer the reader to Bayoumi and El Bagoury [5] for some

errors in previous attempts to deal with the problem of minimum variance

control of multi-variable systems.

In this paper, our goal is to treat all the complications caused by

i) B0 possibly singular, i.e. general delay structures, ii) non-minimum

phase systems, i.e. det B(z) possibly vanishing in 0<jzl<l and iii)

rectangular systems where the number of inputs is different from the number

of outputs. Throughout, we address the problem of minimizing EyT (t)y(t)

while maintaining system stability.

If one wishes to minimize Ey T(t)Ry(t) for some positive definite R,

than this is easily accomplished by defining y(t) := R /2y(t),

R1/2 -1/2 - 1/2 1/2
A(z) := A(z)R , B(z) := R/B(z), C(z) := R/2C(z) and considering

d-
the system A(z)y(t) = z B(z)u(t) + C(z)w(t), which satisfies assumptions

(2.i-iv).

Our treatment proceeds in the order of increasing generality. In

Section II we treat systems with general delay structures, with the solution

given by Theorems 2.1, 2.2 and 2.3. In Section III we treat non-minimum

phase systems, with the solution given in Theorem 3.1 and finally in

Section IV we treat rectangular systems, with the solution provided in

Theorem 4.1.

II. NON-UNIFORM DELAY SYSTEMS

In this section we obtain the admissible, stabilizing, minimum variance

control law for the multivariable ARMAX system (1), when it has a general

delay structure. For this reason we allow det B(z) to have zeroes at the

origin, because such zeroes correspond to non-uniform transmission delays



-5-

in different input-output channels.

Except for such zeroes at the origin, we assume that the system

is of a minimum phase, i.e., det B(z) # 0 for O<lzl<l. The system is

also assumed to have the same number of inputs and outputs, i.e. it is

square.

The complete solution for this problem is furnished by the following

three Theorems.

Theorem 2.1

Suppose there exist F(z) and G(z) which satisfy:

d+p-1 i
(7.i) F(z) = I F.z for some p, and F0 is invertible.

i=O

(7.ii) G(z) is a matrix of rational functions which are analytic
at z=0.

d T -1 -l
(7.iii) lim z F (z )A (z)B(z) = 0

z~O

(7.iv) C(z) = A(z)F(z) + zdB(z)G(z)

Then, the admissible, stabilizing control law which minimizes the

T
variance Ey (t)y(t) of the output, is

u(t) = -G(z)F (z)y(t)

The resulting minimum variance is

d+p-1
Ey (t)y(t) = tr FFiQ

i=O
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Theorem 2.2

Define the following:

co

(8.i) Let ~ D.z be a power series expansion of A (z)B(z).

i=O

(8.ii) Let p be the largest power of z in B (z)A(z)

(8.iii) Let E0, E1,...,E be matrices satisfying

-l -p -p+l (8)
B (z)A(z) = E z + Ep 1z +...+E 0 + o(1)

(8.iv) Let W : 0 .D and En E O .

0. D a n n * nm m m nm Dm+l En-l n

D . . D E E
m Dn-l n m +l n

Then, the matrix

[w-l, ET]

has full rank.

Theorem 2.3

Define the following:

(9.i) Define F0,..,Fd_1 recursively by F0 := CO and

k

Fk := Ck AiFk_i for k=l,... ,d-l
i=1 -1[ ~~~~~~~~~~=1 ~(9)

(9.ii) Define Hd, Hd+l',... as the coefficient matrices in the power

series expansion

d-l o
-1 i i

A (z)C(z)- Fz = H.z
i 1 1

i=0 i=d



-7-

(9.iii) Let K and J be matrices which satisfy the linear

system of equations

rWp-1l, EPT][KT JT T [Hd,..T ,Hd+pT ]

(9.iv) Define Fd ,.,Fd+p_1 by

T '..T EPTJ
[F F

d' d+p-l] :=

d+p-l

(9.v) Define F(z) := ~ F.z and

i=O 

G(z) := zdB (z)[C(z) - A(z)F(z)]

Then, F(z) and G(z) satisfy (7.i-7.iv).

The significance of the three Theorems 2.1, 2.2 and 2.3 is the fol-

lowing. Theorem 2.1 gives sufficient conditions for the solution

-1
u(t) = -G(z)F (z)y(t) to be optimal. Theorem 2.2 asserts that a certain

matrix is of full rank. Theorem 2.3 uses the solution of a system of

linear equations, guaranteed to exist by Theorem 2.2, to construct F(z)

and G(z) which satisfy the sufficient conditions of Theorem 2.1. Thus, we

have a constructive procedure for obtaining an admissible, stabilizing,

minimum variance control law.

One useful property of the minimum variance control law is that it

does not depend on the noise covariance Q. Thus, the same control law is

optimal irrespective of the noise covariance.

As we have mentioned earlier at the end of Section I, the above

Theorems can be employed to solve the problem of minimizing Ey T (t)Ry(t)

for any positive definite R. However, in general, the solution will depend

on R. This means, in particular, that the control law of Theorems 2.1,

2.2 and 2.3 does not separately minimize the variance of each output



-8-

variable. This differentiates the case det B 00, considered in '[3], from

the general delay structures considered here.

d+p-1 T
The minimum variance tr Z FiFiQ can be decomposed into two parts.

i=0
d+p-1 i

tr Z FTFiQ can be regarded as the increase in variance resulting from
i=d d-1

d-l T
the singularity of Bo, while the remaining part Z FIFiQ is the variance

i=-0 
due to the delay of d time units. In the case considered in [31, only

the latter part is present.

The proofs of Theorems 2.1, 2.2 and 2.3 follow immediately from Lemmas

2.4-2.10 below.

Lemma 2.4

Suppose F(z) is a matrix of polynomials, which, together with a

certain G(z) satisfies (7.ii,iii and iv). Let u(t) = M(z)y(t) be ·any

admissible control law which is applied to the system (1). Then, the

output y(t) of the closed loop system can be decomposed as

y(t) = F(z)w(t) + zdA l(z)B(z)[G(z) + T(z)A (z)C(z)]w(t)

where

T(z) = M(z) [I-zdAl(z)B(z)M(z)]- 1

Furthermore, the two components

F(z)w(t) and z A (z)B(z)[G(z) + T(z)A (z)C(z)]w(t)

are uncorrelated.

Proof

The closed loop system is clearly Ay = z BMy + Cw, and so

y = (I - zdA-1BM) A- 1Cw and u = TA-1Cw. Substituting for u,'we therefore
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get Ay = z BTA Cw + Cw. Using (7.iv) for C gives the required decomposition

for the closed-loop output y. To see that the two components are un-

correlated, note first that

a -i -1 tr T - d-1
cor(Fw, z A B [G+TA C]w) = 2(i F(z - 1 (z) B(z) [G(z)+T(z)A (z)C(z) ]Q d-

where, here and in the sequel, the contour is a circle centered at the

origin and with radius so small that it does not encircle any singularities

of the integrand other than those at the origin. Now G(z) is analytic at

the origin, by assumption. Also, because M(z) is analytic at the origin,

so is T(z), and therefore also T(z)Al(z)C(z). Utilizing (7.iii) we see

that the above integral vanishes.

0

Lemma 2.5

Suppose that F(z) and G(z) satisfy (7.i-iv). Then, the control law

which minimizes EyT (t)y(t) over the set of all admissible control laws

is u(t) = M(z)y(t), where

M(z) = -G(z)F (z)

and the resulting minimum variance is

p+d-l
Ey (t)y(t) = var(F(z)w(t)) = tr F FiQ T

i=0

Proof

From Lemma 2.4 it follows that for an admissible choice of M,

Ey (t)y(t) = var(F(z)w(t)) (10)

+ i

A (z)B(z) [G(z)+T(z)A1 (z)C(z)]Q -



-10-

Since F(z) does not depend on the choice of M(z), the best that one can

hope to do, if one wishes to minimize the variance, is to choose M(z)

so that the integral on the right hand side above is'zero. One way to do

-1
this'is to choose M(z) so as to make G(z) + T(z)A (z)C(z) = 0, i.e.

T(z) = -G(z)C (z)A(z). Since T = M[I-z A -1BM]-l , M would have to be

-1 -1 d -l d -l -1-1
chosen so that T M zdA B, i.e. M = [(I+zdA- BT)T -

=

T(I+zdA- BT) -1GCA (I-z A BGC-A)- -GC A[I-A (C-AF)C A]-I -1

It remains to be seen whether this choice of M is admissible. Clearly

it is a matrix of rational functions and so (3.i) is satisfied. So

we need to only check that (3.ii), i.e. non-anticipativity, is satisfied.

Now G(z) is analytic at the origin, by assumption, and also F (0) = F=C0
0 0

exists by assumption, showing that M(z) is analytic at the origin. 0

Lemma 2.6

Suppose F(z) and G(z) satisfy (7.i,ii,iv). Then, the control law

-1
u(t) = -G(z)F (z)y(t)

is stabilizing.

Proof

To determine that the control law is stabilizing, we need to check

that the four transfer functions in (4) are all analytic inside the

-1
closed unit disc, with M given by M = -GF . Simple calculation using

(7.iv) shows that

d -l -l -1 -d -1 1
M[I-z A BM] -GC A = -z B (C-AF)C- (.i)

[I-z A BM] = FC A (ll.ii)



[I-ZdMA B]- B 1AFC -1B = I + [-z dB (C-AF)C -A] [zdA 1B] (ll.iii)

-1 zdA 1B[I-zdMA 1Bj = ZdFC- 1B (11. iv)B is analytic inside the closed unit disc, except possibly at the origin,

-1
by assumption. (C-AF) is a polynomial by (7.i). Also C is analytic

inside the closed unit disc by (2.iii). Hence z-d B (C-AF)C-1A is analytic

inside the closed unit disc, except perhaps at the origin. However

-d -l -1 -1
z B (C-AF)C A = GC A and since G is analytic at the origin, so is

~~~~~~~~~~~~~~~-1GC A. Hence -(ll.i) is analytic inside the closed unit disc. (ll.ii) and

(ll.iv) are both analytic inside the closed unit disc since C (z) is so

and A,B,F are all matrices of polynomials. Examining (1l.iii), B lAFC-1B

is analytic inside the closed unit disc, except perhaps at the origin.

However z A 1B is analytic at the origin, and (ll.i) has also been

shown to be so. Hence B -AFC -B = I + [z -dB (C-AF)C A] [z A B] is also

analytic at the origin, thus showing that (1l.iii) is analytic inside the

closed unit disc. O

It may be noted that at this stage Theorem 2.1 has been proved.

Now we need to establish Theorems 2.2 and 2.3

Lemma 2.7
E 0....0

Let = for some matrices Eo ...,E . If

E0 . E

EP0 0 = diag(0,...,O,I) then there exists a square matrix N of the form

I 0 0

' =u=0
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Proof:

Since P Ap = diag(O,...,OI)it follows that

-p+l

(Epz +Ep-Z +...+Eo) (D+DlZ+...) = I+O(z)

where 0(z) = a 1z + a2 z +... for some matrices tala2,... Hence

(Ep-p +.+E0) = (I + O(z))(D + Dl+...)P 0 0.. D z

- -p+l
= (I + (z) ) (Ez + E z +... E + o(l))

Equating coefficients of identical powers of z we get

wv ~ ~~ i

P = E , E-i = E-i + k Ep+k -i for i=l,...,p.
P P' p-i p-i l kp+k-i

Hence the suggested N suffices.

Lemma 2.8

N(W(P- 1)T) R(EpT )

0 1

Here N(-) denotes the null space and R(.) the range space.

Proof

T T (p-l)T
Consider ( rST)T e N(W 0 . Suppose to the contrary that

(T T)T R( ). Since DO # 0 we can find a row vector S0 so that

T T T T T RTT T R(EpT)h
(Sof. ,-,) [D ... D] 0 Since ' it follows that

C( f' ') 9 R([E/,.. ]). Hence (O T,..., T )T V R([E ,...,E p]T ).
( 0 ~ P1 p 0 p 0 p

Since [E,...,E p ][D,...,D = I, as is easily checked, it follows that

by choosing (,-1) rows from [Eo,... ,Ep] (if I above is mxm) and the row

T T
( ,...,3 )T we can build a matrix [Eo,E. 1,... ,E ] with m rows and such
0 P 0 l'"''P
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-E01... p- FDT T T
that [EO ,E'o'']D [Do' D ]T is of full rank. Premultiplying by an

appropriate nonsingular matrix we can obtain [E,... ,Ep] such that

T TT
[Eo .. ,EE I[Dof.. 'D] = I and the rows of [E0 1 ... ,E I span the

p " 'p

row -space of [E,0'..,Ep' Now let E0 be defined from Eo,... ,E as in

the statement of Lemma 2.7. It is easily checked that EPWp = diag(O,... ,0,I).
0 0

Lemma 2.7 now applies and shows that the rows of [E0,... ,E ] are linear

combinations of the rows of EP. But then the rows of [El,1., ' ]

0 P

are linear combinations of the rows of E1' which contradicts our

T T T p(ET) h (p 1)T (EpT).
assumption that (1 ,... ) T R(EP ). This shows that N(W ) C R(EPT).

1 p 1 0 

The reverse containment R(EPT)C N 0 (p-l)T) follows trivially from the1 0

relationship EPoWo = diag(O,....,O,I). 

Lemma 2.9

[Wp- EpT ] is a full rank matrix.
0 1

Proof

Suppose PT[wP-li EpT (p-l)T

Suppose pT F[WO, 1 ] = 0 for some vector p. Since p e N(W P-)T)

ETrPTp - 0
it follows by Lemma 2.8 that P = Ty for some y. But p y = 0,

and so r pT1 y = 0. Hence P E ¥ = 0. 

Thus we have also proved Theorem 2.2. Now we complete the proof of Theorem

2.3.

Lemma 2.10

If F(z) and G(z) are defined as in Theorem 2.3, then (7.i-iv) of

Theorem 2.1 are satisfied.
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Proof

(7.i) is trivial since F(O) = Fo = C is invertible by assumption.

(7.iv) follows from the definition of G(z). So we need to check only

(7.ii) and (7.iii). Now

(7.iii) <-> lim zd [FT + Fl-1 +...+ FT -d-p+l1 [D+Dlz+...+D plP-1 = 
+ 0 [1 d+p-lz ]=0

<> lim [Fd + Fd+lZT +..- +FTd+plZ [D + Dz+...+D zP-l 
z+0 d d+1z +-* d+p-1 0 1 1=0

z+0

<=> coefficients of nonpositive powers of z vanish in

T .T -p+lp_1
[Fd +...+F d+pZ ] [Do+Diz+...+D z-1 ]
d d+p-1 0 1 P- 1

T 1]T (p-1)T
<~> [F TFdp e N(W 0

<-, [F..- F+T I e R(EPT)
'' ' 'd+p-1 1

<-> [F,...,,F l = E- J for some matrix J.
d" d+p-l 1

Similarly

(7.iv) => z dB (z) [C(z)-A(z)F(z)] = 0(1)

>~ z-d B-(z(z) z)[A (z)C(z) - F(z)] = 0(1)

-dB-1 - d + p- 1
z B (z)A(z) [A 1 (z)C(z) - F -F -.- Fd+pl d+p- 0(1)

0 1 d~p-lZ i = 0(1)
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<dB - 1 d+l _d d+l d+p-1<= > z dB (z)A(z)[Hdz +Hd+lz + -FdZ -Fd+lZ .. -Fd lZ = 0 (1)

<=> B- I(z)A(z) [(Hd-Fd)+.. +(Had+p -Fd+p + 0(z)] = 0(1)

<= > coefficients of strictly negative powers of z vanish in

[E z+...+Ez l+(l)][(Hd-Fd)+..+(Hd+pl-Fd+p)z +-l(z

<= > [(HdFd) T ..., (Hd+p1Fd+ )T e N(E p)

d d d+p-l d+p-l 1

<=> [(HdFd)T,..., (H d-F )TT e R(wP-1 )
d+p-1 d+p-l 0

T T
<- > [ (Hd-Fd ) ,...,(H d +pl-F d+p ) ] e WP 1 K for some matrix Kd= p T] [-d ~ TJT TdTp-l Ed+p-lTT = 0T'.

Thus if [WP PT] [KTJ = [H,.. -,H l and pTJ = [FT .,FT ]
- ' ,' H+p- 1 ad+P-l

as we have assumed, then both (7.ii) and (7.iii) are satisfied. o

The proofs of Theorems 2.1, 2.2 and 2.3 are now complete.

III. SQUARE NON-MINIMUM PHASE SYSTEMS

We now turn to the problem of minimizing the variance over the set

of admissible, stabilizing control laws for systems which have non-minimum

phase transfer functions besides those caused by pure delays.

Thus we consider systems for which det B(z) may vanish in {z:0<Izf<l}

besides possible vanishing in {z:z=O or Izl > l}. 'We do not allow det B(z)

to vanish in {z:lzl = 1} since we have imposed the requirement in (4)

that our closed-loop systems should be strictly stable as opposed to just

stable, i.e. we have required analyticity of the four transfer functions in

(4) in the closed unit disc and not just the open unit disc. If we are
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Willing to admit such a relaxation, then our solution is valid even for

det B(z) vanishing on the unit circle {z:jzJ = 1}.

In this section, we also assume that the number of inputs is equal

to the number of outputs, i.e. the system is square with m=Z in (1).

By Lemma 2.5 we see that we have already solved the problem of

obtaining the admissible control law which minimizes the variance of

the output, and the control law which does this is just the control law

of Theorems 2.1., 2.2 and 2.3. However, this control law is not

stabilizing, i.e. it does not satisfy (4), when det B(z) vanishes in

{z:O<Iz < 1}. The reasons is that Lemma 2.6 is no more valid, as can be

seen from an examination of (11).

A graphic illustration of the loss of stability and its consequences,

which result when we attempt to just minimize the output variance without

constraining ourselves to the set of stabilizing control laws, is given

by the following example.

Example

Consider the non-minimum phase system

y(t+l) = -y(t) + u(t) - 2u(t-1) + w(t+l) (12).

The control law which minimizes the output variance Ey 2 (t) over the class

of all admissible control laws is

u(t) = 2u(t-1) + y(t) (13)

and the resulting variance is

Ey2 (t) = Ew2 (t)



-17-

However, the recursion for the control (13) shows that {u(t)} is an

exploding sequence. This is clearly undesirable from several points of

view. Note that one of the transfer functions of (4), M[1l-z dA 1BM] =

1-2 is unstable, and therefore our formulation specifically excludes
l-2z

such control laws. 0

For single-input, single-output systems, such as in the above example,

Peterka [2] has solved the problem of obtaining the control law which

minimizes the output variance over the class of all admissible, stabilizing

control laws. We now solve this problem for the multivariable case.

We will obtain the solution by reducing the problem to the type

considered in the previous section. Accordingly we will denote the

F(z) and G(z) generated by Theorem 2.3 by F(A(-) ,B(-) ,C(-), d) (z) and

G(A(-) ,B(-),C(-) ,d) (z) in order to explicity display the functional

arguments on which they depend. We note here that the algorithms of

Theorems 2.2 and 2.3 can be employed even when d=O to generate F and G.

Theorem 3.1

We assume that A (z) and B (z) have no poles in common inside the

closed unit disc, A (z) and B- (z-1 ) have no poles in common inside

the closed unit disc and A (z) and A (z ) have no poles in common.

In the above and what follows, by a zero of X(z) we shall mean a singularity

-1
of X (z), and by a pole of X(z) we mean a singularity of X(z).

(14.i) Let A(z) be a spectral factor which satisfies

A T (z )A(z) = BT (z- 1 )A- T (z-1 ) A(z) B (z)



-18-

and is such that its poles are those of A (z)B(z),

while its non-zero zeroes are the outside the closed unit

disc images of the nonzero zeroes of A (z)B(z). By an

"outside the closed unit disc image of z", we mean p

such that q=z if lzl>l and 11=z 1 if Jzl<l.

(14.ii) Let a(z) and 6(z) be matrices of polynomials such that

-1
(z) B(z) = A(z)

is a left coprime representation of A(z), and such that (14)

the zeroes of 6(z) are the zeroes of A(z), while the poles

-i
of a (z) are the poles of A(z).

-1 -1 -d
(14.iii) Let 0(z) := a (z) (z)B (z)[C(z) - A(z)F(z)]z , where

F(z) := F(A( ),B(-),C(- ),d) (z) and G(z) :

G(A(-), B(-), C(-),d)(z)

(14.iv) Let + (z) and e (z) satisfying O(z) = 0 (z) + 0 (z) be such

that +(z) is the sum of all the partial fraction terms of

8(z) which have poles either outside the closed unit disc

(including infinity) or coinciding with the poles of A (z)

inside the closed unit disc, and constant terms, if any.

(14.v) Let Y(z) be a polynomial matrix such that

-1
0 (z) = a (z)y(z)

(The existence of such a polynomial matrix Y(z) will be

proved).
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(14.vi) Let F(z) := F((-) , 3(-), y() ,0) (z) and

G(z) := G(a(-), (-) , Y('), 0) (z)

Then, the control law which minimizes Ey T(t)y(t) over the class

of all admissible, stabilizing control laws is given by

u(t) = -G(z) [F(z) + z A (z)(z) (G(z)-G(z) -y(t) (15)

The resulting minimum variance is

EyT (t)y(t) = tr Z F.FjQ + tr Z F.FjQ

+ {tr (z) (z) [G(z)-G (z)]-F (z)} (16)

-l (z- (z-1) [G (z-_ 1 ) ) TQdz
z

where F(z) =: Z F.z j and F(z) =: z

j 3 j 

Proof

Let u(t) = M(z)y(t). From (10), it follows that

EyT(t)y(t) = tr F F FjQ+ 2 T- (z )A (z)B(z) G(z) + T(z)A- (z)C(z)]EyT (t)y(t) = tr > FTF.Q + tri B TB(z)A T -l A-l1

Q[G(z-1) + T(z-1 )A-l(-1)C(z-1) z T dz
z

Since T (z-1)-T (z )Oc ((z)3 (z) = B (z-)A-(z-)A-(z)B(z) from (14.i,ii) it

follows that

Ey (t)y(t) = tr Z F.FjQ

tr. T -) -1
+ T. 1 (z)-T (z r- 1) [-1(z))(z)G(z) + a l(z)B(z)T(z)A (z)C(z)]

Q[G(z ) + T(z -1)A (z- 1 )C(zT d z
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-1 -d
Substituting G z) = B (z) [C(z)-A(z)F(z)]z , and using (14.iii,iv) gives

Ey T (t)y(t) =

T tr - -1
tr z T + tr ;[( (z)+_ (z)+c ( (z)(z)T(zz)A (z)C(z)]

+

By (14.iv), 9 (z) has no poles inside the closed unit disc except those
+

of A (z). However, by (2.i), A (z) has no pole at the origin. Hence

o+(z) is analytic at the origin. By (14.iv), e (z) is a matrix of strictly

1 -1)
proper rational functions and so 0 (z is analytic at the origin.

Moreover, to satisfy our stabilizing assumption (4) it is necessary

that T(z) = M(z) [I-z A (z)B(z)M(z)] , which is one of the four transfer

functions in (4), is analytic inside the closed unit disc, and in particular

is analytic at the origin. Hence, ac (z)B(z)T(z)A (z)C(z) is also

required to be analytic at the origin. Therefore the cross term

tr - -1 T -dz
-ri [e+(z) + a- (z)f3(z)T(z)A (z)CC(z)]QzT -z vanishes since the

integrand is analytic at the origin. Hence

EyT (t)y(t) = tr F.F Q + -) dz

tr - (z)
+ 2if [+(z) + a (z)3(z)T (z)zA (z)C(z)]

~Q[O (Z1 O-l (Z-l (Z- I -l-lz-l)C(z-l T dz (17)
Q[8+ (z)+a (z )-(z )T(z )A (z )C(z )] (17)

The first two terms in the right hand side of (17) do not depend on the

choice of T(z) and, therefore, on the choice of M(z). Hence to minimize

Ey T (t)y(t), we need to only minimize
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tr [+(z) + -l (z)(z)T(z) ( z))C(z)l

z-1 (z -1)(z-l)T(z-)A- l(z- )C(z-1 ) T d z(18)

Now let us examine +(z). From (14.i,ii) we see that

-1 -1 T -l -T -B T -l -T -A -la1 (z)(z)B (z) = aT(z- )Tz (z - 1)A (z (z )A (z) (19)

An examinationof the right hand side of (19) shows that the only poles of

(19) which do not coincide with those of A (z) are either at the origin

or coincide with the poles of -T(z- ), and so all the poles of the left

hand side of (19) which do not coincide with the poles of A (z) are

inside the closed unit disc. Substituting (19) in the expression for

8(z) in (14.iii) we obtain

(z) = aT(z-i) -T(z-1)BT(z-1)AT (z- )A- (z) [C(z)-A(z)F(z)]z-d

Utilizing the definition of e+(z), we see therefore that

-1
6 (z) = a-1 (z)(z)

for some polynomial matrix Y(z). This proves the existence of y(z) claimed

in (14.v). Now substituting for 8+(z) in (18) shows that to minimize

Ey (t)y(t), we need to minimize

tr -
2ti [a-1 (z) (z) + (z)

Q[ -(z )Y(z + a-1 -(z-1)(z-1)T(z-1)A-l(z-1)C(z-1)]T dz

- 1
Define S(z) := T(z)A (z)C(z) and our problem now is how to choose S(z),

analytic at the origin, so as to minimize
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tr ' [-l(z)y(z) + a-l (z)(z)S(z)]Q[ -!(z-l (z)
2wff'i ]

+ a (z )(z )S(z - 1) T d (20)
z

But this resembles the problem of Section II, where since we had

y(t) = [A (z)C(z) + z dA-l(z)B(z)T(z)A- (z)(z)w(t)

= [A-l (z)C(z) + zdA-l (z)B(z)S(z) wS(z) t)

we had to choose S(z), analytic at the origin, so as to minimize

tr fd -
2ti [A- (z)C(z) + z A (z)B(z)S(z)]

Q[A (z-1 )C(z -) + z-dA-(z-1 )B(z- )S(z-1 ) ]T dz (21)
z

Making the obvious identifications between (20) and (21), we can apply

the results of Section II and see that the optimal choice for S(z) is

S(z) = -G(z) (22)

where G(z) is as in (14.vi). Furthermore the minimum value of (20) is

Z F FjQ (23)

Since (23) is the minimum value of the third term in right hand side of

(17), it follows by substituting in (17) that the resulting variance is

EyT (t)y(t) = tr Z F.FjQ + tr F

J J

t+ 0I e (z)QOT(z - 1 ) dz (24)
+~ 2w c.pei,-1
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Since C(z) = A(z)F(z) + z B(z)G(z) and Y(z) = a(z)F(z) + 3(z)G(z), which

follow from the definitions of F, G, F and G in (14.iii,vi) we obtain

G(z) = B-(z) [C(z)-A(z)F(z)]zd and a l(z)Y(z) = F(z) + a (z)r(z)G(z).

Substituting these two expressions in the definitions of O(z) and + (z)

in (14.iii,v), we get

(z) = O(z) - 6 (z)

-1 -1
a (z) (z)G(z) - F(z) a- (z) (z) (z)

a= -l(z)(z) [G((z) ] -(z) (z) (25)

Substituting (25) in (24) gives the expression (16) claimed as the minimum

variance. We still need to determine that the choice of S(z) in (22)

corresponds to (15) and also that it is stabilizing. Since S(z) =

T(z)A (z)C(z), we obtain that the choice of T(z) is T(z)=-G(z)cC (z)A(z)

and since T = M[I-z A -BM] it follows that

M(z) = T(z) [I + zdA (z)B(z)T(z)]-1

T(z) [I - zdA (z)B(z)G(z)C (z)A(z)]

= -G(z) [A (z)C(z) - zdA (z)B(z)G(z) ]- 1

= -(z) [F(z) + zdA-l (z)B(z) (G(z) - G(z))]

which coincides with the control law of (15). It remains to be shown

that this choice of M(z) is stabilizing, i.e. it satisfies (4).

Simple calculations show that two of the transfer functions in (4) are

M[I-zd A 1BM] 1 = - 1 (y- ) C-1A

[I - zdMA-1B]- =I - zdGC-1A =I - (y- F)C B (26)
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which are both analytic inside the closed unit disc, since-1 and C -

are. The third transfer function in (4) is [I-z dA (z)B(z)M(z) ]-1 which

can, by simple calculation, be seen to be to equal to I-z A (z)B(z)G(z)C (z)A(z),

which in turn is I-z dA-(z)B(z) -l(z) [(z)-a(z)F(z)]C-(z)A(z). Except

-1
for the term A (z), all other quantities are analytic inside the closed

unit disc, and so if this transfer function has any singularities inside

the closed unit disc, they must coincide with those of A (z). However, we

d-l -1 d-l -l
also have [I-z A (z)B(z)M(z)] = [F(z) + z A -l(z)B(z) (G(z)-(z))]C (z)(z)

= {F(z) + zdA l(z)B(z) -l(z)e(z) [0 (z)-(z)]IC ()A (z) which, if it has

any singularities inside the closed unit disc coinciding with those of

A (z), can only be singularities of A- (z)B(z)l (z)a(z) inside the

closed unit disc coinciding with those of A (z). However, by (14.i,ii),

we have A (z(z)z) -l(z)a(z) = AT(z-1)B-T(z-1 )(z-1)-T(z). The only

poles of the right hand side inside the closed unit disc are either at the

origin or coincident with the poles of a (z-1) or B (z ). By our

assumptions, there can however be no poles of A (z) in any of these loca-

tions, showing that [I-z A iBM]- is analytic inside the closed unit

disc. The last transfer function of (14) we need to check is

zdA -1B[I-z MA -1B] - 1 Since (26), which is a factor, has no poles

inside the closed unit disc, it follows that if there are poles of

zdA-1B[I-zMA-1B]l- inside the closed unit disc, they must be poles of

A1 d -l d -1 = Zd -l
A . Simple calculation shows that z A B[I-z MA B] = z B +

z A B-1a (9 +F)C-B. The first term is analytic inside the closed

unit disc, and so is (0 +F)C B. Hence we only need to show that

A )B(z)B(z) (z)(z) has no poles inside the closed unit disc which
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coincide with those of A (z). But we have already done this. 0

If the system is of minimum phase, i.e. B- (z) is analytic in

{z:0<zI<l1}, then a=A, B=B and so = A- [C-AF]z , thus showing that

-d
y = [C-AF]z . Hence F=O and G=G. Thus the control law (15)-above reduces

to what it is in the minimum phase case of Theorem 2.1. Moreover the

minimum variance (16) also reduces to what it is in Theorem 2.1.

The additional cost of stably controlling a non-minimum phase

system is therefore

tr F. "Q tr {a l(z)B(z)[G(z)-G(z)] - F(z)}

Q{a -l(z-1 )(z) [G(z-l)-G(z- )] _- (z-1)}T dz
z

This is the "sacrifice" in variance that must be made to obtain a stable

system. If one just wants to minimize the variance without paying

attention to stability, then this sacrifice need not be made.

One useful property of the control law (15) is that it does not depend

on the noise covariance Ew(t)wT (t). Thus, the same control law is optimal

irrespective of the covariance Ew(t)w T (t).

IV. RECTANGULAR SYSTEMS

Now we consider rectangular systems, i.e. systems where the number

of inputs is not equal to the number of outputs.

If the system has more inputs than outputs, then the previous results

can still be used if we replace B-l (z) by B# (z), any right inverse of

B(z). The proofs proceed as before.
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So we turn our attention to systems where the number of inputs is

less than the number of outputs. Before describing the solution, we

first discuss some pitfalls. One way of proceeding, it might appear,

is to make the system "square" by adding ficititous inputs with small

"gains" e which are then driven to zero. This can however result in

matrices M(z) and T(z) which become unbounded as e - 0. Another way of

making the system square is to add ficititous inputs which have delays

which are then driven to infinity. However, the resulting solution for

F(z) will be a power series, at best.

We therefore adopt the more fruitful approach of the following

Theorem. As in previous sections, we assume that the system has no

zeroes exactly on the unit circle {z: Iz=l}, or more precisely,

BT (z 1)A (z )A (z)B(z) has no zeroes on the unit circle {z:lz1=l}.

Theorem 4.1

We assume that A -(z) and A (z 1 ) have no poles in common and also

that for every pole tk of Al(z) inside the closed unit disc, its residue

R in the partial fraction expansion of A- (z)B(z) satisfies the

condition lim BT (z-l)A-T (z-l)R 0.

Z~tk

(27.i) Let W(z) := A (z)B(z)

(27.ii) Let A(z) = a- (z) (z) be a square minimum phase spectral

factor satisfying A T(z-)A(z) = 6 (z- )6(z) and such that

the non-zero zeroes of the polynomial matrix 6(z) are the

outside the unit circle images of the nonzero zeroes of

6T(z-1)6 (z) while the poles of the polynomial matrix a- (z)
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are those of 6(z).

(27.iii) Define 6(z) := A-T(z-1 6T(z -1)A-(z)C(z) and decompose

6(z) as 6(z) =: e+(z) + 0 (z) where _ (z) consists of

those partial fraction terms with poles which are inside

the unit circle and not coinciding with those of A (z).

(27.iv) Let + (z) = -a (z)y(z) where a(z) is a square polynomial

matrix with zeroes corresponding to those of A(z) and

Y(z) is a rectangular matrix of polynomials with more

columns than rows.

(27.v) Let F(z) := F(a(-), 3(-), () ,d) (z) and G(z) := G(c(-) ,(-)),

Y("), d)(z)...Then, the control law which minimizes the output

variance Ey (t)y(t) over the set of all admissible stabilizing

control laws is

u(t) = -G(z) [C(z) - zdB(z)G(z)] A(z)y(t)

Proof

Let 6(z) be a full rank left annihilator of 6(z). Clearly

T(z (z6p ( 1J [( (z- )[6(z)6T~z-l 1,(z1 (z)3 = I
lT (z-1) 6 (z) i1T (z-1

and so each of the matrices on the left hand side of the above is the

inverse of the other. Multiplying the two matrices above in the reverse

order gives

T-1 (z-1) [(z-)] (-1)](z) + 6(z) [T(z )6 (z)] -16 (T(-) =
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Hence, for any admissible u(t) = M(z)y(t), we can decompose y(t) = Yl(t) +

Y2(t) where

Yl(t) = T(z-l) [(z)T(z-l)] -l(z)A -l(z)C(z)w(t), and (28)

2 (t) = 6(z){[ T (z 6 -1(z)] 6T(z- 1 )Al (z)C(z) + zdT(z)A - (z)C(z)}w(t)

where T(z) is as in Lemma 2.4. By integrating over a small circle around

the origin, it can be seen that Eyl(t)y2(t ) = 0. So EyT(t)y(t) =

T T
EYl(t)Yl(t) + Ey 2 (t)y2 (t). The first term on the right hand side does

not depend on the choice of M(z). Hence, to minimize Ey (t)y(t) we need

to minimize only Ey2 (t)y2 (t). Now

EyT 't)'(t)~ tr aT(Z )6(z- [) T(z) {(z) (z- T (z - 1) + z dT(z)}Y2 (t)Y 2 ti 2i--- -

A-(z)C(z)QC T(z- 1 )A (z)-1){[(T 6l ( ]- 6T(z) + z -dT(z-1 d

and so, using AT (z- 1)A(z) = 6T (z- 1 )((z) we get

Ey2 (t)Y2(t) =

tr d[A-T (z -)6 (z-l) + zdA(z)T(z) ]A (z)CT(z-)QC (z A (z- )

[A-T (z) 6T(z) + z IA(Z-1)T(z-1)]T dz

tr d -l
2ri p [a (z)+D (Z)+z da (z)(z)T(z)A l (z)C(z) I

Q[(z 1) + +a cl(z)(z 1 ) (z-1)(z-1 -l (z(z-1 )]T d z
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As in Theorem 3.1, the cross term

tr ) dlz)(z) (z z A (z) C(z)]Qz
*27Ti - L+(ZJ ± T (z)-z

vanishes because of the stabilizing requirement on M(z) and the

consequence that T(z) is analytic at the origin. Also, the term

tr T (z)QGTz-1 dz
can be ignored since it does not depend

on M(z). Hence, the problem becomes one of minimizing

tr d -1 -1
2i [+(z) + z a (z) (z(z)T(z)A- (z)C(z)

N -1 -d, -l ( z-l- 1 T dz
Q[ + (z) + z (z B(z- )T(z- A (z )C(z- I z

~tr --1~d-l -1 1+1
lac2 (z)y(z) + za (z)(z) +

+z ad- 1 (z- 1 )(z )S(z- )]dz (29)
z

The slight difference, because acta, between the problem of minimizing

(29) and the problem of minimizing (20) is unimportant, and the rest of

the proof proceeds as in the proof of Theorem 3.1. °

The variance of (28) represents an additional cost due to the non-

tr ()Tz-Idzi
squareness of the system. The cost term 2fi 6- (z)QT(z l)dz is also

affected by the non-squareness and will be positive even if the system is

of minimum phase.
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