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ABSTRACT

Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to

global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land.

Surface energy balance arguments have been used to understand the response over ocean but are difficult to

apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric

moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in

land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-

complexity (CMIP5) general circulation models, and it is found to capture many of the features of the sim-

ulated changes in land humidity. The simplest version of the box model gives equal fractional increases in

specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the

greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a

mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary im-

portance compared to ocean moisture transport for the increase in land specific humidity, but it plays an

important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as

from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in

land surface–air temperature, and this amplification is quantified using a theory for the link between land and

ocean temperatures.

1. Introduction

Observations and climate-model simulations show a

pronounced land–ocean warming contrast in response

to a positive radiative forcing, with land temperatures

increasingmore than ocean temperatures (Manabe et al.

1991; Sutton et al. 2007; Byrne andO’Gorman 2013a). A

land–ocean contrast is also found for the response of

near-surface relative humidity in climate-model simu-

lations, with small increases in relative humidity over

ocean and larger decreases in relative humidity over

continents (O’Gorman and Muller 2010; Lâıné et al.

2014; Fu and Feng 2014). This land–ocean contrast in

changes in relative humidity is clearly evident in Fig. 1

for simulations from phase 5 of the Coupled Model

Intercomparison Project (CMIP5) that will be discussed

in detail in sections 3 and 4. However, the long-term

observational trends in near-surface relative humidity

are not yet clear. Based on observations over 1975–2005,

Dai (2006) found a decreasing trend in surface relative

humidity over ocean but no significant trend over land.

Willett et al. (2008) also found a negative trend over

ocean and no significant trend over land for a similar

time period, but they identified a bias in the data prior to

1982 that may cause the apparent negative trend over

ocean. Later studies have found a sharp decrease in land

relative humidity since 2000 (Simmons et al. 2010;

Willett et al. 2014, 2015), but the long-term trend re-

mains insignificant (Willett et al. 2014).

Changes in land relative humidity are important for the

land–ocean warming contrast (Byrne and O’Gorman

2013a,b) and formodulating changes in precipitation over

land under global warming (Chadwick et al. 2013; Byrne

and O’Gorman 2015), and they may affect projected
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increases in heat stress (e.g., Sherwood and Huber 2010).

Despite this importance, a clear understanding of what

controls land relative humidity is lacking. Here, we

introduce a conceptual model based on boundary layer

moisture balance to analyze changes in land relative hu-

midity, and we apply this model to idealized and full-

complexity general circulationmodel (GCM) simulations.

We first review the energy balance argument for the

small increase in relative humidity over ocean (Held and

Soden 2000; Schneider et al. 2010) and why it does not

apply over land. Ocean evaporation is strongly influ-

enced by the degree of subsaturation of near-surface air,

and changes in ocean relative humidity with warming

may be estimated from the changes in evaporation using

the bulk formula for evaporation, provided that the air–

surface temperature disequilibrium (the difference be-

tween the surface-air and surface-skin temperatures)

and changes in the exchange coefficient and surface

winds are negligible. Schneider et al. (2010) used this

approach, together with an energetic estimate for

changes in evaporation, to yield an increase in ocean

relative humidity with warming of order 1%K21 (here

and throughout this paper, relative humidity changes are

expressed as absolute rather than fractional changes).

The simulated increases in relative humidity over ocean

are generally smaller (Fig. 1), indicating that effects such

as changes in surface winds must also play a role (e.g.,

Richter and Xie 2008).

This approach to understanding the increases in ocean

relative humidity under warming relies on there being a

simple energetic estimate for changes in evaporation

and these evaporation changes being easily related to

changes in temperature and surface-air relative humid-

ity. These two conditions are generally not valid over

land, where the moisture supply for evapotranspiration

is limited and varies greatly across continents (De Jeu

et al. 2008). The spatially inhomogeneous response of

soil moisture to global warming, in addition to changes

in land use and changes in stomatal conductance under

elevated CO2 concentrations (e.g., Sellers et al. 1996;

Piao et al. 2007; Cao et al. 2010; Andrews et al. 2011;

Cronin 2013), leads to land evapotranspiration changes

with substantial spatial structure (Lâıné et al. 2014), and
the near-surface relative humidity is merely one of many

factors influencing evapotranspiration changes.

To understand the simulated decreases in land rela-

tive humidity under global warming, we take a different

approach following previous authors (e.g., Rowell and

Jones 2006) who have discussed how the land boundary

layer humidity is influenced by the moisture transport

from the ocean. Under global warming, as continents

warm more rapidly than oceans, the rate of increase of

the moisture transport from ocean to land cannot keep

pace with the faster increase in saturation specific hu-

midity over land, implying a drop in land relative hu-

midity (Simmons et al. 2010; O’Gorman and Muller

2010; Sherwood and Fu 2014). This explanation is at-

tractive because it relies on robust features of the global

warming response—namely, the small changes in rela-

tive humidity over ocean and the stronger surface

warming over land. Indeed, the most recent Intergov-

ernmental Panel on Climate Change (IPCC) report cites

this argument to explain both observed and projected

land relative humidity decreases with warming (Collins

et al. 2013, section 12.4.5.1). However, this explanation

has not been investigated quantitatively using either

observations or climate models. Thus, it not clear to

what extent changes in land relative humidity can be

understood as a simple consequence of the land–ocean

warming contrast and changes in moisture transport

from ocean to land. Indeed, changes in evapotranspi-

ration resulting from soil moisture decreases (Berg et al.

2016) and stomatal closure (Cao et al. 2010) have been

FIG. 1. (a),(b) Multimodel-mean changes in surface-air rela-

tive humidity between the historical (1976–2005) and RCP8.5

(2070–99) simulations of CMIP5, normalized by the global- and

multimodel-mean surface-air temperature changes. For (b), the

zonal averages over all ocean (blue) and land (red) grid points are

shown at each latitude. Note that the changes in relative humidity

at high latitudes are different from those shown in Fig. 1b of Byrne

and O’Gorman (2013b) because Byrne and O’Gorman (2013b)

adjusted the relative humidities to be always with respect to

liquid water.
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shown to strongly influence land relative humidity,

though such effects are not considered in the simple

argument outlined above.

Changes in evapotranspiration may affect relative

humidity through induced changes in surface-air tem-

perature as well as through changes in the moisture

content of the air. Previous studies have shown that soil

drying or decreases in stomatal conductance lead to an

increase in surface temperature (e.g., Sellers et al. 1996;

Seneviratne et al. 2010; Cao et al. 2010; Andrews et al.

2011; Seneviratne et al. 2013), and this is typically ar-

gued to be a result of decreased evaporative cooling of

the land surface. But it is difficult to make a quantitative

theory for the associated increase in temperature from

the surface energy budget because the surface energy

fluxes depend on multiple factors over land, and the

effect of increased surface sensible heat flux on surface-

air temperature cannot be estimated without taking into

account atmospheric processes such as convection. The

changes in the land surface–air temperature may be in-

stead related directly to changes in surface humidity

under climate change by using the fact that atmospheric

processes constrain the surface-air equivalent potential

temperature (Byrne and O’Gorman 2013a,b). In par-

ticular, changes in surface-air temperature and relative

humidity combine to give approximately equal increases

in equivalent potential temperature over land and

ocean. This link between land and ocean is a result of

atmospheric dynamical constraints on vertical and hor-

izontal temperature gradients in the atmosphere (see

also Joshi et al. 2008) as expressed through the equiva-

lent potential temperature, which is a conserved vari-

able for moist adiabatic processes. Here we use this

dynamical constraint to better understand the feedback

over land between decreases in relative humidity and

increases in surface-air temperature. This temperature-

relative humidity feedback is distinct from soil moisture–

temperature or soil moisture–precipitation feedbacks

that may also be operating (e.g., Seneviratne et al. 2010).

We also use the dynamical constraint to estimate the

amplification of the relative humidity response to a

moisture forcing over land by the induced change in land

temperature for the case with ocean temperature and

humidity held fixed.

We begin by deriving a conceptual box model for the

moisture balance of the land boundary layer (section 2).

We apply the box model to idealized GCM and CMIP5

simulations, using first a simplified ocean-influence

version of the box model (section 3) and then taking

into account evapotranspiration (section 4). We then

discuss the role of temperature changes for the response

of land relative humidity under climate change (section 5),

before summarizing our results (section 6).

2. Box model of the boundary layer moisture
balance over land

Several previous studies have used idealized models

to study land–atmosphere interactions (e.g., Brubaker

and Entekhabi 1995; Betts 2000; Joshi et al. 2008). The

box model used here is of the moisture balance of the

atmospheric boundary layer above land (see schematic;

Fig. 2). The specific humidity of the land boundary

layer is assumed to be determined by three processes:

(i) horizontal mixing with the boundary layer and free

troposphere over ocean (e.g., via mean-wind advection

and diurnal sea breeze), (ii) vertical mixing with the free

troposphere over land (via large-scale vertical motion,

turbulent entrainment, and shallow and deep convec-

tion), and (iii) evapotranspiration. For simplicity, the

box model is taken to represent a time average over the

diurnal cycle in the boundary layer (see discussion in

Betts 2000), and the land boundary layer is assumed to

be deeper than the ocean boundary layer. A control-

volume analysis for the land boundary layer is then

performed, and the time evolution of the average spe-

cific humidity in the land boundary layer, qL, is written

as follows:

lh
L

dq
L

dt
5 h

O
y
1
(q

O
2q

L
)1 (h

L
2 h

O
)y

1
(q

FT,O
2 q

L
)

1 ly
2
(q

FT,L
2 q

L
)1

l

r
a

E
L
, (1)

where l is the horizontal length scale of the land, hL and

hO are the depths of the boundary layers over land and

ocean, respectively; y1 and y2 are horizontal and vertical

mixing velocities, respectively; qO is the average specific

humidity of the ocean boundary layer; qFT,L and qFT,O

are the specific humidities of the free troposphere im-

mediately above the land and ocean boundary layers,

FIG. 2. Schematic diagram of processes involved in the moisture

budget of the boundary layer above a land surface [see text and (1)

for definitions of the various quantities].
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respectively; ra is the density of air; and EL is the

evapotranspiration from the land surface. For simplicity,

we further assume that the free-tropospheric specific

humidities over land and ocean are proportional to the

respective boundary layer specific humidities; that is,

qFT,L 5 lLqL and qFT,O 5 lOqO, where lL and lO are the

constants of proportionality. (Alternatively, the need to

specify the vertical structure of specific humidity over

land may be avoided by assuming that the free-

tropospheric specific humidities over land and ocean

are approximately equal for levels above the land

boundary layer.)

For convenience, we define t1 5 l/y1 and t2 5 hL/y2 as

horizontal and vertical mixing time scales, respectively.

Taking the steady-state limit of (1) gives the following:
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q
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O
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E
, (3)

where we have defined the parameter g5
[hO 1 lO(hL 2 hO)]t2/fhL[t1(12 lL)1 t2]g to quantify

the influence of ocean specific humidity on land specific

humidity andwhere qE 5 t1t2EL/frahL[t1(12 lL)1 t2]g
represents the influence of evapotranspiration on land

specific humidity. The parameter g depends on the

strengths of the horizontal and vertical mixing processes

in the land boundary layer, the boundary layer depths,

and the vertical structure of specific humidity over land

and ocean. The contribution of evapotranspiration, qE,

is a function of the evapotranspiration rate, the height of

the land boundary layer, and other parameters (e.g.,

evapotranspiration has a weaker influence on land spe-

cific humidity in a deeper boundary layer). This box

model could be extended in a number of ways, such as by

including the diurnal cycle or the source of water vapor

due to reevaporation of precipitation.

3. Ocean-influence box model

For the simplest version of our box model, the ‘‘ocean-

influence box model,’’ we assume that the influence of

evapotranspiration on the boundary layermoisture balance

over land is negligible. Setting EL 5 0 in (3), we find that

q
L
5 gq

O
. (4)

Assuming negligible changes in g, we can write the

following:

dq
L
5gdq

O
, (5)

where d denotes the change in climate. Note that the

assumption of constant g under climate change may

hold even if there are changes in the mixing time scales

t1 and t2. For example, if the overall tropical circulation

and convective mass fluxes slow down with climate

warming (e.g., Held and Soden 2006; Vecchi and Soden

2007) such that both mixing time scales increase by the

same factor, then this will not cause g to change.

Thus, the ocean-influence box model is consistent

with a straightforward hypothesis—that the ratio of land

to ocean specific humidity remains approximately con-

stant as the climate changes or, equivalently, that frac-

tional changes in specific humidity over land and ocean

are equal:

dq
L

q
L

5
dq

O

q
O

. (6)

This result has been derived independently by Chadwick

et al. (2016) using a conceptual model based on a

Lagrangian analysis of air masses.

In contrast to the fractional changes in specific hu-

midity, fractional changes in saturation specific humidity

depend on the local temperature change and will be

bigger over land than ocean because of the land–ocean

warming contrast (e.g., Sutton et al. 2007). Using (6),

and approximating relative humidity asH5 q/q*, where

q* is the saturation specific humidity, we express frac-

tional changes in land relative humidity as follows:
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where dTL and dTO are the changes in surface air tem-

perature over land and ocean, respectively, and where

we have assumed that the saturation specific humidity

increases at a fractional rate of aq 5 0:06K21 and that

higher-order terms in the changes are negligible. It is

clear from (7) that if land warms more than ocean and

ocean relative humidity does not change greatly, then

the land relative humidity will decrease.

The derivation of the ocean-influence box model

given above entirely neglects the influence of evapo-

transpiration. However, the same results would also

follow (with a different definition of g) if the influence of

evapotranspiration on land specific humidity qE is not

neglected but is instead assumed to scale with land

specific humidity. Note that qE may scale with land

specific humidity even though the evapotranspiration
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rate is not expected to scale with land specific humidity.

In particular, qE also depends on t1t2/[t1(12 lL)1 t2],

and this would be expected to change under a slowdown

of the circulation even if both t1 and t2 increase by the

same factor.

We next assess the applicability of this ocean-

influence box model result to idealized and compre-

hensive GCM simulations. We use (5) to estimate the

change in land relative humidity under climate change

given the changes in land temperature and ocean spe-

cific humidity and calculating g as the ratio of land to

ocean specific humidities in the control climate.

a. Application of ocean-influence box model to
idealized GCM simulations

The ocean-influence box model is first applied to

idealized GCM simulations over a wide range of cli-

mates. The idealized GCM does not simulate several

features of the climate system (e.g., the seasonal cycle,

ocean dynamics, and stomatal effects). However, this

reduced-complexity approach and the wide range of

climates simulated allow us to systematically investigate

land relative humidity in a controlled way and help to

guide and interpret our subsequent analysis of more

complex CMIP5 simulations.

The idealized GCM is similar to that of Frierson et al.

(2006) and Frierson (2007), with specific details as in

O’Gorman and Schneider (2008) and Byrne and

O’Gorman (2013a). It is based on a spectral version of

the GFDL dynamical core, with a two-stream gray ra-

diation scheme, no cloud or water vapor radiative

feedbacks, and the simplified moist convection scheme

of Frierson (2007). The simulations have a subtropical

continent spanning 208 to 408N and 08 to 1208E, with a

slab ocean elsewhere (Fig. 3). The land surface hydrol-

ogy is simulated using a bucket model (Manabe 1969).

According to the bucket model, evapotranspiration is a

simple function of soil moisture and the potential

evapotranspiration (i.e., the evapotranspiration for a

saturated land surface), with the soil moisture evolving

according to the local balance of precipitation and

evapotranspiration [see Byrne and O’Gorman (2013a)

for a full description of the bucket model employed

here]. All other land surface properties are identical to

those of the slab ocean. We vary the climate over a wide

range of global-mean surface-air temperatures (be-

tween 260 and 317K) by changing the longwave optical

thickness, which is analogous to varying the concentra-

tions of CO2 and other greenhouse gases. The longwave

optical thickness is specified by t5atref, where tref is a

reference optical thickness distribution, and we analyze

simulations with 10 different values of the parameter a.1

We present results based on time averages over

4000 days.

When applying the box model to the simulations, we

assume that the average specific humidity in the land

boundary layer is a fixed fraction of the surface-air

specific humidity2 and then use the surface-air specific

humidities to represent the boundary layer. In the case

of the idealizedGCM, surface-air quantities are taken to

be those of the lowest atmospheric level, s5 0:989,

where s5 p/ps, and p and ps are the pressure and surface

pressure, respectively. Land values are averaged (with

area weighting) over the entire subtropical continent,

and the ocean averages are taken over neighboring

ocean at the same latitudes—that is, from 208 to 408N
and 1208 to 3608E.3

To apply the ocean-influence box model (5), we cal-

culate the g parameter at each land grid point by taking

the ratio of the land specific humidity at that grid point

to the zonal-mean ocean specific humidity at that lati-

tude. We calculate g for each simulation (except the

warmest). We then estimate the change in surface-air

land specific humidity between pairs of nearest-

neighbor simulations as a function of g and the

changes in ocean specific humidity, where g is set to its

value in the colder of the two simulations and assumed

to be constant as the climate changes.

FIG. 3. Continental configuration in the idealized GCM simula-

tions. A subtropical continent spans 208 to 408N and 08 to 1208E,
with a slab ocean elsewhere.

1 Simulations are performed with the following a values: 0.2, 0.4,

0.7, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, and 6.0.
2 This assumption holds approximately in the idealized simula-

tions over land and ocean, although it is less accurate in the coldest

simulations over land in which changes in the height of the

boundary layer are relatively large (not shown).
3 Our results are almost identical if we calculate ocean averages

using the ‘‘control’’ Southern Hemisphere as in Byrne and

O’Gorman (2013a) (i.e., ocean values averaged over 208 to 408S
and 08 to 1208E). We choose to average over neighboring ocean in

this study because the box model involves advection of moisture

from ocean to land, and this naturally suggests averaging over

ocean adjacent to the land continent.

15 DECEMBER 2016 BYRNE AND O ’GORMAN 9049



Land surface–air specific humidity changes between

the pairs of idealized GCM simulations, along with the

estimates of these changes using (5), are plotted against

the midpoint ocean temperature for each pair in Fig. 4.

The increases in land specific humidity (Fig. 4a) are

smaller than what would occur if land relative humidity

remained constant (see the red line in Fig. 4a), implying a

decrease in relative humidity with warming. The simu-

lated specific humidity changes are well captured by the

ocean-influence boxmodel over the full range of climates

(Fig. 4a). The small deviations from the prediction of the

ocean-influence box model could be due to the influence

of evapotranspiration, changes in circulation patterns, or

changes in the ratios lL and lO of free-tropospheric to

surface-air specific humidities, which are assumed to be

constant in the box model. The parameters lL and lO

might be expected to increase with warming because the

fractional rate of increase in saturation vapor pressure

with temperature is higher at the lower temperatures that

occur farther up in the atmosphere and because there is

enhanced warming aloft at low latitudes in simulations of

global warming (e.g., Santer et al. 2005), and such effects

could be included in a more complicated box model.

The g parameter is relatively constant over the wide

range of climates simulated (Fig. 5a), consistent with our

neglect of changes in g when deriving (5), with a mean

value of 0.63 and minimum and maximum values of 0.57

and 0.72, respectively. Thus, for the subtropical continent

in this idealized GCM, land specific humidity is approx-

imately 60% of the neighboring ocean specific humidity.

The boxmodel (5) predicts the changes in mean specific

humidity that must be combined with the mean tempera-

tures to estimate the relative humidity changes. However,

because of the nonlinearity of the thermodynamic re-

lationship H(T, p, q) between relative humidity, tem-

perature, pressure, and specific humidity, it is not possible

to reproduce the mean relative humidity using the mean

temperature and mean specific humidity. (For example,

the relative humidity may be approximated as the ratio of

specific humidity to saturation specific humidity, and it is

clear that the mean of this ratio need not be same as the

FIG. 4. Changes in (a) surface-air specific humidity and (b) surface-

air relative humidity over land between pairs of idealized GCM

simulations with a subtropical continent. The humidity changes are

normalized by the land surface–air temperature changes. Solid black

lines denote the simulated changes and the dashed lines represent

the estimated changes using the ocean-influence box model (5).

Pseudo relative humidities are shown (see text), but the blue line in

(b) shows the change in the mean of the actual relative humidity for

comparison. The red line in (a) indicates what the change in surface-

air land specific humidity would be if the land pseudo relative hu-

midity did not change (i.e., for each pair of simulations, the land

specific humidity change if the land pseudo relative humidity is fixed

at its value in the colder simulation).

FIG. 5. Parameters for theboxmodels applied to the idealizedGCM

simulations: (a) The g parameter for the ocean-influence box model

(solid black line) and the full boxmodel (dashedblack line). (b)TheqE

contribution in the full boxmodel (dashed black line). For comparison,

the surface-air land specific humidity is also shown (red line) scaled by

a factor of 0.25 so that it roughly matches the magnitude of qE.

9050 JOURNAL OF CL IMATE VOLUME 29



ratio of the means.) We instead use a pseudo relative hu-

midity, defined in terms of the mean temperature, mean

specific humidity, andmean pressure asH(T, p, q), where

the bars denote time means.4 For convenience we will

refer to this pseudo relative humidity as the relative hu-

midity, but we also show the mean relative humidity

changes for comparison in Figs. 4b and 6b. Although the

pseudo relative humidity is not the same as the mean rel-

ative humidity, it nonetheless behaves somewhat similarly

and is a useful measure of subsaturation.

The box model captures the important features of the

relative humidity response including the decreases in

relative humidity with warming and the decreasing mag-

nitude of these changes as the climate warms (Fig. 4b).

The errors in the estimated changes in relative humidity

are larger than for the estimated changes in specific hu-

midity, at least when the sizes of the errors are compared

to the sizes of the changes. But this is primarily because

the changes in relative humidity are small compared to

the fractional changes in specific humidity, which makes

them more difficult to estimate accurately.

Given the simplicity of the ocean-influence box model,

its ability to describe the behavior of land relative humidity

in this idealized GCM is impressive. However, the geom-

etry and surface properties of Earth’s landmasses aremore

varied and complex than the idealized continent consid-

ered, and factors such as orography or cloud feedbacks

that are not included in the idealized GCM could alter the

surface humidity response. Therefore, to investigate the

changes in land relative humidity further, we turn to more

comprehensive simulations from the CMIP5 archive.

b. Application of ocean-influence box model to
CMIP5 simulations

Weapply the ocean-influence boxmodel to changes in

land surface–air relative humidity between 30-yr time

averages in the historical (1976–2005) and RCP8.5

(2070–99) simulations from the CMIP5 archive (Taylor

et al. 2012). We analyze 19 models in total,5 and in each

case the r1i1p1 ensemble member is used. As for the

idealized GCM analysis, we assume the average

boundary layer specific humidity over land is a fixed

fraction of the surface-air specific humidity and take

surface-air specific humidity to be representative of the

boundary layer.

The specific humidities in the boxmodel are identified

with the zonal and time mean specific humidities (over

land or ocean) for each latitude and for each of the

12 months of the year in the CMIP5 simulations. We

calculate g at each land grid point as the ratio of the local

land specific humidity to the zonal-mean ocean specific

humidity at that latitude, and we do this for each month

of the year in the historical simulations. By computing

g in this way, we are assuming that the horizontal ex-

change of moisture between land and ocean, described

by the box model, is taking place predominantly in the

zonal direction. Using the diagnosed g, and assuming it

does not change as the climate warms, changes in mean

surface-air specific humidity over land are estimated for

each latitude and longitude and for each month of the

year using (5) and the changes in zonal-mean ocean

specific humidity.

The simulated and estimated annual- and zonal-mean

changes in land specific humidity at each latitude are

shown in Fig. 6a. The magnitude and latitudinal varia-

tions of the specific humidity changes are reasonably

well captured by the ocean-influence box model, in-

cluding the flat region in the Northern Hemisphere

midlatitudes. The magnitude of the increases is under-

estimated at most latitudes, which, as discussed in the

case of the idealized GCM simulations, could be partly

due to increases in the parameters lL and lO relating

free-tropospheric specific humidities to surface-air spe-

cific humidities, but other aspects of the ocean-influence

box model such as neglecting the influence of evapo-

transpiration and the reevaporation of falling pre-

cipitation are also likely to play a role. The parameter g

(i.e., the ratio of land and ocean specific humidities) is

shown in Fig. 7a. It has a global, annual, and multimodel

mean value of 0.75, which is somewhat larger than the

value found in the idealized GCM simulations. This is

not surprising given that the land in the idealized sim-

ulations is a subtropical continent, which is generally

drier relative to neighboring oceans than continents at

lower or higher latitudes.

Together with the simulated changes inmonthlymean

surface-air land temperature, the estimated changes in

specific humidity are used to estimate the land pseudo

relative humidity changes. As for the idealized GCM

analysis, it is necessary to compare pseudo relative hu-

midities because of the difficulty in converting time-

mean specific humidities estimated by the box model to

4When evaluating pseudo relative humidity for the idealized

GCM, we use a simplified form of the Clausius–Clapeyron relation

(consistent with the idealizedGCM) that considers only the vapor–

liquid phase transition when computing the saturation vapor

pressure [see Eq. (4) of O’Gorman and Schneider 2008].
5 The CMIP5 models considered are ACCESS1.0, ACCESS1.3,

BCC_CSM1.1, BCC_CSM1.1(m), BNU-ESM, CanESM2, CNRM-

CM5, CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2M, INMCM4,

IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-

ESM, MIROC-ESM-CHEM, MIROC5, MRI-CGCM3, and

NorESM1-M. The variables used in this paper have the following

names in the CMIP5 archive: evaporation (evspsbl), surface-air

specific humidity (huss), surface-air temperature (tas), and surface-

air relative humidity (hurs).
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relative humidities. The use of pseudo relative humid-

ities also avoids the complication that different climate

models use different saturation vapor pressure formu-

lations.6 The changes in pseudo relative humidity are

calculated for each month of the year before taking the

annual mean for both the simulated changes and the

changes estimated by the box model. The changes in

pseudo relative humidity and model-outputted relative

humidity are very similar at lower latitudes but more

different at higher latitudes (cf. blue and black solid lines

in Fig. 6b), where the differing computations of satura-

tion vapor pressure over ice in the various models be-

come important and there is larger temporal variability.

The simulated changes in (pseudo) land relative hu-

midity are quite well described by the ocean-influence

box model in the Southern Hemisphere and at lower

latitudes (Fig. 6b). However, owing to the general un-

derestimation of the specific humidity increases by the

ocean-influence box model (Fig. 6b), the relative hu-

midity decreases are overestimated, with a large dis-

crepancy in the mid- to high latitudes of the Northern

Hemisphere. At these latitudes, there is more land than

ocean and it is likely that changes in ocean specific hu-

midity have a weak influence on the specific humidity in

the interior of large continents or that meridional

moisture transports from ocean at other latitudes be-

come more important.

The estimated and simulated rates of change of

global-mean land relative humidity (in %K21) in the

various climatemodels are correlated, with a correlation

coefficient of 0.64 (Fig. 8). According to the ocean-

influence box model, intermodel differences in the

FIG. 7. Parameters in the ocean-influence box model and re-

gression approach for the CMIP5 simulations: (a) g parameter for

the ocean-influence boxmodel in themultimodelmean (solid black

line) and for the regression approach including evapotranspiration

(dashed black line) and (b) the regression coefficient b. For the

ocean-influence box model, g is evaluated based on the historical

simulations. For the regression approach, g and b are evaluated

based on (9) across the different models.

FIG. 6. Multimodel-mean changes between the historical and

RCP8.5 simulations in zonal and time mean (a) surface-air land

specific humidity and (b) surface-air land relative humidity. The

changes are normalized by the global-mean surface-air tempera-

ture change prior to taking the multimodel mean. Solid black lines

denote the simulated changes and dashed lines denote the esti-

mated changes using the box model (5). For (a), the red line in-

dicates the change in surface-air land specific humidity for constant

land pseudo relative humidity (i.e., for land pseudo relative hu-

midities fixed at the values in the historical simulations). Pseudo

relative humidities are shown, but the blue line in (b) shows the

simulated mean changes for the relative humidity variable out-

putted by the models for comparison.

6 CMIP5 models use a variety of forms for the dependence of

saturation vapor pressure on temperature (including the issue of

how ice is treated), but documentation regarding the specific form

used by a given model is not readily available. We use a relatively

simple expression for the saturation vapor pressure [see Eq. (10) of

Bolton 1980] to calculate the pseudo relative humidities for all

the models.
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relative humidity change may be related to the differ-

ences in the control-climate land relative humidity,

land–ocean warming contrast, and fractional change in

ocean relative humidity [see (7)]. Of these factors, we

find that the simulated change in land relative humidity

is best correlated with the land–ocean warming contrast.

The links between changes in temperature and relative

humidity are discussed in more detail in section 5.

4. Influence of evapotranspiration

The ocean-influence box model captures much (but

not all) of the behavior in vastly more complex GCMs.

However, the moisture balance of the land boundary

layer is also affected by evapotranspiration, and changes

in land surface properties, such as soil moisture or sto-

matal conductance that are exogenous to the boxmodel,

can affect evapotranspiration in the absence of any

changes in the overlying atmosphere. For example,

changes in stomatal conductance under elevated CO2

conditions have been shown to reduce both evapo-

transpiration and land relative humidity without

changes in ocean humidity (Andrews et al. 2011).

We turn to the full box model (3), which includes the

effects of evapotranspiration. We assume once more

that changes in g are negligible, such that

dq
L
5 gdq

O
1 dq

E
. (8)

There are two terms contributing to changes in qL in (8):

the term arising from changes in ocean specific humidity,

gdqO, and an additional land evapotranspiration term,

dqE. We next assess their relative importance in con-

trolling changes in land humidity in the idealized GCM

and CMIP5 simulations.

a. Application of full box model to idealized GCM
simulations

We first examine the idealized GCM simulations

with a subtropical continent. In contrast to the ocean-

influence box model (5), for which the single parameter

g could be easily estimated in the control simulation in

each case, the full model in (8) has two parameters to be

estimated, g and qE. To estimate these parameters, we

perform an additional set of simulations with the same

longwave optical thicknesses as in the 10 simulations

described previously but with the evapotranspiration set

to zero over land. Specifying the land evapotranspira-

tion in this way is equivalent to drying out the soil. (Note

that the change in evapotranspiration affects both the

humidity of the atmosphere and the surface energy

balance.) Using these additional simulations withEL 5 0,

we can estimate g for each land grid point and for each

climate using (3): g5 qL,EL50=qO,EL50, where the ocean

specific humidity is zonally averaged at the latitude of the

given land grid point. The g values obtained are smaller

than those calculated from the control climate for the

ocean-influence box model (Fig. 5a) because the contri-

bution of evapotranspiration to the land specific humidity

is now also taken into account. We use these g values to

estimate qE for the original simulations with dynamic

land surface hydrology: qE 5 qL 2 gqO. The values of qE

increase with warming except in hot climates (Fig. 5b).

Interestingly, the influence of evapotranspiration on land

specific humidity, as measured by qE, roughly scales with

the land specific humidity except in hot climates (cf. the

dashed black and solid red lines in Fig. 5b), and this

helps to explain why the ocean-influence box model is

accurate even though evapotranspiration affects land

specific humidity.

We then estimate the changes in land specific hu-

midity between pairs of nearest-neighbor simulations

from (8), which assumes that g is constant as the climate

changes. We calculate changes in the influence of

evapotranspiration dqE using the values of qE diagnosed

for each simulation as described above. The simulated

and estimated changes in surface-air land specific hu-

midity, along with the contributions due to changes in

ocean specific humidity and land evapotranspiration, are

shown in Fig. 9a. The full box model captures the be-

havior of the land specific humidity changes as a func-

tion of temperature, although it is less accurate in hot

climates because of increases in g with warming in these

climates (Fig. 5a). The contribution from ocean specific

FIG. 8. Simulated global mean changes in (pseudo) land relative

humidity vs their estimates from the ocean-influence box model

(black circles) and the regression approach that includes evapo-

transpiration (red circles) for the various CMIP5 models. Both the

simulated and estimated changes are normalized by the global-

mean surface-air temperature change for each model. The corre-

lation coefficients are 0.64 and 0.56 for the ocean-influence box

model and the regression approach, respectively, and the solid line

is the one-to-one line.
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humidity changes gdqO is larger than the contribution

from land evapotranspiration dqE for all climates

(Fig. 9a). The changes in simulated land (pseudo) rela-

tive humidity are also well captured by the full box

model (Fig. 9b).

Because relative humidity depends on temperature as

well as specific humidity, there is no unique way to use

the box model result (8) to decompose changes in land

relative humidity into contributions due to ocean spe-

cific humidity and land evapotranspiration. However, a

decomposition derived in appendix A [(A3)] has several

desirable properties. According to the decomposition,

the contributions to the change in land relative humidity

from evapotranspiration and ocean specific humidity are

weighted according to their contribution to land specific

humidity in the control climate. The change in ocean

specific humidity leads to a decrease in land relative

humidity if the fractional increase in ocean specific hu-

midity is less than the fractional increase in saturation

specific humidity over land. Similarly, evapotranspira-

tion contributes to a decrease in land relative humidity if

the fractional increase in qE is less than the fractional

increase in saturation specific humidity over land. (Note

that the fractional change in qE is generally different

from the fractional change in evapotranspiration.)

Using this decomposition of the change in land rela-

tive humidity, we find that the land evapotranspiration

contribution is of comparable importance to the ocean

specific humidity contribution for the idealized GCM

simulations (Fig. 9b). By contrast, we found that the

contribution of ocean specific humidity was more im-

portant than land evapotranspiration when land specific

humidity changes were considered. The discrepancy

arises because, according to the decomposition [(A3)], it

is not the magnitude of a particular contribution to the

change in specific humidity that matters for its contri-

bution to the change in relative humidity, but rather how

its fractional changes compare to the fractional changes

in saturation specific humidity and how much it con-

tributes to the land specific humidity in the control

climate.

b. Influence of evapotranspiration in CMIP5
simulations

We now investigate how land evapotranspiration

contributes to specific humidity changes in the CMIP5

simulations. We need to estimate both g and qE for the

full box model, but there are no CMIP5 simulations

analogous to the zero-evapotranspiration simulations

with the idealized GCM described above. Instead, we

estimate the influence of evapotranspiration and ocean

specific humidity on land specific humidity using a

multiple linear regression approach based on the inter-

model scatter across the CMIP5 models. We use the

following regression relationship:

dq
L
5gdq

O
1bdE

L
1 z , (9)

which is motivated by the full box model (3), but note

that bdEL will only equal dqE if parameters such as t1
and t2 do not change with climate (changes in these

parameters will contribute to the remainder term z). The

variable dqO is identified as the zonal and time mean for

each latitude and month of the year in each model,

whereas dqL and dEL are the time mean values at each

latitude, longitude, and month of the year. The re-

gression coefficients g, b, and z are then estimated using

ordinary least squares regression for each land grid point

and month of the year, implying that g, b, and z are

assumed to be the same in all models. The zonal and

annual means are shown for g and b in Fig. 7 and for z in

Fig. 10. The regression coefficient g has a similar mag-

nitude and latitudinal structure to the g parameter cal-

culated for the ocean-influence box model (Fig. 7a). The

coefficient b is positive at almost all latitudes (Fig. 7b),

FIG. 9. As in Fig. 4, but here showing estimates of the surface-air

(a) specific humidity changes and (b) relative humidity changes

from the full boxmodel (8). The contributions due to ocean specific

humidity changes (blue dashed lines) and evapotranspiration

changes (red dashed lines) are also shown. The contributions to

changes in relative humidity are calculated using (A3). Pseudo

relative humidities are shown in this figure (the changes in actual

relative humidity are shown by the blue line in Fig. 4b).
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indicating that enhanced evapotranspiration increases

the land specific humidity, while the remainder term z

(Fig. 10) is negative at most latitudes.

By construction, the regression relationship (9) is

exactly satisfied in the multimodel mean. Based on

this relationship, the annual-mean contributions to

changes in land specific humidity from changes in

ocean specific humidity, changes in land evapotrans-

piration, and the remainder term are shown in Fig. 10.

At all latitudes, changes in land specific humidity are

dominated by the ocean specific humidity contribu-

tion. The contribution due to changes in land evapo-

transpiration is positive and has its largest values

in the Northern Hemisphere where the land fraction

is greatest. The global-mean land relative humid-

ity changes estimated using the regression relation-

ship are not as highly correlated with the simulated

changes as for the ocean-influence box model (Fig. 8),

and this may be because g variations across the models

are not taken into account.

It is not possible to estimate the individual contribu-

tions to changes in land relative humidity from ocean

specific humidity and evapotranspiration for the CMIP5

simulations, as we did for the idealized GCM simula-

tions. This is because the decomposition of relative hu-

midity changes discussed in appendix A involves the

individual contributions to land specific humidity in the

control climate, and these are difficult to calculate

using a regression approach. However, the results from

the idealized GCM simulations suggest that evapo-

transpiration could be important for the changes in land

relative humidity in the CMIP5 simulations, even

though it is a second-order influence for changes in land

specific humidity. It would beworthwhile to estimate the

land evapotranspiration contribution for full-complexity

GCMs by performing simulations with specified land

evapotranspiration rates as was done for the idealized

GCM in this study.

5. Role of temperature change for the response of
land relative humidity to climate change

Throughout this paper, we have calculated changes in

land relative humidity by first estimating the specific hu-

midity changes and then combining these estimates with

the temperature changes, which we have taken as in-

dependently specified.However, changes in land humidity

can be expected to lead to changes in surface-air temper-

ature, and this can be quantified through the atmospheric

dynamic constraint linking changes in temperature and

relative humidity over land and ocean (Byrne and

O’Gorman 2013a,b). In the tropics, this constraint is based

on weak horizontal gradients of temperature in the free

troposphere and convective quasi equilibrium in the ver-

tical. As a result, land temperatures and relative humid-

itiesmust change in tandemas the climatewarms such that

the change in surface-air equivalent potential temperature

ue is approximately the same over land and ocean

(due,L 5 due,O). Byrne and O’Gorman (2013a) referred to

this constraint as the convective quasi-equilibrium theory

of the land–ocean warming contrast, and they also dis-

cussed extensions to the extratropics. Here we are not

focused on the land–ocean warming contrast and we will

simply refer to this constraint as the dynamic constraint on

surface-air temperatures and humidities since it follows

from atmospheric dynamical processes. By contrast, we

will refer to the link between surface-air humidities over

land and ocean because of moisture transport between

them (as formulated in the box model in this paper) as the

moisture constraint (dqL 5 gdqO 1 dqE). As shown in

appendix B, the dynamic constraint and ocean-influence

box model may be combined to give first-order estimates

of the land–oceanwarming contrast and the change in land

relative humidity based only on changes in humidity and

temperature over ocean and control-climate variables.

A feedback loop is used to conceptualize the in-

teraction between changes in temperature and relative

humidity over land and ocean (Fig. 11). As mentioned

earlier, this feedback is separate to the soil moisture–

temperature and soil moisture–precipitation feedbacks

identified in other studies (e.g., Seneviratne et al. 2010).

Air over land is drier than air over ocean in the control

climate, and as a result the dynamic constraint implies

that surface-air temperatures increase more over land

than ocean in response to a positive radiative forcing

(Byrne and O’Gorman 2013a). The moisture constraint

FIG. 10. Multimodel-mean changes in zonal- and time-mean

surface-air land specific humidity (solid black line) in the CMIP5

simulations and the contributions to these changes due to ocean

specific humidity changes gdqO (blue dashed line), land evapo-

transpiration changes bdEL (green dashed line), and the remainder

term z (red dashed line) as estimated using the regression relation

(9). All quantities are normalized by the global-mean surface-air

temperature change.
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then implies that the enhanced land warming leads to a

land relative humidity decrease because of the limited

supply of moisture from the ocean. According to the

dynamic constraint, a decrease in land relative humidity

enhances the land warming further. The feedback loop

can also be entered via a nonradiative forcing that

causes a decrease in land specific humidity, such as the

physiological forcing from reduced stomatal conduc-

tance or a local decrease in soil moisture.

We next assess the amplification of land relative hu-

midity changes by induced changes in temperature for

the case in which a moisture forcing (e.g., stomatal clo-

sure) alters the specific humidity over land by changing

evapotranspiration, while the ocean temperature and

humidity are assumed to remain constant. Considering

the relative humidity to be a function of specific hu-

midity and temperature and linearizing, we can write the

total change in land relative humidity as the sum of

contributions from changes in specific humidity at con-

stant temperature (the ‘‘forced’’ component) and

changes in temperature at constant specific humidity:

dH
L,total

5 dH
L,forced

1
›H

L

›T
L

����
qL

dT
L
, (10)

where ›HL/›TLjqL is the sensitivity of relative humidity

to warming at constant specific humidity, and dTL is the

change in land temperature that arises as a result of the

change in land humidity.

Because the change in land specific humidity is given in

this case, it is simplest to calculate dTL directly using the

dynamic constraint written in terms of specific humidity

rather than following a feedback loop in relative humidity

as in Fig. 11. The analysis is also simpler if the dynamic

constraint is formulated in terms of moist static energy.

Like equivalent potential temperature, moist static en-

ergy is conserved for certain moist adiabatic displace-

ments of air, and it is defined as h5 cpT1Lyq1f,

where cp is the specific heat capacity at constant pressure,

Ly is the latent heat of evaporation, and f is the geo-

potential. Given that the surface geopotential is constant

as the climate changes, the dynamic constraint may be

expressed as equal changes in surface-air moist enthalpy

over land and ocean:

c
p
dT

L
1L

y
dq

L
5 c

p
dT

O
1L

y
dq

O
. (11)

Thus, the assumption of equal changes in moist enthalpy

over land and ocean as used previously by Berg et al.

(2016) is consistent with the theory of the land–ocean

warming contrast used by Byrne andO’Gorman (2013b)

when the equivalent potential temperature is replaced

by the moist static energy. The expression (11) provides a

particularly simple way to think about the response of

relative humidity to a moisture forcing over land. A

decrease in land specific humidity (due to, e.g., reduced

stomatal conductance) requires an increase in land

temperature so as to maintain a constant moist enthalpy

(assuming no change over ocean). Both the decrease in

land specific humidity and the consequent increase in

land temperature contribute to a decrease in land rel-

ative humidity.

For constant ocean humidity and temperature, (11) gives

dTL 52LydqL/cp. Approximating HL 5qL/qL*, we can

also write dHL,forced 5 dqL/qL* and ›HL/›TLjqL 52aqHL,

where we have again assumed that saturation specific hu-

midity varies with temperature at a fractional rate of aq.

Substituting these expressions into (10) we find that

dH
L,total

5 dH
L,forced

 
11

a
q
L

y
q
L

c
p

!
, (12)

which implies that the forced relative humidity change is

amplified by a factor of (11aqLyqL/cp) by the induced

change in temperature, and this factor is an increasing

function of the control-climate specific humidity over

land. For a control land relative humidity of 50%, a land

surface temperature of 298K, and taking aq 5 0:06K21,

the amplification of the relative humidity change is by a

factor of 2.5. For a less arid region with higher humidity,

the amplification is even larger (e.g., for the same tem-

perature and a relative humidity of 70% the amplifica-

tion of the relative humidity change is by a factor of 3).

Very similar numerical results are obtained if the dy-

namic constraint is formulated in terms of equivalent

FIG. 11. Schematic diagram describing the feedback between

changes in temperature and relative humidity over land and ocean

(assuming, for simplicity, that ocean relative humidity remains

constant). The ‘‘dynamic constraint’’ arises from atmospheric

processes that link temperatures and relative humidities over land

and ocean. The ‘‘moisture constraint’’ is due to the limited supply

of moisture from the ocean to the land boundary layer.
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potential temperature, and the calculation is performed

following the feedback loop between temperature and

relative humidity as in Fig. 11.

Thus, temperature changes strongly amplify changes

in relative humidity due to moisture forcings over land

(e.g., from changes in stomatal conductance or soil

moisture). Indeed, more than half of the total change

in relative humidity in this case comes from the change

in temperature rather than the change in specific hu-

midity, and this holds true for control land specific hu-

midities above cp/(aqLy)56:7 gkg21 according to (12).

Equation (12) can also be used to quantify the relative

influence of a land moisture forcing on relative humidity

versus specific humidity. The ratio of the fractional

change in relative humidity, dHL/HL, to the fractional

change in specific humidity, dqL/qL, is given by the factor

(11aqLyqL/cp), which is always greater than one.

Thus, a land moisture forcing has a greater effect on

relative humidity than specific humidity. This is because

the moisture forcing and the induced temperature

change act in the same direction on relative humidity

(unlike for the global warming case). For example, sto-

matal closure reduces the specific humidity and in-

creases the temperature, both of which reduce the

relative humidity.

6. Conclusions

We have introduced a conceptual box model to in-

vestigate the response of near-surface land relative

humidity to changes in climate. Neglecting the contri-

bution qE of evapotranspiration to the moisture balance

over land (or assuming that qE scales with land specific

humidity), the simplest version of the box model

suggests a purely oceanic control on land boundary layer

humidity, with equal fractional changes in specific hu-

midity over land and ocean. Together with enhanced

warming over land relative to ocean and small changes

in ocean relative humidity, this simple box model

implies a decrease in land relative humidity as the cli-

mate warms, consistent with the mechanism proposed

previously for decreases in land relative humidity with

global warming (Simmons et al. 2010; O’Gorman and

Muller 2010; Sherwood and Fu 2014). The ocean-

influence box model captures many features of the

specific humidity response in idealized GCM and

CMIP5 simulations, supporting the hypothesis of a

strong oceanic influence on surface-air specific humidity

over land.

The full boxmodel, incorporating evapotranspiration,

is applied to the idealized GCM simulations using ad-

ditional simulations with specified evapotranspiration

rates and to the CMIP5 simulations using a linear

regression approach. Compared to moisture transport

from the ocean, evapotranspiration has only a secondary

influence on the land specific humidity and its changes.

However, evapotranspiration does play an important

role for the changes in land relative humidity in the

idealized GCM simulations according to a decomposi-

tion of the relative humidity change that takes the tem-

perature change as given. Thus, although the oceanic

influence dominates changes in land specific humidity, in

agreement with the prevailing hypothesis, changes in

evapotranspiration must also be taken into account for

the change in land relative humidity.

The responses of land relative humidity and tempera-

ture to climate change are not independent, and their

interaction can generally be described by a temperature–

relative humidity feedback associated with the dynamic

constraint between land and ocean temperatures and

humidities and the moisture constraint described in this

paper. For the particular case of a moisture forcing over

land with ocean temperature and humidity held fixed, we

have derived a simple expression for the amplification

of the relative humidity change by the induced change

in land temperature, and we have given an example in

which the amplification is by a factor of 2.5 for a land

relative humidity of 50% and a land surface tempera-

ture of 298K. For sufficiently high specific humidity in

the control climate, the majority of the change in land

relative humidity comes from the induced change in

temperature rather than the change in specific humid-

ity. This amplification contributes to the strong influ-

ence of reduced stomatal conductance or decreases in

soil moisture on land relative humidity found in pre-

vious studies (e.g., Cao et al. 2010; Andrews et al. 2011;

Berg et al. 2016).

As mentioned in section 1, the pattern of relative

humidity changes influences the projected response of

the water cycle to climate change. In particular, spatial

gradients of fractional changes in surface-air specific

humidity dq/q contribute a negative tendency to pre-

cipitation minus evapotranspiration (P2E) over con-

tinents as the climate warms (Byrne and O’Gorman

2015). The ocean-influence box model predicts that

dq/q is spatially uniform, implying no effect of spatial

gradients in this quantity on P2E changes over land.

However, the CMIP5 simulations do show spatial

gradients in dq/q, and thus a more detailed under-

standing of the pattern of relative humidity changes is

needed for the purpose of understanding changes in

P2E over land. On the other hand, the prediction of

equal fractional increases in specific humidity over land

and ocean may help explain the equal fractional in-

creases in the intensity of precipitation extremes

over tropical land and ocean that have previously
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been found in climate-model simulations (see Fig. S3

of O’Gorman 2012).

Future work could investigate the controls on the

detailed pattern of dq/q in order to better understand

the P2E response over land. Further investigation of

the contribution of evapotranspiration changes to

land relative humidity changes in simulations of

global warming with comprehensive GCMs would

also be valuable. In addition, the influence of other

factors on the land relative humidity response to

global warming could be investigated. For example,

enhanced reevaporation of precipitation due to re-

duced land relative humidity in a warmer climate

would tend to moisten the land boundary layer and

dampen the decrease in relative humidity. Finally, it is

of interest to determine if the box models discussed

here can be adapted for application to shorter-term

variability and in particular to the sharp decrease in

global-mean land relative humidity that is seen in

observations since 2000 (Simmons et al. 2010; Willett

et al. 2014, 2015).
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APPENDIX A

Decomposition of Changes in Land Relative
Humidity

In this appendix we derive a decomposition of the

changes in land relative humidity into contributions as-

sociated with changes in ocean specific humidity and

with land evapotranspiration.

We approximate relative humidity as the ratio of spe-

cific humidity to saturation specific humidity H5 q/q*.

We can then write changes in specific humidity as

follows:

dq5Hdq*1 q*dH1 dHdq*. (A1)

Dividing (A1) by the specific humidity q and rearrang-

ing, we can express fractional changes in relative hu-

midity as follows:

dH

H
5

�
dq

q
2
dq*

q*

�
q*

q*1 dq*
. (A2)

Using (8), we relate changes in land specific humidity to

changes in ocean specific humidity and changes in

evapotranspiration (i.e., dqL 5 gdqO 1 dqE) and sub-

stitute into (A2) to obtain an expression for fractional

changes in land relative humidity in terms of an ocean

specific humidity contribution and an evapotranspira-

tion contribution:

dH
L

H
L

5
gq

O

q
L

�
dq

O

q
O

2
dq

L*

q
L*

�
q
L*

q
L*1 dq

L*

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{gdqO contribution

1
q
E

q
L

�
dq

E

q
E

2
dq

L*

q
L*

�
q
L*

q
L*1 dq

L*
.|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dqE contribution

(A3)

The properties of this decomposition are discussed in

section 4a.

APPENDIX B

Estimates of the Land–OceanWarming Contrast and
Land Relative Humidity Changes Based on Com-

bined Dynamic and Moisture Constraints

In this paper, we have estimated the land surface–air

relative humidity change by estimating the change in land

specific humidity and taking the land temperature change

as an input. By contrast, Byrne and O’Gorman (2013b)

estimated the land temperature change by assuming

changes in equivalent potential temperature were the

same over land and ocean (the dynamic constraint) and

taking the land relative humidity change as an input.Here,

the dynamic and moisture constraints are combined to

give simple estimates of the land–ocean warming contrast

and land relative humidity changes without prescribing

changes in either land temperature or relative humidity.

We use the form of the dynamic constraint in terms of

moist static energy that is discussed in section 5. Re-

arranging (11) and using the moisture constraint from

the ocean-influence box model (5), we can estimate the

warming amplification factor A, defined as the ratio

of land warming to ocean warming (e.g., Byrne and

O’Gorman 2013a):

9058 JOURNAL OF CL IMATE VOLUME 29



A5
dT

L

dT
O

5 11 (12 g)
L

y

c
p

dq
O

dT
O

. (B1)

The estimated change in land temperature from (B1)

may then be combinedwith the estimated change in land

specific humidity from the ocean-influence box model

(5) to give an estimate of the change in land relative

humidity. Thus, the combination of the dynamic and

moisture constraints gives estimates for the changes in

land temperature and relative humidity using only

control-climate variables and changes in temperature

and humidity over ocean.

We apply this combined theory to the CMIP5 simula-

tions and compare the estimated amplification factors

and land relative humidity changes to the simulated

values (Fig. B1). The amplification factor is well esti-

mated in the Southern Hemisphere (Fig. B1a), but it is

substantially overestimated in the northern subtropics.

The change in land relative humidity is also well esti-

mated in the Southern Hemisphere except over Antarc-

tica (Fig. B1b) but is less accurate in the Northern

Hemisphere where the land fraction is larger and we

expect the moisture constraint derived from the ocean-

influence box model to be less valid. The accuracy of the

amplification factor estimate is lower than when only the

dynamic constraint is used (cf. Fig. 2 of Byrne and

O’Gorman 2013b), and this is not surprising given that

errors in estimating the land relative humidity using the

ocean-influence box model will make a contribution.

Nevertheless, given that only changes in ocean quantities

are used, the combined theory provides reasonable first-

order estimates of the land–ocean warming contrast and

land relative humidity changes.

More accurate results could be obtained by combining

the dynamic constraint with the full box model for the

relative humidity change, which takes account of the

influence of evapotranspiration and thus factors such as

stomatal closure. Thus, our results are consistent with

the conclusion of Berg et al. (2016) that for a given

change in moist enthalpy over land, land surface pro-

cesses modulate the partitioning between changes in

temperature and changes in specific humidity, but we

note that the ocean influence on landmoisture also helps

to determine this partitioning.

Although the combined dynamic and moisture con-

straints give reasonable first-order estimates of the land

relative humidity change and the land–ocean warming

contrast for the CMIP5models, they give very inaccurate

estimates for the idealizedGCM simulations inwarm and

hot climates (not shown). The reason for this inaccuracy

seems to be that the ocean-influence box model predicts

the change in land specific humidity or pseudo relative

humidity, but the prediction from the dynamic constraint

[i.e., the convective quasi-equilibrium theory of the land–

ocean warming contrast in Byrne and O’Gorman

(2013a)] only works well for the idealized GCM simula-

tions when it is evaluated in terms of the mean relative

humidity. This issue highlights the sensitivity of the land–

ocean warming contrast to even small differences in the

change in land relative humidity.
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